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We study the local repulsion between critical points of a stationary isotropic smooth planar Gaussian field. We show that the critical points can experience a soft repulsion which is maximal in the case of the random planar wave model, or a soft attraction of arbitrary high order. If the type of critical points is specified (extremum, saddle point), the points experience a hard local repulsion, that we quantify with the precise magnitude of the second factorial moment of the number of points in a small ball.

Introduction

The main topic of this paper is a local analysis of the critical points of a smooth stationary planar Gaussian field. The study of critical points, their number as well as their positions, are important issues in various application areas such as sea waves modeling [START_REF] Chevalier | Fast computation of the multi-points expected improvement with applications in batch selection[END_REF] , astronomy [LW04, [START_REF] Adler | Applications of random fields and geometry: Foundations and case studies[END_REF][START_REF] Lindgren | Local maxima of Gaussian fields[END_REF] or neuroimaging [START_REF] Nichols | Controlling the familywise error rate in functional neuroimaging: a comparative review[END_REF][START_REF] Taylor | Detecting sparse signals in random fields, with an application to brain mapping[END_REF][START_REF] Worsley | Searching scale space for activation in pet images[END_REF][START_REF] Worsley | Unified univariate and multivariate random field theory[END_REF]. In these situations, practitioners are particularly interested in the detection of peaks of the random field under study or in high level asymptotics of maximal points [START_REF] Cheng | Multiple testing of local maxima for detection of peaks in random fields[END_REF][START_REF] Taylor | Detecting sparse signals in random fields, with an application to brain mapping[END_REF][START_REF] Worsley | Searching scale space for activation in pet images[END_REF]. At the opposite of these Extremes Theory results, some situations require the topological study of excursion sets over moderate levels [START_REF] Adler | Random fields and geometry[END_REF][START_REF] Cheng | The mean Euler characteristic and excursion probability of Gaussian random fields with stationary increments[END_REF] or the location study of critical points (not only extremal ones) [START_REF] Muirhead | A second moment bound for critical points of planar Gaussian fields in shrinking height windows[END_REF].

Repulsive point processes have known a surge of interest in the recent years, they are useful in a number of applications, such as sampling for quasi Monte-Carlo methods [START_REF] Bardenet | Monte carlo with determinantal point processes[END_REF], data mining, texture synthesis in Image Analysis [START_REF] Launay | Determinantal point processes for image processing[END_REF], training set selection in machine learning, or numerical integration, see for instance [START_REF] Kulesza | Determinantal point processes for machine learning[END_REF], or as coresets for subsampling large datasets [START_REF] Tremblay | Determinantal point processes for coresets[END_REF]. Critical points of Gaussian fields could be an alternative to determinantal point processes, which are commonly used for their repulsion properties despite the difficult issue of their synthesis [START_REF] Desolneux | Etude de la répulsion des processus pixelliques déterminantaux[END_REF]. Several definitions exist to characterize the repulsion properties of a stationary point process. We will use the following informal definition of local repulsion: A stationary random set of points X Ă R2 is locally repulsive at the second order if, denoting by N ρ its number of points in a ball centred in 0 with radius ρ, we have

R N :" lim ρÑ0 EpN p2q ρ q EpN ρ q 2 ă 1 (1)
where for an integer n, n p2q " npn ´1q is the second order factorial power. This definition is motivated by the heuristic computation where we consider x 1 ‰ x 2 randomly sampled in X X B 1 and EpN ρ q " Ppx 1 P B ρ q `remainder EpN p2q ρ q " Ppx 2 P B ρ , x 1 P B ρ q `remainder,

where the remainder terms are hopefully negligible when ρ is small. In other words, a point process is locally repulsive if the probability to find a point in a small ball diminishes if we know that there is already a point in this ball. The constant R N is called the (second order) local repulsion factor, it is a dimensionless parameter that is invariant under rescaling or rotation of the process X . It equals 1 if X is a homogenous Poisson process, which is universally considered non-interacting. We say that the point process is weakly locally repulsive (resp. attractive) if R N P p0, 1q (resp. p1, 8q), and strongly repulsive if R N " 0.

We study the repulsion properties of the stationary process X c formed by critical points of a planar stationary isotropic Gaussian field ψ. We show that, depending on the covariance function of the field, they form a weakly locally repulsive or a weakly locally attractive point process, and that the minimal repulsion factor is R Xc " 1 8 ?

3 , reached when ψ is a Gaussian random wave model, which hence yields the most locally repulsive process of Gaussian critical points. There is on the other hand no maximal value for the limit. We also show that the subprocess formed by the local maxima of the field is strongly repulsive, as well as the subprocess formed by the saddle points, and give the precise magnitude of the ratio decay in the left hand member of (1).

Let us quote two recent articles that are concerned with a very similar question. The first one, which has been a source of inspiration, is [START_REF] Beliaev | Two point function for critical points of a random plane wave[END_REF]. In this paper, Belyaev, Cammarota and Wigman study the repulsion of the critical points for a particular Gaussian field, the Berry's Planar Random Wave Model, whose spectral measure is uniformly spread on a circle centred in 0. They obtain the exact repulsion ratio for critical points and upper bounds for the repulsivity for specific types of critical points (saddle, extrema). Azais and Delmas [START_REF] Azais | Mean number and correlation function of critical points of isotropic Gaussian fields[END_REF] have studied the attraction or repulsion of critical points for general stationary Gaussian fields in any dimension. Using a different computation method, they get an upper bound for the second factorial moment which is compatible with the order of magnitude that we obtain. Their method is borrowed from techniques in random matrix theory, as suggested by Fyodorov [START_REF] Fyodorov | Complexity of random energy landscapes, glass transition, and absolute value of the spectral determinant of random matrices[END_REF]. Namely, an explicit expression for the joint density of GOE eigenvalues is exploited.

In order to quantify the repulsion of the critical points, we compute the second factorial moment using the Rice or Kac-Rice formulas (see [START_REF] Adler | Random fields and geometry[END_REF] or [START_REF] Azaïs | Level sets and extrema of random processes and fields[END_REF] for details), as the vast majority of works concerned with counting the zeros or critical points of a random field. We get the asymptotics as the ball radius tends to 0 by performing a fine asymptotic analysis on the conditional expectations that are involved in the Kac-Rice formulas.

The paper is organized as follows: In Section 2, we present the Gaussian fields, which are the probabilistic object of our study, and the basic tools we will use for their study. In Section 3, we derive the Kac-Rice formula, in a context adapted to our framework. The purpose of section 4 is to compute the expectation of the number of critical points and also the number of extrema, minima, maxima and saddle (see Proposition 3). In Section 5, we study the second factorial moment and discuss the repulsion properties of the critical points.

Assumptions and tools

The main actors of this article are centered random Gaussian functions ψ : R 2 Ñ R whose law is invariant under translations, and whose realisations are smooth. Formally it means that for x 1 , . . . , x n P R 2 , pψpx 1 q, . . . , ψpx n qq is a centered Gaussian vector which law is invariant under translation of the x i 's (and rotations if isotropy is further assumed), and that the sample paths tψpxq; x P R 2 u are a.s. of class C 2 (or more). See [START_REF] Adler | Random fields and geometry[END_REF] for a rigourous and detailed exposition of Gaussian fields. Such a field is characterised by its reduced covariance function Γ Erψpzqψpwqs :" Γpz ´wq for some Γ : R 2 Ñ R, and if the field is furthermore assumed to be isotropic (i.e. its law is invariant under rotations)

Γpz ´wq " σp|z ´w| 2 q

(2)

for some σ : R `Ñ R, where |x| denotes the Euclidean norm of x P R 2 . We denote by ∇ψpzq the gradient of ψ at z P R 2 , by H ψ pzq the Hessian matrix evaluated at z, when these quantities are well defined. For a smooth random field ψ, the set of critical points is denoted by X c " X c pψq :" tx P R 2 : ∇ψpcq " 0u, and the number of critical points in a small disc B ρ of radius ρ ą 0 is defined by

N c ρ pψq :" #X c X B ρ .
When there is no ambiguity about the random field ψ, we simply write N c ρ instead of N c ρ pψq. Similarly, we denote by resp. N s ρ pψq, N e ρ pψq, N max ρ pψq, N min ρ pψq the number of resp. saddles, extrema, maxima and minima, critical points characterised by the signs of the Hessian eigenvalues.

As will be explained at Section 5, to perform a second order local analysis of the repulsion of ψ's critical points, we must assume fourth order differentiation of ψ, and for technical reasons we further assume that the fourth order derivative is α-Hölder for some α ą 0, we call this property C 4`α regularity. It is implied by σ being of class C 8`β for some β ą 2α, see Proposition 1 below. In this case, the Hölder constant is a random variable with Gaussian tail (see below).

Assumption 2.1. Assume that ψ is a non-constant stationary Gaussian field on R 2 and its reduced covariance Γ is of class C 4`β for some β ą 0.

This assumption implies the C 4`α regularity of ψ by applying the proposition below to ψ's 4th order derivatives.

Proposition 1. Let ϕ be a stationary Gaussian field R 2 Ñ R, with reduced covariance function γ : R 2 Ñ R. Then if for some C, β ą 0, for δ ą 0 sufficiently small |γpxq ´γp0q| ď C|x| β , |x| ď δ, then for 0 ă ε ă β{2 there is a random variable U ε with Gaussian tail such that for all x, y P B 1 ,

|ϕpxq ´ϕpyq| ď U ε |x ´y| β{2´ε .
Proof. It follows from the classical result from Landau and Shepp [AT09, (2.1.4)] that for a centred Gaussian field f a.s. bounded on a Euclidean compact T , there is c ą 0 such that for large enough u,

Ppsup tPT |f ptq| ě uq ď 2 expp´cu 2 q.
We wish to apply this result to T " B 1 ˆB1 and f px, yq " |x ´y| ´αpϕpxq ´ϕpyqq, px, yq P T.

Let α " β{2 ´ε. The fact that f is bounded is the consequence of the fact that ϕ's path are locally α-Holder for α ă β{2, see for instance [START_REF] Potthof | Sample properties of random fields[END_REF]Corollary 4.8].

Definition 1. Say that some random variables X, Y satisfy X " O PpY q if X ď U Y where U is a random variable with a Gaussian tail, i.e.

Pp|U | ą tq ď c expp´c 1 t 2 q, t ě 0 for some c ă 8, c 1 ą 0.

Proposition 1 hence implies that if a stationary field ψ's reduced covariance Γ is of class C k`η , then B k ψpt `hq " B k ψptq `OP ph η{2 q, t P R d .

2.1. Dependency structure. Stationarity conveys strong constraints on the dependence structure between the field's partial derivatives at a given point. Let us recall formula [AT09, (5.5.4)-(5.5.5)]: if Γ is C k`η differentiable for some k P N, η ą 0, for natural integers α, β, γ, δ such that α `β ď k, γ `δ ď k,

E ´Bα 1 B β 2 ψptq ¨Bγ 1 B δ 2 ψpsq ¯" B α`β`γ`δ Bt 1 α Bt 2 β Bs 1 γ Bs 2 δ Γpt ´sq, s, t P R 2 .
In particular if s " t we have the spectral representation

E ´Bα 1 B β 2 ψptq ¨Bγ 1 B δ 2 ψptq ¯" p´1q γ`δ B α`β`γ`δ Γp0q Bt α 1 Bt β 2 Bt γ 1 Bt δ 2 " m α`γ,β`δ where m a,b :" p´1q a ı a`b ż R 2 λ a 1 λ b 2 F pdλq, t P R 2 (3) 
where the symmetric spectral measure F is uniquely defined by

Γptq " ż R 2 expp´ıλ ¨tqF pdλq, t P R 2 . ( 4 
)
Let us state important consequences of (3), and in particular of the fact that, due to the symmetry of F , the integral vanishes if a or b is an odd number. For this reason, p´1q a " p´1q b when the integral does not vanish, and m a,b is symmetric in a and b.

Remark 1. For all t P R 2 , ψptq and B j ψptq are independent for j " 1, 2, hence B 1 ψ and B 2 ψ are independent, and furthermore for any two natural integers k, l which difference is odd, any partial derivatives of orders k and l B i 1 ,...,i k ψp0q and B j 1 ,...,j l ψp0q are independent.

Non-independence and technical difficulties will mainly emerge from dependence between even degrees of differentiation of the field, such as ψptq and B 11 ψptq, or B 11 ψptq and B 22 ψptq, or between the values of the field at different locations, say ψpsq and ψptq, s ‰ t. A case we must discard is that of constant ψ, i.e. ψptq " U for some Gaussian variable U , and this is what we call a trivial Gaussian field.

Also, Cauchy-Schwarz inequality yields that for α, β, γ, δ P N

|m α`γ,β`δ | 2 ď m 2α,2β m 2γ,2δ ,
and there is equality only if λ α 1 λ β 2 is proportionnal to λ γ 1 λ δ 2 dF -a.s. In the isotropic case (i.e. F is invariant under spatial rotations), unless α " γ, β " δ it can only happen if dF is the Dirac mass in 0, i.e.

m 2 α`γ,β`δ ă m 2α,2β m 2γ,2δ , α ‰ γ or β ‰ δ if ψ is non-trivial isotropic. ( 5 
)
Proposition 2. Let ψ be an isotropic Gaussian field R 2 Ñ R that satisfies Assumption 2.1 with covariance under the form (2). We indicate the first derivatives of σ at point 0 P R by σ 1 p0q " η 0 , σ 2 p0q " µ 0 , σ p3q p0q " ν 0 , σ 4 p0q " υ. Then

VarpB i ψp0qq " ´2η 0 " m 2,0 ą 0, (6) 
VarpB 12 ψp0qq " 2 2 µ 0 " m 2,2 ą 0, For k ą 0 let ψ be the Gaussian random wave with parameter k, i.e. the isotropic stationary Gaussian field with reduced covariance function

VarpB ii ψp0qq " 3 ¨22 µ 0 " m 4,0 ą 0, i " 1, 2, VarpB iii ψp0qq " ´15 ¨23 ν 0 " m 6,0 ą 0, i " 1, 2.
Γpzq " J 0 pk|z|q.

As is apparent from (4), this is the centered Gaussian field whose spectral measure is the uniform law on the centred circle with radius k. It is important as it is the unique (in law) stationary Gaussian field for which

B 11 ψ `B22 ψ `k2 ψ " 0 a.s.
up to a multiplicative constant. See for instance [BCW19, MRV, NPR19] and references therein for recent works about diverse aspects of planar random wave models. As proved at Section 6.2, it is the only nontrivial stationary isotropic stationary field satisfying a linear partial differential equation of order three or less. As critical points are not modified by adding a constant, we also consider shifted Gaussian random waves (SGRW), of the form τ U `σψ, where τ ě 0, σ ą 0, ψ is a GRW and U is an independent centered standard Gaussian variable. The spectral measure of a SGRW is the sum of a uniform measure on a circle of R 2 centred in 0 and a finite mass in t0u.

The Kac-Rice formula

The Kac-Rice formula gives a description of the factorial moments of the zeros of a random field. Let us give a formula adapted to counting the critical points of a certain type. The following result can be proved by combining the proofs of Theorems 6.3 and 6.4 from [START_REF] Azaïs | Level sets and extrema of random processes and fields[END_REF], see also

[AD22, Appendix A]. Theorem 3.1. Let ψ isotropic satisfying Assumption 2.1. Let k P t1, 2u, B 1 , B 2 some open subsets of R d , N B i
ρ " tt P Bp0, ρq : ∇ψptq " 0, H ψ ptq P B i u. Then for ρ sufficiently small

ErN B 1 ρ s " ż Bρ K B 1 1 ptq dt, ErN B 1 ρ pN B 2 ρ ´1qs " ż B 2 ρ K B 1 ,B 2 2 pt 1 , t 2 q dt, (7) 
where we have the k-point correlation function :

K B 1 1 ptq "φ ∇ψptq p0q E " | det H ψ ptq| 1 B 1 pH ψ ptqq ˇˇ∇ψptq " 0 ı , K B 1 ,B 2 2 pt 1 , t 2 q "φ p∇ψpt 1 q,∇ψpt 2 qq p0, 0q E « 2 ź i"1 | det H ψ pt i q| 1 B i pH ψ pt i qq ˇˇ∇ψpt 1 q " ∇ψpt 2 q " 0 ff ,
where φ V is the density probability function of a Gaussian vector V .

We are specifically interested in a finite class of sets B i , namely

B c "M d pRq the class of d ˆd square matrices, B ext " ´1 detpp0, 8qq B s " ´1 detpp´8, 0qq, B min "tH definite positiveu, B max "tH definite negativeu.
In this case, the exponent in N or K i is replaced by the subscript of B, e.g.

N c ρ " N Bc ρ , K s,s 2 " K Bs,Bs 2 , etc...
Proof. With Zptq " ∇ψptq, Y t " H ψ ptq, gpt, Hq " 1 tdetpHqPBu , we have

N B ρ " ÿ t:Zptq"0 gpt, Y t q.
Let us show that hypothesis (iii') of [AW09, Th.6.3] is satisfied, that is for ρ small enough and t, s P B ρ , the law of p∇ψptq, ∇ψpsqq is non-degenerated. Let us expand

EpB i ψpsqB j ψptqq " B 2 B s i B t j σp|s ´t| 2 q " # ´2σ 1 p|s ´t| 2 q ´4ps i ´ti q 2 σ 2 p|s ´t| 2 q if i " j ´4ps i ´ti qps j ´tj qσ 2 p|s ´t| 2 q if i ‰ j.
By isotropy it suffices to evaluate it in t " pr, 0q, s " p´r, 0q for r ě 0. Let us write the 4 ˆ4 covariance matrix in function of η r " σ 1 p4r 2 q, µ r " σ 2 p4r 2 q

Σ " ´2 ˆη0 I η r I `2µ r A r η r I `2µ r A r η 0 I ˙(8)
where

A r " ˆ4r 2 0 0 0 ˙.
Hence the block determinant is

16 detpη 2 0 I ´pη r I `2µ r A r q 2 q " 16 detppη 2 0 ´η2 r qI ´4µ r η r A r ´4µ 2 r A 2 r q " 16pη 2 0 ´η2
r qppη 2 0 ´η2 r q ´16µ r η r r 2 ´64µ 2 r r 4 q. This is equivalent to 16 ¨8η 0 p´µ 0 r 2 qp8η 0 p´µ 0 r 2 q `OP pr 2 q ´16µ 0 η 0 r 2 `OP pr 2 qq " ´128η 0 µ 0 r 2 p´24η 0 µ 0 r 2 q " 3 ¨210 µ 2 0 η 2 0 r 4 , where we have µ 0 η 0 ‰ 0 in virtue of (6). Hence the determinant is non zero for r ‰ 0 sufficiently small. Then the modification of the proof of Theorem 6.3 following the proof of Theorem 6.4 of [START_REF] Azaïs | Level sets and extrema of random processes and fields[END_REF] yields the result, see Appendix A in [START_REF] Azais | Mean number and correlation function of critical points of isotropic Gaussian fields[END_REF].

It yields in particular

φ p∇ψpt 1 q,∇ψpt 2 qq p0, 0q " 1 a detpΣqp2πq 2 " 1 2 7 π 2 ? 3|µ 0 η 0 |r 2 p1 `orÑ0 p1qq. (9) 

First order

In this section, we are interested in the computation of the expectated number of critical points in a Borel set B Ă R 2 . Proposition 3. Let ψ " tψpzq : z P R 2 u be a non-trivial isotropic stationary Gaussian field R 2 Ñ R which is a.s. of class C 2 and let σ be defined by (2). Let

λ c " 4 ? 3π σ 2 p0q p´σ 1 p0qq
.

In virtue of Proposition 2, λ c P p0, 8q. Then, for every ρ ą 0, we have

ErN c ρ s " λ c |B ρ |, (10) 
ErN e ρ s " ErN s ρ s "

1 2 ErN c ρ s, (11) 
ErN min ρ s " 1 4 ErN c ρ s.
A sufficient condition for ψ being of class C 2 is that σ is of classe C 4`β for some β ą 0, see Proposition 1.

Remark 2. By stationarity, λ c is the intensity of X c pψq, i.e. the mean number of critical points per unit volume.

Proof. According to Theorem 3.1, we must simply evaluate

K 1 pzq " φ ∇ψpzq p0, 0q E " | det H ψ pzq | ˇˇ∇ψpzq " 0 ‰ .
The stationarity of ψ implies that K 1 pzq is independent of z, see formula (7). So, we get

ErN c ρ s " |B ρ |K 1 p0q. ( 12 
)
Using the matrix Σ with r " 0 in (8), we immediately obtain the probability density function of (two-dimensional vector) ∇ψpzq evaluated at point p0, 0q:

φ ∇ψpzq p0, 0q " 1 2π 1 a 4η 2 0 " 1 4π|η 0 | , (13) 
where η 0 " σ 1 p0q. From this point until the end of the proof we will use the method of the article [START_REF] Beliaev | Two point function for critical points of a random plane wave[END_REF].

Since the first and the second derivatives of ψpzq are independent at every fixed point z P R 2 , then: ˇˇ‰ in terms of a conditional expectation as follows:

E " | det H ψ pzq| ˇˇ∇ψpzq " 0 ‰ " E r |det H ψ pzq| s " E r
E " ˇˇB 11 ψp0qB 22 ψp0q ´B2 12 ψp0q ˇˇ‰ " E " ˇˇW 1 W 3 ´W 2 1 ´W 2 2 ˇˇ‰ " E " E " |W 1 W 3 ´W 2 1 ´W 2 2 | ˇˇW 3 ‰‰ , (15) 
where W " pW 1 , W 2 , W 3 q is a centered Gaussian vector field with covariance matrix D.

Use Proposition 2 and Remark 1, we have D "

¨12µ 0 0 16µ 0 0 4µ 0 0 16µ 0 0 32µ 0 '.
The conditional distribution of pW 1 , W 2 q ˇˇW 3 is Gaussian with covariance matrix Σ pW 1 ,W 2 q|W 3 " ˆ4µ 0 0 0 4µ 0 ˙ and expectation Er pW 1 , W 2 q ˇˇW 3 " ts " ¨t 2 0 ' for t P R.

The conditioned Gaussian vector pW 1 , W 2 q|W 3 " t is distributed as p2 ? µ 0 Z 1 `t 2 , 2 ? µ 0 Z 2 q where Z 1 , Z 2 are two independent standard Gaussian random variables, hence we have

E " ˇˇW 1 W 3 ´W 2 1 ´W 2 2 ˇˇˇˇW 3 " t ‰ " Er | W 1 t ´W 2 1 ´W 2 2 | |W 3 " t ss " Er |p2 ? µ 0 Z 1 `t{2qt ´p2 ? µ 0 Z 1 `t{2q 2 ´4µ 0 Z 2 2 | s " Er | ´4µ 0 Z 2 1 ´4µ 0 Z 2 2 `t2 4 | s " 4µ 0 E " ˇˇˇ´X `t2 16µ 0 ˇˇˇ ,
where X is a χ´square random variable with density f X pxq " 1 2 e ´x 2 , x ą 0. So

Er | ´X `t2 16µ 0 | s " 1 2 ż t 2 16µ 0 0 p t 2 16µ 0 ´xqe ´x 2 dx `1 2 ż `8 t 2 16µ 0 p´t 2 16µ 0 `xqe ´x 2 dx " ´2 `4e ´t2 32µ 0 `t2 16µ 0 , then E " ˇˇW 1 W 3 ´W 2 1 ´W 2 2 ˇˇˇˇW 3 " t ‰ " 4µ 0 1 8 ? πµ ż R E " ˇˇˇ´X `t2 16µ 0 ˇˇˇ e ´t2 64µ 0 dt " ? µ 0 2 ? π ż R e ´t2 64µ ˆ´2 `4e ´t2 32µ 0 `t2 16µ 0 ˙dt " 16µ 0 ? 3 . ( 16 
)
By combining Equations ( 12), ( 13),( 14) and ( 16), we obtain Formula (10). Now, we turn to the evaluation of the expected number of the extrema and saddle points. We have

N e ρ :" N p0,8q ρ " #tx P B ρ : ∇ψpxq " 0, det H ψ pzq ą 0u N s ρ :" N p´8,0q
ρ " #tx P B ρ : ∇ψpxq " 0, det H ψ pzq ă 0u. As previously, we apply the Kac-Rice formula from Section 3. We get:

ErN e ρ s " ż Bρ K e 1 pzqdz and ErN s ρ s " ż Bρ K s 1 pzqdz, where K e 1 pzq " φ ∇ψpzq p0, 0q E " | det H ψ pzq| 1 tdet H ψ pzqą0u ˇˇ∇ψpzq " 0 ı , K s 1 pzq " φ ∇ψpzq p0, 0q E " |det H ψ pzq| 1 tdet H ψ pzqă0u ˇˇ∇ψpzq " 0 ı .
Since the first and the second derivatives of ψpzq are independent at every fixed point z P R 2 , we obtain

ErN e ρ s " πρ 2 φ ∇ψpzq p0, 0q E " | det H ψ pzq| 1 tdet H ψ pzqą0u ı , (17) 
ErN s ρ s " πρ 2 φ ∇ψpzq p0, 0q E " | det H ψ pzq| 1 tdet H ψ pzqă0u ı . ( 18 
)
Using the same argument as in the case of critical points, we write

E " |det H ψ pzq| 1 tdetH ψ pzqą0u ı " E " |B 11 ψp0qB 22 ψp0q ´B2 12 ψp0q| 1 tB 11 ψp0qB 22 ψp0q´B 2 12 ą0u ı " 4µ 1 8 ? πµ ż R E " ˇˇˇ´X `t2 16µ 0 ˇˇˇ1 t´X`t 2 16µ 0 ą0u  e ´t2 64µ 0 dt " ? µ 0 2 ? π ż R ˆ´2 `2e ´t2 32µ 0 `t2 16µ 0 ˙e´t 2 64µ 0 dt " 8µ 0 ? 3 , (19) 
and

E " |det H ψ pzq| 1 tdetH ψ pzqă0u ı " E " |B 11 ψp0qB 22 ψp0q ´B2 12 | 1 tB 11 ψp0qB 22 ψp0q´B 2 12 ă0u ı " 4µ 1 8 ? πµ 0 ż R E " ˇˇˇ´X `t2 16µ 0 ˇˇˇ1 t´X`t 2 16µ 0 ă0u  e ´t2 64µ 0 dt " ? µ 0 2 ? π ż R ˆ2e ´t2 32µ 0 ˙e´t 2 64µ 0 dt " 8µ 0 ? 3 . ( 20 
)
By combining Equations ( 13), ( 17), ( 18), ( 19) and (20), we obtain Formula (11). Finally, we turn to the calculation of the expectation of the number of minima and maxima in B ρ . We know that: 

Second order

In this section, we will study the asymptotic behaviour of the second factorial moment of N c ρ when ρ goes to zero. The following theorem is the main result of this paper. Given two quantitites α ρ , β ρ , write α ρ -β ρ if for two constants 0 ă c ă c 1 ă 8, we have cα ρ ď β ρ ď c 1 α ρ for ρ sufficiently small, and α ρ " β ρ if α ρ {β ρ Ñ 1, with the convention 0{0 " 1.

Theorem 5.1. Let ψ be an isotropic Gaussian field R 2 Ñ R that satisfies Assumption 2.1.The repulsion factor R c :" R Xc is given by

R c " ? 3 8 ˆ5 σ 3 p0qσ 1 p0q pσ 2 p0qq 2 ´3˙.
As ρ Ñ 0, we have the following asymptotic equivalent expression for the second factorial moment of the number of critical points

ErN c ρ pN c ρ ´1qs " R c λ 2 c |B ρ | 2 -ρ 4 . ( 21 
)
Depending on the law of ψ, R c can take any prescribed value in r 1 8 ?

3 , 8q, and 1 8 ?

3 is the minimal possible value, it is reached iff ψ is a shifted Gaussian random wave (Example 1).

For the numbers of extrema, saddles in a ball of radius ρ, we have as ρ Ñ 0 ErN e ρ pN e ρ ´1qs -ρ 7 ,

ErN s ρ pN s ρ ´1qs -ρ 7 lnpρq,

ErN e ρ N s ρ s " R c λ 2 c |B ρ | 2 . ( (23) 
) 24 
Remark 3. The repulsion factor terminology comes from λ c |B ρ | " EpN ρ q and by the heuristic explanation after (1).

Remark 4. By truncating the expansion of the type (33) at a lower order, one could prove that Expression (21) is valid under the weaker assumption that Γ is of class C 6`β (and ψ is of classe C 3 ).

Example 2 (Bargmann Fock field). Consider the Bargmann-Fock field with parameter k, which is the stationary isotropic Gaussian field with reduced covariance function σprq " expp´krq, r ě 0.

According to Proposition 3, we have for the first order

σ 1 p0q " ´k σ 2 p0q "k 2 σ 3 p0q " ´k3 ErN c ρ s " 4 ? 3 k ρ 2 .
Hence the attraction factor is

R c " ? 3 4 ă 1,
which means that the process of critical points is locally weakly repulsive. It logically does not depend on the scaling factor k.

Example 3 (Gaussian random waves). Consider the Gaussian random wave introduced at Example 1 by σpxq " J 0 pk ? xq, x ě 0. We have :

σ 1 p0q " ´k2 4 
σ 2 p0q " k 4 2 5 σ 2 p0q " ´k6 3 ¨27 λ c " k 2 2 ? 3π i.e. ErN c ρ s " k 2 2 ? 3 ρ 2 ,
Hence the attraction factor takes the smallest possible value

R c " 1 8 ? 3 ,
which means that the process of critical points is locally weakly repulsive. We retrieve the second factorial moment of Beliaev, Cammarota and Wigman [START_REF] Beliaev | Two point function for critical points of a random plane wave[END_REF] EpN c ρ pN c ρ ´1qq "

k 4 2 6 3 ? 3 ρ 4 .
Example 4. Consider the centered stationary Gaussian random field ψ with spectral measure

F pdλq " |λ| ´71 t|λ|ě1u dλ.
One has by Proposition 2,|σ 1 p0q| ă 8, σ 2 p0q ă 8, ´σ3 p0q " 8, hence R c " 8, but Theorem 5.1 does not apply precisely because F 's higher moments are infinite, meaning that ψ is not of class C 3 . Hence we consider F t pdλq " 1 t|λ|ďtu F pdλqp ş t 0 dF q ´1 for t ą 1. We have as t Ñ 8

η 0 ν 0 µ 2 0 " c ż t 1 r 6 r ´7rdr -t.
It implies that the repulsion factor of F t can reach arbitrarily high values. In particular, this parametric model provides processes of critical points that are weakly locally attractive.

5.1. Discussion and related litterature. The equivalence (21) generalises the results of [START_REF] Beliaev | Two point function for critical points of a random plane wave[END_REF], and shows that locally, the random planar wave model yields the more repulsive critical points. We also show that for a general process ψ, the subprocesses formed by extrema and saddle points experience locally a strong repulsion with three more orders of magnitude for ρ. It confirms the idea that close to a large portion of saddle points, there is an extremal point nearby, and conversely, but that the closest point of the same type (extrema or saddle) is typically much further away.

A current novelty is also to derive the precise asymptotic repulsion for the extrema process and the saddle process. Hence we are able to state that the ratio between the internal repulsion forces among extremal points and among saddle points tends to infinity as the radius of the observation ball goes to 0.

Azais and Delmas [START_REF] Azais | Mean number and correlation function of critical points of isotropic Gaussian fields[END_REF] derived upper bounds about such quantities in any dimension. In particular, their results are consistant with ours in the critic-critic, extrema-extrema and extrema-saddle cases.

6. Proofs 6.1. Conditioning. The proofs of all formulas of Theorem 5.1 are based on the Kac-Rice formula in Theorem 3.1, for instance if B " B 1 " R 2 , we have the second factorial moment of the number of critical points

E " N c ρ pN c ρ ´1q ‰ " ż ż BρˆBρ K 2 pz, wq dzdw, (25) 
where K 2 is the 2-point correlation function : :

K 2 pz, wq " φ p∇ψpzq,∇ψpwqq pp0, 0q, p0, 0qq (26) 
ˆE "

| det H ψ pzq| | det H ψ pwq| ˇˇ∇ψpzq " ∇ψpwq " 0 ı .
Let us briefly introduce where the difficulty comes from and why higher order differentiability is required. For z, w close from 0, if ∇ψpzq " ∇ψpwq " 0, then the second order derivatives are also small, and the determinant is dominated by third order differentials. When one imposes additional constraints on the determinant signs, it yields other cancellations within third order derivatives, requiring fourth order differentiability.

Thanks to the stationarity and isotropy of ψ, it suffices to compute K 2 pz, wq for z " pr, 0q and w " p´r, 0q for all r ą 0. To evaluate E " N c ρ pN c ρ ´1q

‰ , the idea is to change the conditioning in K 2 pz, wq. To symmetrize the problem, we introduce some notations for r near 0, r ‰ 0, exploiting Proposition 1 and Definition 1,

# aq ∆ i prq :" 1 2 B i ψpzq `1 2 B i ψpwq implies ∆ i prq " B i ψp0q `r2 2 B i11 ψp0q `OP pr 4 q bq ∆ i1 prq :" 1 2r pB i ψpzq ´Bi ψpwqq implies ∆ i1 prq " B i1 ψp0q `r2 6 B i111 ψp0q `OP pr 4 q. , (27) 
The crucial point is that ∇ψpzq " ∇ψpwq " 0 is equivalent to ∆ i prq " 0, ∆ i1 prq " 0, i " 1, 2. Let us introduce Y r " p∆ 1 prq, ∆ 2 prq, ∆ 11 prq, ∆ 12 prqq, r ą 0 so that Y r " 0 is equivalent to ∇ψpzq " ∇ψpwq " 0, and Y 0 :" pB 1 ψp0q, B 2 ψp0q, B 11 ψp0q, B 21 ψp0qq.

We will see later that Y 0 is non-degenerate, hence Y r is also non-degenerate for r small enough, by continuity of the covariance matrix.

We denote the conditionnal probability and expectation with respect to Y r " 0 by P prq p¨q " Pp¨| Y r " 0q, E prq p¨q " Ep¨| Y r " 0q, r ě 0.

Remark 5. Let pX, Y q be a Gaussian vector with Y non-degenerate. If M is non-singular matrix and if ϕ is a measurable function with polynomial bounds, then

EpϕpXq|Y " 0q " EpϕpXq|M Y " 0q.

So, since obviously ∇ψpzq " ∇ψpwq " 0 ðñ Y r " 0, the 2-point correlation function K 2 pz, wq becomes :

K 2 pz, wq " φ p∇ψpzq,∇ψpwqq pp0, 0q, p0, 0qq ˆEprq r | det H ψ pzq| | det H ψ pwq|s. (28) 
Using (9) we can evaluate the density in 0, and the previous expression becomes

K 2 pz, wq " 1 p2πq 2 2 5 ? 3p´η 0 qr 2 E prq r | det H ψ ψp0q| | det H ψ prq|sp1 `op1qq.
It remains to express the product of determinants under the conditioning in function of ∆ i prq " ∆ i1 prq " 0, this involves higher order derivatives (see( 27)).

Lemma 1. Assume ψ satisfies Assumption 2.1 for some β ą 0 and let 0 ă α ă β{2. For z " pr, 0q and w " p´r, 0q, we have if ∆ i " ∆ 1i " 0, i " 1, 2, det H ψ pzq "rpA 1 `rB 0 `OP pr 

p´B r `Br 1 q `r2 B r B r 1 ´r2 A 1 pC r ´C1 r q " rA 1 pO P pr α qq `r2 B r B r 1 ´r2 A 1 pC r ´C1 r q " O P pA 1 r 1`α q `r2 B 2
0 `OP pA 1 r 1`α q `OP pr 2`α q `OP pr 2`2α q " r 2 B 2 0 `OP pA 1 r 1`α q `OP pr 2`α q.

As a consequence from Lemma 1, the 2-point correlation function given by (28) becomes Proposition 4. Assume the spectral measure F is isotropic and not reduced to a Dirac mass in 0. There is pα, β, γq ‰ p0, 0, 0q such that αB 1 ψp0q `βB 111 ψp0q `γB 122 ψp0q " 0 a.s. iff β " γ and F is uniformly spread along a circle of radius a α{β, i.e. if ψ is a SGRW with parameter a α{β. There is no pα, β, γq ‰ p0, 0, 0q such that a.s. αB 11 ψp0q `βB 22 ψp0q `γB 1111 ψp0q " 0.

K 2 pz, wq " 1 p2πq 2 2 5 ? 3p´η 0 qµ 0 E prq " |A 1 2 ´gprq| ‰ p1 `op1qq. ( 35 
Proof. Using (3) and recalling the symmetry m a,b " m b,a

VarpαB 1 ψp0q `βB 111 ψp0q `γB 122 ψp0qq "α 2 m 2,0 `β2 m 6,0 `γ2 m 2,4 `2αβm 4,0 `2αγm 2,2 `2βγm 4,2 " ż p´α 2 λ 2 1 ´β2 λ 6 1 ´γ2 λ 2 1 λ 4 2 `2αβλ 4 1 `2αγλ 2 1 λ 2 2 ´2βγλ 4 1 λ 2 2 qF pdλq " ´żp´αλ 1 `βλ 3 1 `γλ 1 λ 2 2 q 2 F pdλq.
Hence, dF -a.s., either λ 1 " 0 or γλ 2 1 `βλ 2 1 " α. By isotropy, it implies that γ " β and that F 's support is concentrated on zero and the circle with radius a α{β. It corresponds to the GRW with radius a α{β plus an additional constant term.

In the same way, 0 " VarpαB 22 ψp0q `βB 11 ψp0q `γB 1111 ψp0qq "

ż pαλ 2 2 `βλ 2 1 `γλ 4 1 q 2 F pdλq implies that F is trivial if F is isotropic.
In conclusion, the only non-trivial linear relations possibly satisfied by the derivatives involved in pX, Y 0 q is B 111 ψp0q `B122 ψp0q " αB 1 ψp0q, α ą 0 and can only be satisfied by a SGRW. In the light of these results, functionals of interest only depend on the law of the vector X 1 under the conditioning Y 0 " 0, where

X 1 " # pB 22 ψp0q, B 111 ψp0q, B 112 ψp0q, B 1111 ψp0qq if ψ is a shifted GRW X otherwise
because if ψ is a shifted GRW and Y 0 " 0, B 111 ψp0q `B122 ψp0q " ´αB 1 ψp0q " 0 a.s. hence B 122 ψp0q is directly expressible in function of B 111 ψp0q.

Lemma 2. The conditional density f r of X 1 knowing Y r converges pointwise to the density f 0 of X 1 knowing Y 0 . There is furthermore σ 1 , σ 2 , c 1 , c 2 ą 0 such that for r sufficiently small,

c 1 g σ 1 ď f r ď c 2 g σ 2
where g σ is the density of iid Gaussian variables Z σ " pZ σ i q i with common variance σ 2 . Hence for any non-negative functional ϕ r c 1 Epϕ r pσ 1 Z 1 qq ď E prq pϕ r pX 1 qq ď c 2 Epϕ r pσ 2 Z 1 qq.

Proof. Since the vector pX 1 , Y 0 q is non-degenerate, by continuity of the covariance matrix, the vector pX 1 , Y r q is non-degenerate either for r sufficiently small, and the density of the former converges pointwise to the density of the latter. Hence the conditionnal density f r of pX 1 | Y r q converges to f 0 the nondegenerate multivariate conditional Gaussian density of pX | Y 0 q. Let Γ r be the covariance matrix of the conditional vector pX 1 | Y r q. For 1 ď i ď d, we denote by λ i, prq the i-th eigenvalue of the matrix Γ r . Since λ i prq Ñ λ i p0q ą 0, there exists constant σ 1 ě σ 2 ą 0 such that for r sufficiently small

1 2πσ 2 2 ě λ i prq ě 1 2πσ 2 1 . ( 36 
)
Hence f r pxq is bounded between c expp´ř i x 2 i {p2πσ 2 1 qq and c 1 expp´ř i x 2 i {p2πσ 2 2 qq for some c, c 1 ą 0, which gives the desired claims. 6.3. Proof of (21) in Theorem 5.1. From (35), we have

K 2 pz, wq " r 2 p2πq 2 2 5 ? 3p´η 0 qµ 0 p1 `op1qq E prq " |A 1 2 ´gprq| ‰ .
According to Lemma 2, the conditional density f r of X 1 knowing Y r converges pointwise to the nondegenerate density f 0 of X 1 knowing Y 0 , and ϕ r pX 1 q :" A 2 1 ´gprq is uniformly bounded by a polynomial P pX 1 q, Lebesgue's Theorem then yields

lim rÑ0 E prq " | A 2 1 ´gprq | ‰ " ż ϕ r pxqf r pxqdx Ñ ż lim r ϕ r pxqf 0 pxqdx " E p0q " A 2 1 ‰ . (37) 
To compute the conditionnal law of Z :" pB 22 ψp0q, B 111 ψp0qq, recall that in virtue of (3) and Remark 1 B 22 ψp0q and B 111 ψp0q are independent, and the covariance matrix of Y 0 is

ΓpY 0 q " ¨m2,0 0 0 0 0 m 2,0 0 0 0 0 m 4,0 0 0 0 0 m 2,2 ‹ ‹ ' .
The covariance matrix of Z and Y 0 is

ΓpZ, Y 0 q " ˆm2,1 m 0,3 m 2,2 m 1,3 m 4,0 m 3,1 m 5,0 m 4,1 ˙" ˆ0 0 m 2,2 0 m 4,0 0 0 0 ˙. It follows that the conditional covariance of Z knowing Y 0 is ΓpZ | Y 0 q " ΓpZq ´ΓpZ, Y 0 qΓpY 0 q ´1ΓpZ, Y 0 q t " ˆm0,4 ´m´1 4,0 m 2 22 0 0 m 6,0 ´m´1 2,0 m 2 4,0 " ˆVarpB 22 ψp0q|B 111 ψp0qq 0 0 VarpB 111 ψp0q|B 1 ψp0qq
˙ the diagonal terms are positive in virtue of (5). By conditionnal independence of B 22 ψp0q and B 111 ψp0q, and using Proposition 2 E p0q pA 2 1 q " VarpB 22 ψp0q|B 11,1 ψp0qqVarpB 11,1 ψp0q|B 1 ψp0qq " pm 0,4 ´m´1 4,0 m 2 22 qpm 6,0 ´m´1 2,0 m 2 4,0 q ą 0

" 2 5 3 µ 0 p 3 ¨23 η 0 p´5ν 0 η 0 `3µ 2 0 qq " 2 8 µ 0 p´5ν 0 η 0 `3µ 2 0 q η 0 .
Combining Equation ( 37) , ( 35) we obtain

lim rÑ0 K 2 pz, wq " 1 p2πq 2 2 5 ? 3p´η 0 qµ 0 p1 `op1qq 2 8 µ 0 p´5ν 0 η 0 `3µ 2 0 q η 0 " 10 ν 0 η 0 ´6µ 2 0 π 2 ? 3η 2 0 p1 `op1qq ": ap1 `op1qq. (38) 
Finally, the second factorial moment of N c ρ when ρ Ñ 0, is given by

ErN c ρ pN c ρ ´1qs " ż ż BρˆBρ K 2 pz, wq dz dw " a|B ρ | 2 p1 `op1qq.
Recalling that

λ c " 4 ? 3 µ 0 ´η0 π yields indeed a " λ 2 c R c . Let us show that R c ě 1 8 ? 3 . Given a measure µ on R `, denote by m k pµq " ż t k µpdtq.
Since F is isotropic, define µ as the radial part of F , yielding with a polar change of coordinates

ż R 2 λ a 1 λ b 2 F pdλq " ż 2π 0 cospθq a sinpθq b dθm a`b`1 pµq.
Introduce the probability measure, for A Ă R `, r µpAq "

ş A tµpdtq m 1 pµq .
Using the spectral representation in Proposition 2 yields for some c ą 0

ν 0 η 0 µ 2 0 "c m 3 pµqm 1 pµq m 2 pµq 2 " c m 1 pµqm 2 pr µqm 1 pµq pm 1 pµqm 1 pr µqq 2 " c m 2 pr µq m 1 pr µq 2 ě c
by the Cauchy-Schwarz inequality. The ratio is minimal if the equality is obtained in the Cauchy-Schwarz inequality, i.e. when t 2 is proportionnal to t r µ-a.e.. This is the case only if F pdλq is uniformly spread on a circle of R 2 , with perhaps also an additional atom in 0. This corresponds exactly to the class of fields derived in Example 1, which are the SGRW. For the precise computation of the constant 1 8 ? 3 , see Example 3.

In example 4, we derive spectral measures F t , t ą 1 which achieve repulsion factors R c in an interval of the form pα 0 , 8q for some α 0 P R. Therefore it remains to show that all values between 1 8 ? 3 and α 0 can be achieved. For that we use an interpolation G s :" sF RW `p1 ´sqF 2 , s P r0, 1s where F RW is the spectral measure of a GRW and F 2 belongs to the parametric family F t , t ě 1. The ratio of moments s Þ Ñ m 3 pG s qm 1 pG s q m 2 pG s q 2 evolves continuously with s because all the members of the numerator and denominator do, hence the repulsion factor evolves continuously between 1 8 ?

3 and α 0 and achieves all intermediary values. 6.4. Proof of (22) in Theorem 5.1. To compute the second factorial moment of N e ρ " N p0,8q ρ when ρ Ñ 0, we apply the Kac-rice formula of Theorem 3.1 in the case B 1 " B 2 " p0, 8q

ErN e ρ pN e ρ ´1qs "

ż ż BρˆBρ K e,e 2 pz, wq dz dw, (39) 
where K e,e 2 pz, wq " φ p∇ψpzq,∇ψpwqq pp0, 0qq, p0, 0qq

ˆEprq

" | det H ψ pzq| | det H ψ pwq| 1 tdet H ψ pzqą0u 1 tdet H ψ pwqą0u ı .
It becomes in virtue of ( 29)

K e,e
2 pz, wq " r 2 φ p∇ψpzq,∇ψpwqq pp0, 0q, p0, 0qq a r

where

a r :"E prq " ˇˇA 1 2 ´gprq ˇˇI r ‰ I r :"1 tdet H ψ pzqą0u 1 tdet H ψ pwqą0u .
To be able to prove (22), we need to establish an upper bound and a lower bound of a r So the proof is separated into two parts. We first give in Lemma 3 an asymptotic expression of a r to get rid of superfluous variables.

Lemma 3. Let J r :" 1 t|A 1 |ărB 0 u , |a r ´Eprq p|A 2 1 ´r2 B 2 0 |J r q| " O P pr 3`α 1 q for 0 ă α 1 ă α, and as r Ñ 0

a r -Ep|A 2 1 ´r2 B 2 0 |J r q. (41) 
Proof. From (33)-(34) in the proof of Lemma 1,

I r ď 1 t|A 1 |ărDru where D r :"|B 0 | `|B r | `|B 1 r | `rp|C r | `|C 1
r |q, is a variable with Gaussian tail. Recall that gprq " r 2 B 2 0 `OP pA r r 1`α `r2`α q, hence using (32),

E prq " p|A 2 1 ´gprq| ´|A 2 1 ´r2 B 2 0 |qI r q ‰ ďE prq pO P pr 1`α A 1 `r2`α qq|1 t|A 1 |ărDru q ďr 2`α E prq pO P pD r `1q1 t|A 1 |ărDru q. ( 42 
)
Let p, q ą 1, η ą 0 such that p ´1 `q´1 " 1 and α `1´η q ą α 1 `1, then Holder's inequality yields E prq pO P pD r `1q1 t|A 1 |ărDru q ď E prq pO P pD r `1q p q 1 p P prq p|A 1 | ă rD r q 1 q .

The probability on the right hand member can be bounded by P prq p|A 1 | ă rD r q ď P prq p|D r | ą r ´ηq `Pprq p|A 1 | ă r 1´η q.

All variables involved in O P pD r q have a Gaussian tail, hence P prq pO P p|D r |q ą r ´ηq " opr 2 q.

By Lemma 2 with ϕ r pxq " 1 t|x 1 x 2 |ăr 1´η u , and Lemma 5-(i) (with s " 0), P prq p|A 1 | ă r 1´η q " E prq pϕ r pX 1 qq ď c 2 Epϕ r pσ 2 Zqq ăc 1 r 1´η lnprq (43) hence finally r 2`α E prq pO P pD r `1q1 t|A 1 |ărDru q ăc 1 r 2`α`1 ´η q lnprq 1{q " Opr 3`α 1 q.

(44)

To simplify indicators, remark that in virtue of (33),(34),

I r " 1 tA 1 `rBr`r 2 Crą0,´A 1 `rB 1 r `r2 C 2 r ą0u J r " 1 tA 1 `rB 0 ą0,´A 1 `rB 0 ą0u .
Both the events tI r " 1u, tJ r " 1u imply

|A 1 | ă rD r . If I r ‰ J r , A 1 `rB r `r2 C r has a sign different from A 1 `rB 0 , or ´A1 `rB 1 r `r2 C 1
r has a sign different from ´A1 `rB 0 . In both cases it implies another event of magnitude O P pr 1`α q because B r , B 1 r " B 0 `OP pr α q, C r , C 1 r " O P p1q :

|I r ´Jr | ď 2 `1tpA 1 `rBr`r 2 Crq¨pA 1 `rB 0 qă0u `1tp´A 1 `rB 1 r `r2 C 1 r q¨p´A 1 `rB 0 qă0u ď 2 `1t|A 1 `rB 0 |ăO P pr 1`α qu `1t|´A 1 `rB 0 |ăO P pr 1`α qu ˘.

Let now p, q ą 1, η ą 0 such that p1 `α ´ηq{q ą 1 `α1 . Since also I r ´Jr ‰ 0 implies that either I r " 1 or J r " 1 and so |A 1 | ă rD r , collecting (42),(44),

|a r ´Eprq " |A 2 1 ´r2 B 2 0 |J r ‰ | ď |E prq p|A 2 1 ´r2 B 2 0 ||I r ´Jr |q| `OP pr 3`α 1 q ď |E prq p|A 2 1 ´r2 B 2 0 |1 |A 1 |ărDr |I r ´Jr |q| `OP pr 3`α 1 q ď E prq " pr 2 D 2 r `r2 B 2 0 q `1t|A 1 `rB 0 |ăO P pr 1`α qu `1t|´A 1 `rB 0 |ăO P pr 1`α qu ˘‰ `OP pr 3`α 1 q ď E prq rpr 2 D 2 r `r2 B 2 0 q p s 1 p " P prq `|A 1 `rB 0 | ă O P pr 1`α q ˘1 q `Pprq `| ´A1 `rB 0 | ă O P pr 1`α q ˘1 q ı `OP pr 3`α 1 q.
We have P prq p|A 1 `rB 0 | ă O P pr 1`α qq ď P prq p|A 1 `rB 0 | ă r 1`α´η q `Pprq pO P p1q ą r ´ηq.

By an application of Lemma 2 similar to (43) with ϕ r pxq of the form 1 t|x 1 x 1 `r ř a i,j x i x j |ăr 1`α´η u and Lemma 5-(i); the first member is in r 1`α´η lnprq, hence finally for some c ă 8

|a r ´Eprq " |A 2 1 ´r2 B 2 0 |J r ‰
| ď cr 2 r p1`α´ηq{q lnprq 1 q `OP pr 3`α 1 q " O P pr 3`α 1 q.

Finally, (41) follows from Lemma 2 with ϕ r pX 1 q " A 2 1 ´r2 B 2 0 .

6.4.1. Upper bound in (22). According to the previous lemma it suffices to give an upper bound of E

" | A 2 1 ´r2 B 2 0 |J r ‰ .
We stress that the crucial point that justifies the absence of a log term in the final result (compared to (23)) is the following inequality J r " 1 t|A 1 |ărB 0 u ď 1 t|B 22 ψp0q|ă2rB 221 u `1t|B 111 ψp0q|ă 2 3 rB 1111 ψp0qu , hence since B 2 0 is a polynomial in X 1 we can use Lemma 5-(iii) several times and get for some c ă 8

Ep|A 2 1 ´r2 B 2 0 |J r q ď 2Ep|r 2 B 2 0 |J r q ď cr 3 . (45) 
Then, from (40),( 45) and (35), we deduce that for some c 1 ă 8 Hence for r sufficiently small, B 0 ą 2, in particular |A 1 | ď r|B 0 |{2 and we obtain

K e,
Ep|A 2 1 ´r2 B 2 0 |1 t|A 1 |ďrB 0 u q ě E " 1 Ω | r 2 B 2 0 {4 | 1 tB 0 ě2A 1 {ru ‰ ě r 2 PpΩq.
Then since X is non-degenerate, its density is uniformly bounded and the proof is concluded with PpΩq ě cr ą 0 for some c ą 0. In the degenerate case of the SGRW, B 122 ψp0q " ´B111 ψp0q if Y 0 " 0 and we put instead

Ω "t|B 111 ψp0q| ă r, 1 2 ă B 22 ψp0q ă 1, B 1111 ψp0q ą 19, |B 211 ψp0q| ă 1u If Y 0 " 0 and Ω is realised, |A 1 | ă r B 0 " ´B111 ψp0q 2 ´B211 ψp0q 2 `1 3 B 22 B 1111 ψp0q ą ´r2 ´1 `19 6 hence |A 1 | ă r ă B 0 r{2
for r small enough and the same method can be applied because X 1 has a bounded density. Therefore, it holds for some c 1 ą 0

E p0q p|A 2 1 ´r2 B 2 0 |1 t|A 1 |ďrB 0 u |q ě c 1 r 3 . (47) 
From ( 40), ( 35)and (47), we get for some c 2 ą 0 K e,e 2 pz, wq ě c 2 r 3 .

Finally, from (39) and (48), we deduce that for some c 3 ą 0 ErN e ρ pN e ρ ´1qs ě c 3 ρ 7 .

6.5. Proof of (23) in Theorem 5.1. Using Theorem 3.1 with B 1 " B 2 " p´8, 0q, the second factorial moment of N s ρ " N p´8,0q ρ is given by

ErN s ρ pN s ρ ´1qs " ż ż BρˆBρ K s,s 2 pz, wq dz dw,
where

K s,s 2 pz, wq " r 2 φ p∇ψpzq,∇ψpwqq pp0, 0qq, p0, 0qq E p0q " | det H ψ pzq| | det H ψ pwq| 1 tdet H ψ pzqă0u 1 tdet H ψ pwqă0u
ı .

The difference is hence on the sign of the determinants, K s,s 2 pz, wq becomes K s,s 2 pz, wq " r 2 φ p∇ψpzq,∇ψpwqq pp0, 0q, p0, 0qq a 1 r (49)

where (see (34))

a 1 r :"E prq " ˇˇA 1 2 ´gprq ˇˇI 1 r ‰ I 1 r :"1 tA 1 `rBr`r 2 Cră0u 1 t´A 1 `rB 1 r `r2 C 1 r ă0u
. The asymetry of the expression of the determinant yields a different estimate than in the previous case. To be able to prove (22), we need to establish an upper bound and a lower bound of a 1 r as in the previous section (Lemma 3). We give in Lemma 4 an asymptotic expression of a 1 r . The proof is similar but there are also significant differences. The difference with respect to before is that the two signs of the determinants are negative, hence we replace J r by J 1 r " 1 tA 1 `rB 0 ă0,´A 1 `rB 0 ă0u " 1 t|A 1 |ď´rB 0 u and emphasize that B 0 does not have the same law as ´B0 .

Lemma 4. We have for 0 ă α 1 ă α,

|a 1 r ´Eprq p|A 2 1 ´r2 B 2 0 |J 1 r q| "O P pr 3`α 1 q a 1 r -Ep|A 2 1 ´r2 B 2 0 |J 1 r q
The proof is omitted as the proof of Lemma 3 can be repdroduced verbatim, with resp. J 1 r , I 1 r , a 1 r in place of resp. J r , I r , a r . 6.5.1. Upper bound. The upper bound on J 1 r is of different nature than that on J r , in particular the third term Hence if Y 0 " 0 and Ω is realised

J 1 r " 1 t|A 1 |ă´rB 0 u ď
A 1 ă r, ´B0 " B 111 ψp0q 2 `B211 ψp0q 2 ´1 3 B 22 ψp0qB 1111 ψp0q ą 0 `4 ´1 3 ą 2A 1 {r.

We have

Ep|A

2 1 ´r2 B 2 0 |1 t|A 1 |ď´rB 0 u q ě E " 1 Ω | r 2 B 2 0 {4 | 1 tB 0 ě2A 1 {ru ‰ ě r 2 PpΩq.
We must prove a converse to Lemma 5-(i) with s " 0. Since the density of X 1 is uniformly bounded from below on r´3, 3s 4 , for some c ą 0, ending the proof of (24).

PpΩq ě c ż r´1,
Lemma 5. Let pZ 1 , . . . , Z k q be a non-degenerate Gaussian vector and a i,j real fixed coefficients. Then, (i)

Pp|Z 1 Z 2 `s ÿ i,j a i,j Z i Z j | ă rq ď Cr lnprq (i)
for C depending on the law of the Z i (and not on s or the a i,j ), (ii) for α i ě 0

Ep|Z α 1 1 . . . Z α k k |1 t|Z 1 Z 2 |ărZ 2 3 u q ď C 1 # r lnprq if α 1 " α 2 " 0 r otherwise (ii)
for some C 1 ă 8. (iii) Let some coefficients α i P N , pZ 1 , . . . , Z q q be a Gaussian vector. Then, for some C 2 ă 8, In the non-independent Gaussian case, the joint density f px 1 , . . . , x k q of pZ 1 , . . . , Z k q is bounded by κ expp´c ř i x 2 i q for some c, κ ą 0 (c would be the smallest eigenvalue of the covariance matrix). From there on the conclusion is easy:

Ep|Z
ż 1 t|x 1 x 2
`s ř i,j a i,j x i x j |ăru f px 1 , . . . , x k qdx 1 . . . dx k ď κ ż 1 t...u expp´c ÿ i

x 2 i qdx 1 . . . dx k and the right hand member corresponds to the independent case, already treated.

(ii) For the second assertion, assume first that the Z k are independent. Without loss of generality, assume α 1 ď α 2 . We have for t ě 0, for some c, c 1 , c 2 , c 4 , C ă 8,

Ep|Z α 1 1 Z α 2 2 |1 |Z 1 Z 2 | ă tq ďEp|Z α 1 1 Z α 2 2 |1 |Z 1 |ăt q `Ep|Z α 1 1 Z α 2 2 |1 t|Z 2 |ăt,|Z 1 |ą1u q `Ep|Z α 1 1 Z α 2 2 |1 t|Z 2 |ăt{|Z 1 |u 1 ttă|Z 1 |ă1u q ďct α 1 `1 `ct α 2 `1 `c1 ż 1 t x α 1 1 ż t{x 1 0 x α 2 2 dx 2 dx 1 ď2ct `c2 ż 1 t x α 1 1 ˆt x 1 ˙α2 `1 dx 1 ď2ct `c3 t α 2 `1 # t α 1 ´α2 if α 1 ă α 2 lnptq if α 1 " α 2 ďC # t lnptq if α 1 " α 2 " 0 t otherwise .
Coming back to the main estimate with t " rZ 2 3 , using conditional expectations, for some C 1 , C 2 ă 8,

Ep|Z α 1 1 . . . Z α k k |1 t|Z 1 Z 2 |ărZ 2 3 u q ď C 1 Ep ź i‰1,2,3 Z α k k prZ α 3
`2 3 lnprZ 3 q 1 α 1 "α 2 "0 qq ď C 2 r lnprq 1 α 1 "α 2 "0 .

The non-independent (non-degenerate) case can be treated as before by bounding the density of the Z k by an independent density of the same order.

(iii) By Holder's inequality Ep|Z α 1 1 . . . Z αq q |1 t|Z 1 |ďcrZ 2 u q ď q ź i"1

Ep|Z i | qα i 1 t|Z 1 |ďcrZ 2 u q 1 q hence we can assume wlog that only one α i , say α i 0 , is non-zero. For i 0 ą 2, we have an orthogonal decomposition of the form Z i 0 " pαZ 1 `βZ 2 q `γY where Y is independent of pZ 1 , Z 2 q, hence we can assume wlog that i 0 " 1 or i 0 " 2. For i 0 " 1, the bound is Ep|rZ 2 | α 1 1 t|Z 1 |ărZ 2 u q " Opr 1`α 1 q and it only remains to treat the case i 0 " 2. In this case we decompose orthogonally Z 1 " λZ 2 `µZ where Z is independent of Z 2 . Then the bounded densities of Z 2 and Z easily yields the result Ep|Z 2 | α 2 C|rZ 2 |q " Oprq.

e

  The two last equalities illustrate the fact that isotropy and polar change of coordinates yield other relations between the m a,b of the formm a,b " α a,b m a`b,0where the coefficients α a,b don't depend on F .Example 1. Let J 0 be the Bessel function of the first order J 0 pxq " ´ix cospθq dθ, x P R.

  By symmetry of the Gaussian field ψ, we have the following equality: N max ρ

  |det H ψ pzq| s " E " ˇˇB 11 ψp0qB 22 ψp0q ´B2 To evaluate (14), we consider the transformation W 1 " B 11 ψp0q, W 2 " B 12 ψp0q, W 3 " B 11 ψp0q `B22 ψp0q and we write E " ˇˇB 11 ψp0qB 22 ψp0q ´B2 12 ψp0q

	12 ψp0q ˇˇ‰	.
	(14)

  ∆ 1111 p˘rq " B 11 ψp˘r, 0q ´∆11 p˘rq ´p˘rB 111 ψp0qq implies ∆ 1111 p˘rq " B 1111 ψp0q `OP pr α q bq r 2 3 ∆ 2111 p˘rq " B 21 ψp˘r, 0q ´∆21 p˘rq ´p˘rB 211 q implies ∆ 2111 p˘rq " B 2111 ψp0q `OP pr α q cq r 2 2 ∆ 2211 p˘rq " B 22 ψp˘r, 0q ´B22 ψp0q ´p˘rB 221 q implies ∆ 2211 p˘rq " B 2211 ψp0q `OP pr α q.We can explicitly write the expression of det H ψ pzq det H ψ pwq :det H ψ pzq " B 11 ψpr, 0qB 22 ψpr, 0q ´pB 21 ψpr, 0qq 2

	Proof. Define					
	$ ' & ' %	aq r 2 3 " rpA 1 `rB r	`r2 C r q,	(33)
	with					
		B r " B 111 ψp0qB 221 ψp0q	`1 3	∆ 1111 prq B 22 ψp0q ´B211 ψp0q 2 " B 0 `OP pr α q
		C r "	∆ 1111 prq 3	B 221 ψp0q	`∆2211 prq 2	B 111 ψp0q ∆ r ´2 3 `r2 C 1 r q	(34)
	with					
		B r 1 "B 111 ψp0qB 221 ψp0q	`1 3	∆ 1111 p´rq B 22 ψp0q ´B211 ψp0q 2 " B 0 `OP pr α q
		C 1 r "	´∆1111 p´rq 3	B 221 ψp0q	´∆2211 p´rq 2	B 111 ψp0q	`2 3	∆ 2111 p´rqB 211 ψp0q " O P p1q
		Combining Equations (33) and (34), an elementary calculus leads to
							det H
								1`α qq	(29)
								det H ψ pwq "rp´A 1 `rB 0 `OP pr 1`α qq	(30)
					det H ψ pzq det H ψ pwq "r 2 r´A 1	2 `gprqs	(31)
	where					
				$ &	A 1 " B 22 ψp0qB 111 ψp0q
					B .	(32)
				%			

0 " B 221 ψp0q B 111 ψp0q ´B211 ψp0q 2 `1 3 B 22 ψp0qB 1111 ψp0q gprq " r 2 B 2 0 `OP pA 1 r 1`α q `OP pr 2`α q 2111 prqB 211 ψp0q " O P p1q and det H ψ pwq " B 11 ψp´r, 0qB 22 ψp´r, 0q ´pB 21 ψp´r, 0qq 2

" rp´A 1 `rB 1 ψ pzq det H ψ pwq " r 2 r´A 1 2 `gprqs where gprq "rA 1

  ) 6.2. Dependency of derivatives. In view of the previous result, we will have to estimate quantities related to the random vectors X " pB 22 ψp0q, B 111 ψp0q, B 122 ψp0q, B 112 ψp0q, B 1111 ψp0qq and Y r . We must consider the case where pX, Y 0 q is degenerate. Examining Remark 1, we can split the variables involved in several groups that are mutually independent, there are for instance only two groups of size 3, tB 1 ψp0q, B 122 ψp0q, B 111 ψp0qu and tB 22 ψp0q, B 1111 ψp0q, B 11 ψp0qu.Other groups, such as tB 112 ψp0q, B 2 ψp0qu, have less members, and in the isotropic case they won't be in a linear relation because of (5):Cov pB 112 ψp0q, B 2 ψp0qq 2 " m 2 2,2 ă m 2,0 m 4,2 " VarpB 2 qVarpB 112 q. There is actually no other case to consider. Let us elucidate what can happen within the two bigger groups.

  e 2 pz, wq ď c 1 r 3 . |1 t|A 1 |ďrB 0 u |q. Let us first assume that the Gaussian field ψ is not a SGRW (Example 1), hence the derivatives involved in X and Y 0 are not linearly linked. Define the eventΩ "t|B 22 ψp0q| ă r, 1 2 ă B 111 ψp0q ă 1, |B 211 ψp0q| ă 1,8 ă B 122 , |B 1111 ψp0q| ă 1u. " pB 1 ψp0q, B 2 ψp0q, B 11 ψp0q, B 12 ψp0qq.

			(46)
	Finally, from (39) and (46), we deduce for some c 2 ă 8	
	ErN e ρ pN e ρ ´1qs ď c 2 ρ 7 .
	6.4.2. Lower bound in (22). Thanks to Lemma 3, it is sufficient to give a lower bound of Ep|A 2 1 B 2 0 We recall	ŕ2
	A 1 " B 22 ψp0qB 111 ψp0q,	
	B 0 " B 221 B 111 ψp0q ´B211 ψp0q 2 `1 3	B 22 ψp0q B 1111 ψp0q
	Y 0 Hence under Ω	
	|A 1 | ăr
	B 0 ą 4 ´1	´r 3

  1 t|B 22 ψp0q|ă´6rB 221 ψp0qu `1t|B 111 ψp0q|ă´2rB 1111 ψp0qu `1t|B 22 ψp0qB 111 |ă3rB 211 ψp0q 2 u . |B 22 ψp0qB 111 ψp0q|ă3rB 211 ψp0q 2 q ďEp|B 22 ψp0qB 111 ψp0q|1 t|B 22 ψp0qB 111 ψp0q|ă3rB 211 ψp0q 2 u q `Ep|B 211 ψp0q| 2 1 t|B 22 ψp0qB 111 ψp0q|ă3rB 211 ψp0q 2 u qq `Ep|B 22 ψp0qB 1111 ψp0q1 t|B 22 ψp0qB 111 ψp0q|ă3rB 211 ψp0q 2 u qq ďcr lnprq for some c ă 8. The other terms are dealt with by Lemma 5-(iii) as in (45), hence the upper bound is in Lower bound. We recall the expression of A 1 and ´B0 : A 1 " B 22 ψp0qB 111 ψp0q, ´B0 " ´B221 ψp0q B 111 ψp0qB 211 ψp0q 2 ´1 3 B 22 ψp0q B 1111 ψp0q. The strategy is the same than at Section 6.4.2. If ψ is a SGRW (Example 1), B 111 ψp0q " ´B122 ψp0q if Y 0 " 0, let Ω " tB 211 ψp0q ą 2, |B 22 ψp0qB 111 ψp0q| ă r, |B 111 ψp0q| ă 1, |B 22 ψp0q| ă 1, |B 1111 ψp0q| ă 1u.

	Then,	
	Ep|A 1	´r2 B 2 0 |J 1 r q ď Ep2r 2 B 2 0 J r 1 q
	hence we must use this time Lemma 5-(ii) for the last term of J 1 r 's bound,
	EpB 2 0 1 Ep|A 1	´r2 B 2 0 |J 1 r q ď c 1 r 3 lnprq
	for some c 1 ă 8, which yields (23) by (49) and Lemma 4.
	6.5.2.	

  1s 2 1 t|x 1 x 2 |ăru dx 1 dx 2 -r lnprq.6.6. Proof of (24) in Theorem 5.1. We recall that N c ρ " N s

	s ρ pN s ρ ´1q `2N e ρ N s ρ .				ρ	`N e ρ hence N c ρ pN c ρ ´1q " N e ρ pN e ρ ´1q	Ǹ
	So, we have:			
	ErN e ρ N s ρ s "	1 2	ErN c ρ pN c ρ ´1qs ´ErN e ρ pN e ρ ´1qs ´ErN s ρ pN s ρ ´1qs.
	Combining this formula with previous estimates (21), (22) and (23), we obtain
			ErN e ρ N s ρ s "	1 2	ErN c ρ pN c ρ ´1qs `op1q

  α 1 1 . . . Z αq q |1 t|Z 1 |ďrZ 2 u q ď C 2 r.(iii)Proof. (i) Assume first that the Z i are iid Gaussian. Let us study for a, b P R, Y 1 :" Z 1 ´as, Y 2 :" Z 2 ´bs.Since Y 1 , Y 2 have a density bounded by κ ă 8 (universal), we have forc P R Pp|Y 1 Y 2 ´c| ď rq ďPp|Y 2 | ď rq `Pp|Y 1 ´c{Y 2 | ă r{Y 2 , |Y 2 | ą 1q `Pp|Y 1 ´c{Y 2 | ă r{Y 2 , |Y 2 | P rr, 1sq ďκr `Pp|Y 1 ´c{Y 2 | ă rq `E " PpY 1 P rc{Y 2 ˘r{Y 2 s | Y 2 q1 tră|Y 2 |ă1u i,j Z i Z j " pZ 1 ´AsqpZ 2 ´Bsq ´Cswhere A, B, C s are independent of Z 1 , Z 2 . Then i,j Z i Z j | ă rq " EpPp|pZ 1 ´AsqpZ 2 ´Bsq ´Cs | | A, B, C s qq ď Cr ln r.

					‰
		ďκr `κr `Epκr{Y 2 1 tră|Y 2 |ă1u q
		ď2κr `κr	ż 1 r	1 y 2	2κdy 2
		ď2κr `2κ 2 r lnprq,
	uniformly on a, b, c, s. Then it remains to notice that
		Z 1 Z 2	`s ÿ
					i,j
	Pp|Z 1 Z 2	`s ÿ		
		i,j		

a a
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