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LOCAL REPULSION OF PLANAR GAUSSIAN CRITICAL POINTS

SAFA LADGHAM 1,2, RAPHAËL LACHIEZE-REY1

Abstract. We study the local repulsion between critical points of a stationary isotropic smooth planar
Gaussian field. We show that the critical points can experience a soft repulsion which is maximal in the
case of the random planar wave model, or a soft attraction of arbitrary high order. If the type of critical
points is specified (extremum, saddle point), the points experience a hard local repulsion, that we quantify
with the precise magnitude of the second factorial moment of the number of points in a small ball.

Key words: Gaussian random fields; Stationary random fields; Critical points; Kac-Rice formula;
repulsive point process.

AMS Classification: 60G60- 60G15

1. Introduction

The main topic of this paper is a local analysis of the critical points of a smooth stationary planar
Gaussian field. The study of critical points, their number as well as their positions, are important issues
in various application areas such as sea waves modeling [CG13] , astronomy [LW04,ATW07,Lin72] or
neuroimaging [NH03, TW07,WMNE96,WTTL04]. In these situations, practitioners are particularly inter-
ested in the detection of peaks of the random field under study or in high level asymptotics of maximal
points [CS17,TW07,WMNE96]. At the opposite of these Extremes Theory results, some situations require
the topological study of excursion sets over moderate levels [AT09,CX16] or the location study of critical
points (not only extremal ones) [Mui20].

Repulsive point processes have known a surge of interest in the recent years, they are useful in a num-
ber of applications, such as sampling for quasi Monte-Carlo methods [BH20], data mining, training set
selection in machine learning, or numerical integration, see for instance [KT12], or as coresets for subsam-
pling large datasets [TBA19]. Critical points of Gaussian fields could be an alternative to determinantal
point processes, which are commonly used for their repulsion properties despite the difficult issue of their
synthesis [DGL17]. Several definitions exist to characterize the repulsion properties of a stationary point
process. We will use the following informal definition of local repulsion: A stationary random set of points
X Ă R

2 is locally repulsive at the second order if, denoting by Nρ its number of points in a ball centred in
0 with radius ρ, we have

RN :“ lim
ρÑ0

EpN p2q
ρ q

EpNρq2 ă 1 (1)

where for an integer n, np2q “ npn´ 1q is the second order factorial power. This definition is motivated by
the heuristic computation where we consider x1 ‰ x2 randomly sampled in N XB1 and

EpNρq “ Ppx1 P Bρq ` remainder

EpN p2q
ρ q “ Ppx2 P Bρ , x1 P Bρq ` remainder,
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where the remainder terms are hopefully negligible when ρ is small. In other words, a point process is
locally repulsive if the probability to find a point in a small ball diminishes if we know that there is already
a point in this ball. The constant RN is called the (second order) local repulsion factor, it is a dimensionless
parameter that is invariant under rescaling or rotation of the process N . It equals 1 if N is a homogenous
Poisson process, which is universally considered non-interacting. We say that the point process is weakly
locally repulsive (resp. attractive) if RN P p0, 1q (resp. p1,8q), and strongly repulsive if RN “ 0.

We study the repulsion properties of the stationary process Xc formed by critical points of a planar
stationary isotropic Gaussian field ψ. We show that, depending on the covariance function of the field,
they form a weakly locally repulsive or a weakly locally attractive point process, and that the minimal
repulsion factor is RXc “ 1

8
?
3
, reached when ψ is a Gaussian random wave model, which hence yield the

most locally repulsive process of critical points. There is on the other hand no maximal value for the limit.
We also show that the subprocess formed by the local maxima of the field is strongly repulsive, as well as
the subprocess formed by the saddle points, and give the precise magnitude of the ratio decay in the left
hand member of (1).

Let us quote two recent articles that are concerned with a very similar question. The first one, which
has been a source of inspiration, is [BCW19]. In this paper, Belyaev, Cammarota and Wigman study the
repulsion of the critical points for a particular Gaussian field, the Berry’s Planar Random Wave Model,
whose spectral measure is uniformly spread on a circle centred in 0. They obtain the exact repulsion
ratio for critical points and upper bounds for the repulsivity for specific types of critical points (saddle,
extrema). Azais and Delmas [AD22] have studied the attraction or repulsion of critical points for general
stationary Gaussian fields in any dimension. Using a different computation method, they get an upper
bound for the second factorial moment which is compatible with the order of magnitude that we obtain.
Their method is borrowed from techniques in random matrix theory, as suggested by Fyodorov [Fyo04].
Namely, an explicit expression for the joint density of GOE eigenvalues is exploited.

In order to quantify the repulsion of the critical points, we compute the second factorial moment using
the Rice or Kac-Rice formulas (see [AT09] or [AW09] for details), as the vast majority of works concerned
with counting the zeros or critical points of a random field. We get the asymptotics as the ball radius
tends to 0 by performing a fine asymptotic analysis on the conditional expectations that are involved in
the Kac-Rice formulas.

The paper is organized as follows: In Section 2, we present the Gaussian fields, which are the probabilistic
object of our study, and the basic tools we will use for their study. In Section 3, we derive the Kac-Rice
formula, in a context adapted to our framework. The purpose of section 4 is to compute the expectation of
the number of critical points and also the number of extrema, minima, maxima and saddle (see Proposition
3). In Section 5, we study the second factorial moment and discuss the repulsion properties of the critical
points.

2. Assumptions and tools

The main actors of this article are centered random Gaussian functions ψ : R2 Ñ R whose law is invariant
under translations, and whose realisations are smooth. Formally it means that for x1, . . . , xn P R

2,
pψpx1q, . . . , ψpxnqq is a centered Gaussian vector which law is invariant under translation of the xi’s (and
rotations if isotropy is further assumed), and that the sample paths tψpxq;x P R

2u are a.s. of class C2 (or
more). See [AT09] for a rigourous and detailed exposition of Gaussian fields. Such a field is characterised
by its reduced covariance function Γ

Erψpzqψpwqs :“ Γpz ´ wq
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for some Γ : R2 Ñ R, and if the field is furthermore assumed to be isotropic (i.e. its law is invariant under
rotations)

Γpz ´ wq “ σp|z ´ w|2q (2)

for some σ : R` Ñ R, where |x| denotes the Euclidean norm of x P R
2.

We denote by ∇ψpzq the gradient of ψ at z P R
2, by Hψpzq the Hessian matrix evaluated at z, when

these quantities are well defined. For a smooth random field ψ, the set of critical points is denoted by

Xc “ Xcpψq :“ tx P R
2 : ∇ψpcq “ 0u,

and the number of critical points in a small disc Bρ of radius ρ ą 0 is defined by

N
c
ρ pψq :“ #Xc XBρ.

When there is no ambiguity about the random field ψ, we simply write N c
ρ instead of N c

ρ pψq. Similarly,

we denote by resp. N s
ρ pψq,N e

ρ pψq,Nmax
ρ pψq,Nmin

ρ pψq the number of resp. saddles, extrema, maxima and
minima, critical points characterised by the signs of the Hessian eigenvalues.

As will be explained at Section 5, to perform a second order local analysis of the repulsion of ψ’s critical
points, we must assume fourth order differentiation of ψ, and for technical reasons we further assume that
the fourth order derivative is α-Hölder for some α ą 0, we call this property C4`α regularity. It is implied
by σ being of class C8`β for some β ą 2α, see Proposition 1 below. In this case, the Hölder constant is a
random variable with Gaussian tail (see below).

Assumption 2.1. Assume that ψ is a non-constant stationary Gaussian field on R
2 and its reduced

covariance Γ is of class C8`β for some β ą 0.

This assumption implies the C4`α regularity of ψ by applying the proposition below to ψ’s 4th order
derivatives.

Proposition 1. Let ϕ be a stationary Gaussian field R
2 Ñ R, with reduced covariance function γ : R2 Ñ

R. Then if for some C, β ą 0, for δ ą 0 sufficiently small

|γpxq ´ γp0q| ď C|x|β, |x| ď δ,

then for 0 ă ε ă β{2 there is a random variable Uε with Gaussian tail such that for all x, y P B1,

|ϕpxq ´ ϕpyq| ď Uε|x ´ y|β{2´ε.

Proof. It follows from the classical result from Landau and Shepp [AT09, (2.1.4)] that for a centred
Gaussian field f a.s. bounded on a Euclidean compact T , there is c ą 0 such that for large enough u,

Ppsup
tPT

|fptq| ě uq ď 2 expp´cu2q.

We wish to apply this result to T “ B1 ˆB1 and

fpx, yq “ |x´ y|´αpϕpxq ´ ϕpyqq, px, yq P T.
Let α “ β{2 ´ ε. The fact that f is bounded is the consequence of the fact that ϕ’s path are locally
α-Holder for α ă β{2, see for instance [Pot09, Corollary 4.8]. �

Definition 1. Say that some random variables X,Y satisfy X “ OPpY q if X ď UY where U is a random
variable with a Gaussian tail, i.e.

Pp|U | ą tq ď c expp´c1t2q, t ě 0

for some c ă 8, c1 ą 0.



4 SAFA LADGHAM 1,2, RAPHAËL LACHIEZE-REY1

Proposition 1 hence implies that if a stationary field ψ’s reduced covariance Γ is of class Ck`η, then

Bkψpt` hq “ Bkψptq ` OPphη{2q, t P R
d.

2.1. Dependency structure. Stationarity conveys strong constraints on the dependence structure be-
tween the field’s partial derivatives at a given point. Let us recall formula [AT09, (5.5.4)-(5.5.5)]: if Γ is
Ck`η differentiable for some k P N, η ą 0, for natural integers α, β, γ, δ such that α ` β ď k, γ ` δ ď k,

E

´
Bα1 Bβ

2
ψptq ¨ Bγ

1
Bδ2ψpsq

¯
“ B

Bαt1
B

Bβt2

B
Bγs1

B
Bδs2

Γpt´ sq, s, t P R
2.

In particular if s “ t we have the spectral representation

E

´
Bα1 Bβ

2
ψptq ¨ Bγ

1
Bδ2ψptq

¯
“ p´1qγ`δ Bα`β`γ`δΓp0q

Btα
1

Btβ
2

Btγ
1

Btδ
2

“ mα`γ,β`δ where ma,b :“ p´1qaıa`b
ż

R2

λa1λ
b
2F pdλq, t P R

2

(3)

where the symmetric spectral measure F is uniquely defined by

Γptq “
ż

R2

expp´ıλ ¨ tqF pdλq, t P R
2. (4)

Let us state important consequences of (3), and in particular of the fact that, due to the symmetry of F ,
the integral vanishes if a or b is an odd number. For this reason, p´1qa “ p´1qb when the integral does
not vanish, and ma,b is symmetric in a and b.

Remark 1. For all t P R
2, ψptq and Bjψptq are independent for j “ 1, 2, hence B1ψ and B2ψ are indepen-

dent, and furthermore for any two natural integers k, l which difference is odd, any partial derivatives of
orders k and l

Bi1,...,ikψp0q and Bj1,...,jlψp0q are independent.

Non-independence and technical difficulties will mainly emerge from dependence between even degrees
of differentiation of the field, such as ψptq and B11ψptq, or B11ψptq and B22ψptq, or between the values of
the field at different locations, say ψpsq and ψptq, s ‰ t. A case we must discard is that of constant ψ, i.e.
ψptq “ U for some Gaussian variable U , and this is what we call a trivial Gaussian field.

Also, Cauchy-Schwarz inequality yields that for α, β, γ, δ P N

|mα`γ,β`δ|2 ď m2α,2βm2γ,2δ,

and there is equality only if λα
1
λ
β
2

is proportionnal to λγ
1
λδ
2
dF -a.s. In the isotropic case (i.e. F is invariant

under spatial rotations), unless α “ γ, β “ δ it can only happen if dF is the Dirac mass in 0, i.e.

m2
α`γ,β`δ ă m2α,2βm2γ,2δ, α ‰ γ or β ‰ δ if ψ is non-trivial isotropic. (5)

Proposition 2. Let ψ be an isotropic Gaussian field R
2 Ñ R that satisfies Assumption 2.1 with covariance

under the form (2). We indicate the first derivatives of σ at point 0 P R by σ1p0q “ η0, σ
2p0q “ µ0,

σp3qp0q “ ν0, σ
4p0q “ υ. Then

VarpBiψp0qq “ ´2η0 “ m2,0 ą 0, (6)

VarpB12ψp0qq “ 22µ0 “ m2,2 ą 0,

VarpBiiψp0qq “ 3 ¨ 22µ0 “ m4,0 ą 0, i “ 1, 2,

VarpBiiiψp0qq “ ´15 ¨ 23ν0 “ m6,0 ą 0, i “ 1, 2.
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The two last equalities illustrate the fact that isotropy and polar change of coordinates yield other
relations between the ma,b of the form

ma,b “ αa,bma`b,0

where the coefficients αa,b don’t depend on F .

Example 1. Let J0 be the Bessel function of the first order

J0pxq “ 1

2π

ż
2π

0

e´ix cospθqdθ, x P R.

For k ą 0 let ψ be the Gaussian random wave with parameter k, i.e. the isotropic stationary Gaussian
field with reduced covariance function

Γpzq “ J0pk|z|q.
As is apparent from (4), this is the centered Gaussian field whose spectral measure is the uniform law on
the centred circle with radius k. It is important as it is the unique (in law) stationary Gaussian field for
which

B11ψ ` B22ψ ` k2ψ “ 0 a.s.

up to a multiplicative constant. See for instance [BCW19, MRV, NPR19] and references therein for recent
works about diverse aspects of planar random wave models. As proved at Section 6.2, it is the only
non-trivial stationary isotropic stationary field satisfying a non-trivial linear partial differential equation
of order three or less. As critical points are not modified by adding a constant, we also consider shifted
Gaussian random waves (SGRW), of the form τU ` σψ, where τ ě 0, σ ą 0, ψ is a GRW and U is
an independent centered standard Gaussian variable. The spectral measure of a SGRW is the sum of a
uniform measure on a circle of R2 centred in 0 and a finite mass in t0u.

3. The Kac-Rice formula

The Kac-Rice formula gives a description of the factorial moments of the zeros of a random field. Let
us give a formula adapted to counting the critical points of a certain type. The following result can be
proved by combining the proofs of Theorems 6.3 and 6.4 from [AW09], see also [AD22, Appendix A].

Theorem 3.1. Let ψ isotropic satisfying Assumption 2.1. Let k P t1, 2u, B1, B2 some open subsets of Rd,

N
B1

ρ “ tt P Bp0, ρq : ∇ψptq “ 0,Hψptq P B1u.
Then for ρ sufficiently small

ErNB1

ρ s “
ż

Bρ

KB1

1
ptqdt, (7)

ErNB1

ρ pNB2

ρ ´ 1qs “
ż

B2
ρ

K
B1,B2

2
pt1, t2qdt, (8)

where we have the k-point correlation function :

KB1

1
ptq “φ∇ψptqp0q E

”
|detHψptq| 1B1

pHψptqq
ˇ̌
ˇ ∇ψptq “ 0

ı
,

K
B1,B2

2
pt1, t2q “φp∇ψpt1q,∇ψpt2qqp0, 0q E

«
2ź

i“1

|detHψptiq| 1BipHψptiqq
ˇ̌
ˇ ∇ψpt1q “ ∇ψpt2q “ 0

ff
,

where φV is the density probability function of a Gaussian vector V .
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We are specifically interested in a finite class of sets Bi, namely

Bc “MdpRq the class of d ˆ d square matrices,

Bext “
´1

detpp0,8qq

Bs “
´1

detpp´8, 0qq,
Bmin “tH definite positiveu,
Bmax “tH definite negativeu.

In this case, the exponent in N or Ki is replaced by the subscript of B, e.g.

N
c
ρ “ N

Bc
ρ ,K

s,s
2

“ K
Bs,Bs
2

, etc...

Proof. With Zptq “ ∇ψptq, Y t “ Hψptq, gpt,Hq “ 1tdetpHqPBu, we have

NB
ρ “

ÿ

t:Zptq“0

gpt, Y tq.

Let us show that hypothesis (iii’) of [AW09, Th.6.3] is satisfied, that is for t, s P Bρ, the law of p∇ψptq,∇ψpsqq
is non-degenerated for ρ small enough. Let us expand

EpBiψpsqBjψptqq “ B2
BsiBtj

σp|s´ t|2q “
#

´2σ1p|s´ t|2q ´ 4psi ´ tiq2σ2p|s ´ t|2q if i “ j

´4psi ´ tiqpsj ´ tjqσ2p|s´ t|2q if i ‰ j.

By isotropy it suffices to evaluate it in t “ pr, 0q, s “ p´r, 0q for r ě 0. Let us write the 4ˆ 4 covariance
matrix in function of ηr “ σ1p4r2q, µr “ σ2p4r2q

Σ “ ´2

ˆ
η0I ηrI ` 2µrAr

ηrI ` 2µrAr η0I

˙
(9)

where

Ar “
ˆ

4r2 0

0 0

˙
. (10)

Hence the block determinant is

16 detpη20I ´ pηrI ` 2µrArq2q “ 16 detppη20 ´ η2r qI ´ 4µrηrAr ´ 4µ2rA
2
rq

“ 16pη20 ´ η2r qppη20 ´ η2r q ´ 16µrηrr
2 ´ 64µ2rr

4q.
This is equivalent to

16 ¨ 8η0p´µ0r2qp8η0p´µ0r2q ` OPpr2q ´ 16µ0η0r
2 ` OPpr2qq „ ´128η0µ0r

2p´24η0µ0r
2q “ 3 ¨ 210µ20η20r4,

(11)

where we have µ0η0 ‰ 0 in virtue of (6). Hence the determinant is non zero for r ‰ 0 sufficiently small.
Then the modification of the proof of Theorem 6.3 following the proof of Theorem 6.4 of [AW09] yields
the result, see Appendix A in [AD22].

It yields in particular

φp∇ψpt1q,∇ψpt2qqp0, 0q “ 1a
detpΣqp2πq2

“ 1

27π2
?
3|µ0η0|r2

p1 ` orÑ0p1qq. (12)

�
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4. First order

In this section, we are interested in the computation of the expectation of the number of critical points
in a Borel set B Ă R

2.

Proposition 3. Let ψ “ tψpzq : z P R
2u be a non-trivial isotropic stationary Gaussian field R

2 Ñ R

which is a.s. of class C2 and let σ be defined by (2). Let

λc “ 4?
3π

σ2p0q
p´σ1p0qq .

In virtue of Proposition 2, λc P p0,8q. Then, for every ρ ą 0, we have

ErN c
ρ s “ λc|Bρ|, (13)

ErN e
ρ s “ ErN s

ρ s “ 1

2
ErN c

ρ s, (14)

ErNmin
ρ s “ 1

4
ErN c

ρ s. (15)

A sufficient condition for ψ being of class C2 is that σ is of classe C4`β for some β ą 0, see Proposition
1.

Remark 2. By stationarity, λc is the intensity of Xcpψq, i.e. the mean number of critical points per unit
volume.

Proof. According to Theorem 3.1, we must simply evaluate

K1pzq “ φ∇ψpzqp0, 0q E
“

| detHψpzq |
ˇ̌
∇ψpzq “ 0

‰
. (16)

The stationarity of ψ implies that K1pzq is independent of z, see formula (8). So, we get

ErN c
ρ s “ |Bρ|K1p0q. (17)

Using the matrix Σ with r “ 0 in (9), we immediately obtain the probability density function of
(two-dimensional vector) ∇ψpzq evaluated at point p0, 0q:

φ∇ψpzqp0, 0q “ 1

2π

1a
4η2

0

“ 1

4π|η0| , (18)

where η0 “ σ1p0q. From this point until the end of the proof we will use the method of the article [BCW19].
Since the first and the second derivatives of ψpzq are independent at every fixed point z P R

2, then:

E
“
| detHψpzq|

ˇ̌
∇ψpzq “ 0

‰
“ E r |detHψpzq| s “ E r |detHψpzq| s “ E

“ ˇ̌
B11ψp0qB22ψp0q ´ B212ψp0q

ˇ̌ ‰
.

(19)
To evaluate (19), we consider the transformation W1 “ B11ψp0q, W2 “ B12ψp0q, W3 “ B11ψp0q ` B22ψp0q
and we write E

“ ˇ̌
B11ψp0qB22ψp0q ´ B2

12
ψp0q

ˇ̌ ‰
in terms of a conditional expectation as follows:

E
“ ˇ̌

B11ψp0qB22ψp0q ´ B212ψp0q
ˇ̌ ‰

“ E
“ ˇ̌
W1W3 ´W 2

1 ´W 2
2

ˇ̌ ‰
“ E

“
E

“
|W1W3 ´W 2

1 ´W 2
2 |

ˇ̌
W3

‰‰
, (20)

where W “ pW1,W2,W3q is a centered Gaussian vector field with covariance matrix D.

Use Proposition 2 and Remark 1, we have D “

¨
˝
12µ0 0 16µ0
0 4µ0 0

16µ0 0 32µ0

˛
‚.

The conditional distribution of pW1,W2q
ˇ̌
W3 is Gaussian with covariance matrix ΣpW1,W2q|W3

“
ˆ
4µ 0

0 4µ

˙
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and expectation Er pW1,W2q
ˇ̌
W3 “ ts “

¨
˝

t
2

0

˛
‚ for t P R.

The conditioned Gaussian vector pW1,W2q|W3 “ t is distributed as p2?
µ0Z1 ` t

2
, 2

?
µ0 Z2q where Z1, Z2

are two independent standard Gaussian random variables, hence we have

E
“ ˇ̌
W1W3 ´W 2

1 ´W 2
2

ˇ̌ ˇ̌
W3 “ t

‰
“ Er | W1t´W 2

1 ´W 2
2 | |W3 “ t ss

“ Er |p2?
µ0Z1 ` t{2qt´ p2?

µ0Z1 ` t{2q2 ´ 4µ0 Z
2
2 | s

“ Er | ´ 4µ0Z
2
1 ´ 4µ0Z

2
2 ` t2

4
| s

“ 4µ0 E

„ ˇ̌
ˇ̌´X ` t2

16µ0

ˇ̌
ˇ̌

,

where X is a χ´square random variable with density fXpxq “ 1

2
e´x

2 , x ą 0.

So

Er | ´X ` t2

16µ0
| s “ 1

2

ż t2

16µ0

0

p t2

16µ0
´ xqe´x

2 dx` 1

2

ż `8

t2

16µ0

p´ t2

16µ0
` xqe´x

2 dx

“ ´2 ` 4e
´ t2

32µ0 ` t2

16µ0
,

then

E
“ ˇ̌
W1W3 ´W 2

1 ´W 2
2

ˇ̌ ˇ̌
W3 “ t

‰
“ 4µ0

1

8
?
πµ

ż

R

E

„ ˇ̌
ˇ̌´X ` t2

16µ0

ˇ̌
ˇ̌

e

´ t2

64µ0 dt

“
?
µ0

2
?
π

ż

R

e
´ t2

64µ

ˆ
´2 ` 4e

´ t2

32µ0 ` t2

16µ0

˙
dt “ 16µ0?

3
. (21)

By combining Equations (17), (18),(19) and (21), we obtain Formula (13).
Now, we turn to the evaluation of the expected number of the extrema and saddle points. We have

N
e
ρ :“ N

p0,8q
ρ “ #tx P Bρ : ∇ψpxq “ 0,detHψpzq ą 0u

N s
ρ :“ N p´8,0q

ρ “ #tx P Bρ : ∇ψpxq “ 0,detHψpzq ă 0u.
As previously, we apply the Kac-Rice formula from Section 3. We get:

ErN e
ρ s “

ż

Bρ

Ke
1pzqdz and ErN s

ρ s “
ż

Bρ

Ks
1pzqdz,

where
Ke

1pzq “ φ∇ψpzqp0, 0q E

”
|detHψpzq| 1tdetHψpzqą0u

ˇ̌
∇ψpzq “ 0

ı
,

Ks
1pzq “ φ∇ψpzqp0, 0q E

”
|detHψpzq| 1tdetHψpzqă0u

ˇ̌
∇ψpzq “ 0

ı
.

Since the first and the second derivatives of ψpzq are independent at every fixed point z P R
2, we obtain

ErN e
ρ s “ πρ2φ∇ψpzqp0, 0q E

”
|detHψpzq| 1tdetHψpzqą0u

ı
, (22)

ErN s
ρ s “ πρ2φ∇ψpzqp0, 0q E

”
|detHψpzq| 1tdetHψpzqă0u

ı
. (23)
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Using the same argument as in the case of critical points, we write

E

”
|detHψpzq| 1tdetHψpzqą0u

ı
“ E

”
|B11ψp0qB22ψp0q ´ B212ψp0q| 1tB11ψp0qB22ψp0q´B2

12
ą0u

ı

“ 4µ
1

8
?
πµ

ż

R

E

„ ˇ̌
ˇ̌´X ` t2

16µ0

ˇ̌
ˇ̌1t´X` t2

16µ0
ą0u


e

´ t2

64µ0 dt

“
?
µ0

2
?
π

ż

R

ˆ
´2 ` 2e

´ t2

32µ0 ` t2

16µ0

˙
e

´ t2

64µ0 dt

“ 8µ0?
3
, (24)

and

E

”
|detHψpzq| 1tdetHψpzqă0u

ı
“ E

”
|B11ψp0qB22ψp0q ´ B212| 1tB11ψp0qB22ψp0q´B2

12
ă0u

ı

“ 4µ
1

8
?
πµ0

ż

R

E

„ ˇ̌
ˇ̌´X ` t2

16µ0

ˇ̌
ˇ̌ 1t´X` t2

16µ0
ă0u


e

´ t2

64µ0 dt

“
?
µ0

2
?
π

ż

R

ˆ
2e

´ t2

32µ0

˙
e

´ t2

64µ0 dt

“ 8µ0?
3
. (25)

By combining Equations (18), (22), (23), (24) and (25), we obtain Formula (14).
Finally, we turn to the calculation of the expectation of the number of minima and maxima in Bρ.
We know that:

N e
ρ “ Nmin

ρ ` Nmax
ρ

so ErN e
ρ s “ ErNmin

ρ s ` ErNmax
ρ s.

By symmetry of the Gaussian field ψ, we have the following equality: Nmax
ρ p´ψq L“ Nmax

ρ pψq “
Nmin
ρ p´ψq for ´ψ L“ ψ, therefore ErNmin

ρ s “ ErNmax
ρ s.

Finally, we obtain

ErNmin
ρ s “ ErNmax

ρ s “ 1

2
ErN e

ρ s.

5. Second order

In this section, we will study the asymptotic behaviour of the second factorial moment of N c
ρ when ρ

goes to zero. The following theorem is the main result of this paper. Given two quantitites αρ, βρ, write
αρ — βρ if for two constants 0 ă c ă c1 ă 8, we have cαρ ď βρ ď c1αρ for ρ sufficiently small, and αρ „ βρ
if αρ{βρ Ñ 1, with the convention 0{0 “ 1.

Theorem 5.1. Let ψ be an isotropic Gaussian field R
2 Ñ R that satisfies Assumption 2.1.The repulsion

factor Rc :“ RXc is given by

Rc “
?
3

8

ˆ
5
σ3p0qσ1p0q

pσ2p0qq2 ´ 3

˙
.

As ρ Ñ 0, we have the following asymptotic equivalent expression for the second factorial moment of the
number of critical points

ErN c
ρ pN c

ρ ´ 1qs „ Rcλ
2
c |Bρ|2 — ρ4. (26)
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Depending on the law of ψ, Rc can take any prescribed value in r 1

8
?
3
,8q, and 1

8
?
3

is the minimal possible

value, it is reached iff ψ is a shifted Gaussian random wave (Example 1).

For the numbers of extrema, saddles in a ball of radius ρ, we have as ρ Ñ 0

ErN e
ρ pN e

ρ ´ 1qs — ρ7, (27)

ErN s
ρ pN s

ρ ´ 1qs — ρ7 lnpρq, (28)

ErN e
ρN

s
ρ s „ Rcλ

2
c |Bρ|2. (29)

Remark 3. The repulsion factor terminology comes from λc|Bρ| „ EpNρq and by the heuristic explanation
after (1).

Remark 4. By truncating the expansion of the type (38) at a lower order, one could prove that Expression
(26) is valid under the weaker assumption that Γ is of class C6`β (and ψ is of classe C3).

Example 2 (Bargmann Fock field). Consider the Bargmann-Fock field with parameter k, which is the
stationary isotropic Gaussian field with reduced covariance function

σprq “ expp´krq, r ě 0.

According to Proposition 3, we have for the first order

σ1p0q “ ´ k

σ
2p0q “k2

σ
3p0q “ ´ k3

ErN c
ρ s “ 4?

3
k ρ2.

Hence the attraction factor is

Rc “
?
3

4
ă 1,

which means that the process of critical points is locally weakly repulsive. It logically does not depend on
the scaling factor k.

Example 3 (Gaussian random waves). Consider the Gaussian random wave introduced at Example 1 by
σpxq “ J0pk?

xq, x ě 0. We have :

σ1p0q “ ´ k2

4

σ
2p0q “k4

25

σ
2p0q “ ´ k6

3 ¨ 27

λc “ k2

2
?
3π

i.e. ErN c
ρ s “ k2

2
?
3
ρ2,
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Hence the attraction factor takes the smallest possible value

Rc “ 1

8
?
3

ă 1,

which means that the process of critical points is locally weakly repulsive. We retrieve the second factorial
moment of Beliaev, Cammarota and Wigman [BCW19]

EpN c
ρ pN c

ρ ´ 1qq „ k4

263
?
3
ρ4.

Example 4. Consider the centered stationary Gaussian random field ψ with spectral measure

F pdλq “ |λ|´7
1t|λ|ě1udλ.

One has by Proposition 2,|σ1p0q| ă 8, σ2p0q ă 8,´σ3p0q “ 8, hence Rc “ 8, but Theorem 5.1 does
not apply precisely because F ’s higher moments are infinite, meaning that ψ is not of class C3. Hence we

consider Ftpdλq “ 1t|λ|ďtuF pdλqp
şt
0
dF q´1 for t ą 1. We have as t Ñ 8

η0ν0

µ2
0

„ c

ż t

1

r6r´7rdr — t.

It implies that the repulsion factor of Ft can reach arbitrarily high values. In particular, this parametric
model provides processes of critical points that are weakly locally attractive.

5.1. Discussion and related litterature. The equivalence (26) generalises the results of [BCW19], and
shows that locally, the random planar wave model yields the more repulsive critical points. We also show
that for a general process ψ, the subprocesses formed by extrema and saddle points experience locally
a strong repulsion with three more orders of magnitude for ρ. It confirms the idea that close to a large
portion of saddle points, there is an extremal point nearby, and conversely, but that the closest point of
the same type (extrema or saddle) is typically much further away.

A current novelty is also to derive the precise asymptotic repulsion for the extrema process and the
saddle process. Hence we are able to state that the ratio between the internal repulsion forces among
extremal points and among saddle points tends to infinity as the radius of the observation ball goes to 0.

Azais and Delmas [AD22] derived upper bounds about such quantities in any dimension. In particular,
their results are consistant with ours in the critic-critic, extrema-extrema and extrema-saddle cases.

6. Proofs

6.1. Conditioning. The proofs of all formulas of Theorem 5.1 are based on the Kac-Rice formula in
Theorem 3.1, for instance if B “ B1 “ R

2, we have the second factorial moment of the number of critical
points

E
“
N
c
ρ pN c

ρ ´ 1q
‰

“
ż ż

BρˆBρ
K2pz, wq dzdw, (30)

where K2 is the 2-point correlation function : :

K2pz, wq “ φp∇ψpzq,∇ψpwqqpp0, 0q, p0, 0qq (31)

ˆ E

”
|detHψpzq| |detHψpwq|

ˇ̌
∇ψpzq “ ∇ψpwq “ 0

ı
.

Let us briefly introduce where the difficulty comes from and why higher order differentiability is required.
For z, w close from 0, if ∇ψpzq “ ∇ψpwq “ 0, then the second order derivatives are also small, and
the determinant is dominated by third order differentials. When one imposes additional constraints on
the determinant signs, it yields other cancellations within third order derivatives, requiring fourth order
differentiability.
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Thanks to the stationarity and isotropy of ψ, it suffices to compute K2pz, wq for z “ pr, 0q and w “
p´r, 0q for all r ą 0. To evaluate E

“
N c
ρ pN c

ρ ´ 1q
‰
, the idea is to change the conditioning in K2pz, wq. To

symmetrize the problem, we introduce some notations for r near 0, r ‰ 0, exploiting Proposition 1 and
Definition 1,

#
aq ∆iprq :“ 1

2
Biψpzq ` 1

2
Biψpwq implies ∆iprq “ Biψp0q ` r2

2
Bi11ψp0q ` OPpr4q

bq ∆i1prq :“ 1

2r
pBiψpzq ´ Biψpwqq implies ∆i1prq “ Bi1ψp0q ` r2

6
Bi111ψp0q ` OPpr4q.

, (32)

The crucial point is that ∇ψpzq “ ∇ψpwq “ 0 is equivalent to ∆iprq “ 0,∆i1prq “ 0, i “ 1, 2. Let us
introduce

Yr “ p∆1prq,∆2prq,∆11prq,∆12prqq, r ą 0

so that Yr “ 0 is equivalent to ∇ψpzq “ ∇ψpwq “ 0, and

Y0 :“ pB1ψp0q, B2ψp0q, B11ψp0q, B21ψp0qq.
We will see later that Y0 is non-degenerate, hence Yr is also non-degenerate for r small enough, by conti-
nuity of the covariance matrix.

We denote the conditionnal probability and expectation with respect to Yr “ 0 by

P
prqp¨q “ Pp¨ | Yr “ 0q, E

prqp¨q “ Ep¨ | Yr “ 0q, r ě 0.

Remark 5. Let pX,Y q be a Gaussian vector with Y non-degenerate. If M is non-singular matrix and if
ϕ is a measurable function with polynomial bounds, then

EpϕpXq|Y “ 0q “ EpϕpXq|MY “ 0q.
So, since obviously

∇ψpzq “ ∇ψpwq “ 0 ðñ Yr “ 0,

the 2-point correlation function K2pz, wq becomes :

K2pz, wq “ φp∇ψpzq,∇ψpwqqpp0, 0q, p0, 0qq ˆ E
prqr |detHψpzq| |detHψpwq|s. (33)

Using (12) we can evaluate the density in 0, and the previous expression becomes

K2pz, wq “ 1

p2πq225
?
3p´η0qr2

E
prqr |detHψψp0q| |detHψprq|sp1 ` op1qq.

It remains to express the product of determinants under the conditioning in function of ∆iprq “ ∆i1prq “
0, this involves higher order derivatives (see(32)).

Lemma 1. Assume ψ satisfies Assumption 2.1 for some β ą 0 and let 0 ă α ă β{2. For z “ pr, 0q and
w “ p´r, 0q, we have if ∆i “ ∆1i “ 0, i “ 1, 2,

detHψpzq “rpA1 ` rB0 ` OPpr1`αqq (34)

detHψpwq “rp´A1 ` rB0 ` OPpr1`αqq (35)

detHψpzqdetHψpwq “r2r´A1
2 ` gprqs (36)

where $
&
%

A1 “ B22ψp0qB111ψp0q
B0 “ B221ψp0q B111ψp0q ´ B211ψp0q2 ` 1

3
B22ψp0qB1111ψp0q

gprq “ r2B2
0 ` OPpA1r

1`αq ` OPpr2`αq
. (37)
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Proof. Define

$
’&
’%

aq r2

3
∆1111p˘rq “ B11ψp˘r, 0q ´ ∆11p˘rq ´ p˘ rB111ψp0qq implies ∆1111p˘rq “ B1111ψp0q ` OPprαq

bq r2

3
∆2111p˘rq “ B21ψp˘r, 0q ´ ∆21p˘rq ´ p˘ rB211q implies ∆2111p˘rq “ B2111ψp0q ` OPprαq

cq r2

2
∆2211p˘rq “ B22ψp˘r, 0q ´ B22ψp0q ´ p˘ rB221q implies ∆2211p˘rq “ B2211ψp0q ` OPprαq.

We can explicitly write the expression of detHψpzqdetHψpwq :

detHψpzq “ B11ψpr, 0qB22ψpr, 0q ´ pB21ψpr, 0qq2

“ rpA1 ` rBr ` r2Crq, (38)

with

Br “ B111ψp0qB221ψp0q ` 1

3
∆1111prq B22ψp0q ´ B211ψp0q2 “ B0 ` OPprαq

Cr “ ∆1111prq
3

B221ψp0q ` ∆2211prq
2

B111ψp0q ´ 2

3
∆2111prqB211ψp0q “ OPp1q

and

detHψpwq “ B11ψp´r, 0qB22ψp´r, 0q ´ pB21ψp´r, 0qq2

“ rp´A1 ` rB1
r ` r2C 1

rq (39)

with

Br1 “B111ψp0qB221ψp0q ` 1

3
∆1111p´rq B22ψp0q ´ B211ψp0q2 “ B0 ` OPprαq

C 1
r “ ´∆1111p´rq

3
B221ψp0q ´ ∆2211p´rq

2
B111ψp0q ` 2

3
∆2111p´rqB211ψp0q “ OPp1q

Combining Equations (38) and (39), an elementary calculus leads to

detHψpzqdetHψpwq “ r2r´A1
2 ` gprqs

where

gprq “rA1p´Br `Br1q ` r2BrBr1 ´ r2A1pCr ´ C 1
rq

“ rA1pOPprαqq ` r2BrBr1 ´ r2A1pCr ´ C 1
rq

“ OPpA1r
1`αq ` r2B2

0 ` OPpA1r
1`αq ` OPpr2`αq ` OPpr2`2αq

“ r2B2
0 ` OPpA1r

1`αq ` OPpr2`αq.

�

As a consequence from Lemma 1, the 2-point correlation function given by (33) becomes

K2pz, wq “ 1

p2πq225
?
3p´η0qµ0

E
prq “

|A1
2 ´ gprq|

‰
p1 ` op1qq. (40)
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6.2. Dependency of derivatives. In view of the previous result, we will have to estimate quantities
related to the random vectors

X “ pB22ψp0q, B111ψp0q, B122ψp0q, B112ψp0q, B1111ψp0qq
and Yr. We must consider the case where pX,Y0q is degenerate. Examining Remark 1, we can split the
variables involved in several groups that are mutually independent, there are for instance only two groups
of size 3,

tB1ψp0q, B122ψp0q, B111ψp0qu and tB22ψp0q, B1111ψp0q, B11ψp0qu.
Other groups, such as tB112ψp0q, B2ψp0qu, have less members, and in the isotropic case they won’t be in a
linear relation because of (5):

Cov pB112ψp0q, B2ψp0qq2 “ m2
2,2 ă m2,0m4,2 “ VarpB2qVarpB112q.

There is actually no other case to consider. Let us elucidate what can happen within the two bigger
groups.

Proposition 4. Assume the spectral measure F is isotropic and not reduced to a Dirac mass in 0. There
is pα, β, γq ‰ p0, 0, 0q such that αB1ψp0q ` βB111ψp0q ` γB122ψp0q “ 0 a.s. iff β “ γ and F is uniformly

spread along a circle of radius
a
α{β, i.e. if ψ is a SGRW with parameter

a
α{β.

There is no pα, β, γq ‰ p0, 0, 0q such that a.s. αB11ψp0q ` βB22ψp0q ` γB1111ψp0q “ 0.

Proof. Using (3) and recalling the symmetry ma,b “ mb,a

VarpαB1ψp0q ` βB111ψp0q ` γB122ψp0qq “α2m2,0 ` β2m6,0 ` γ2m2,4 ` 2αβm4,0 ` 2αγm2,2 ` 2βγm4,2

“
ż

p´α2λ21 ´ β2λ61 ´ γ2λ21λ
4
2 ` 2αβλ41 ` 2αγλ21λ

2
2 ´ 2βγλ41λ

2
2qF pdλq

“ ´
ż

p´αλ1 ` βλ31 ` γλ1λ
2
2q2F pdλq.

Hence, dF -a.s., either λ1 “ 0 or γλ21 ` βλ21 “ α. By isotropy, it implies that γ “ β and that F ’s support

is concentrated on zero and the circle with radius
a
α{β. It corresponds to the GRW with radius

a
α{β

plus an additional constant term.
In the same way,

0 “ VarpαB22ψp0q ` βB11ψp0q ` γB1111ψp0qq “
ż

pαλ22 ` βλ21 ` γλ41q2F pdλq

implies that F is trivial if F is isotropic. �

In conclusion, the only non-trivial linear relations possibly satisfied by the derivatives involved in pX,Y0q
is B111ψp0q ` B122ψp0q “ αB1ψp0q, α ą 0 and can only be satisfied by a SGRW. In the light of these results,
functionals of interest only depend on the law of the vector X 1 under the conditioning Y0 “ 0, where

X 1 “
#

pB22ψp0q, B111ψp0q, B112ψp0q, B1111ψp0qq if ψ is a shifted GRW

X otherwise

because if ψ is a shifted GRW and Y0 “ 0, B111ψp0q ` B122ψp0q “ ´αB1ψp0q “ 0 a.s. hence B122ψp0q is
directly expressible in function of B111ψp0q.
Lemma 2. The conditional density fr of X 1 knowing Yr converges pointwise to the density f0 of X 1

knowing Y0. There is furthermore σ1, σ2, c1, c2 ą 0 such that for r sufficiently small,

c1gσ1 ď fr ď c2gσ2
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where gσ is the density of iid Gaussian variables Zσ “ pZσi qi with common variance σ2. Hence for any
non-negative functional ϕr

c1Epϕrpσ1Z1qq ď E
prqpϕrpX 1qq ď c2Epϕrpσ2Z1qq.

Proof. Since the vector pX 1, Y0q is non-degenerate, by continuity of the covariance matrix, the vector
pX 1, Yrq is non-degenerate either for r sufficiently small, and the density of the former converges pointwise
to the density of the latter. Hence the conditionnal density fr of pX 1 | Yrq converges to f0 the non-
degenerate multivariate conditional Gaussian density of pX | Y0q.
Let Γr be the covariance matrix of the conditional vector pX 1 | Yrq. For 1 ď i ď d, we denote by λi,prq the
i-th eigenvalue of the matrix Γr. Since λiprq Ñ λip0q ą 0, there exists constant σ1 ě σ2 ą 0 such that for
r sufficiently small

1

2πσ2
2

ě λiprq ě 1

2πσ2
1

. (41)

Hence frpxq is bounded between c expp´ ř
i x

2
i {p2πσ2

1
qq and c1 expp´ ř

i x
2
i {p2πσ2

2
qq for some c, c1 ą 0,

which gives the desired claims. �

6.3. Proof of (26) in Theorem 5.1. From (40), we have

K2pz, wq “ r2

p2πq225
?
3p´η0qµ0p1 ` op1qq

E
prq “

|A1
2 ´ gprq|

‰
.

According to Lemma 2, the conditional density fr of X 1 knowing Yr converges pointwise to the non-
degenerate density f0 of X 1 knowing Y0, and ϕrpX 1q :“ A2

1 ´ gprq is uniformly bounded by a polynomial
P pX 1q, Lebesgue’s Theorem then yields

lim
rÑ0

E
prq “

| A2
1 ´ gprq |

‰
“

ż
ϕrpxqfrpxqdx Ñ

ż
lim
r
ϕrpxqf0pxqdx “ E

p0q “
A2

1

‰
. (42)

To compute the conditionnal law of Z :“ pB22ψp0q, B111ψp0qq, recall that in virtue of (3) and Remark 1
B22ψp0q and B111ψp0q are independent, and the covariance matrix of Y0 is

ΓpY0q “

¨
˚̊
˝

m2,0 0 0 0

0 m2,0 0 0

0 0 m4,0 0

0 0 0 m2,2

˛
‹‹‚.

The covariance matrix of Z and Y0 is

ΓpZ, Y0q “
ˆ
m2,1 m0,3 m2,2 m1,3

m4,0 m3,1 m5,0 m4,1

˙
“

ˆ
0 0 m2,2 0

m4,0 0 0 0

˙
.

It follows that the conditional covariance of Z knowing Y0 is

ΓpZ | Y0q “ ΓpZq ´ ΓpZ, Y0qΓpY0q´1ΓpZ, Y0qt “
ˆ
m0,4 ´m´1

4,0m
2
22 0

0 m6,0 ´m´1

2,0m
2
4,0

˙

“
ˆ

VarpB22ψp0q|B111ψp0qq 0

0 VarpB111ψp0q|B1ψp0qq

˙
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the diagonal terms are positive in virtue of (5). By conditionnal independence of B22ψp0q and B111ψp0q,
and using Proposition 2

E
p0qpA2

1q “ VarpB22ψp0q|B11,1ψp0qqVarpB11,1ψp0q|B1ψp0qq “ pm0,4 ´m´1

4,0m
2
22qpm6,0 ´m´1

2,0m
2
4,0q ą 0

“ 25

3
µ0p3 ¨ 23

η0
p´5ν0η0 ` 3µ20qq

“ 28µ0
p´5ν0η0 ` 3µ20q

η0
.

Combining Equation (42) , (40) we obtain

lim
rÑ0

K2pz, wq “ 1

p2πq2 25
?
3p´η0qµ0p1 ` op1qq

28µ0
p´5ν0η0 ` 3µ2

0
q

η0
“ 10 ν0η0 ´ 6µ2

0

π2
?
3η2

0
p1 ` op1qq

“: ap1 ` op1qq.

(43)

Finally, the second factorial moment of N c
ρ when ρ Ñ 0, is given by

ErN c
ρ pN c

ρ ´ 1qs “
ż ż

BρˆBρ
K2pz, wqdz dw “ a|Bρ|2p1 ` op1qq.

Recalling that

λc “ 4?
3

µ0

´η0π
yields indeed a “ λ2cRc.

Let us show that Rc ě 1

8
?
3
. Given a measure µ on R`, denote by

mkpµq “
ż
tkµpdtq.

Since F is isotropic, define µ as the radial part of F , yielding with a polar change of coordinates
ż

R2

λa1λ
b
2F pdλq “

ż
2π

0

cospθqa sinpθqbdθma`b`1pµq.

Introduce the probability measure, for A Ă R`,

rµpAq “
ş
A
tµpdtq
m1pµq .

Using the spectral representation in Proposition 2 yields for some c ą 0

ν0η0

µ2
0

“cm3pµqm1pµq
m2pµq2 “ c

m1pµqm2prµqm1pµq
pm1pµqm1prµqq2 “ c

m2prµq
m1prµq2 ě c

by the Cauchy-Schwarz inequality. The ratio is minimal if the equality is obtained in the Cauchy-Schwarz
inequality, i.e. when t2 is proportionnal to t rµ-a.e.. This is the case only if F pdλq is uniformly spread
on a circle of R

2, with perhaps also an additional atom in 0. This corresponds exactly to the class of
fields derived in Example 1, which are the SGRW. For the precise computation of the constant 1

8
?
3
, see

Example 3.
In example 4, we derive spectral measures Ft, t ą 1 which achieve repulsion factors Rc in an interval of

the form pα0,8q for some α0 P R. Therefore it remains to show that all values between 1

8
?
3

and α0 can

be achieved. For that we use an interpolation

Gs :“ sFRW ` p1 ´ sqF2, s P r0, 1s
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where FRW is the spectral measure of a GRW and F2 belongs to the parametric family Ft, t ě 1. The
ratio of moments

s ÞÑ m3pGsqm1pGsq
m2pGsq2

evolves continuously with s because all the members of the numerator and denominator do, hence the
repulsion factor evolves continuously between 1

8
?
3

and α0 and achieves all intermediary values.

6.4. Proof of (27) in Theorem 5.1. To compute the second factorial moment of N e
ρ “ N

p0,8q
ρ when

ρ Ñ 0, we apply the Kac-rice formula of Theorem 3.1 in the case B1 “ B2 “ p0,8q

ErN e
ρ pN e

ρ ´ 1qs “
ż ż

BρˆBρ
K
e,e
2

pz, wqdz dw, (44)

where

K
e,e
2

pz, wq “ φp∇ψpzq,∇ψpwqqpp0, 0qq, p0, 0qq

ˆ E
prq

”
|detHψpzq| |detHψpwq| 1tdetHψpzqą0u 1tdetHψpwqą0u

ı
.

It becomes in virtue of (34)

K
e,e
2

pz, wq “ r2 φp∇ψpzq,∇ψpwqqpp0, 0q, p0, 0qq ar (45)

where

ar :“E
prq “ ˇ̌

A1
2 ´ gprq

ˇ̌
Ir

‰

Ir :“1tdetHψpzqą0u1tdetHψpwqą0u.

To be able to prove (27), we need to establish an upper bound and a lower bound of ar So the proof is
separated into two parts. We first give in Lemma 3 an asymptotic expression of ar to get rid of superfluous
variables.

Lemma 3. Let Jr :“ 1t|A1|ărB0u,

|ar ´ E
prqp|A2

1 ´ r2B2
0 |Jrq| “ OPpr3`α1 q

for 0 ă α1 ă α, and as r Ñ 0

ar — Ep|A2
1 ´ r2B2

0 |Jrq. (46)

Proof. From (38)-(39) in the proof of Lemma 1,

Ir ď 1t|A1|ărDru

where

Dr :“|B0| ` |Br| ` |B1
r| ` rp|Cr| ` |C 1

r|q,
is a variable with Gaussian tail. Recall that gprq “ r2B2

0
` OPpArr1`α ` r2`αq, hence using (37),

E
prq “

p|A2
1 ´ gprq| ´ |A2

1 ´ r2B2
0 |qIrq

‰
ďE

prqpOPpr1`αA1 ` r2`αqq|1t|A1|ărDruq
ďr2`α

E
prqpOPpDr ` 1q1t|A1|ărDruq. (47)

Let p, q ą 1, η ą 0 such that p´1 ` q´1 “ 1 and α ` 1´η
q

ą α1 ` 1, then Holder’s inequality yields

E
prqpOPpDr ` 1q1t|A1|ărDruq ď E

prqpOPpDr ` 1qpq
1

pP
prqp|A1| ă rDrq

1

q .
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The probability on the right hand member can be bounded by

P
prqp|A1| ă rDrq ď P

prqp|Dr| ą r´ηq ` P
prqp|A1| ă r1´ηq.

All variables involved in OPpDrq have a Gaussian tail, hence

P
prqpOPp|Dr|q ą r´ηq “ opr2q.

By Lemma 2 with ϕrpxq “ 1t|x1x2|ăr1´ηu, and Lemma 5-(i) (with s “ 0),

P
prqp|A1| ă r1´ηq “ E

prqpϕrpX 1qq ď c2Epϕrpσ2Zqq ăc1r1´η lnprq (48)

hence finally

r2`α
E

prqpOPpDr ` 1q1t|A1|ărDruq ăc1r2`α` 1´η

q lnprq1{q “ Opr3`α1q. (49)

To simplify indicators, remark that in virtue of (38),(39),

Ir “ 1tA1`rBr`r2Crą0,´A1`rB1
r`r2C2

rą0u
Jr “ 1tA1`rB0ą0,´A1`rB0ą0u.

Both the events tIr “ 1u, tJr “ 1u imply |A1| ă rDr. If Ir ‰ Jr, A1 ` rBr ` r2Cr has a sign different
from A1 ` rB0, or ´A1 ` rB1

r` r2C 1
r has a sign different from ´A1 ` rB0. In both cases it implies another

event of magnitude OPpr1`αq because Br, B
1
r “ B0 ` OPprαq, Cr, C 1

r “ OPp1q :

|Ir ´ Jr| ď 2
`
1tpA1`rBr`r2Crq¨pA1`rB0qă0u ` 1tp´A1`rB1

r`r2C1
rq¨p´A1`rB0qă0u

˘

ď 2
`
1t|A1`rB0|ăOPpr1`αqu ` 1t|´A1`rB0|ăOPpr1`αqu

˘
.

Let now p, q ą 1, η ą 0 such that p1`α´ ηq{q ą 1`α1 . Since also Ir ´ Jr ‰ 0 implies that either Ir “ 1

or Jr “ 1 and so |A1| ă rDr, collecting (47),(49),

|ar´E
prq “

|A2
1 ´ r2B2

0 |Jr
‰

| ď |Eprqp|A2
1 ´ r2B2

0 ||Ir ´ Jr|q| ` OPpr3`α1q
ď |Eprqp|A2

1 ´ r2B2
0 |1|A1|ărDr |Ir ´ Jr|q| ` OPpr3`α1q

ď E
prq “

pr2D2
r ` r2B2

0q
`
1t|A1`rB0|ăOPpr1`αqu ` 1t|´A1`rB0|ăOPpr1`αqu

˘‰
` OPpr3`α1q

ď E
prqrpr2D2

r ` r2B2
0qps

1

p

”
P

prq `
|A1 ` rB0| ă OPpr1`αq

˘ 1

q ` P
prq `

| ´A1 ` rB0| ă OPpr1`αq
˘ 1

q

ı
` OPpr3`α1 q.

We have

P
prqp|A1 ` rB0| ă OPpr1`αqq ď P

prqp|A1 ` rB0| ă r1`α´ηq ` P
prqpOPp1q ą r´ηq.

By an application of Lemma 2 similar to (48) with ϕrpxq of the form 1t|x1x1`rř
ai,jxixj |ăr1`α´ηu and Lemma

5-(i); the first member is in r1`α´η lnprq, hence finally for some c ă 8

|ar´E
prq “

|A2
1 ´ r2B2

0 |Jr
‰

| ď cr2rp1`α´ηq{q lnprq
1

q ` OPpr3`α1 q “ OPpr3`α1 q.

Finally, (46) follows from Lemma 2 with ϕrpX 1q “ A2
1 ´ r2B2

0 . �
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6.4.1. Upper bound in (27). According to the previous lemma it suffices to give an upper bound of
E

“
| A2

1 ´ r2B2
0 |Jr

‰
. We stress that the crucial point that justifies the absence of a log term in the fi-

nal result (compared to (28)) is the following inequality

Jr “ 1t|A1|ărB0u ď 1t|B22ψp0q|ă2rB221u ` 1t|B111ψp0q|ă 2

3
rB1111ψp0qu,

hence since B2
0

is a polynomial in X 1 we can use Lemma 5-(iii) several times and get for some c ă 8
Ep|A2

1 ´ r2B2
0 |Jrq ď 2Ep|r2B2

0 |Jrq ď cr3. (50)

Then, from (45),(50) and (40), we deduce that for some c1 ă 8
K
e,e
2

pz, wq ď c1 r3. (51)

Finally, from (44) and (51), we deduce for some c2 ă 8
ErN e

ρ pN e
ρ ´ 1qs ď c2 ρ7.

6.4.2. Lower bound in (27). Thanks to Lemma 3, it is sufficient to give a lower bound of Ep|A2
1 ´

r2B2
0
|1t|A1|ďrB0u|q. Let us first assume that the Gaussian field ψ is not a SGRW (Example 1), hence

the derivatives involved in X and Y0 are not linearly linked. Define the event

Ω “t|B22ψp0q| ă r,
1

2
ă B111ψp0q ă 1, |B211ψp0q| ă 1, 8 ă B122, |B1111ψp0q| ă 1u.

We recall

A1 “ B22ψp0qB111ψp0q,

B0 “ B221 B111ψp0q ´ B211ψp0q2 ` 1

3
B22ψp0q B1111ψp0q

Y0 “ pB1ψp0q, B2ψp0q, B11ψp0q, B12ψp0qq.
Hence under Ω

|A1| ăr

B0 ą 4 ´ 1 ´ r

3

Hence for r sufficiently small, B0 ą 2, in particular |A1| ď r|B0|{2 and we obtain

Ep|A2
1 ´ r2B2

0 |1t|A1|ďrB0uq ě E
“
1Ω | r2B2

0{4 | 1tB0ě2A1{ru
‰

ě r2PpΩq.
Then since X is non-degenerate, its density is uniformly bounded and the proof is concluded with

PpΩq ě cr ą 0

for some c ą 0. In the degenerate case of the SGRW, B122ψp0q “ ´B111ψp0q if Y0 “ 0 and we put instead

Ω “t|B111ψp0q| ă r,
1

2
ă B22ψp0q ă 1, B1111ψp0q ą 19, |B211ψp0q| ă 1u
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If Y0 “ 0 and Ω is realised,

|A1| ă r

B0 “ ´B111ψp0q2 ´ B211ψp0q2 ` 1

3
B22B1111ψp0q ą ´r2 ´ 1 ` 19

6

hence |A1| ă r ă B0r{2 for r small enough and the same method can be applied because X 1 has a bounded
density. Therefore, it holds for some c1 ą 0

E
p0qp|A2

1 ´ r2B2
0 |1t|A1|ďrB0u|q ě c1 r3. (52)

From (45), (40)and (52), we get for some c2 ą 0

K
e,e
2

pz, wq ě c2r3. (53)

Finally, from (44) and (53), we deduce that for some c3 ą 0

ErN e
ρ pN e

ρ ´ 1qs ě c3ρ7.

6.5. Proof of (28) in Theorem 5.1. Using Theorem 3.1 with B1 “ B2 “ p´8, 0q, the second factorial

moment of N s
ρ “ N

p´8,0q
ρ is given by

ErN s
ρ pN s

ρ ´ 1qs “
ż ż

BρˆBρ
K
s,s
2

pz, wqdz dw,

where

K
s,s
2

pz, wq “ r2 φp∇ψpzq,∇ψpwqqpp0, 0qq, p0, 0qq E
p0q

”
|detHψpzq| |detHψpwq| 1tdetHψpzqă0u 1tdetHψpwqă0u

ı
.

The difference is hence on the sign of the determinants, Ks,s
2

pz, wq becomes

K
s,s
2

pz, wq “ r2 φp∇ψpzq,∇ψpwqqpp0, 0q, p0, 0qq a1
r (54)

where (see (39))

a1
r :“E

prq “ ˇ̌
A1

2 ´ gprq
ˇ̌
I 1
r

‰

I 1
r :“1tA1`rBr`r2Cră0u1t´A1`rB1

r`r2C1
ră0u.

The asymetry of the expression of the determinant yields a different estimate than in the previous case.
To be able to prove (27), we need to establish an upper bound and a lower bound of a1

r as in the previous
section (Lemma 3). We give in Lemma 4 an asymptotic expression of a1

r.
The proof is similar but there are also significant differences. The difference with respect to before is

that the two signs of the determinants are negative, hence we replace Jr by

J 1
r “ 1tA1`rB0ă0,´A1`rB0ă0u “ 1t|A1|ď´rB0u

and emphasize that B0 does not have the same law as ´B0.

Lemma 4. We have for 0 ă α1 ă α,

|a1
r ´ E

prqp|A2
1 ´ r2B2

0 |J 1
rq| “OPpr3`α1 q
a1
r —Ep|A2

1 ´ r2B2
0 |J 1

rq

The proof is omitted as the proof of Lemma 3 can be repdroduced verbatim, with resp. J 1
r, I

1
r, a

1
r in

place of resp. Jr, Ir, ar.
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6.5.1. Upper bound. The upper bound on J 1
r is of different nature than that on Jr, in particular the third

term

J 1
r “ 1t|A1|ă´rB0u ď 1t|B22ψp0q|ă´6rB221ψp0qu ` 1t|B111ψp0q|ă´2rB1111ψp0qu ` 1t|B22ψp0qB111 |ă3rB211ψp0q2u.

Then,

Ep|A1 ´ r2B2
0 |J 1

rq ď Ep2r2B2
0Jr1 q

hence we must use this time Lemma 5-(ii) for the last term of J 1
r’s bound,

EpB2
01|B22ψp0qB111ψp0q|ă3rB211ψp0q2q ďEp|B22ψp0qB111ψp0q|1t|B22ψp0qB111ψp0q|ă3rB211ψp0q2uq

` Ep|B211ψp0q|21t|B22ψp0qB111ψp0q|ă3rB211ψp0q2uqq
` Ep|B22ψp0qB1111ψp0q1t|B22ψp0qB111ψp0q|ă3rB211ψp0q2uqq

ďcr lnprq
for some c ă 8. The other terms are dealt with by Lemma 5-(iii) as in (50), hence the upper bound is in

Ep|A1 ´ r2B2
0 |J 1

rq ď c1r3 lnprq
for some c1 ă 8, which yields (28) by (54) and Lemma 4.

6.5.2. Lower bound. We recall the expression of A1 and ´B0 :A1 “ B22ψp0qB111ψp0q, ´B0 “ ´B221ψp0q B111ψp0q`
B211ψp0q2 ´ 1

3
B22ψp0q B1111ψp0q. The strategy is the same than at Section 6.4.2.

If ψ is a SGRW (Example 1), B111ψp0q “ ´B122ψp0q if Y0 “ 0, let

Ω “ tB211ψp0q ą 2, |B22ψp0qB111ψp0q| ă r, |B111ψp0q| ă 1, |B22ψp0q| ă 1, |B1111ψp0q| ă 1u.
Hence if Y0 “ 0 and Ω is realised

A1 ă r,

´B0 “ B111ψp0q2 ` B211ψp0q2 ´ 1

3
B22ψp0qB1111ψp0q ą 0 ` 4 ´ 1

3
ą 2A1{r.

We have

Ep|A2
1 ´ r2B2

0 |1t|A1|ď´rB0uq ě E
“
1Ω | r2B2

0{4 | 1tB0ě2A1{ru
‰

ě r2PpΩq.
We must prove a converse to Lemma 5-(i) with s “ 0. Since the density of X 1 is uniformly bounded from
below on r´3, 3s4, for some c ą 0,

PpΩq ě c

ż

r´1,1s2
1t|x1x2|ărudx1dx2 — r lnprq.

6.6. Proof of (29) in Theorem 5.1. We recall that N c
ρ “ N s

ρ `N e
ρ hence N c

ρ pN c
ρ ´ 1q “ N e

ρ pN e
ρ ´ 1q `

N s
ρ pN s

ρ ´ 1q ` 2N e
ρN

s
ρ .

So, we have:

ErN e
ρN

s
ρ s “ 1

2
ErN c

ρ pN c
ρ ´ 1qs ´ ErN e

ρ pN e
ρ ´ 1qs ´ ErN s

ρ pN s
ρ ´ 1qs.

Combining this formula with previous estimates (26), (27) and (28), we obtain

ErN e
ρN

s
ρ s “ 1

2
ErN c

ρ pN c
ρ ´ 1qs ` op1q

ending the proof of (29).
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Lemma 5. Let pZ1, . . . , Zkq be a non-degenerate Gaussian vector and ai,j real fixed coefficients. Then,

(i)

Pp|Z1Z2 ` s
ÿ

i,j

ai,jZiZj| ă rq ď Cr lnprq (i)

for C depending on the law of the Zi (and not on s or the ai,j),
(ii) for αi ě 0

Ep|Zα1

1
. . . Z

αk
k |1t|Z1Z2|ărZ2

3
uq ď C 1

#
r lnprq if α1 “ α2 “ 0

r otherwise
(ii)

for some C 1 ă 8.

(iii) Let some coefficients αi P N , pZ1, . . . , Zqq be a Gaussian vector. Then, for some C2 ă 8,

Ep|Zα1

1
. . . Z

αq
q |1t|Z1|ďrZ2u q ď C2r. (iii)

Proof. (i) Assume first that the Zi are iid Gaussian. Let us study for a, b P R, Y1 :“ Z1 ´as, Y2 :“ Z2 ´bs.
Since Y1, Y2 have a density bounded by κ ă 8 (universal), we have for c P R

Pp|Y1Y2 ´ c| ď rq ďPp|Y2| ď rq ` Pp|Y1 ´ c{Y2| ă r{Y2, |Y2| ą 1q ` Pp|Y1 ´ c{Y2| ă r{Y2, |Y2| P rr, 1sq
ďκr ` Pp|Y1 ´ c{Y2| ă rq ` E

“
PpY1 P rc{Y2 ˘ r{Y2s | Y2q1tră|Y2|ă1u

‰

ďκr ` κr ` Epκr{Y21tră|Y2|ă1uq

ď2κr ` κr

ż
1

r

1

y2
2κdy2

ď2κr ` 2κ2r lnprq,

uniformly on a, b, c, s. Then it remains to notice that

Z1Z2 ` s
ÿ

i,j

ai,jZiZj “ pZ1 ´AsqpZ2 ´Bsq ´ Cs

where A,B,Cs are independent of Z1, Z2. Then

Pp|Z1Z2 ` s
ÿ

i,j

ai,jZiZj| ă rq “ EpPp|pZ1 ´AsqpZ2 ´Bsq ´ Cs| | A,B,Csqq ď Cr ln r.

In the non-independent Gaussian case, the joint density fpx1, . . . , xkq of pZ1, . . . , Zkq is bounded by
κ expp´cř

i x
2
i q for some c, κ ą 0 (c would be the smallest eigenvalue of the covariance matrix). From

there on the conclusion is easy:

ż
1t|x1x2`sř

i,j ai,jxixj |ărufpx1, . . . , xkqdx1 . . . dxk ď κ

ż
1t...u expp´c

ÿ

i

x2i qdx1 . . . dxk

and the right hand member corresponds to the independent case, already treated.
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