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LOCAL REPULSION OF PLANAR GAUSSIAN CRITICAL POINTS

SAFA LADGHAM '? RAPHAEL LACHIEZE-REY"

ABsSTRACT. We study the local repulsion between critical points of a stationary isotropic smooth planar
Gaussian field. We show that the critical points can experience a soft repulsion which is maximal in the
case of the random planar wave model, or a soft attraction of arbitrary high order. If the type of critical
points is specified (extremum, saddle point), the points experience a hard local repulsion, that we quantify
with the precise magnitude of the second factorial moment of the number of points in a small ball.

Key words: Gaussian random fields; Stationary random fields; Critical points; Kac-Rice formula;
repulsive point process.

AMS Classification: 60G60- 60G15

1. INTRODUCTION

The main topic of this paper is a local analysis of the critical points of a smooth stationary planar
Gaussian field. The study of critical points, their number as well as their positions, are important issues
in various application areas such as sea waves modeling [CG13] , astronomy [LW04,ATWO07,Lin72| or
neuroimaging [NH03, TW07, WMNE96,WTTLO04]. In these situations, practitioners are particularly inter-
ested in the detection of peaks of the random field under study or in high level asymptotics of maximal
points [CS17,TW07,WMNE96|. At the opposite of these Extremes Theory results, some situations require
the topological study of excursion sets over moderate levels [AT09,CX16] or the location study of critical
points (not only extremal ones) [Mui20].

Repulsive point processes have known a surge of interest in the recent years, they are useful in a number
of applications, such as sampling for quasi Monte-Carlo methods [BH20|, data mining, texture synthesis
in Image Analysis [LGD21]|, training set selection in machine learning, or numerical integration, see for
instance [KT12|, or as coresets for subsampling large datasets [TBA19]. Critical points of Gaussian fields
could be an alternative to determinantal point processes, which are commonly used for their repulsion
properties despite the difficult issue of their synthesis [DGL17]. Several definitions exist to characterize
the repulsion properties of a stationary point process. We will use the following informal definition of local
repulsion: A stationary random set of points X < R? is locally repulsive at the second order if, denoting
by N, its number of points in a ball centred in 0 with radius p, we have

o BV
W EW?

where for an integer n,n(?) = n(n —1) is the second order factorial power. This definition is motivated by
the heuristic computation where we consider x; # z9 randomly sampled in X n By and

E(N,) = P(z; € B,) + remainder
E(Np(z)) = P(v2 € B, , 21 € By) + remainder,

<1 (1)
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where the remainder terms are hopefully negligible when p is small. In other words, a point process is
locally repulsive if the probability to find a point in a small ball diminishes if we know that there is already
a point in this ball. The constant Rys is called the (second order) local repulsion factor, it is a dimensionless
parameter that is invariant under rescaling or rotation of the process X. It equals 1 if X is a homogenous
Poisson process, which is universally considered non-interacting. We say that the point process is weakly
locally repulsive (resp. attractive) if Ryr € (0,1) (resp. (1,00)), and strongly repulsive if Rys = 0.

We study the repulsion properties of the stationary process X, formed by critical points of a planar
stationary isotropic Gaussian field 1. We show that, depending on the covariance function of the field,
they form a weakly locally repulsive or a weakly locally attractive point process, and that the minimal
repulsion factor is Ry, = ﬁ, reached when 1 is a Gaussian random wave model, which hence yields the
most locally repulsive process of Gaussian critical points. There is on the other hand no maximal value for
the limit. We also show that the subprocess formed by the local maxima of the field is strongly repulsive,
as well as the subprocess formed by the saddle points, and give the precise magnitude of the ratio decay
in the left hand member of (1).

Let us quote two recent articles that are concerned with a very similar question. The first one, which
has been a source of inspiration, is [BCW19]. In this paper, Belyaev, Cammarota and Wigman study the
repulsion of the critical points for a particular Gaussian field, the Berry’s Planar Random Wave Model,
whose spectral measure is uniformly spread on a circle centred in 0. They obtain the exact repulsion
ratio for critical points and upper bounds for the repulsivity for specific types of critical points (saddle,
extrema). Azais and Delmas [AD22| have studied the attraction or repulsion of critical points for general
stationary Gaussian fields in any dimension. Using a different computation method, they get an upper
bound for the second factorial moment which is compatible with the order of magnitude that we obtain.
Their method is borrowed from techniques in random matrix theory, as suggested by Fyodorov [Fyo04].
Namely, an explicit expression for the joint density of GOE eigenvalues is exploited.

In order to quantify the repulsion of the critical points, we compute the second factorial moment using
the Rice or Kac-Rice formulas (see [AT09] or [AW09] for details), as the vast majority of works concerned
with counting the zeros or critical points of a random field. We get the asymptotics as the ball radius
tends to 0 by performing a fine asymptotic analysis on the conditional expectations that are involved in
the Kac-Rice formulas.

The paper is organized as follows: In Section 2, we present the Gaussian fields, which are the probabilistic
object of our study, and the basic tools we will use for their study. In Section 3, we derive the Kac-Rice
formula, in a context adapted to our framework. The purpose of section 4 is to compute the expectation of
the number of critical points and also the number of extrema, minima, maxima and saddle (see Proposition
3). In Section 5, we study the second factorial moment and discuss the repulsion properties of the critical
points.

2. ASSUMPTIONS AND TOOLS

The main actors of this article are centered random Gaussian functions ) : R> — R whose law is invariant
under translations, and whose realisations are smooth. Formally it means that for zi,...,z, € RZ
(Y(x1),...,%(xy)) is a centered Gaussian vector which law is invariant under translation of the z;’s (and
rotations if isotropy is further assumed), and that the sample paths {¢)(x);z € R?} are a.s. of class C? (or
more). See [AT09] for a rigourous and detailed exposition of Gaussian fields. Such a field is characterised
by its reduced covariance function I'

E[¢(z)¢(w)] :=T(z — w)
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for some I' : R? — R, and if the field is furthermore assumed to be isotropic (i.e. its law is invariant under
rotations)

D(z —w) = o(]z — wf’) (2)

for some o : Ry — R, where |z| denotes the Euclidean norm of x € R2.
We denote by V)(z) the gradient of ¢ at z € R?, by Hy(z) the Hessian matrix evaluated at z, when
these quantities are well defined. For a smooth random field v, the set of critical points is denoted by

X, = X.(1) == {z € R? : Vi(c) = 0},
and the number of critical points in a small disc B, of radius p > 0 is defined by
N;W) = #X. N By,

When there is no ambiguity about the random field ¢, we simply write N5 instead of N5 (¢). Similarly,

we denote by resp. N (v), Ny (), N (1[)),]\/';”’”(1#) the number of resp. saddles, extrema, maxima and
minima, critical points characterised by the signs of the Hessian eigenvalues.

As will be explained at Section 5, to perform a second order local analysis of the repulsion of 1’s critical
points, we must assume fourth order differentiation of v, and for technical reasons we further assume that
the fourth order derivative is a~-Holder for some o > 0, we call this property C**® regularity. It is implied
by o being of class C3# for some B > 20, see Proposition 1 below. In this case, the Holder constant is a
random variable with Gaussian tail (see below).

Assumption 2.1. Assume that 1 is a non-constant stationary Gaussian field on R? and its reduced
covariance T is of class C*8 for some 5 > 0.

This assumption implies the C**® regularity of 1 by applying the proposition below to v’s 4th order
derivatives.

Proposition 1. Let ¢ be a stationary Gaussian field R? — R, with reduced covariance function v : R? —
R. Then if for some C, 8 > 0, for § > 0 sufficiently small

(@) = 7(0)] < Clal”, o] <6,
then for 0 < & < [3/2 there is a random variable U, with Gaussian tail such that for all z,y € By,
lp(x) — p(y)] < Uelz — g7,

Proof. Tt follows from the classical result from Landau and Shepp [AT09, (2.1.4)] that for a centred
Gaussian field f a.s. bounded on a Euclidean compact T', there is ¢ > 0 such that for large enough u,

P(sup | f(1)] = u) < 2exp(—cu®).
teT

We wish to apply this result to T'= By x Bj and

f(@,y) = o —y|™(p(z) = (), (z,y) € T.

Let o = (/2 — e. The fact that f is bounded is the consequence of the fact that ¢’s path are locally
a-Holder for a < /2, see for instance [Pot09, Corollary 4.8]. O

Definition 1. Say that some random variables X, Y satisfy X = Op(y) if X < UY where U is a random
variable with a Gaussian tail, i.e.

P(|U| > t) < cexp(—ct?),t =0

for some ¢ < o0, > 0.
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Proposition 1 hence implies that if a stationary field ¥’s reduced covariance I is of class C¥*7, then
Ryt + ) = %y (t) + Op(h"?),t e RY.

2.1. Dependency structure. Stationarity conveys strong constraints on the dependence structure be-
tween the field’s partial derivatives at a given point. Let us recall formula [AT09, (5.5.4)-(5.5.5)]: if " is
Ck+n differentiable for some k € N, > 0, for natural integers «, 3,7, such that a + 8 < k,y + 6 < k,

patB+y+o

E (o298 . 0768 =
(8182@0(15) 618211)(8)) atlaatQﬁasl’yaS?&

In particular if s = ¢ we have the spectral representation

aa+B+’y+5F(0)
E (0905(t) - 0] 03w(t)) = (1) ——p =
(oraw®) - a3u()) = (1) o] o

[(t —s),s,teR2%

= Moty 545 Where mgp i= (—1)%T? f 2 MNXSF(dN), t e R?
R
(3)

where the symmetric spectral measure F' is uniquely defined by
I'(t) = J exp(— - t)F(d)),t € R% (4)
R2

Let us state important consequences of (3), and in particular of the fact that, due to the symmetry of F,
the integral vanishes if a or b is an odd number. For this reason, (—1)® = (—1)? when the integral does
not vanish, and m, is symmetric in a and b.

Remark 1. For all t € R? ¢(t) and 0;1(t) are independent for j = 1,2, hence 919 and dat) are indepen-
dent, and furthermore for any two natural integers k,[ which difference is odd, any partial derivatives of
orders k and [

Oir,...ix¥(0) and 0j, .. ;,¥(0) are independent.

Non-independence and technical difficulties will mainly emerge from dependence between even degrees
of differentiation of the field, such as ¥(t) and 0119(t), or 0119 (t) and d221(t), or between the values of
the field at different locations, say (s) and 1 (t),s # t. A case we must discard is that of constant v, i.e.
Y (t) = U for some Gaussian variable U, and this is what we call a trivial Gaussian field.

Also, Cauchy-Schwarz inequality yields that for a, 5,7, € N

[Matry grol® < Moa28M2r.25,

and there is equality only if )\f‘)\g is proportionnal to )\Y)\g dF-a.s. In the isotropic case (i.e. F' is invariant
under spatial rotations), unless a = v, 8 = 4 it can only happen if dF' is the Dirac mass in 0, i.e.

m§+%3+5 < Moq,28May,25, ¢ # 7y o B # 6 if ¢ is non-trivial isotropic. (5)

Proposition 2. Let v be an isotropic Gaussian field R? — R that satisfies Assumption 2.1 with covariance
under the form (2). We indicate the first derivatives of o at point 0 € R by ¢’(0) = ng, ¢”(0) = uo,
o (0) = vy, 0*(0) = v. Then

Var(0;4(0)
Var(d12¢(0)
Var(0;;1(0)
Var(0;:;4(0)

¥ (0

—2770 = Mma,0 > O (6)

Mo—m22>0

M0=m40>0i=12

—15- 2%y = mgo > 0,i = 1,2.

)
)
)
)
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The two last equalities illustrate the fact that isotropy and polar change of coordinates yield other
relations between the m, of the form
Ma,b = Qg bMa+b,0
where the coefficients o don’t depend on F'.

Example 1. Let Jy be the Bessel function of the first order
2

S J e~ @eos®) gy x e R.

27T 0

For k > 0 let ¥ be the Gaussian random wave with parameter k, i.e. the isotropic stationary Gaussian

field with reduced covariance function

Jo(z) =

['(z) = Jo(k[2])-
As is apparent from (4), this is the centered Gaussian field whose spectral measure is the uniform law on

the centred circle with radius k. It is important as it is the unique (in law) stationary Gaussian field for
which

Ot + Oath + k2 = 0 ass.

up to a multiplicative constant. See for instance [BCW19, MRV, NPR19] and references therein for recent
works about diverse aspects of planar random wave models. As proved at Section 6.2, it is the only non-
trivial stationary isotropic stationary field satisfying a linear partial differential equation of order three or
less. As critical points are not modified by adding a constant, we also consider shifted Gaussian random
waves (SGRW), of the form 7U + o1, where 7 = 0,0 > 0,1 is a GRW and U is an independent centered
standard Gaussian variable. The spectral measure of a SGRW is the sum of a uniform measure on a circle
of R? centred in 0 and a finite mass in {0}.

3. THE KAC-RICE FORMULA

The Kac-Rice formula gives a description of the factorial moments of the zeros of a random field. Let
us give a formula adapted to counting the critical points of a certain type. The following result can be
proved by combining the proofs of Theorems 6.3 and 6.4 from [AW09], see also [AD22, Appendix A].

Theorem 3.1. Let v isotropic satisfying Assumption 2.1. Let k € {1,2}, By, By some open subsets of RY,
NB = {te B(0.p) : V(1) = 0, Hy(t) € B,
Then for p sufficiently small

BN = | kPt

By
BN NP~ 1)] = | KPP0, 1) @
53
where we have the k-point correlation function :
KP (1) =bwu0)(0) E [|det Hy (D] 1, (Hy (1)) | Ve5(8) = 0],
KB1,B2 (t1,t2) ¢(vw(t1),w(t2) [H | det H@ZJ | 1p, (Hw ’ Vip(ty) = Vip(te) =0

where ¢y is the density probability function of a Gaussian vector V.
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We are specifically interested in a finite class of sets B;, namely

B. =M4(R) the class of d x d square matrices,

Beyt = d_elt((oﬂ OO))

-1
B =det((—00,0)),
Binin ={H definite positive},
Binaz ={H definite negative}.
In this case, the exponent in N or K; is replaced by the subscript of B, e.g.
c k) p— BS7BS
,/\/;:/\/'f,KQSS—KQ ,ete...
Proof. With Z(t) = Vi(t),Y" = Hy(t),g(t, H) = 1(det(H)eB), We have
NE= > gt Y.
t:Z(t)=0

Let us show that hypothesis (iii’) of [AW09, Th.6.3] is satisfied, that is for p small enough and ¢,s € B,
the law of (Vi (t), Vii(s)) is non-degenerated. Let us expand

02 —20"(|s — t|*) — 4(s; — t;)%0"(]s — t|?) if i = j
E(0iy(s)051p(t)) = a(|s —t*) = o
W(s)05(1)) 0s; 04, ( | —4(s; — t;)(s5 — t;)0"(Js — t|?) if i # j.
By isotropy it suffices to evaluate it in t = (r,0),s = (—7,0) for r > 0. Let us write the 4 x 4 covariance
matrix in function of n, = o’(4r?), p, = o”(4r?)
_ nol n-d + 20, A,
Z‘Q(mLme ol ®)

where

2
A, = ( e ) .
Hence the block determinant is
16 det (1151 — (1,1 + 20, Ay)?) = 16 det (5 — n7) T — dprme Ar — 4p7 A7)
= 16(n§ — ) (15 — n7) — 16pmpr? — Gdpigr).

This is equivalent to

16 - 810 (—p107%) (810 (—pt0r?) + Op(r?) — 16p0m0r* + Op(r?)) ~ —128n0p0r*(—24n01072) = 3 - 20 1dnr?,

where we have pgng # 0 in virtue of (6). Hence the determinant is non zero for r # 0 sufficiently small.
Then the modification of the proof of Theorem 6.3 following the proof of Theorem 6.4 of [AW09] yields
the result, see Appendix A in [AD22].
It yields in particular
1 1

det(®)(2m)2  2772+/3|ono|r2

BV (t1), Ve (t2)) (0,0) = (1 +0r—0(1)). (9)
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4. FIRST ORDER

In this section, we are interested in the computation of the expectated number of critical points in a
Borel set B c R2.

Proposition 3. Let ¢ = {¢(z) : z € R?} be a non-trivial isotropic stationary Gaussian field R? — R
which is a.s. of class C? and let o be defined by (2). Let

4 d"0)
V3m (—0'(0))
In virtue of Proposition 2, A. € (0,00). Then, for every p > 0, we have
EINE] = AlB,l, (10)

B[N} = SEING] (11)

Ac

E[N]

p

; 1
E[N:“n] = ZE[NPC]
A sufficient condition for 1) being of class C? is that o is of classe C**# for some 8 > 0, see Proposition
1.

Remark 2. By stationarity, \. is the intensity of X,(1)), i.e. the mean number of critical points per unit
volume.

Proof. According to Theorem 3.1, we must simply evaluate
Ki1(2) = ¢vy(z)(0,0) E[ | det Hy(2) | [Vib(2) =0].
The stationarity of ¢ implies that K;(z) is independent of z, see formula (7). So, we get
E[N;] = |B,[K1(0). (12)

Using the matrix 3 with » = 0 in (8), we immediately obtain the probability density function of
(two-dimensional vector) V(z) evaluated at point (0,0):

1 1 1
z 07 0 = 5_ = )
Ovu( )( ) s 477(2] 4m|no|

(13)

where 79 = ¢’(0). From this point until the end of the proof we will use the method of the article [BCW19].
Since the first and the second derivatives of )(z) are independent at every fixed point z € R?, then:
B[] det Hy(2)] [Vi6(2) = 0] = E[ [det Hy(2)| ] = B[ |det Hy ()] ] = E[ [0116(0)2216(0) — #23(0)] ].
(14)
To evaluate (14), we consider the transformation W; = 0119(0), Wa = 012¢(0), W3 = 011¢(0) + d22¢(0)
and we write E [ |0119(0)22¢(0) — 0%,4(0)| | in terms of a conditional expectation as follows:

E [ |0119(0)022¢(0) — 33900(0)| | = E[ [WiWs = W7 = W3| | = E[ E[ [WiW5 — WP — W3| [W3 ]|, (15)

where W = (W7, Wy, W3) is a centered Gaussian vector field with covariance matrix D.
120 0 16ug

Use Proposition 2 and Remark 1, we have D = 0 4y O
16,[1,0 0 32#0

The conditional distribution of (W7, Ws) ’Wg is Gaussian with covariance matrix Xy, w,)ws = (4'8 0 42 >
0
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t

2
and expectation E[ (W1, Ws) [Ws =t] = for t € R.

0
The conditioned Gaussian vector (Wi, Ws)|W3 = t is distributed as (2,/uoZ1 + %, 2./10 Z3) where Zy, Zs
are two independent standard Gaussian random variables, hence we have

E[ [WiWs—W§ —Wg| | Ws =t ]| =E[| Wit —W§—W5 ||Ws=¢t]]
= E[ |(2y/10Z1 + t/2)t — (2y/p0Z1 + t/2)* — 4o Z3] ]

t2
=E[| — 4poZ7 — 4poZ3 + Z' ]

2
=4 E| |-X + )
o [ g
where X is a y—square random variable with density fx(z) = %e_%,:n > 0.
So
2
2 1 (Tom5, 2 . 1 [t 2 .
E[|-X+ |]=j16}0(x)e_2dx+J (— +x)e” 2dx
1610 2 Jo 160 2 1;72 1610
1o
_ t2 t2
= —244e 30 + :
‘ 1610
then
E[|[WiWs—W{ —W3| [ Ws=t]=4 ! JEH)H e ] ~ it
13 — - 3= = 0 — e 0
P 8 Je 1610
V 2 _2 42 16
= ,uof ¢ o (—2—1—46 32n0 > dt = —10 (16)
27 Jp 1610 V3

By combining Equations (12), (13),(14) and (16), we obtain Formula (10).
Now, we turn to the evaluation of the expected number of the extrema and saddle points. We have

NE =N = #{z e B, : Vip(z) = 0,det Hy(z) > 0}
NE = NP0 = #{z e B, : Vip(z) = 0,det Hy(z) < 0}.

As previously, we apply the Kac-Rice formula from Section 3. We get:

E[N¢] JB Ke(:)d>  and  E[NS] = JB K (2)dz,

p o
P

Ki(2) = ¢vy(»)(0,0) E [ | det Hy (2)| Laet 11, (z)>0y [V¥(2) = 0 ] ,

Ki(2) = ¢vy(»)(0,0) E [ |det Hy (2)] Lqdet i, () <0} [V(2) = 0 ] :

Since the first and the second derivatives of ¢)(z) are independent at every fixed point z € R?, we obtain

E[N;] = TP Pwy(»)(0,0) E [ | det Hy(2)| 1{detH¢(z)>0}] ; (17)

P
where

E[N;] = 7p% by (0,0) E [ | det Hy ()| 1{detH¢(z)<0}] : (18)
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Using the same argument as in the case of critical points, we write

E [ |det Hy (2)| Lidetrr, (2)>0 ] =E [|anw<0>622w<0> — 0791(0)] 1{an¢(o)azgw(0)—a§2>o}]

1 t?
=4pu JEH—X—F
R

_ 12
t2>0}] e thodt

SW 16#0 {=X+ 1610
\/,LL()J _ 2 t2 _ 2
— VPO (g 9e7E S it
27 Ja + 2e %0 + 16710 e 0o
8o
and
E [ |det Hy(2)] Lydetrr, () <0} ] =E [|511¢(0)522¢(0) — 0%, 1{au¢(0)522¢(o)—a§2<o}]
Y JE xi-t ¢ dy
- 8y/mho Jr 160 |~ (X 15 <0)
2 2
= 2‘\'1;3] <2e_3;f‘0> ¢~ Fno dt
™ JR
8o

By combining Equations (13), (17), (18), (19) and (20), we obtain Formula (11).
Finally, we turn to the calculation of the expectation of the number of minima and maxima in B,.
We know that:

NG = N 4 NP
so E[NS] = E[An] + E[Azmee].
By symmetry of the Gaussian field 1, we have the following equality: N} (—1)) £ N () =
N () for 1) £, therefore E[N;""] = B[N, ].

Finally, we obtain

EING™] = BIA7“] = JEING]

p

5. SECOND ORDER

In this section, we will study the asymptotic behaviour of the second factorial moment of N , when p
goes to zero. The following theorem is the main result of this paper. Given two quantitites a,, 3,, write
a, = f3, if for two constants 0 < ¢ < ¢’ < o0, we have ca, < 3, < o, for p sufficiently small, and o, ~ 3,
if a,/8, — 1, with the convention 0/0 = 1.

Theorem 5.1. Let 1) be an isotropic Gaussian field R? — R that satisfies Assumption 2.1.The repulsion
factor R. := Ry, is given by

nm /

R, = V3 (57"(0)"(0) 4\
8 (07(0))?

As p — 0, we have the following asymptotic equivalent expression for the second factorial moment of the

number of critical points

E[NG (N = 1)] ~ RAZ| B, * = p*. (21)
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Depending on the law of 1, R, can take any prescribed value in [#, ), and ﬁ 1s the minimal possible

value, it is reached iff 1 is a shifted Gaussian random wave (Example 1).

For the numbers of extrema, saddles in a ball of radius p, we have as p — 0

E[Ns (VG = 1)] = pT, (22)
E[N; (NG = 1)] = p"In(p), (23)
E[NSNS] ~ RAZB, . (24)

Remark 3. The repulsion factor terminology comes from A.|B,| ~ E(N,) and by the heuristic explanation
after (1).

Remark 4. By truncating the expansion of the type (33) at a lower order, one could prove that Expression
(21) is valid under the weaker assumption that T is of class C5*# (and v is of classe C3).

Example 2 (Bargmann Fock field). Consider the Bargmann-Fock field with parameter k, which is the
stationary isotropic Gaussian field with reduced covariance function

o(r) = exp(—kr),r = 0.

According to Proposition 3, we have for the first order

a(0)=—k
o (0) =k?
o (0)=—k®
ENC] =Lk p2.
SRVE

Hence the attraction factor is

which means that the process of critical points is locally weakly repulsive. It logically does not depend on
the scaling factor k.

Example 3 (Gaussian random waves). Consider the Gaussian random wave introduced at Example 1 by
o(z) = Jo(ky/x),z = 0. We have :

2
(;/(0):—’“Z
" k4
" k6
U(O)——3_27
k2 k2
c= e BN = 2 2
W (N1 273 "
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Hence the attraction factor takes the smallest possible value
1

RC = =
8v/3

which means that the process of critical points is locally weakly repulsive. We retrieve the second factorial
moment of Beliaev, Cammarota and Wigman [BCW19]

K
263y/3"
Example 4. Consider the centered stationary Gaussian random field ¢ with spectral measure
F(dX\) = A7 1y z13dA.
One has by Proposition 2,|6’(0)| < o0,0”(0) < o0, —0”(0) = oo, hence R, = o, but Theorem 5.1 does

not apply precisely because F’s higher moments are infinite, meaning that v is not of class C3. Hence we
consider Fy(d\) = 1{|A\<t}F(d/\)(Sé dF)~! for t > 1. We have as t — o

EWNS(NS —1)) ~

p\W¥p

t
7
777020 ~ cf 5~ Trdr = t.

Mo 1

It implies that the repulsion factor of F; can reach arbitrarily high values. In particular, this parametric
model provides processes of critical points that are weakly locally attractive.

5.1. Discussion and related litterature. The equivalence (21) generalises the results of [BCW19|, and
shows that locally, the random planar wave model yields the more repulsive critical points. We also show
that for a general process v, the subprocesses formed by extrema and saddle points experience locally
a strong repulsion with three more orders of magnitude for p. It confirms the idea that close to a large
portion of saddle points, there is an extremal point nearby, and conversely, but that the closest point of
the same type (extrema or saddle) is typically much further away.

A current novelty is also to derive the precise asymptotic repulsion for the extrema process and the
saddle process. Hence we are able to state that the ratio between the internal repulsion forces among
extremal points and among saddle points tends to infinity as the radius of the observation ball goes to 0.

Azais and Delmas [AD22| derived upper bounds about such quantities in any dimension. In particular,
their results are consistant with ours in the critic-critic, extrema-extrema and extrema-saddle cases.

6. PROOFS

6.1. Conditioning. The proofs of all formulas of Theorem 5.1 are based on the Kac-Rice formula in
Theorem 3.1, for instance if B = B’ = R?, we have the second factorial moment of the number of critical
points

B[N —1)] = f J Ky (2, w) dzduw, (25)
By,xB,
where Ky is the 2-point correlation function : :
Ka(z,w) = ¢(vy(z),ve(w)) ((0,0),(0,0)) (26)

x IE[ | det Hy(2)| | det Hy(w)| | Vib(2) = Vib(w) = 0 ] .

Let us briefly introduce where the difficulty comes from and why higher order differentiability is required.
For z,w close from 0, if Vi (z) = Vi(w) = 0, then the second order derivatives are also small, and
the determinant is dominated by third order differentials. When one imposes additional constraints on
the determinant signs, it yields other cancellations within third order derivatives, requiring fourth order
differentiability.
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Thanks to the stationarity and isotropy of 1, it suffices to compute Ky(z,w) for z = (r,0) and w =
(—r,0) for all » > 0. To evaluate E [j\/;f(j\/;f —1)], the idea is to change the conditioning in Ky (z,w). To
symmetrize the problem, we introduce some notations for r near 0,  # 0, exploiting Proposition 1 and
Definition 1,

a) Ay(r) = 50ip(2) + 50ip(w)  implies Ay(r) = 9;1(0) + §02i11¢(0) + Op(r?) (27)
b) Ap(r):= 2%((%1/1(,2) — 0ip(w))  implies Aji(r) = 0;14(0) + % 0i119(0) + Op(r?).
The crucial point is that Vi(z) = Vip(w) = 0 is equivalent to A;(r) = 0,A;1(r) = 0,i = 1,2. Let us
introduce
Y} = (Al(r), AQ(T), AH(T'), Alg(r)),T' >0
so that Y, = 0 is equivalent to Vi(z) = V¢ (w) = 0, and
Yo := (51¢(0)a 52¢(0)> 5117%1(0)’ 62171Z)(0))

We will see later that Y is non-degenerate, hence Y, is also non-degenerate for r small enough, by conti-
nuity of the covariance matrix.

We denote the conditionnal probability and expectation with respect to Y, = 0 by
PO()=B(|Y, =0), EO()=E(|¥ =0),r>0

Remark 5. Let (X,Y’) be a Gaussian vector with Y non-degenerate. If M is non-singular matrix and if
 is a measurable function with polynomial bounds, then

E(e(X))Y = 0) = E(p(X)[MY = 0).
So, since obviously
Vip(z) = Vi(w) =0 < Y, =0,

the 2-point correlation function Ka(z,w) becomes :

Ka(2,0) = d(v(z) v ((0:0), (0,0)) x EV[ | det Hy ()| | det Hy(w)[]. (28)

Using (9) we can evaluate the density in 0, and the previous expression becomes
1
(2m)2253/3(—no)r?

It remains to express the product of determinants under the conditioning in function of A;(r) = A1 (r) =
0, this involves higher order derivatives (see(27)).

Koy(z,w) = EC[ |det Hyy(0)| | det Hy (r)[](1 + o(1)).

Lemma 1. Assume ) satisfies Assumption 2.1 for some 5 > 0 and let 0 < a < 3/2. For z = (r,0) and
w = (—r,0), we have if A; = Ay; =0,i =1,2,

det Hy(z) =r(A1 + rBy + Op(r'*t®)) (29)
det Hw(w) =T(—A1 +rBy + OIP(T1+Q)) (30)
det Hy(z) det Hy(w) =r*[—A;% + g(r)] (31)

where
Ay = 0229(0)0111%(0)
By = 0221%(0) 0111%(0) — 0211%(0)? + $0221(0)d11119(0) . (32)
g(r) = r2B2 + Op(A1rtTe) + Op(r?te)
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a) gAllll(ir) = é’nw(ir, O) — An(i’l") — (i 7‘01111/1(0)) implies Ann(ir) = 61111w(0) + Op(’r’a)
b) ngnl(iT) = ébﬂﬁ(i’r‘, 0) — Agl(iT’) — (i 7‘8211) implies Agln(ir) = 62111¢(0) + O[[»(’I“a)
C) %Agzll(iT) = 8221/}(i’l“, O) — 522¢(0) - (i Tagzl) implies AQQH(iT) = 822111/)(0) + OP(TO‘).

We can explicitly write the expression of det Hy(z) det Hy,(w) :

det Hy(2) = d119(r, 0)d221 (r, 0) — (21(r, 0))?

= r(Ay + 7B, + 12C,), (33)
with
B, = 01111(0)02211(0) + éAnn(T) 0229(0) — 0211%(0)* = By + Op(r®)
. — A1 (r) 5 Ago11(r) 2 _
r=g 2219(0) + 5 0111%(0) — §A2111(7‘)5’211?/)(0) = Op(1)
and
det H¢(w) = 511¢(—T, 0)8221/1(—7“, 0) — (8211!)(—’/’, 0))2
= r(=A; + Bl +rC!) (34)
with

By =01114(0) 0221 (0) + éAnn(—T) 02210(0) — 0211%(0)? = By + Op(r®)

~ Agii(—1)

C, = _Aunlr) 02219(0) >

r 3 d1114(0) + %Amu(—?‘)@mﬂ/)(o) = Op(1)

Combining Equations (33) and (34), an elementary calculus leads to
det Hy(z) det Hy(w) = r*[— A1 + g(r)]
where
g(r) =rAy (=B, + By) + r°B, B, — 12 A1 (C,. — CL)
= 7A1(Op(r®)) + 2B, By — 12 A1(C, — C")

= O]P’(AN'H_Q) + Tng + OP(AlT’H_O‘) + O]P’(T2+a) + O]}D(T’2+2a)
= 122 + Op(Ayr17®) + Op(r2*).

As a consequence from Lemma 1, the 2-point correlation function given by (28) becomes

1
(2m)225/3(—10) 1o

Ks(z,w) = EM [|A1% = g(r)[] (1 + o(1)). (35)
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6.2. Dependency of derivatives. In view of the previous result, we will have to estimate quantities
related to the random vectors

X = (0229(0), 1114(0), 01221(0), 01129(0), d1111%(0))

and Y. We must consider the case where (X,Yp) is degenerate. Examining Remark 1, we can split the
variables involved in several groups that are mutually independent, there are for instance only two groups
of size 3,

{019(0), 01224(0), d1119(0)} and {d22(0), d11119(0), 0119(0)}.

Other groups, such as {0112¢(0), d21(0)}, have less members, and in the isotropic case they won’t be in a
linear relation because of (5):

Cov (51121/}(0), 32¢(0))2 = m%’Q < maom4,2 = Var(62)\/ar(é’112).

There is actually no other case to consider. Let us elucidate what can happen within the two bigger
groups.

Proposition 4. Assume the spectral measure F is isotropic and not reduced to a Dirac mass in 0. There
is (o, B,7) # (0,0,0) such that ad19(0) + B0111¢(0) + v0122¢(0) = 0 a.s. iff =~ and F is uniformly
spread along a circle of radius 4/a/f, i.e. if ¥ is a SGRW with parameter 4/a/f.

There is no («a, 3,7) # (0,0,0) such that a.s. ad119(0) + B0221(0) + vd1111¢(0) = 0.

Proof. Using (3) and recalling the symmetry mgp = my 4

Var(a(911/1(0) + 58111¢(0) + ’y&mgw((})) =Oz2m270 + Bzm@"o + 72m2,4 + 2a/6’m470 + 2a’ym272 + 26’ym472

= J(—oﬂAf — B2N0 — 2NINS 4 208 + 209 AINS — 2B7ATA3) F(d))
= — f(—a)q + BA3 + ANND)2E(dN).

Hence, dF-a.s., either Ay = 0 or yA? + 8\? = a. By isotropy, it implies that v = 3 and that F’s support
is concentrated on zero and the circle with radius 4/«/3. It corresponds to the GRW with radius 4/a/f
plus an additional constant term.

In the same way,

0 = Var(adn(0) + B011%(0) + ¥01111¢(0)) = f (A3 + BAT +A])*F(dA)

implies that F' is trivial if F' is isotropic. O

In conclusion, the only non-trivial linear relations possibly satisfied by the derivatives involved in (X, Yj)
is 01119(0) + 0122¢(0) = ad19(0), @ > 0 and can only be satisfied by a SGRW. In the light of these results,
functionals of interest only depend on the law of the vector X’ under the conditioning Yy = 0, where

X, _ (522¢(0), aulw(()), 8112¢(0), 51111¢(0)) if 1/) is a shifted GRW
X otherwise

because if ¢ is a shifted GRW and Yy = 0, 0111¢(0) + d1220¢(0) = —ad19(0) = 0 a.s. hence 01229(0) is
directly expressible in function of d111¢(0).

Lemma 2. The conditional density f,. of X’ knowing Y, converges pointwise to the density fy of X’
knowing Yp. There is furthermore o1, 092, ¢1, o > 0 such that for r sufficiently small,

C190, < fr < €290,
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where g, is the density of iid Gaussian variables Z? = (Z7); with common variance o2. Hence for any
non-negative functional ¢,

AE(pr(012Y)) < EO (i, (X)) < exE(ipr (022")).

Proof. Since the vector (X’,Yp) is non-degenerate, by continuity of the covariance matrix, the vector
(X',Y;) is non-degenerate either for r sufficiently small, and the density of the former converges pointwise
to the density of the latter. Hence the conditionnal density f, of (X’ | Y,) converges to fy the non-
degenerate multivariate conditional Gaussian density of (X | Yp).

Let I', be the covariance matrix of the conditional vector (X' | Y;). For 1 < ¢ < d, we denote by A; () the
i-th eigenvalue of the matrix I',. Since \;(r) — X;(0) > 0, there exists constant o1 = o9 > 0 such that for
r sufficiently small

1 1
> )\z‘(’f’) >

- o = = = -
27ra§ 271'0%

(36)

Hence f-(z) is bounded between cexp(— Y 2?/(2r0?)) and ¢ exp(— Y, 22/(2m03)) for some c,¢ > 0,
which gives the desired claims. O

6.3. Proof of (21) in Theorem 5.1. From (35), we have

7,2

(27)22%+/3(=10) ko (1 + o(1))

According to Lemma 2, the conditional density f, of X’ knowing Y, converges pointwise to the non-
degenerate density fo of X’ knowing Yy, and ¢, (X’) := A2 — g(r) is uniformly bounded by a polynomial
P(X'), Lebesgue’s Theorem then yields

Ka(z,w) = E™ [‘Al2 —g(r)]] .

lim B [| A — () ] = J«pr(x)fr(:v)dw - f lim o () fo () dw = E© [AF]. (37)

To compute the conditionnal law of Z := (022¢(0), d111(0)), recall that in virtue of (3) and Remark 1
0221(0) and 01111(0) are independent, and the covariance matrix of Yy is

ma2.0 0 0 0

. 0 ma.o0 0 0

(o) = 0 0 myo O
0 0 0 m272

The covariance matrix of Z and Yj is

[ m21 Moz Moz mi3 \ _ 0 0 mop O
F(Z’YO)_(”M,O m31  Ms m4,1)_(m4,0 0 0 0>'

It follows that the conditional covariance of Z knowing Y is

2

(2 ) = (2) - Pz 3T ) Tz ) = (™ oo — et

_ ( Var(022¢(0)|01119(0)) 0 >
0 Var(d111%(0)[019(0))

—1_2
mMo,4 — My gMM29 0 >
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the diagonal terms are positive in virtue of (5). By conditionnal independence of 22¢(0) and 0111(0),
and using Proposition 2

E(A?) = Var(0221(0)|011,14(0)) Var(011,19(0)[01(0)) = (mo 4 — mggm3y)(meo — mggmi ) > 0

2> 3.2°
= 5 #o(——(=5romo + 345))
o
—5ugno + 3ud
_ 28%( 070 Mo)'
o
Combining Equation (37) , (35) we obtain
1 —5 3u 10 — 641

lim Ky (2, w) = S oE 28u0( Yoo + 311p) == VOZO fo . a(l + o(1)).
r—0 (27)2 254/3(~10) po (1 + (1)) 0 2 /3115 (1 + o(1))

(38)
Finally, the second factorial moment of N , when p — 0, is given by
E[NCNE — 1)] = JJ Koz, w) dz dw = a|B,[2(1 + o(1).
By,x B,

Recalling that

4 po
V3 —mom

Ae =

yields indeed a = A?R..

Let us show that R. = 81 . Given a measure i on R, denote by

S

mi (i) = jtww.

Since F' is isotropic, define p as the radial part of F', yielding with a polar change of coordinates

2m
MNXSF(dN) = f cos(0)? sin(0)°dOmq 1 (1)
R2 0
Introduce the probability measure, for A < R,
N tu(dt)
pi(4) = Ja )
ma (i)

Using the spectral representation in Proposition 2 yields for some ¢ > 0

vono _ ma(p)ma(p) _ ma(p)ma(f)yma(p) _ ma(f)
T m?(p)? (ma (p)ma (1))? mi(fi)? ~

by the Cauchy-Schwarz inequality. The ratio is minimal if the equality is obtained in the Cauchy-Schwarz

inequality, i.e. when ¢? is proportionnal to ¢ fi-a.e.. This is the case only if F(d\) is uniformly spread

on a circle of R?, with perhaps also an additional atom in 0. This corresponds exactly to the class of

fields derived in Example 1, which are the SGRW. For the precise computation of the constant #, see

Example 3.
In example 4, we derive spectral measures Fy,t > 1 which achieve repulsion factors R. in an interval of
the form (g, o0) for some oy € R. Therefore it remains to show that all values between 8\1/3 and ag can

be achieved. For that we use an interpolation

Gs := sFrw + (1 — s)F3,s € [0,1]
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where Fryy is the spectral measure of a GRW and F» belongs to the parametric family F;,¢ > 1. The
ratio of moments
m3(Gs)mi(Gs)
m2(G,)2
evolves continuously with s because all the members of the numerator and denominator do, hence the

repulsion factor evolves continuously between —= and «g and achieves all intermediary values.

83

6.4. Proof of (22) in Theorem 5.1. To compute the second factorial moment of Ny = /\/}EO’OO) when
p — 0, we apply the Kac-rice formula of Theorem 3.1 in the case By = By = (0,0)

EN; (N —1)] = ff K5(z,w) dz dw, (39)
By,xB,
where
K5 (2,w) = ¢(wy(2),vu(w) ((0,0)), (0,0))
x E) [ | det Hy (2)| | det Hy(w)] 1get 11, () >0} l{detHw(w)>0}] :
It becomes in virtue of (29)
K5(z,w) = r? ¢(vy(2), v ((0,0),(0,0)) ar (40)
where
a, :=E" [ ‘A12 — g(r)‘ IT]
Iy :=1Y(det m (2)>0} L{det Hy(w)>0}-

To be able to prove (22), we need to establish an upper bound and a lower bound of a, So the proof is
separated into two parts. We first give in Lemma 3 an asymptotic expression of a, to get rid of superfluous
variables.

Lemma 3. Let J := 1{4,|</By}
ja, —EC(|AT = B§|T,)| = Op(r**)
for0 <o <a,andasr — 0
ar = E(|AT - r*Bg|J,). (41)
Proof. From (33)-(34) in the proof of Lemma 1,
I, < 1y4,|<rp,}
where
Dy :=|Bo| + |B| +|By| + r(ICr| + 1C}),
is a variable with Gaussian tail. Recall that g(r) = r?B3 + Op(A,r'™ + r?7%) hence using (32),
EO[(1AT = g(r)] = |AT = r* B L)] <EC/(Op(r' T Ar +177)) 14, 1<rp,)
< EC (Op(Dy + 1)1 4y |<rp,))- (42)

1

Let p,q > 1,7 > 0 such that p~ ' + ¢! =1 and o + 1;(177 > o' + 1, then Holder’s inequality yields

E® (Op(Dy + 1)1 4,1<rpry) < ET(Op(D, + 1)P)p PO (| 4| < rD,)7.
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The probability on the right hand member can be bounded by
P (|Ay| < rD,) < PO(D,| > r~) + PO (|4 < #177).
All variables involved in Op(D,) have a Gaussian tail, hence
P51, ) > 1) = o).
By Lemma 2 with ¢, (z) = 1{j3,4,|<r1-n}, and Lemma 5-(i) (with s = 0),
PO(|A] < r'77) = ED(pr(X")) < 2E(pr(022)) <77 In(r) (43)
hence finally
PHE(Op(Dy + D1, <rpyy) <77 T ()1 = 03+ (44
To simplify indicators, remark that in virtue of (33),(34),

Iy = 14, 1r B 4120, >0,— A1 +7BL 47207 >0}
Jr = 1{A1+rBO>0,7A1+ng>O}-
Both the events {I, = 1},{J, = 1} imply |A;| < rD,. If I, # J., A1 + rB, + r2C, has a sign different

from A +7By, or —Aj + 1Bl +7r2C’ has a sign different from —A; +7By. In both cases it implies another
event of magnitude Op(r1*®) because B, B! = By + Op(r®), C,, Cl. = Op(1) :

1L — o] <2 (L{(ay 0B, +r20,)-(Ar+rBo)<0} + L{(— Ay 4rB)+12C7)-(— A1 +7Bo)<0})

NN

2 (L(1a 47 Bo|<Op(r1 )} T L{= Ay 47Bo|<Op(r1+a)}) -

Let now p,q > 1,7 > 0 such that (1+a—n)/qg > 1+’ . Since also I, — J, # 0 implies that either I, = 1
or J, = 1 and so |A1| < rD,, collecting (42),(44),

la,~EM [|A2 — r2B3|J,] | < [ET)(|A? — 2 B3||I, — J,|)| + Op(r*+)
< [EV(|A3 — 2 B2 |14y <rp, | Ir — o) + Op(r37)
<E® [(r2D? + r?BE) (Lga, 4rBo|<0s(rita)) + L{—artrBo|<0pritay) ] + Op(r*+e)
<EO[D} + B [P(T) (|41 +7Bo| < OP(THQ))% +PU) (| — Ay +rBy| < OP(T”“))%] + Op(r3te).
We have
P (| Ay + rBo| < Op(r'™)) < PO (|A; + rBo| < rHo) + PO(Op(1) > r7).

By an application of Lemma 2 similar to (43) with ¢, (x) of the form 14 4, 41 a; 252, <r1+a—n} and Lemma
5-(i); the first member is in 7'+*~71In(r), hence finally for some ¢ < o

|a,—E™ [|A% _ TQB(Q)L]T] | < er?p(ta—m/a ln(r)% + (’)]p(r3+°‘/) _ (’)]p(r3+a/).

Finally, (41) follows from Lemma 2 with ¢,(X') = A? — r2B2. O
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6.4.1. Upper bound in (22). According to the previous lemma it suffices to give an upper bound of
E [| A2 — 7‘2B8|Jr]. We stress that the crucial point that justifies the absence of a log term in the fi-
nal result (compared to (23)) is the following inequality

Jr = 1{|A1|<7“BO} < 1{|522¢(0)|<27‘5221} + 1{|61117/J(0)|<%Taunw(o)}’

hence since Bg is a polynomial in X’ we can use Lemma 5-(iii) several times and get for some ¢ < o0

E(|A7 — B3| J,) < 2E(|r*Bg|J,) < cr®. (45)
Then, from (40),(45) and (35), we deduce that for some ¢’ < o0
K5¢(z,w) < ¢ 7. (46)

Finally, from (39) and (46), we deduce for some ¢’ < o0

ENSNS —1)] < " p'.

6.4.2. Lower bound in (22). Thanks to Lemma 3, it is sufficient to give a lower bound of E(|A} —
2 B§|1{4,)<rBo}])- Let us first assume that the Gaussian field ¢ is not a SGRW (Example 1), hence
the derivatives involved in X and Y[ are not linearly linked. Define the event

1
Q ={|522’l/)(0)| <7, 5 < 6111111(0) < 1, |6211’l,[)(0)| < 1,8 < 6122, |81111¢(0)| < 1}.

We recall

Ay = 0221(0)01119(0),

By = 0921 0111%(0) — d2119(0)? + %522%0) d11119(0)
Yo = (01%(0), 0219(0), 0114(0), 012¢(0)).

Hence under Q

‘A1’<T‘
T

Hence for r sufficiently small, By > 2, in particular |A;| < r|By|/2 and we obtain
E(|AT — B3| 1, 1<rp0)) = B [1a | 7 B§/4 | 1,24, /ry]
> r?P(Q).
Then since X is non-degenerate, its density is uniformly bounded and the proof is concluded with
P(Q)=cr>0
for some ¢ > 0. In the degenerate case of the SGRW, 0120%(0) = —0d1119(0) if Yy = 0 and we put instead

Q =0 (0)] < 7. 5 < En(0) < 1, A (0) > 19, 2w (0)] < 1}
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If Yy = 0 and (2 is realised,

|A1‘ <r
19

1
By = —01119(0)? — d2119(0)* + 532251111¢(0) >—r?—1+ 3

hence |A1| < r < Bor/2 for r small enough and the same method can be applied because X’ has a bounded
density. Therefore, it holds for some ¢ > 0

EO(1AT - r*Bi |1, j<rmoy ) = ¢ 7% (47)
From (40), (35)and (47), we get for some ¢’ > 0
K5(z,w) = 'r. (48)

Finally, from (39) and (48), we deduce that for some ¢” > 0
E[NS (NS —1)] = ¢"p'.

6.5. Proof of (23) in Theorem 5.1. Using Theorem 3.1 with B; = By = (—,0), the second factorial

moment of NJ = N,S“’O’O) is given by

BNGWG -] = [ [ Ky ew)de du,
B,xB,
where
K5°(2,w) = 12 vy (2) vuw) ((0,0)), (0,0)) EO [ | det Hy (2)| | det Hy(w)| 1{get 1, (z)<0) Lidet H¢(w)<0}] :
The difference is hence on the sign of the determinants, K5*(z,w) becomes

K;’s('z? w) = Tz ¢(vw(z),vw(w))((07 0)7 (07 0)) a;" (49)
where (see (34))
a. :=E) [ |A12 — g(r)| IT',]

T
/ Pyp—
I =14, 1rB. 4120, <0y L{— Ay 4rBl 41201 <0} -

The asymetry of the expression of the determinant yields a different estimate than in the previous case.
To be able to prove (22), we need to establish an upper bound and a lower bound of a/. as in the previous
section (Lemma 3). We give in Lemma 4 an asymptotic expression of a,..

The proof is similar but there are also significant differences. The difference with respect to before is
that the two signs of the determinants are negative, hence we replace J, by

‘]7/“ = 1{A1+TB()<0,—A1+7"B()<0} = 1{‘A1|§—7’Bo}
and emphasize that By does not have the same law as —By.
Lemma 4. We have for 0 < o/ < «,
) — EO(143 ~ B3| )| =0p (¥
o] =E(|43 - r2B3|J)

The proof is omitted as the proof of Lemma 3 can be repdroduced verbatim, with resp. J., I}, al in
place of resp. J,, I, a,.
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6.5.1. Upper bound. The upper bound on J/ is of different nature than that on J,, in particular the third
term

o = L ar<—rBo} < 1(2220(0)| <—6r22219() T Loa1(0)|<—2ro11160)) + L{ioa2(0)0111]<8ra9(0)2)-
Then,
E(|Ay — r*B2|J)) < E(2r?B2.J,)
hence we must use this time Lemma 5-(ii) for the last term of J/’s bound,
E(BF110,5(0)21116(0)] <3ran16:0)?) SE(10220(0)0111(0) 1110500000111 (0) | <3rom11(0)2})
+ B 02119 (0) 141 a500(0)21119(0) | <3roan 6(0)°)))

+ E(1022¢(0)011119(0) 110,54(0)01119(0)|<3r02119(0)2})
<crln(r)

for some ¢ < c0. The other terms are dealt with by Lemma 5-(iii) as in (45), hence the upper bound is in
E(|A; — r2B2|J!) < dr¥In(r)
for some ¢ < oo, which yields (23) by (49) and Lemma 4.

6.5.2. Lower bound. We recall the expression of A; and —By : A1 = 0221(0)111%(0), —Bp = —d221%(0) d111¢(0)+
02119(0)? — %022@&(0) 01111%(0). The strategy is the same than at Section 6.4.2.

If ¢ is a SGRW (Example 1), 0111%(0) = —01229(0) if Yy = 0, let
Q = {02119(0) > 2, [0229(0)0111%(0)| < 7, [01119(0)] < 1, [0229(0)| < 1,[011119(0)| < 1}.
Hence if Yy = 0 and ) is realised

A1<T,

1 1
*Bo = 81111/)(0)2 + 8211’(/)(0)2 — 582277&(0)51111’(/1(0) >0+4— g > 2A1/’I“.
We have
E(|AT = B3Il {4, 1<—rBo}) = E[1a | r*B3/4 | 1,24,/
> r’P(Q).

We must prove a converse to Lemma 5-(i) with s = 0. Since the density of X’ is uniformly bounded from
below on [—3, 3]%, for some ¢ > 0,

P(Q) > CJ 1|z as|<rydz1dTe = 7In(1).
[_171]2

6.6. Proof of (24) in Theorem 5.1. We recall that Ny = N5 + N hence NSN3 —1) = NS(N5 —1) +

N3NS = 1) + 2NN

So, we have:

EINEAG] = SEINGN — 1] — EIVG OV — 1]~ EIAGVS — 1]

p

Combining this formula with previous estimates (21), (22) and (23), we obtain

EINGAG] = SEIVENS — 1] +o(1)

ending the proof of (24).
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Lemma 5. Let (Z1,...,Z;) be a non-degenerate Gaussian vector and a; ; real fixed coefficients. Then,
(i)

P(|Z1Z5 + sZaiJZiZﬂ <r) < Crln(r) (1)
2]

for C' depending on the law of the Z; (and not on s or the a; ;),
(ii) for a; =0

rin(r) if o =ag =0 (i)

E(|Z° ... Z%1 <
(121 P {|le2‘<TZ§}) r otherwise

for some C’ < 0.
(iii) Let some coefficients a; € N, (Z1,...,Z,) be a Gaussian vector. Then, for some C” < o0,

E(Z{ ... 20"z, <rmy ) < C'r. ()

Proof. (i) Assume first that the Z; are iid Gaussian. Let us study for a,b € R, Y7 := Z1 —as, Y3 := Zy —bs.
Since Y7, Y, have a density bounded by £ < oo (universal), we have for ¢ € R

P(Y1Ys —cf <7) <P(|Ya| < 7) + P(|Y1 — ¢/Y2| <7/Y2, Y2 > 1) + P(|Y1 — ¢/Ya| < 1/Ya,|Y2| € [1,1])
<kr +P([Y1 — ¢/Yo| < 1) + E[P(Y: € [¢/Y2 + 1/Y2] | Y2)1(cpvy <1)]
<wr + &r + B(kr/Yalg <y, <1})

1
1
<L2kr + m"f —2kdyo
r Y2
<2k + 2K%r In(r),
uniformly on a, b, ¢, s. Then it remains to notice that

YAV SZai,jZiZj = (Zl — AS)(ZQ — BS) — CS

,J
where A, B, Cy are independent of Z1, Zs. Then

]P’(’Z1Z2 + 32ai,jZiZj| < 7‘) = E(P(’(Zl - AS)(ZQ - BS) - CS‘ ’ A,B,CS)) < Crinr.
i,J
In the non-independent Gaussian case, the joint density f(x1,...,xx) of (Z1,...,Zk) is bounded by

kexp(—cY,; z7) for some ¢,k > 0 (c would be the smallest eigenvalue of the covariance matrix). From
there on the conclusion is easy:

J1{|xlx2+szi7j ai,j$¢$j\<7"}f(x1’ cooyxp)dry ..oday < Rfl{} exp(—cZ $?)d$1 coodxy

and the right hand member corresponds to the independent case, already treated.
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(ii) For the second assertion, assume first that the Zj are independent. Without loss of generality,
assume o < ag. We have for ¢ > 0, for some ¢, ¢, ", ", C < oo,

E(|Z7" Z3%|1 2,2, <t) <E(1Z7" Z57%|12,)<) + E(1 21" 252 1 25 <t 21 )>13) + BUZ7" 252 1 2,1 <t/1 2,y Lie<) 20| <1})

1 t/x1
et 4oeportl 4 c’j z]? f x5 drodry
¢ 0

1 t ()[2+1
<2ct + c”j z]? <> dxy
t 1

tM172 if o <

<2ct + "¢t
ln(t) if g = g

<C tln(t) if g = a2 =0
t otherwise

Coming back to the main estimate with ¢ = rZ2, using conditional expectations, for some C’,C” < o0,
E(’Z{xl N Z]?k |1{|Z1Z2|<7‘Z§}) < C/E( H Z,?k (TZ§3+2 1H(TZ3)1a1:a2:0)) < C”T' 11’1(7”)10‘1102:0.
i#1,2,3

The non-independent (non-degenerate) case can be treated as before by bounding the density of the Z
by an independent density of the same order.
(iii) By Holder’s inequality

Q=

q
E(1Z8 ... Zg" Ny <oz ) < | [B(Zil" 0 21200 22))
i=1
hence we can assume wlog that only one «;, say «j,, is non-zero. For iy > 2, we have an orthogonal
decomposition of the form Z;, = (aZ1 + 8Z3) + vY where Y is independent of (Z1, Z2), hence we can
assume wlog that ig = 1 or ig = 2. For ig = 1, the bound is

E(|rZ2|* 12, |<rz,y) = O(r' %)

and it only remains to treat the case ¢g = 2. In this case we decompose orthogonally Z7 = AZs + uZ
where Z is independent of Z5. Then the bounded densities of Zs and Z easily yields the result

E(|Z2|**C|rZs|) = O(r).
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