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This article continues the study of the category of harmonious field models that was recently introduced

as a kinetically nonlinear generalization of the well-known harmonic category of multiscalar fields over a

supporting brane world sheet in a target space with a curved Riemannian metric. Like the perfectly

harmonious case of which a familiar example is provided by ordinary barotropic perfect fluids, another

important subcategory is the simply harmonious case, for which it is shown that as well as ‘‘wiggle’’

modes of the underlying brane world sheet, and sound type longitudinal modes, there will also be

transverse shake modes that propagate at the speed of light. Models of this type are shown to arise from a

non-Abelian generalization of the Witten mechanism for conducting string formation by ordinary scalar

fields with a suitable quartic self-coupling term in the action.

DOI: 10.1103/PhysRevD.82.103531 PACS numbers: 98.80.Cq

I. INTRODUCTION

This article continues a series in which a systematic
covariant differentiation procedure was developed [1,2]
and applied [3] to multiscalar field models for which the
relevant target space lacks the usual linear (vectorial or
affine) structure, but is curved, as in the prototypical ex-
ample [4] of a harmonic map, which is governed by
dynamical equations involving nonlinear dependence on
the fields but only linear dependence on their space-time
gradients. As well as the possibility of confinement to
string or brane world sheets, and the gauging of internal
symmetries of the target space, two different kinds of
generalization of the ordinary harmonic category were
considered. The first [2,3] was that of forced-harmonic
models in which a harmonic type kinetic term is supple-

mented in the Lagrangian by a self-coupling term V̂
having the form of a predetermined scalar field on the
target space. The second kind was that of harmonious
models, whose definition will be recapitulated in the next
section, and which differ from ordinary harmonic and
forced-harmonic models in that their dynamical equations
involve nonlinear dependence not just on the fields but also
on their gradients.

Nonlinear gradient dependence of the kind in question
has long been familiar in the context of irrotational fluid
models such as are relevent for superfluidity [5,6] (and
perhaps also for cosmology [7,8]). However, the target
space in these examples is of the usual flat vectorial kind,
as also is that of their cosmic string supported analogues of
both the singly [9,10] and multiply [11] conducting kinds
that have been studied in recent years.

Interest in such string supported fields began when
Witten [12] drew attention to the fact that they would arise
naturally by condensation in the cores of string (or other)
topological defects in space-time field models of the com-
monly considered—kinematically linear—kind in which
the only nonlinearity is that of a scalar self-coupling term

responsible for spontaneous symmetry breaking of the
vacuum. It was subsequently recognized that suitable mac-
roscopic models [13,14] for the description of such fields in
the thin string limit would need to involve nonlinear field
gradient dependence of the type qualifiable as harmonious,
though only of the rather trivial kind in which the target
space is flat and the relevant internal group Abelian.
The main purpose of the present article is to show that a

straightforward—still kinematically linear—extension of
the class of models proposed by Witten will give rise to
nonlinearly harmonious string models of a more interesting
kind, in which the target space is curved and the relevant
symmetry group non-Abelian.
Before proceeding it is important to warn that the subject

treated under the title ‘‘non-Abelian string conductivity’’
by Kibble and his collaborators [15] needs to be distin-
guished—e.g. by the insertion of another hyphen, so as to
obtain ‘‘non-Abelian-string conductivity’’—from the sub-
ject of the present study, which might appropriately be
entitled ‘‘non-Abelian string-conductivity.’’ The point of
this nuance is that Kibble and his collaborators were con-
cerned with a generalization of Witten’s model wherein,
instead of being attributable to the spontaneous breakdown
of an Abelian Uf1g symmetry, the string formation was
attributable to the spontaneous breakdown of a non-
Abelian SUf2g symmetry, but the currents considered by
these authors were nevertheless merely Abelian in the
sense of being generated only by a distinct Uf1g symmetry
subalgebra that had survived the breakdown. In contrast,
the present work will be concerned with a different kind of
generalization of Witten’s model, wherein—although the
string itself will just be Abelian, in the sense of being
attributable to the spontaneous breakdown only of an
Abelian Uf1g symmetry subgroup—the currents therein
will actually be non-Abelian in the sense of being
generated, not just by a Uf1g action, but by the action of
a surviving non-Abelian SUf2g or higher symmetry
algebra.
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Although the generalization of the category of under-
lying kinetically linear space-time field models is straight-
forward, the Witten mechanism itself cannot be directly
employed for the construction of a curved target space, as it
depends on a weak cylindrical symmetry ansatz that will
not be self-consistently applicable in the non-Abelian case.
It will be shown below in Sec. VIII how Witten’s weak
symmetry ansatz can be replaced for this purpose by a
more general local geodicity ansatz that works as a good
approximation, and can do the job, so long as the currents
involved are not too strong compared with a scale that will
be estimated in Sec. IX.

It is to be commented that the evident incompatibility of
cylindrical symmetry with a nondegenerate mapping into a
curved (spherical or more general) target space means that
for a string loop retaining several noncommuting currents
it will be impossible (as in the simple Goto-Nambu case) to
attain a stationary circular vorton type equilibrium state:
such a loop will be condemned to go on oscillating until
completion of the dissipation of all currents except those of
an Abelian subgroup.

II. HARMONIOUS FIELD MODELS

According to the definition of the preceding article [3], a

multiscalar field �� with local components �A in a
q-dimensional target space over a brane world sheet S of
dimension d (for d � n, where n is the dimension of the
background space-time) will be of harmonious type if it is
governed by a scalar Lagrangian �L that is specified by
some equation of state as a diffeomorphically invariant
function just of the relevant target-space metric ĝAB—
which is supposed to have been prescribed in advance—

and of the corresponding horizontal projection ŵAB of the
inverse �gij of the underlying space-time metric �gij on the

world sheet. It is to be understood that the horizontality of
the projection is specified with respect to some gauge form
�Ai with vectorial components �Ai

A on the target space. We
thereby obtain a prescription of the form

ŵ AB ¼ �gij ��A
ji ��

B
jj; (1)

in which the relevant projector will be specified in terms of
the field gradient components �A

;i by

�� A
ji ¼ �A

;i þ �Ai
A: (2)

In terms of the symmetric target-space tensor �AB given
by the definition

�AB ¼ �2
@ �L

@ŵAB
(3)

and therefore such that

�C
AŵBC ¼ �C

BŵAC ¼ �2
@ �L

@ĝAB
; (4)

it was shown in the preceding article [3] that, for a system
of this harmonious type, the intrinsic dynamical equations
will be expressible in terms of a set of surface currents with
components given by

�J A
i ¼ �gij�AB

��B
jj: (5)

as the pseudoconservation laws

�D i
�JA

i ¼ 0; (6)

in which �Di is a bitensorially covariant differentiation
operator of the not so simple kind introduced in earlier
work [1,2], and which will give rise to genuine current
conservation laws [3] only when suitable internal symme-
try conditions are satisfied.
One of the questions that arises in the study of any

system of differential equations of motion is the orientation
of the characteristic surfaces, with normal direction �i say,
along which infinitesimal discontinuities can be propa-
gated. For the transverse ‘‘wiggle’’ perturbation modes of
the extrinsic evolution of the supporting world sheet, it is
easily shown [10] that—regardless of the internal dynam-
ics—the relevant characteristic equation will always have
the simple form

�T ij�i�j ¼ 0; (7)

where �Tij are the components of the surface stress-energy
tensor, which for a harmonious system of the kind under
consideration here will be given [3] by

�T ij ¼ �AB
��Aji ��Bjj þ �L �gij: (8)

However, for the internal perturbation modes, within the
world sheet, the form of the characteristic equation will
depend on the specific details of the system. In particular,
for the acoustic type modes of the harmonious system (6)
the characteristic equation will in general be rather com-
plicated, reducing to a simple quadratic form like that of
(7) only under special conditions, such as those of the
simply harmonious and perfectly harmonious categories
that will be presented in the following sections.

III. HARMONIOUSLY ELASTIC MODELS

The category of harmonious models includes models of
the perfect solid type [16] which belong to the extensive
harmoniously elastic subcategory that is characterized by

the condition that the component matrix ŵAB should have a

well-defined inverse �̂AB ¼ ŵ�1
AB, which, if it exists, will be

interpretable as the tensorially well-behaved metric that is
locally induced on the target space by the section �
according to the specification

�̂ ACŵ
CB ¼ �B

A; (9)

This is something that will be possible only if the target-
space dimension q does not exceed the dimension d ¼
pþ 1 of the supporting base space, which if it is an
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embedded p-brane world sheet can itself not exceed
the dimension n of the background space-time: q � pþ
1 � n. The dimensionally maximal case q ¼ pþ 1 in-
cludes various models of the recently investigated kind
[17] referred to a hyperelastic, while perfect solids [16]
and so, in particular, ordinary fluid models of the baro-
tropic type are included in the case q ¼ p.

Harmoniously elastic models are perfectly elastic in the
usual sense, meaning [18,19] that they are governed by a
Lagrangian that is determined by some prescribed intrinsic
structure as a function just of the induced metric �̂AB on the
relevant target space, but they are not elastic models of
the most general kind: for nonharmoniously elastic models
the prescribed intrinsic structure can include various other
vectorial or tensorial fields (for example, to allow for the
anisotropic grain in wood) as well as the prescribed metric
ĝAB which is all that is allowed in the harmonious case. In
the usual approach [16,18–20] to the treatment of elastic
solid models, the locally induced metric �̂AB is what is
used for lowering and raising of target-space indices. It is
therefore important to remember that in the dimensionally
unrestricted approach [1–3] followed here it is instead the
globally prescribed target-space metric ĝAB that it is used
for this purpose.

It will be convenient for the following discussion to
introduce a new kind of elasticity tensor that is defined,
for any harmonious model, by

E ABCD ¼ EðCDÞðABÞ ¼ 2
@�AB

@ŵCD
: (10)

In terms of this quantity the ordinary elasticity tensor of the
usual treatment [16,18–20] will be given by the expression

EABCD ¼ EABCD þ 2�AðC�DÞB � �AB�CD

þ 2�AðCPDÞB � �ABPCD; (11)

in which the pressure tensor is given in terms of the energy
density � ¼ �L by

PAB ¼ �AB � ��AB: (12)

A simple example [3] is that of the baby Skyrme model
[21] for which the target space is a 2-sphere on which

�AB ¼ �?gAB þ �?ðŵgAB � ŵABÞ, where �? and �? are
constants, so that one obtains EABCD ¼ 2�?ðgABgCD �
gAðCgDÞBÞ.

IV. THE SOUND CONE IN SIMPLY
HARMONIOUS MODELS

Instead of working through the details of a complete
perturbation analysis, the characteristic equation govern-
ing the propagation of infinitesimal discontinuities is ob-
tainable efficiently by adaptation, from the rather similar
case of an elastic solid [20,22], of a method due originally
to Hadamard, of which the simplest illustration is provided
by the Dalembertian wave equation for a scalar ’ say,

namely, �rj’
j ¼ 0 where ’j ¼ �gji �ri’. The idea of the

Hadamard method is to use the fact that the discontinuity
of the gradient of a continuous quantity will be aligned
with the normal covector �i of the discontinuity surface.
Applying this to the components ’j, one sees that the
discontinuity of their gradients will be given in terms of
corresponding discontinuity amplitude components ~’j by
an expression of the form ½ri’

j� ¼ �i ~’
j. Moreover, tak-

ing the discontinuity of the integrability condition
�r½i’j� ¼ 0, one sees that the discontinuity amplitude will

have to satisfy �½i ~’j� ¼ 0, and hence that it will be given in

terms of some scalar amplitude ~’ by ~’i ¼ ~’�i. Thus
finally, taking the discontinuity of the Dalembert equation
itself, one obtains the well-known light-cone tangency
condition

�g ij�i�j ¼ 0: (13)

Applying the same line of reasoning to the multiscalar

field ��, one sees that the discontinuity of the gradient of its
covariant derivative (2) will be given in terms of some set
of amplitude components ~�A by

½ �ri
��A

jj� ¼ �i�j ~�
A: (14)

It therefore follows from the definition (1) of the horizon-
tally induced metric �wAB that discontinuity of its gradient
will be given by

½ �riŵ
AB� ¼ 2�i�j ~�

ðA ��BÞjj: (15)

These quantities are needed for the evaluation of the dis-
continuity of the gradient of the current (5), which will be
given by the formula

½ �Di
�JA

j� ¼ �AB �g
jk½ �ri

��B
jk� þ

@�AB

@ŵCD
��Bjj½ �riŵ

CD�; (16)

in which the distinction between �Di and
�ri disappears, as

the relevant [3] affine and gauge connection terms (but not
their derivatives) will be continuous. The discontinuity of
the set of pseudoconservation equations (6) thereby pro-
vides the required characteristic equation in the form

�i�jQij
AB ~�

B ¼ 0; (17)

in which, using the notation (10), we shall have

Q ij
AB ¼ �gij�AB þEADBC

��Cji ��Djj: (18)

It is to be remarked that this formula is simpler than the
corresponding expression using the usual elasticity tensor
(11) of the traditional approach [16,18–20].
The eigenvalue equation ensuing from (17) may take a

rather complicated quartic or higher polynomial form
when the target-space dimension is two or more, with a
generic equation of state involving dependence not just on
the trace

ŵ ¼ ŵA
A ¼ ĝABŵ

AB; (19)
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but also on higher order invariants starting with ŵA
BŵB

A.
However, it will conveniently separate into merely qua-
dratic subsystems in what will be referred to as the simply
harmonious case, namely, that for which the Lagrangian

depends only on the trace invariant ŵ, so that one obtains

�AB ¼ �ĝAB; (20)

with

� ¼ �2
d �L

dŵ
: (21)

In this simply harmonious case one obtains

E ABCD ¼ 2
d�

dŵ
ĝABĝCD; (22)

which gives a characteristic equation of the form

�i�
i ~�A þ 2

�

d�

dŵ
�i ��A

ji�
j ��B

jj ~�B ¼ 0: (23)

It is evident that this will be trivially satisfied by a set of
shake modes, propagating at the speed of light, with po-
larization ~�A that is transverse to the current across the
discontinuity, in the sense that

~� A �JA
i�i ¼ 0; (24)

since for such a mode—regardless of the particular linear
or nonlinear functional form of the equation of state—the
characteristic equation will evidently reduce just to the
same nullity condition as in the ordinary Dalembertian
case (13), namely,

�i�
i ¼ 0: (25)

There will also be a less trivial set of sound type modes
with polarization that is longitudinal in the sense of being
aligned with the current across the discontinuity, so that for
such a mode the discontinuity amplitude vector ~�A will be
given (modulo a multiplicative factor that can be absorbed
into the normalization of the characteristic covector �i) by
the prescription

~� A ¼ ��A
ji�

i: (26)

This reduces the characteristic equation to a simple qua-
dratic form—specifying what is describable as a sound
cone—that will be given by�

�gij þ 2

�

d�

dŵ
�wij

�
�i�j ¼ 0 (27)

using the notation

�w ij ¼ ĝAB ��A
ji ��

B
jj (28)

for the gauge covariant pullback of the target-space metric.
It will be shown below how nontrivially nonlinear mod-

els of this simply harmonious type arise naturally in the
treatment of string defects of multiscalar field theories of

the common kinetically linear kind. However, before doing
that it is instructive, for the sake of comparison, to describe
another noteworthy subcategory, namely, that of perfectly
harmonious models for which the characteristic equation
will be similarly simplifiable.

V. THE SOUND CONE IN PERFECTLY
HARMONIOUS MODELS

The subcategory of what are describable as perfectly
harmonious models is physically important because it in-
cludes the generic (not necessarily irrotational) case of an
ordinary barotropic perfect fluid. The perfectly harmonious
subcategory is defined by the requirement that the depen-

dence of the Lagrangian on the target-space tensor ŵAB

should again involve only a single scalar invariant, but with

the latter now chosen to be the determinant detfŵg of the
matrix with components

ŵ A
B ¼ ĝACŵ

CB; (29)

which will be admissible so long as the target-space di-
mension q does not exceed the base-space–time dimension
d ¼ pþ 1 (whereas for q > pþ 1 this determinant would
vanish identically). Ordinary perfect fluids are of the par-
ticular kind for which the target-space dimension is the
same, q ¼ p, as the space (as distinct from space-time)
dimension of the supporting base, which is three in the
usual terrestrial and astrophysical applications, but might
be higher for exotic cosmological theories in which the
space-time dimension is not four but five or more.

In terms of the tensorial inverse matrix �̂AB ¼ ŵ�1
AB of

ŵAB (which is interpretable as the metric locally induced
on the target space by the section �) as defined by (9), the

stipulation that L should depend only on detfŵg leads to
the expression

�AB ¼ h�̂AB (30)

with

h ¼ �2
detfŵgdL
dðdetfŵgÞ : (31)

This quantity h will be interpretable simply as the enthalpy
density in the case of an ordinary perfect fluid, for which
the pressure tensor (12) takes the form PAB ¼ P�̂AB, in
which the pressure is given in terms of the energy density
� ¼ �L, and the enthalpy density h by the well-known
formula P ¼ h� �.
The ensuing formula

@�AB

@ŵCD
¼ detfŵgdh

dðdetfŵgÞ �̂AB�̂CD � h�̂AðC�̂DÞB; (32)

can be used to reduce the characteristic matrix (18) to the
form
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Qij
AB ¼ �̂ABðh �gij � �CD

��Cji ��DjjÞ

þ
�
2
detfŵgdh
dðdetfŵgÞ � h

�
�̂AC

��Cji�̂BD
��Djj: (33)

As before, this will be satisfied by trivial shake modes,
with polarization ~�A that is transverse to the current across
the discontinuity in the sense specified by (24), since for
such a mode—regardless of the particular linear or non-
linear functional form of the equation of state—the char-
acteristic equation will reduce to the quadratic form

ððhþ �LÞ �gij � �TijÞ�i�j ¼ 0; (34)

with �Tij as given by (8).
In the ordinary perfect fluid case this will take the

degenerate form ð �ui�iÞ2 ¼ 0, where �ui is the timelike
(and physically well-defined) unit fluid flow tangent vector
that is characterized by the condition �JAi �u

i ¼ 0, meaning
orthogonality to all the (separately unphysical, since target
coordinate dependent) currents, and in terms of which the
stress-energy tensor will take the familiar form �Tij ¼
h �ui �uj þ P �gij.

As before, there will also be a set of nontrivial sound
type modes with polarization that is longitudinal in the
sense specified by (26), for which the characteristic equa-
tion will reduce to the quadratic form�

h �gij þ 2

�
detfŵgdh
hdðdetfŵgÞ � 1

�
ð �Tij � L �gijÞ

�
�i�j ¼ 0; (35)

which is what characterizes the ordinary sound cone in the
familiar perfect fluid case.

VI. EXTENDED WITTEN MODELS

The physical relevance of the perfectly harmonious
category presented in the immediately preceding section
is obvious, at least in the case of the ordinary elastic solid
and fluid applications for which the target-space dimension
is q ¼ 3. However, for the study of the simply harmonious
category, as presented in the section before that, some
physical motivation needs to be provided. In the case for
which the target space is one dimensional (and for which
simply harmonious means the same thing as perfectly
harmonious) such a justification was provided by the dem-
onstration [13,14] that such models are what is appropriate
for the macroscopic description of string defects in simple
kinetically linear field models of a subcategory proposed
by Witten [12]. The purpose of the present section is to
present a straightforward extension of Witten’s subcate-
gory that can form string defects which will be shown in
the following section to be macroscopically describable by
simply harmonious models of a less trivial kind, with
two—or higher—dimensional target spaces that are
curved.

Within the category characterized by a Lagrangian of the
forced-harmonic type [3], the original Witten subcategory

and the extensions considered here are characterized by
two essential properties of which the first is that of having a
(3þ q)-dimensional target space X of the ordinary flat
kind, so that the symmetry group of the kinetic part Lkin of
the Lagrangian is 0f3þ qg. The second property is that the
target space is, however, endowed with a potential function

V̂ depending on just two scalar combinations, namely, a
squared ‘‘Higgs amplitude’’ �2 and a squared ‘‘carrier
amplitude’’ X2. These are obtained by decomposing the
target space as a direct product of a two-dimensional
‘‘Higgs field’’ space and a (qþ 1)-dimensional ‘‘carrier
field’’ space, so that the symmetry group of the whole
Lagrangian,

L ¼ Lkin � V̂ ; (36)

will be generically broken down to the direct product,
0f2g � 0fqþ 1g, of a Higgs field symmetry group having
the form 0f2g with a ‘‘carrier’’ symmetry group having the
form 0fqþ 1g. The idea is that the potential should be such
that the 0f2g symmetry of the Higgs part is spontaneously
broken, so that the vacuum will admit the occurrence of
string type topological defects (which will be ‘‘local’’ if the
symmetry algebra of the Higgs field part is ‘‘gauged’’)
containing fields whose internal symmetries are just those
of the carrier group 0fqþ 1g.
The Higgs field space can be taken to have flat coordi-

nates �1 and �2, say, which can be conveniently thought
of as the real and imaginary parts of a complex field

�1 þ i�2 ¼ �eic ; (37)

in terms of which the two-dimensional Higgs field part of
the target-space metric will be

dŝ2hig ¼ d�12 þ d�22 ¼ d�2 þ�2dc 2; (38)

and corresponding Higgs field amplitude will be given by

�2 ¼ �12 þ�22 : (39)

Similarly the carrier field space can be taken to have flat
target-space coordinates, Xa say, a ¼ 1; . . . ; qþ 1 in terms
of which the carrier metric contribution will be

dŝ2car ¼ �abdX
adXb; (40)

where �ab is the unit matrix, and the carrier amplitude
itself will be given by

X2 ¼ �abX
aXb: (41)

These contributions combine to give the complete metric
on the flat target space X as dŝ2hig þ dŝ2car, which means

that the kinetic part of the Lagrangian will take the form

Lkin ¼ Lhig þ Lcar; (42)

with
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Lhig ¼ � 1

2
ððD��

1ÞD��1 þ ðD��
2ÞD��2Þ

� F�	F
�	

16
e2
; (43)

and

Lcar ¼ �1
2�abðr�X

aÞr�Xb; (44)

where the internal gauge coupling of the Higgs field part
has been incorporated by the use of the covariant differen-
tiation operation that is given by

D��1 ¼ r��
1 �A��

2;

D��2 ¼ r��
2 þA��

1;

where A� is a Uf1g gauge form with curvature F�	 ¼
2r½�A	�, for which Gothic letters have been used to in-

dicate that, although mathematically analogous, this inter-
nal gauge field is not meant to be physically interpretable
as the ordinary electromagnetic field. For a small but non-
zero value of the coupling constant e this gauge field
enables the vortex defects of the model to be locally
confined—without the logarithmic energy divergence for
which a long range ‘‘infrared’’ cutoff would otherwise be
needed.

In his original formulation [12] Witten made the further
postulate that, as well as this internal gauge coupling of the
Higgs field, there would also be an external gauge coupling
of the carrier field part to an analogous Uf1g gauge form
A	, with curvature F�	 ¼ 2r½�A	�, that was meant to be

interpreted as that of an ordinary electromagnetic
field, with its own extra Lagrangian contribution
F�	F

	�=16
e2. However—unless the corresponding cou-

pling constant, e say, is set to zero—such a coupling
engenders technical trouble by reintroducing the logarith-
mic infrared divergence that had been removed by the other
gauge coupling.

The present treatment will be based on the supposition
that gauge self-coupling of the carrier field part is weak
enough to be neglected, so that the divergence problem is
avoided, but this does not exclude allowance for passive
coupling to an external background of electromagnetic or
other conceivable radiation. It will nevertheless be sup-
posed that such radiation is sufficiently weak to allow the
gauge to be chosen so that the corresponding gauge form
(namely, A	 in the electromagnetic case) to be taken to be
zero in a neighborhood that is large compared with the
internal dimensions of the defect, so that within this neigh-
borhood there will be no further loss of generality in taking
the kinetic part of the Lagrangian to have the simple form
(43).

The original Witten model was characterized by q ¼ 1,
so that the carrier target-space coordinates could be con-
sidered as components of a complex field X1 þ iX2 ¼
Xei�. What I refer to as the minimally extended Witten

model is characterized by q ¼ 2, so that the carrier sym-
metry group will have the non-Abelian form 0f3g, instead
of the Abelian form 0f2g that it had in the original Witten
model.
In a more elaborate—nonminimal—extension proposed

for consideration by Lilley et al. [23] the carrier space
dimension is taken to be given by qþ 1 ¼ 4. Instead of
retaining its full symmetry group 0f4g, these authors took
the carrier space to be endowed with a complex structure
by grouping its coordinates into a pair of complex fields
X1 þ iX2 and X3 þ iX4, so that the carrier symmetry group
is reduced to the formUf2g. The latter has the structure of a
direct product of an SUf2g group (which Lilley et al. took
to be gauged) with a Uf1g group (which they left as merely
‘‘global,’’ but which could just as well be taken to be
coupled to ordinary electromagnetism).
In all these cases the flat metric (40) of the (qþ 1)-

dimensional carrier part can be rewritten as

dŝ2car ¼ dX2 þ X2d�̂2; (45)

where d�̂2 is the metric on the relevant symmetry-orbit

space �X, which will be the unit q-sphere as given in terms
of some system of coordinates �A by an expression of the
form

d�̂2 ¼ ĝABd�
Ad�B: (46)

More particularly, for the minimally extended model char-

acterized by q ¼ 2, the standard choice �1 ¼ �̂ and �2 ¼
’̂ will be obtained by setting X1 ¼ X sin�̂ cos’̂, X2 ¼
X sin�̂ sin’̂, and X3 ¼ X cos�̂. In terms of these, the
spherical metric components will be given by a prescrip-

tion of the familiar form ĝ11 ¼ 1, ĝ12 ¼ 0, ĝ22 ¼ sin2�̂.
The basic idea behind cosmic string theory, as developed

at first most notably by Kibble [15,24], was that short,
effectively straight string segments in a locally uniform
background neighborhood could be approximated by
Nielsen-Olesen type vortex solutions of the underlying
field model. The presence of longitudinal currents in the
vortex was excluded by the rather strong kind of cylindrical
symmetry postulated by an ansatz of the Nielsen-Olesen
type, but was admitted by a weaker kind of cylindrical
symmetry ansatz that was subsequently introduced by
Witten [12]. As shown by the recent work of Lilley et al.
[23] even the weaker kind of cylindrical symmetry ansatz
proposed by Witten is incompatible with the simultaneous
presence of several noncommuting longitudinal currents,
whose treatment will therefore require an ansatz of an even
weaker kind that will be introduced in the next section,
whereby it is required that the cylindrical symmetry should
hold only approximately in the relevant locally uniform
background neighborhood.
Provided the external gauge coupling is sufficiently

weak for its self-coupling to be neglected, it will be pos-
sible to choose the gauge so that the corresponding

BRANDON CARTER PHYSICAL REVIEW D 82, 103531 (2010)

103531-6



(electromagnetic) gauge form A	 vanishes in the neighbor-
hood under consideration. The field equations for the re-
maining internal gauge form A	 and for the flat target-
space components will then be expressible in kinetically
decoupled form as a first subsystem consisting of

r	F
�	 ¼ 4
e2ð�2D��1 ��1D��2Þ; (47)

and

D�D
��1 ¼ 2

@V̂
@ð�2Þ�

1; D�D
��2 ¼ 2

@V̂
@ð�2Þ�

2;

(48)

for the gauge form and the Higgs field, and a second
subsystem given simply by

r�r�Xa ¼ 2
@V̂
@ðX2ÞX

a (49)

(in which a ¼ 1; . . . ; qþ 1) for the carrier field.

VII. WITTEN’S WEAK SYMMETRYANSATZ

Following Witten [12], attention will now be restricted
to configurations in which the Higgs subsystem is subject
to the same symmetry conditions as in a simple Nielsen-
Olesen type vortex (for which the carrier subsystem is
absent). This means that in a flat space-time, with respect
to cylindrical coordinates for which the metric is

ds2 ¼ d%2 þ %2d�2 þ dz2 � dt2; (50)

the Higgs field and its gauge form are postulated to be
longitudinally symmetric in the strong sense, to the effect
that �1 and �1 are independent of z and t, but they are
required to be axially symmetric only in the weak (albeit
strict [3]) sense, meaning modulo an action of the primary
symmetry group Of2g, so that the phase c in (37) is
allowed to have an angle dependence of the form

c ¼ n�; (51)

where n is a fixed integer winding number, while the
amplitude � can depend only on %. The corresponding
ansatz for the internal gauge field is that it should have the
form

A �dx
� ¼ Ad�; (52)

in which the quantity A is also a function only of %.
Still following Witten [12], it will be postulated that the

carrier subsystem is axisymmetric in the strong sense—
meaning that the field components Xa are all independent
of�—so that using a prime for differentiation with respect
to z and a dot for differentiation with respect to t, their
dynamical equations (49) will take the form

1

%

d

d%

�
%
dXa

d%

�
¼ €Xa � X00a þ 2

@V̂
@ðX2ÞX

a: (53)

An ansatz of the restrictive Nielsen-Olesen type postu-
lated by Kibble [24] would also require staticity and cy-
lindrical symmetry in the strong sense, meaning _Xa ¼ 0
and X0a ¼ 0, so that the components Xa should depend
only on %. The system of field equations would thereby be
reduced from four to two dimensions, namely, those of a
flat cross section with fixed longitudinal coordinate values
that can, without loss of generality, be taken to be t ¼ 0
and z ¼ 0. Macroscopic quantities such as the string en-
ergy per unit length will then be obtainable by integration
over the cross section.
Witten’s innovation [12] was to recognize that such a

reduction to a two-dimensional system on a flat cross
section will still be obtainable from a less restrictive ansatz
whereby the longitudinal symmetry of the carrier field is
required to be only of the weak type. TheWitten ansatz can
be decomposed into two successive conditions, of which
the first is that the amplitude X can depend only on %, so
that

_X ¼ X0 ¼ 0 (54)

but that subject, of course, to the ensuing restaints, namely,

�abX
a _Xb ¼ 0; �abX

aX0b ¼ 0; (55)

the longitudinal gradients _Xb and X0b are allowed to have
nonvanishing values. The second condition of the Witten
ansatz is that these gradient fields themselves should be
longitudinally symmetric in the strong sense. It is this
second condition that will have to be relaxed in the work
that follows.
There will be no obstacle to the implementation of such

a Witten type symmetry ansatz provided the relevant

symmetry-orbit space �X, say (meaning the quotient of
the carrier field space by the action of its symmetry group),
happens to be flat—as in the single carrier component case
originally considered by Witten, as well as in multicom-
ponent Abelian cases that have been considered more
recently [11]. In such cases a linear symmetry-preserving

map from the z, t plane to �X will be available as a frame-
work for parallel propagation of the field on the sample
cross section at t ¼ 0, z ¼ 0, so as to construct a solution
that remains valid for all values of t and z. Subject to the
choice of a system of flat coordinates �A on the symmetry-

orbit space �X, the Witten ansatz simply amounts to taking
uniformly constant values for �0A and _�A. The supplemen-
tary requirement of invariance under the discrete symme-
tries of time and parity reversal imply the further restriction
that the initial value of �A at t ¼ 0, z ¼ 0 be uniform over
the cross section, meaning independent not just of � but
also of %.
Such an ideal procedure will unfortunately be available

only for a restricted choice [23] of the values of �0A and _�A

if—as in the cases we are concerned with here—the rele-

vant q-dimensional symmetry-orbit space �X is curved so
that its symmetry algebra is non-Abelian, with the
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implication that Lie transport operations with respect to
different generators will fail to be mutually consistent. In
order to obtain an effectively two-dimensional description
on a sample cross section at t ¼ 0, z ¼ 0, in cases involv-
ing currents aligned with symmetry generators that do not
commute, the Witten type weak symmetry ansatz will need
to be replaced by something less restrictive.

VIII. THE LOCAL GEODICITYANSATZ

For the treatment of a generic current configuration,
what I propose is something describable as the local geo-
dicity ansatz, whereby one is enabled to start from arbi-
trarily chosen uniform values of �A and its derivatives �0A
and _�A on an initial cross section at t ¼ 0, z ¼ 0. This
ansatz retains the first condition of the Witten ansatz, as
embodied in (54) and (55), but instead of a further sym-
metry requirement the second condition of the local geo-
dicity ansatz is that the value of �A throughout a finite
space-time neighborhood of the cross section should be
obtained by the standard process of geodesic extrapolation

with respect to the metric ĝAB on �X. According to this
prescription, a coordinate pair fz; tg maps to a position
specified by unit parameter value 
 ¼ 1 on the affinely
parametrized geodesic �Af
g specified at 
 ¼ 0 by the
tangent

d�A

d

¼ t _�A þ z�0A : (56)

So long as one is concerned with derivatives of at most
second order, which is all that is needed for the field
equations in question, the application of this ansatz is
very easily achievable by choosing to work with local
coordinates such that the relevant connection components
vanish. In such a system the local geodicity ansatz simply
means that all the second derivatives will also vanish:

�̂ A
B
C ¼ 0 ) €�A ¼ _�0A ¼ �00A ¼ 0: (57)

When the symmetry-orbit space �X is flat, this ansatz is
evidently equivalent to a weak symmetry ansatz of the kind
introduced by Witten. The advantage of the prescription

(57) is that it is applicable even when �X is curved, and its
disadvantage in that case is that it is not exactly applicable
everywhere simultaneously, but only on the chosen cross
section at t ¼ 0, z ¼ 0. It can, however, be adopted as a
very good approximation so long as �A is restricted to a

range that is small compared with the curvature scale of �X.
The concrete implementation of such an approximation

procedure is conveniently achievable, for the extended
Witten models introduced above, by taking the local coor-

dinates on the symmetry-orbit space �X to be specified by
simply setting

�A ¼ Xa

X
; A ¼ a� 1; a ¼ 2; . . . ; qþ 1: (58)

By substituting this in (40), one obtains the q-spherical
metric (40) in the explicit form given by

d�̂2 ¼ �ABd�
Ad�B þ ð�AB�

Ad�BÞ2
1� �2

; (59)

in which the deviation from flatness is attributable just to
the last term, which will be negligible so long as the
dimensionless quantity

�2 ¼ �AB�
A�B (60)

is very small compared with unity.
In the minimally extended case, for which q ¼ 2, this

metric will be that of an ordinary 2-sphere, with coordi-
nates expressible as

�1 ¼ sin�̂ sin’̂; �2 ¼ cos�̂; (61)

in terms of spherical coordinates of the usual kind, for
which

d�̂2 ¼ d�̂2 þ sin2�̂d’̂2: (62)

Adoption of the convention that �A ¼ 0, on the chosen
initial cross section, as specified by t ¼ 0, z ¼ 0, is equiva-
lent to requiring there that

X1 ¼ X; Xa ¼ 0 8 a � 1; (63)

which implies by (54) that the first derivatives of X1 will
vanish there,

_X 1 ¼ 0; X01 ¼ 0; (64)

and by (55) that its second derivatives will be given
there by

€X1

X
¼ ��AB _�A _�B;

_X01

X
¼ ��AB _�A�0B ;

X001

X
¼ ��AB�

0A�0B :

(65)

Since the metric (59) has the form required for the local
geodicity ansatz to take the form (57), whereby the second
derivatives of �A all vanish where �A ¼ 0, it follows that
the second derivatives of the other components of Xa will
also vanish there,

€X a ¼ _X0a ¼ X00a ¼ 0 8 a � 1: (66)

We thereby obtain

€X 1 � X001 ¼ ŵX; €Xa � X00a ¼ 0 8 a � 1; (67)

where ŵ is defined according to (19) as the trace of the
target-space tensor
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ŵ AB ¼ �0A�0B � _�A _�B;

so that, where �A ¼ 0, it will be given, independently of
%, by

ŵ ¼ �ABð�0A�0B � _�A _�BÞ ¼ 1

X2
�abðX0aX0b � _Xa _XbÞ:

(68)

Under these circumstances, the dynamical equations of
the carrier subsystem (53) will be satisfied automatically
for a � 1, so this subsystem reduces to just a single non-
trivial equation, which will take the form

1

%

d

d%

�
%
dX

d%

�
¼

�
ŵþ 2

@V̂
@ðX2Þ

�
X: (69)

This can be seen to be independent of the internal dimen-
sion q, and thus exactly the same as that of its analogue for
the original unextended Witten model. It is evident that
the carrier contribution to the kinetic part (44) of the
Lagrangian density (44) will also reduce to the same
form as for the original Witten model, namely,

Lcar ¼ �1
2ŵX2: (70)

Within the framework of the local geodicity ansatz, the
preceding work establishes that in terms of the constant

parameter ŵ and the radially dependent field variable X2

the carrier contribution in the extended model is indistin-
guishable from the carrier contribution in the original

model. It follows that, in terms of the scalar trace ŵ, the
extended model will share, with the original Witten model,
an equation of state of exactly the same simply harmonious
form for the ensuing string model Lagrangian,

�L ¼
Z

2
%Ld%; (71)

as obtained [13,14] by integration over the cross section
using field values satisfying the dynamical equations con-
sisting of (69) for the carrier amplitude in conjunction with
the Higgs subsystem consisting of (47) and (48).

It is to be remarked that instead of interpreting the

independent variable ŵ in the simply harmonic equation

of state as the trace of the target-space tensor ŵAB, it can
equivalently be characterized as the trace

�w ¼ �wi
i; (72)

of the world sheet tensor defined by (28), which in the local
neighborhood where �Ai

A vanishes will take the simple
form �wij ¼ ĝAB�

A
;i�

B
;j. As well as having the same trace,

�w ¼ ŵ; (73)

the target-space tensor ŵAB and base-space tensor �wij

share their quadratic invariant

�w i
j �wj

i ¼ ŵA
BŵB

A; (74)

which can thereby be seen to be positive definite, due to the
Euclidean signature of ĝAB (whereas the signature of the
two-dimensional world sheet metric �gij is Lorentzian).

IX. CONCLUSIONS

The upshot of the foregoing work is that the extension of
Witten’s field model will have vortices macroscopically
describable by a conducting string model of simply har-
monic type, in the sense of being governed by a Lagrangian
depending just on the trace �w of the base-space tensor �wij

defined by (28) as the pullback of the prescribed target-
space metric ĝAB. It is instructive to present the properties
of such models using a preferred world sheet reference
frame of orthonormal type, meaning �g00 ¼ �1, �g11 ¼ 1,
�g01 ¼ 0, that is chosen so as to diagonalize the pullback
�wij, of which the nonvanishing components will be the

eigenvalues that are given in terms of the invariants �w and
�wi

j �wj
i by the expressions

�w00 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�w2

4
� detf �wg

s
þ �w

2
;

�w11 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�w2

4
� detf �wg

s
� �w

2
;

(75)

in which the relevant invariant determinant, namely, that of
�wi

j, is defined as

detf �wg ¼ �w0
0 �w1

1 � �w0
1 �w1

0 ¼ 1
2ð �w2 � �wi

j �wj
iÞ: (76)

It is to be noticed that positive definite character of the
target metric ĝAB entails the non-negativity of the eigen-
values,

�w 00 � 0; �w11 � 0; (77)

and hence the nonpositivity of the determinant:

ŵ A
BŵB

A � ŵ2 ¼ �2 detf �wg � 0: (78)

It is also to be observed that the determinant will neces-

sarily vanish—meaning that the equality ŵA
BŵB

A ¼ ŵ2

will automatically be satisfied so that either �w00 or �w11

will be zero—in the special case [23] for which the cur-
rents happen to be all aligned with the same one-parameter

subgroup generator in �X, which is the only kind of con-
figuration for which a stationary circular vorton type equi-
librium state will be possible.
In terms of the eigenvalues �w00 and �w11, the correspond-

ing nonvanishing components of the surface stress-energy
tensor (8) will be given by the formulas

�T 00 ¼ � �w00 � �L; �T11 ¼ � �w11 þ �L; (79)

in which �L and � depend only on the trace, �w ¼ �w11 �
�w00.
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The original Witten field model gave rise to an ensuing
conducting string model that was of ordinarily elastic type
in the sense of having a target-space dimension q that was
the same as the space dimension p (not the space-time
dimension pþ 1) of the supporting world sheet, which in
the string case is simply p ¼ 1. It was found [13] that a
good approximation for the equation of state of the ensuing
string model could be provided in terms of a microscopic
length scale �? and a couple of mass scales m and m?—
depending [14] on the particular functional form of the

interaction potential V̂—by the formula

�L ¼ �m2 � 1
2m

2
? lnf1þ �2

?
�wg; (80)

which gives

� ¼ m2
?�

2
?

1þ �2
?
�w
;

1

�

d�

d �w
¼ ��2

?

1þ �2
?
�w
: (81)

The work in the preceding sections implies that the mini-
mally extended Witten model with the same interaction

potential V̂ will give rise to an ensuing conducting string
model that will be governed by the same equation of state,
even though it will not be of the ordinary elastic type with
q ¼ p, but of the hyperelastic type [17] with q ¼ pþ 1,
that is to say with a target space having a dimension that is
equal to the space-time dimension of the supporting world
sheet, namely, pþ 1 ¼ 2 in the string case under consid-
eration. It can be seen from the characteristic Eq. (27) that,
according to (81), the speed cL of longitudinal sound type
perturbations relative to the preferred reference system will
be given in this hyperelastic case by

c2L ¼ 1� �2
?ð �w00 þ �w11Þ

1þ �2
?ð �w00 þ �w11Þ

; (82)

where �w00 and �w11 are the—necessarily non-negative—
eigenvalues given by (75), of which the sum in (82) will be

expressible as �w00 þ �w11 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ŵA

BŵB
A � ŵ2

q
.

It is to be remarked that the dually related [10,25]
‘‘electric’’ and ‘‘magnetic’’ varieties of the ordinarily elas-
tic case obtained from the original unextended Witten
model can be considered as degenerate limits of this hy-
perelastic case: the electric variety is characterized by �w ¼
� �w00 with w11 ¼ 0, and the magnetic variety is charac-
terized by �w ¼ �w11 with �w00 ¼ 0.

As well as the longitudinal modes characterized by (81),
there will, of course, be extrinsic wiggle perturbation of the
world sheet, with propagation speed cE, which according
to (7) will be given in terms of the energy densityU ¼ T00

and the string tension T ¼ �T11 by the universally
[10,26] valid formula

c2E ¼ T
U

: (83)

The novelty in the minimally extended Witten model, as
contrasted with the original Witten model, is that the

ensuing string model has a third kind of perturbation
mode. As well as the longitudinally polarized sound type
modes governed by (82) and the extrinsic wiggle modes
governed by (83), there will also be intrinsic ‘‘shake’’
modes characterized (with respect to the curved target

space �X) by the transverse polarization condition (24)
with propagation speed cT given according to (25) by

c2T ¼ 1; (84)

which simply means that (like the perturbation modes of
the underlying field model with the flat target space X)
these shear type modes will travel at the speed of light.
Having completed the presentation of this simply har-

monious hyperelastic string model, we still need to con-
sider the extent to which its use is justifiable as a
macroscopic string description of vortex defects in the
minimal extension of the Witten field model. The fore-
going derivation relied on a local geodicity ansatz whose
applicability depended on a local flatness approximation
whose range of validity is limited by the requirement that
the dimensionless magnitude �2 defined by (60) should
remain small.
Subject to the conditions of (57), the local geodicity

ansatz means that for small but nonzero values of t and z
the value of �A will be given approximately by �A ¼
_�Atþ �0Az, or more concisely, in terms of the world sheet
coordinates �0 ¼ t and �1 ¼ z, by �A ¼ �A

;i�
i. It follows

that the required magnitude �2 will be given in this ap-
proximation by the formula �2 ¼ �wij�

i�j. Thus more

particularly, with respect to the preferred longitudinal co-
ordinate system characterized by (75), it will be given by

�2 ¼ �w00t
2 þ �w11z

2: (85)

For the approximate flatness approximation to be utiliz-
able, the necessary condition,

�2 � 1; (86)

must be satisfied in a range of t and z that is large compared
with the thickness � of the vortex defect, which entails the
requirements �w00�

2 � 1 and �w11�
2 � 1.

This leads us to the final conclusion, which is that the
condition for negligibility of the curvature term in (59)—
and thus for the validity of the simply harmonious con-
ducting string model—will be expressible simply as an
upper bound on the quadratic field gradient invariant

ŵA
BŵB

A [and hence by (78) also on ŵ2] in the form

ŵ A
BŵB

A�4 � 1: (87)

So long as the string thickness � is small enough, this
condition will hold automatically by (78) as a consequence
of the requirement for stability against longitudinal pertur-
bations, namely, the condition c2L > 0, which according to
(82) will take the form

ð2ŵA
BŵB

A � ŵ2Þ�4
? < 1: (88)
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Within this allowed range there will clearly be no danger of
violation of (87) provided that (as is usually supposed in
the cosmological context envisaged by Witten) the length
scales associated with the carrier field are relatively large,
and the mass scales correspondingly small, compared with
those associated with the Higgs field:

�2
? � �2; m2

? � m2: (89)

There is never any possibility of instability of the shake
modes characterized by (84), and the usual extra require-
ment c2E > 0, for stability against extrinsic wiggle

perturbations—which is equivalent to the condition that
the tension T given by (79) should be positive—makes
little difference in the circumstances of (89), as it can
be seen that it will hold automatically if (88) is
replaced by the only marginally stronger condition

ð2ŵA
BŵB

A � ŵ2Þ�4
? < 1� expf�2m2=m2

?g.
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