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[1] Space and laboratory collisionless plasmas are most often out of local thermodynamic
equilibrium. In particular, their charged particle velocity distributions usually differ from
simple Maxwellian distributions and exhibit a great variety of anisotropies and
components such as suprathermal beams and tails. Here we propose a new model
responsible for a “local” origin of electron suprathermal tails. The model is based on
adding a high and a low frequency external forcing to the Vlasov-Poisson system of
equations. The first one represents mainly the thermal noise electric field generated by
charge separation effects. The second one represents the energy injection resulting from
the energy cascade generated by the large scale fluid (MHD) turbulence. We find that in
typical solar wind conditions, our model could be the base of a full three dimensional,
electromagnetic model capable of explaining the local generation of the electron halo
population observed on the electron distribution function.
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1. Introduction

[2] Space and laboratory collisionless plasmas are most
often out of local thermodynamic equilibrium. In particular,
their charged particle velocity distributions usually differ
from simple Maxwellian distributions and exhibit a great
variety of anisotropies and components such as suprather-
mal beams and tails [see Christon et al., 1989; Collier,
1999; Maksimovic et al., 2005] which have been a rich
source of problems for space physics research.

[3] This is the case for the electron distribution function
in the solar wind which displays both beam like and tail
components. Indeed, the electron distribution function in the
range of energies less than <2 keV in the solar wind is
typically observed to consist of at least three components.
The main component is a roughly isotropic, Maxwellian
“core” with density 7. ~ 10—40 cm > and mean temper-
ature 7. ~ 10 eV. The second component is a diffuse,
roughly isotropic halo with density n, ~ 0.01-0.03 N,
which appears at energies greater than ~60 eV with an
equivalent temperature 7), ~ 7—8T,. The third component
consists of a beam like population, the “strahl”” which is
superposed on the halo and flows along the local magnetic
field, with densities ng,;,, comparable to but usually smaller
than 7, streaming away from the sun and carrying an
electron heat flux which is an important channel for energy
transport in the solar wind [e.g., Feldman et al., 1998].

[4] There is as yet no generally accepted theoretical
model which explains these observations. In particular,
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one does not have an unambiguous answer to the basic
question of whether these suprathermal tails are generated in
the solar wind or whether they originate in the solar corona.

[5] The standard interpretation is that the core electron
population is collisional and bound by the interplanetary
electrostatic potential, its properties being regulated locally.
The “‘strahl” electrons instead are thought to be coronal
electrons having velocities large enough to escape without
colliding with the background plasma; their temperature is
indeed close to the electron temperature in the corona
~150 eV. Furthermore suprathermal electrons escaping
from the corona and propagating away from the sun along
the magnetic field conserve their magnetic adiabatic invari-
ant in a decreasing magnetic field [Olbert, 1983], so that
their velocity should tend to align with the local magnetic
field. This is in contradiction with the Ulysses observations
by Hammond et al. [1996], who found instead that the strahl
width broadens substantially between 1.3 and 2.3 AU,
indicating the existence of an efficient scattering mechanism.
Coulomb collisions can be invoked but their efficiency
decreases with the plasma density and the energy of the
electrons [Fairfield and Scudder, 1985]; the observed rapid
decrease in strahl beam size with increasing energy is
strikingly similar to the decrease in the collision age (i.e.,
the number of collisions suffered by a particle during its
travel from the sun to the point of observation) related to the
strong velocity dependence of the electron mean free path, as
noted by Ogilvie et al. [2000]. When the density of the solar
wind plasma is sufficiently small, as in the high speed wind,
coulomb collisions for strahl electrons are almost completely
suppressed, and they form a strong anisotropic component in
the halo, with a small angular width and an amplitude which
varies with the solar wind plasma density [Ogilvie et al.,
2000].
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[6] In this scenario, the halo result from the scattering of
strahl electrons over spatial length of the order of many AU
[Scudder and Olbert, 1979a, 1979b; Saito and Gary, 2007].
As one could expect from a very weakly collisional popu-
lation, the suprathermal electron component displays a high
degree of variability: the halo density #n,, the angular width
and intensity of the strahl electrons all vary widely.

[7] An anticorrelation between n, and total 7, is well
known, and has been interpreted as either as being due to
pressure balance [Gosling, 1999] or to different collisional
histories of the plasma [Hammond et al., 1996). Phillips and
Gosling [1990] demonstrated theoretically that when the
density is high, electrons are both more isotropic and cooler.
Since the core population is more collisional than the halo
we would expect it to be more cooled than the halo in the
high density periods. Indeed, the temperature gradients of
the core and halo populations are all flatter than the R~
law expected for the adiabatic expansion of an isotropic
distribution. The core temperature 7, has a radial gradient
intermediate between isothermal and adiabatic, with the
steeper gradients for denser winds. The gradient of the halo
temperature 7), has a similar density dependence, but is
much smaller.

[8] Moreover, Maksimovic et al. [2005] in a recent study
of the radial evolution of the electron distribution functions
in the fast solar wind between 0.3 and 1.5 AU (using data
from Helios, Ulysses and Wind) have shown that n,/n,
increases while ng,.,;,/n. decreased as the distance from the
sun increases as one would expect if the halo electrons
result from the diffusion of strahl electrons.

[o] Several studies using various forms of the collision
operator (Coulomb collisions) appear also to support par-
tially this picture from the theoretical point of view (see for
example, Lie-Svendsen et al. [1997], Lie-Svendsen and Leer
[2000], and Pierrard et al. [2001]) by suggesting that this
mechanism may diffuse a significant proportion of the strahl
electrons and even populate the sunward directed part of the
halo.

[10] Other models, based on the quasilinear interactions
of the electrons and a suprathermal level of plasma waves or
whistler waves, have also been developed; indeed it was
shown by Hasegawa et al. [1985] that a nonthermal level of
waves can enhances velocity diffusion so as to produce a
power law distribution. Ma and Summers [1999], Leubner
[2001], and Vocks and Mann [2003] applied these models in
the solar wind context.

[11] However, some observations are not easily explained
within this scenario. First, ng,,;/n. is at most comparable
to, but usually smaller than n,/n, at 0.3 AU [Maksimovic et
al., 2005] what does not seem to be compatible with the
hypothesis that halo electrons are an increasing scattered
part of the strahl electrons.

[12] Second, if the halo electrons result from the Cou-
lomb diffusion of strahl electrons, one should observe a
very weak halo component when the background electron
density decreases as is observed in the high speed wind.
This is contrary to the observations by Maksimovic et al.
[1997] who fitted the electron distribution functions (as
measured by the Ulysses spacecraft) averaged over all
directions (thereby eliminating the strahl component) with
Kappa distribution functions; they observed that the impor-
tance of suprathermal tails i.e., & = n;/n. was higher in fast
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solar winds than in the slow wind. They suggested that this
observation supported kinetic exospheric theories of the
solar wind expansion since, in this model, an increased
number of escaping coronal electrons is associated with a
faster solar wind flow. However, such an argument should
apply only to the strahl electrons and not to the isotropic
halo.

[13] Third, globally, « = n,/n. and n, = n. + n, are
anticorrelated while 7, and 7}, do not seem to depend on n,
[Skoug et al., 2000]. Skoug et al. [2000] interpreted this
anticorrelation as a consequence of a statistical indepen-
dence between n,. and nj,, what seems to be hard to
understand if the halo electrons result from the scattering
of the strahl electrons on the core electrons.

[14] A local origin of electron suprathermal tails has also
been proposed by Vinas et al. [2000] in a different context
(in the near solar atmosphere), suggesting that among the
low frequency large scale waves expected to be found in the
corona, some displayed a strong magnetic field aligned
electrostatic component. If such an electrostatic sinusoidal
field is used as an initial condition, the Vlasov-Poisson
evolution of a one dimensional plasma leads to the excita-
tion of a high level of Langmuir waves and the formation of
high energy tails in the electron distribution. However, the
initial electric potential energy they used in their simulations
was of the order or larger than the average electron kinetic
energy. Such large electric fields are not observed in the
solar wind and such an interpretation cannot be used in the
present context. Recently, a weak turbulence approach has
been used involving Langmuir and ion sound waves in the
framework of a beam-plasma interaction. It has been shown
that self-consistent generation of energetic electron tails by
turbulent acceleration is possible only in the presence of
some ‘“collisional” effect. In particular, the authors point
out that the spontaneous scattering term, proportional to the
g plasma parameter, is responsible for the high energy tail
generation. Therefore suprathermal electron tails cannot be
produced in a purely mean field (Vlasov) approach [Yoon et
al., 2006; Rhee et al., 2006].

[15] We shall use as a starting point the observation that
the “quasi-thermal” electrostatic noise continuously ob-
served in the solar wind [see Meyer-Vernet and Perche,
1989; Chateau and Meyer-Vernet, 1991] is in equilibrium
with the halo electrons, the peak intensity being proportional
to 7}, and we shall investigate under what conditions one can
generate locally such an equilibrium between suprathermal
electron tails and an enhanced level of plasma oscillations.
For this, we make use of two external forcing terms in the
standard Vlasov-Poisson system of equations for a collision-
less plasma, aiming to model two typical ingredients of
collisionless space plasmas (as for example the solar wind)
discussed in the following. The first forcing, at high fre-
quencies, models the electric field generated by charge
separation due to thermal noise (discretized particles effects).
It is a standard way of introducing ““collisions” in mean field
simulations except that here, for the sake of simplicity, we do
not impose self-consistency which means that our forcing is
independent of the distribution function. Since the high
frequency forcing models an electric field, it is present in
both the proton and the electron Vlasov equations.

[16] The second forcing, at low frequencies, is meant to
model quasi-neutral, relatively large scale density fluctua-
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tions. It appears in the Vlasov proton equation only. Indeed,
in the case of a vanishing high frequency forcing, the low
frequency force generates only quasi-neutral fluctuations,
without any significant charge separation. The origin of the
density fluctuations can be thought as to be produced by a
non linear cascade generated by the large scale fluid (MHD)
turbulence. This kind of effect has been observed in recent
Vlasov-hybrid simulations where finite amplitude, large
scale Alfvén waves propagating along the mean magnetic
field generate density fluctuations with typical wavelengths
of the order or less than the ion skin depth (F. Valentini et
al., private communications).

[17] Because of the complexity of the full problem, we
limit our model to purely electrostatic simulations. The
main reason is that at the typical frequencies we are
concerned with, f> 10 Hz, cluster observations show that
the RMS value of the magnetic fluctuations is smaller than
1073 nT [C. Lacombe et al., private communications]. On
the other hand, the RMS value of the electric noise in a solar
wind Maxwellian plasma at the core temperature is of the
order of 107" mV/m. Therefore the magnetic term in the
Lorentz force is negligible with respect to the “collisional”
electric field, while it may play a role in the isotropisation of
the super thermal particles [Saifo and Gary, 2007].

[18] As a final remark, we note that the solar wind is a
weakly magnetized plasma, wc./w,. ~ 0.1, (Where w,, and
wpe are the electron cyclotron and plasma frequency).
However, the collisional time associated to the high fre-
quency forcing is much larger than the electron gyroperiod.
Therefore the corresponding “collisional” effects should
strongly be affected by the mean magnetic field leading to a
strong anisotropy in the magnetic field direction. Since a
full 3D, magnetized Vlasov simulation is beyond our
computational capabilities, we consider here the 1D elec-
trostatic limit aligned with the magnetic field. One may
speculate that the whistler diffusion discussed by Saito and
Gary [2007] will help the system to reach a more isotropic
situation. Therefore our approach must be considered as a
starting point toward a fully three-dimensional, magnetized
model.

2. Vlasov Equation With Random Forces

[19] Collisionless plasma dynamics is dominated by col-
lective processes when the Debye length Ap is much greater
than the typical interparticle distance (7 being a typical

density)
4\ V3
e (1)

i.e., when Ap > A« In the Vlasov description the discrete
character of the particles has been lost; the particles advance
in an “average” electric field £ determined by solving the
Poisson equation using the one particle distribution
functions, f.(x, v, f) and f,(x, v, 1),

g_f = e[/ﬁ,()@ v, t)dv - /fe(xa v, t)dV:|
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However, even at equilibrium when E = 0, it remains
a fluctuating electric field Es related to the thermal
motion of discrete charged particles. The RMS order of
magnitude Ey of this electric noise for a Maxwellian
plasma is of the order of the average unscreened electric
force between neighboring protons, Ex = e/\Z which, in

dimensionless units, (£ = mvy wyle, see below)
becomes
—-1/3
Ex ~np'/ (1)
where np =

A(4m \h/3) > 1. For tg/pical solar wind
parameters, n ~ 10 cm > and A\p = 10° cm, we get np =
4 10" and E« ~ 3 107* In dimensional units, the
normalizing electric field turns out to be £ ~ 15 mV/m
and the RMS fluctuating electric field Ex ~ 5 107> mV/m.

[20] This “thermal” level of electrostatic noise may be
much higher if the distribution functions are not Maxwel-
lian. There is a close relationship between these electrostatic
fluctuations and Coulomb collisions. In particular, the
Lennard Balescu equation, which describes the effects of
cumulative “soft” collisions in a plasma,

o _ 0

Y — | P04y @

can be viewed as the quasilinear diffusion of electrons in
this noise field with the diffusion coefficient given by

2 ik,
D(v) =% //dwdkﬁ<E2(k,w) > 6(w—Kk-v)

and a corresponding expression for the friction coefficient
[Alexandrov et al., 1984]. Therefore the interplay of
spontaneous emission and absorption of plasma waves by
electrons described by equation (2) leads to a relaxation
toward local thermal equilibrium, i.e., Maxwellian distribu-
tion functions, unless some external forcing is exerted on
the plasma. We shall argue that if this external forcing is due
to the effects of “low frequency” waves, then the relaxation
is toward distribution functions with weakly heated core but
with suprathermal tails.

[21] Spontaneous emission as well as the other particle
discreteness effects and the corresponding random electro-
static fluctuations are not included in the mean field
approximation where the evolution of the particle distribu-
tion functions are described by the Vlasov equations. We
shall therefore turn to a method similar to that used to model
collisions in PIC codes, the so-called ‘“collision field”
model [Jones et al., 1996; Mannheimer et al., 1997; Qiang
et al., 2000; Albright et al., 2001], where e — e collision
effects are represented as a stochastic motion of a single
electron, rather than as a pairwise process. The dynamical
and stochastic diffusion coefficients for the Langevin equa-
tion can be represented by velocity dependent quantities,
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Figure 1. (a) Square root of the space averaged squared proton density, (én,,), and charge fluctuations,
(6g), in the presence of a low frequency forcing acting on the protons only. (b) Same as Figure 1a for the
same low frequency forcing applied also on the electrons. The square root of the space averaged squared
electron density, (6n,), curve turns out to be superposed to the protons in Figure 1a and to the maximum
between the protons and charge fluctuations curve in Figure 1b.

which are simply added to the macroscopic electromagnetic
forces acting on the electrons; if the random forces are
Markovian, this is a priori fully equivalent to the Fokker-
Planck equation (2) describing the effect of long range
Coulomb collisions.

[22] The basic set of equations are the stochastic differ-
ential equations

E—EQJ+VZM@

dx dv e D
2 Ov

where (() is a normally distributed random variable, of unit
variance. Such random forces can also be used to describe
the effects of collisions in the Vlasov equation; however,
existing models do not take into account the plasma
screening effect in the interparticle interactions, described
by the presence of the dielectric constant in the Lennard
Balescu equation. Therefore we have used an oversimpli-
fication of the random force, without any attempt to self
consistency, by introducing random external electric
charges 6q(x, f) with given statistical properties in the
Poisson equation. The resulting electric field (and its
potential) is then the superposition of the self consistent
field E(x, #) (with potential ¢) and a random electric field

E,(x, t) (with potential Uy). In dimensionless variables,
Poisson’s equation may be written as

O(E + E, '
%: (/f,,dv—/fedv)—l—(Sq(x,t);
99 0y

HF
ox’

Ox

3)

E= E =—

3. Model

[23] We solve the Vlasov-Poisson system of equations
in the (x, v) phase space for an electrons protons plasma
and we add an external high frequency (hereafter HF)
forcing modeling (consistently to our “simple” model,
equation (3)) the electric field induced by discrete particles
effects. We also introduce a low frequency (hereafter LF)
forcing in the proton Vlasov equation which models the
motions driven, for example, by an energy cascade of
the large scale fluid fluctuations. In dimensionless units,
the equations read:

¥e , e ¥ _
STVt (Ve—eVT,) 22 =0 (4)
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Figure 2. HF (left) and LF (right) forcing. The HF forcing is defined in equation (9) with N = 1244, h, =
30, i, = 1. The LF forcing is defined in equation (7) with K = 62, £, = 150, £, = 50.

W O me W _
E“E_m_p(w_”v‘p”_ equﬂp)m_o (5)
qub:/fgdv—/];dv; E=-V¢ (6)

These equations are normalized on the following character-
istic quantities: the mass of the electron m,, the character-
istic density 7, the electron thermal velocity v, ., the Debye
length )\p and the inverse of the plasma frequency w;el. The
clectric field is normalized to E = mvy, wpl/e. We use
periodic boundary conditions in the interval x € [0, L,]. In
all simulations presented here we have taken m./m, =
1/1836.

[24] In equations (4)—(5) ¥,z and Wy are the potentials
of the external forcing varying on a low (proton) and
high (electron) timescale, 7, ~ +/my/me, and Tyr ~ 1,
respectively.

3.1. Low Frequency Forcing

[25] The LF forcing term in equation (5) is characterized
by a number of space-time Gaussian pulses of the following
form:

K
Uir =ALr Z age” 0 e gl (7)
=1

where A4;  is a normalization factor such that max(VV; . =
1), a, € [—1, 1] are random amplitudes, K is the total
number of “events”, x; and ¢, the random distributed

positions and /¢, and ¢, the characteristic length and
timescale.

[26] This forcing is characterized by the fact that it drives
ballistically several spatial plasma compressions or rarefac-
tions. Despite its simple form, it contains the essential
features of more complicated analytical expression, as
checked in a number of numerical experiments (not shown
here) where the global effect on the plasma of more
complicated analytical forms of W, can be represented as
a sum of plasma compressions and rarefactions on the
proton density.

[27] Since the LF forcing term models the long proton
timescale motions, we assume that the electrons response is
adiabatic, without producing any charge separation:

ne = ny /e, ne > my, (8)
Such a response of the electrons is well modeled in a Vlasov
simulation by inserting the LF forcing term only in the
proton equation, equation (5). This is demonstrated by
performing two simulations using only the LF forcing term
(i.e., € = 0 in equations (4)—(6) with=1, K=4,/(,=40, (,=
25). The only difference between the two runs A and B is
that in run B we apply the LF forcing term also on the
electron Vlasov equation. In these simulations, the forcing
term is characterized by four events (K = 4), namely two
plasma rarefactions at x = 500 and x = 800 with maximum at
t; = 100 and #; = 2600, respectively, and two plasma
compression at x = 200 and x = 700, with maximum at t, =
900 and #, = 3550, respectively.

[28] The results are summarized in Figure 1 where we
plot (6 n,) and (6 ¢) resulting from run A and B, frames (4)
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Figure 3. Proton density and the electric field in the (x, #) plane for a simulation with 7= 0.03 and € =

0.03.

and (B), respectively (here 6 ¢ =n,, — n. and (..) is the square
root of the spatial average of the squared fluctuations).

[29] When the LF forcing is applied to the protons only,
frame (4), we observe a very low level of charge separation
completely uncorrelated with respect to the forcing. The
electron density fluctuations follow a Boltzmann distribu-
tion, equation (8). On the other hand, when also the
electrons are forced by the LF term, frame (B), the response
is non adiabatic producing strong charge separation during
the (four) forcing events; in this case the electron response
is able to screen the LF forcing leading to a much lower
protons fluctuations level. In the following, the LF forcing
will never be applied to the electrons, as consistent with
equation (4) where such term is absent.

0.10

0.05¢1 ]

0.00 =L\ SPTPTA RSP

-0.05 1

-0.70

0 200 400 600 800 71000
x

0.10

0.05¢1 ]

0.00F

-0.05 1

-0.70

0 200 400 600 800 1000
T

3.2. High Frequency Forcing

[30] We consider a HF forcing term not completely
random, but with a certain degree of coherence superposed
to the thermal noise. This external forcing is characterized
by several high frequency events randomly distributed in
space and time. The explicit form is given by:

N
U = A 3 =3/ 140 -/ 0] (g)

n=1

where Ay is a normalization factor such that max(VWyy =
1), N is the total number of “events”, x,, and ¢, the random
distributed positions, /%, and 4, the characteristic length and
timescale and, finally, ¢, and d,, random numbers between 0

0.10

0.05¢ ]

o.ooWﬁ

-0.05¢ 1

-0.70

0 200 400 600 800 71000
x

0.10

0.05

0.00

-0.05

-0.70

0 200 400 600 800 1000
x

Figure 4. Proton fluctuations (thick continuous line) and the charge separation 6 ¢ = n, — n,

(continuous line) at £ = 1500, 2000, 2500, 3000.
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(Left) Shaded isocontours of the e.d.f. in the phase space strip 0 < x < 400, =7 < v, <

—3.5 at t = 4000. (Right) e.d.f. versus v, averaged in x at £ = 0, 4000. The simulation has been

performed with n = 0.03 and ¢ = 0.03.

and 1. We have tried a number of different analytical not
Gaussian-like forms for W= which show that the global
effect of any complicated forcing term can be represented
as a sum of plasma pulses. Therefore we have chosen to
use the Gaussian profile (for the potential) in order to
control the characteristic length scales injected into the
system. The parameters of the HF and LF forcing are
chosen such to induce electrons fluctuations on a typical
length scale of the order of a tenth of Debye lengths, i.c.,
Aur ~ 20 Ap, and protons fluctuations with a typical
length scale of the order of hundred of Debye lengths, i.c.,
Arr ~ 100 Ap. A visual representation of the forcing used
in the simulations is shown in Figure 2 where we draw
the space-time shaded isocontours of the LF and HF
forcing in the (x, #) space for 1000 < ¢ < 3500.

4. Numerical Results

[31] We integrate the Vlasov-Poisson (with external forc-
ing) system of equations (4)—(6) in the (x, v., v,) phase
space defined by x € [0, L,], ve € [=Ve, Ve] v, € [V, V]
We take a spatial interval L, of 10°> A, and a electron to
proton mass ratio m./m, = 1/1836. The numerical parame-
ters are: v, = 8.0, ¥, = 0.2, dx = 0.5, dv, = 0.016, dv, =
0.0004 (here dv, and dv, represent the velocity space grid
length). The forcing parameters are the same as in Figure 2.

[32] We take at the initial time a homogeneous thermal
plasma with a single Maxwellian population for both
electron and protons with the same temperature. The
corresponding initial particle densities and temperatures
are normalized to one:

1

e X’Ve,tZO = — 7‘%/2’
s ) V2r
! —2/2 (10)
ﬁ,(x,vp,t: O) [ — / u;
V2T

where p = m./m,,.

[33] We present now the results of a simulation with n =
0.03 and € = 0.03. In Figure 3 we show the proton density
fluctuations, ¢ n,, and the electric field fluctuations, ¢ E, in
the (x, 7) plane. First of all, despite K > 1, the LF forcing
generates, for ¢+ > 2000, a central bump with two lateral
cavities. The proton density variations are of the order of
|6n,| ~ 0.05, which can be considered as consistent with the
typical values observed in the solar wind. In the absence of
the HF forcing, the electrons would screen almost com-
pletely such density inhomogeneity following the Boltza-
mann distribution of equation (8) thus almost completely
neutralizing any charge separation induced by LF motions.
However, plasma oscillations of the order of |§ E| ~ 0.025
are generated by the HF forcing term and concentrate more
and more, in the form of “wave trains”, in the density
cavities where they are amplified to larger values, |0E| ~
0.2, (see the right frame of Figure 3). This process is well
outlined in Figure 4 where we plot the proton fluctuations
(thick continuous line) and the charge separation 6 g = n,, —
n, (continuous line) at ¢ = 1500, 2000, 2500, 3000. We see
that the progressive formation of proton inhomogeneities is
accompanied by the smoothing of d¢ in the central bumped
region, 400 < x < 600, and by the concentration and
amplification of § ¢ in the cavities around x; ~ 270 and
X, ~ 700. Then, due to the presence of plasma density
gradients, the relatively large amplitude plasma oscillations
break due to the self-intersection of electron trajectories. As
a results, a significant fraction of the electrons are acceler-
ated to larger velocity values (see for example Bulanov et al.
[1990]). The ejection of the electrons is clearly seen in
Figure 5, left frame, where we draw the shaded isocontours
of the e.d.f. at =4000 in a strip of the phase space, 0 < x <
400, —7 < v, < —3.5. We see that the e.d.f. is characterized
by elongated finger structures extending toward larger
velocity values, a typical signature of the acceleration
process. In Figure 5, right frame, we show the x-averaged
e.d.f. versus v, at ¢ = 0, 4000. We see the formation of an
halo for velocity values v, > 5. According to Bulanov et al.
[1990], the characteristic breaking time of plasma oscilla-
tions with A of the order of several Debye lengths in a

7 0of 9



A06103

plasma with an inhomogeneous scale length /;,,, ~ 100\,
(as in our simulation) is of the order of ¢,, ~ 100—
1000 wgl. This is consistent with the observed forma-
tion time of the halo on the e.d.f. in our simulation.

[34] We have performed many other simulations by
varying the amplitude of the LF and HF forcing. The results
are summarized as follows.

[35] When the HF forcing is reduced below € = 0.01, no
significant halo formation is observed since the electric field
fluctuations in the density cavities is not sufficiently large to
accelerate the electrons even in the presence of the same
plasma inhomogeneities. When instead the HF forcing is
unchanged, ¢ = 0.03, but the proton density gradients are
reduced to 6n, < 0.01 by decreasing the LF forcing, still no
halo is observed due to the lack of the interaction of the
plasma oscillations with plasma inhomogeneities (in other
words, t,, becomes too large). Furthermore, in the limit
where no HF forcing is present, ¢ = 0, and for increasing
values of the LF forcing, the system generates stronger and
stronger density cavities up to |6n,| ~ 0.4 for n = 0.1
associated with a low amplitude |E™| ~ 0.005, quasi
stationary, multipolar electric field. However, even with
such a non realistic high proton fluctuation level, no halo
is produced at all since the electron response is purely
adiabatic, as discussed in section 3.1, and no high frequency
motions are generated. Finally, in the limit case of no LF
forcing, 17 = 0, but for a very strong HF forcing, ¢ > 0.1, we
observe the generation of a halo on the e.d.f. Indeed, the
plasma oscillations are so strong, |[E™| ~ 1, that self-
generated proton density cavities are produced by ponder-
omotive effects [Califano and Lontano, 1999] and, in any
case, the amplitude of the Langmuir oscillations are so large
that wave-breaking occurs even in the limit of a homoge-
neous plasma. However, such a large level of HF fluctua-
tions seems unrealistic for solar wind applications.

5. Conclusions

[36] In this paper we have considered the problem of the
self-consistent generation of an electron halo in a weakly
collisional plasma. The “collisions™ are (roughly) modeled
by an external high frequency forcing added to the electron
and proton Vlasov equation. A low frequency forcing is
added to the proton Vlasov equation only in order to induce
quasi-neutral density fluctuations as a background condition
reminiscent of solar wind conditions. The results can be
summarized as follows.

[37] If the high frequency external forcing is the only
source of motions, nothing much happens when this forcing
is not too strong, i.e., when the corresponding acceleration
during the coherence time is smaller than the thermal
velocity, in our unit when ek, < 1 (see equation (9)).

[38] On the other hand, adding a low frequency forcing
strongly modifies the picture for the same relatively mod-
erate values of the high frequency forcing. We observe that
Langmuir wave packets are trapped in the proton density
cavities, leading to the generation of suprathermal electrons
forming a halo on the distribution function. It is worth to
underline that, as soon as the density fluctuations are
generated, the halo formation is observed to occur over a
time which scales, very roughly, as €', in agreement with
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the diffusive nature of a “collisional” mechanism. In order
to maintain our computations within reasonable time limits,
we have taken values of ¢ about two order of magnitudes
larger than the values obtained from equation (1) using solar
wind parameters. However, if we extrapolate the above
scaling, we can speculate that the timescale to establish a
halo in solar wind conditions will be of the order of a few
ten of seconds comparable with the time resolution of the
instruments. It is worth to underline that the main ingredient
used here to generate suprathermal electron tails is the
discrete particle effect modeled, in this work, by the “non
Vlasov” high frequency forcing term, a result which is
somewhat similar to what was recently found by Yoon et al.
[2006] and Rhee et al. [2006].

[39] The main limit of our calculations is that they are one
dimensional. For this reason, we cannot directly compare
our results to the solar wind plasma. On the other hand, for
typical values of the solar wind magnetic field, the electron
gyroperiod is much shorter than the electron collision time.
Therefore one can expect that the one dimensional picture
of our model is not totally unrealistic. However, this could
explain only the formation of a halo population along the
magnetic field, i.e., in the sunward and antisunward direc-
tions. One may speculate that diffusion by Whistler Waves,
as discussed by Saito and Gary [2007], will isotropise the
distribution of the halo. This diffusion cannot be fully
isotropic since the whistler waves propagate mainly along
the magnetic field which may explain the depletions ob-
served at times in the perpendicular direction.

[40] In conclusion, the results we have described are
encouraging, but must be only considered as a first step
toward a 3D magnetized approach.
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