
HAL Id: hal-03732417
https://hal.science/hal-03732417

Submitted on 30 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Oscillons and quasibreathers in the varphi4
Klein-Gordon model

Gyula Fodor, Péter Forgács, Philippe Grandclément, István Rácz

To cite this version:
Gyula Fodor, Péter Forgács, Philippe Grandclément, István Rácz. Oscillons and quasibreathers
in the varphi4 Klein-Gordon model. Physical Review D, 2006, 74, pp.124003. �10.1103/Phys-
RevD.74.124003�. �hal-03732417�

https://hal.science/hal-03732417
https://hal.archives-ouvertes.fr


Oscillons and quasibreathers in the �4 Klein-Gordon model
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Strong numerical evidence is presented for the existence of a continuous family of time-periodic
solutions with ‘‘weak’’ spatial localization of the spherically symmetric nonlinear Klein-Gordon equation
in 3� 1 dimensions. These solutions are ‘‘weakly’’ localized in space in that they have slowly decaying
oscillatory tails and can be interpreted as localized standing waves (quasibreathers). By a detailed analysis
of long-lived metastable states (oscillons) formed during the time evolution, it is demonstrated that the
oscillon states can be quantitatively described by the weakly localized quasibreathers. It is found that the
quasibreathers and their oscillon counterparts exist for a whole continuum of frequencies.
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I. INTRODUCTION

Nonlinear wave equations (NLWE) lie at the heart of
many fields in physics including hydrodynamics, classical
integrable systems, field theories, etc. Let us give a proto-
type class of NLWE for a real scalar field, �, in 1� n
dimensional space-time:

 �
@2�

@t2
���n�� � F���; where ��n� �

Xn
i�1

@2

@x2
i

; (1)

where the real function, F���, defining the theory is given,
for example, as F��� � ���2 � 1� for the ‘‘canonical’’
�4 model, and F��� � sin��� for the sine-Gordon (SG)
model.

A particularly interesting class of solutions of NLWE is
the class of nonsingular ones exhibiting spatial localiza-
tion. Such spatially localized solutions have finite energy
and can correspond to static particlelike objects or to
various traveling waves. In field theory, localized static
solutions have been quite intensively studied in a great
number of models in various space-time dimensions, see
e.g. the recent book of Sutcliffe and Manton [1].

Spatially localized solutions with a nontrivial time de-
pendence (i.e. not simply in uniform motion) of NLWE are
much harder to find. In fact, the simple qualitative argu-
ment stating that ‘‘anything that can radiate does radiate,’’
indicates that the time evolution of well localized Cauchy
data leads generically to either a stable static solution plus
radiation fields, or the originally localized fields disperse
completely due to the continuous loss of energy through
radiation. Since Derrick-type scaling arguments exclude
the existence of localized static solutions in scalar field
theories given by Eq. (1) in more than two spatial dimen-
sions, for n > 2 one does not expect to find localized states
at all at the end of a time evolution. Simplifying somewhat
the above, one could say that in the absence of static
localized solutions, localized initial data cannot stay for-
ever localized. In fact, for localized initial data there is a
time scale which is the crossing time, �c (the time it takes
for a wave propagating with characteristic speed to cross

the localized region), and a priori one would expect the
rapid dispersion of initially localized Cauchy data within a
few units of �c. One of the rare examples of a time-periodic
solution, staying localized forever is the famous
‘‘breather’’ in the 1� 1 dimensional sine-Gordon (SG)
model.

In the 1� 1 dimensional canonical (with a double well
potential) �4 theory the pioneering work, based on pertur-
bation theory by Dashen, Hasslacher, and Neveu [2], in-
dicated the possible existence of breatherlike solutions. A
completely independent numerical study by Kudryavtsev
[3] has also indicated that suitable initial data evolve into
breather-type states. These results stimulated a number of
investigations about the possible existence of nonradiative
solutions in the 1� 1 dimensional �4 model. After a long
history Segur and Kruskal [4] and Vuillermot [5] have
finally established that in spite of the above-mentioned
perturbative and numerical indications time-periodic spa-
tially localized finite energy solutions (breathers) do not
exist. Even if genuine localized breathers in the 1� 1
dimensional �4 model are absent, in view of the perturba-
tive and numerical evidence for the existence of long-
living states ‘‘close’’ to genuine breathers, it is a natural
question how to describe them. Boyd has made a detailed
study of time-periodic solutions which are only weakly
localized in space (i.e. the field � possesses a slowly
decreasing oscillatory tail) but as long as the amplitude
of the oscillatory ‘‘wings’’ are small they still have a well-
defined core. Boyd has dubbed such solutions ‘‘nanopter-
ons’’ (small wings); we refer to his book for a detailed
review [6].

Quite interestingly, Bogoluvskii and Makhankov have
found numerical evidence for the existence of spatially
localized breather-type states in the spherically symmetric
sector of �4 theory in 3� 1 dimensions [7]. These breath-
erlike objects observed during the time evolution of some
initial data are called nowadays ‘‘oscillons.’’ Most of the
observed oscillon states are unstable having only a finite
lifetime. They lose their energy by radiating it (slowly) to
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infinity. More recent investigations started by Gleiser [8,9]
have revealed that oscillons do form in a fairly large class
of scalar theories in various spatial dimensions via the
collapse of field configurations (initial data) that interpo-
late between two vacuum states of a double well potential.
Such a spherically symmetric configuration corresponds to
a bubble, where the interpolating region is the bubble wall
that separates the two vacuum states at some characteristic
radius. These works have led to a renewed interest in the
subject.

It has been found that oscillons have extremely long
lifetimes which is already quite remarkable and makes
them of quite some interest. These long-living oscillon
states seem to occur in a rather generic way in various field
theories involving scalar fields in even higher dimensional
space-times [10] and according to [11] oscillons are also
present in the non-Abelian SU(2) bosonic sector of the
standard model of electroweak interactions at least for
certain values of the pertinent couplings. Such oscillons
might have important effects on the inflationary scenario
[12] as they could form in large numbers retaining a
considerable amount of energy. A slightly different mecha-
nism for the formation of long-lived objects (quasilumps)
during first order phase transitions has been investigated in
[13]. In a recent study [14] of a 1� 1 dimensional scalar
theory on an expanding background exhibited very long
oscillon lifetimes, while in Refs. [15,16] extremely long-
living oscillons have been exhibited in a 1� 2 dimensional
sine-Gordon model.

The sophisticated numerical simulations by Honda and
Choptuik of the Cauchy problem for spherically symmetric
configurations in the �4 theory in 3� 1 dimensions
[17,18] have revealed some interesting new features of
the oscillons. In particular, in Ref. [17] it has been found
that by a suitable fine-tuning of the initial data the lifetime
of the oscillons could be increased seemingly indefinitely,
and it has been conjectured that actually an infinitely long
lived, i.e. nonradiative, spatially localized solution exists.
Furthermore, the existence of such a solution would even
provide the explanation of the ‘‘raison d’être’’ and of the
observed genericness of long-lived oscillons. The eventual
existence of a nonradiative breather in this simple and
‘‘generic’’ �4 model in 3� 1 dimensions would be clearly
of quite some importance. It should be noted that, in quite a
few spatially discrete models, localized time-periodic
‘‘discrete breathers’’ have been shown to exist and they
are being intensively studied [19].

One of the motivations of our work has been to clarify if
nonradiative breathers indeed exist and to find them di-
rectly by studying time-periodic solutions of the NLWE.
Our numerical results led us to conclude that no localized
(with finite energy) time-periodic solutions exist in the �4

model. On the other hand, this study has led us to under-
stand the oscillon phenomenon better and we present a
simple but quantitatively correct scenario explaining some

important properties of the oscillons (such as their exis-
tence and their long lifetimes). Our scenario is based on the
existence of a special class of time-periodic solutions
which are weakly localized in space. Such solutions (which
have infinite energy) will be referred to as quasibreathers
(QB).

In the present paper, we make a detailed study of oscil-
lons in the (already much studied) �4 model in 3� 1
dimensions. Using a previously developed and well tested
time evolution code where space is compactified, thereby
avoiding the problem of artificial boundaries [20] (see also
[21]), we compute some long-time evolutions of Gaussian-
type initial data. We observe that long-living (6000–7000
in natural units) oscillon states are formed from generic
initial data. These oscillons radiate slowly their energy and
for short (as compared to their total lifetime) time scales
they can be characterized by a typical frequency, !. This
frequency increases slowly during the lifetime of the os-
cillon and when ! reaches a critical value !c � 1:365
there is a rapid decay. By fine-tuning the initial data, one
can achieve that the oscillon state instead of rapidly decay-
ing evolves into a near time-periodic state, whose fre-
quency is nearly constant in time and
1:365<!< 1:412. The existence of such near-periodic
states (referred to as resonant oscillons) has been already
reported in Ref. [17], and we also observe an increase of
the lifetime of these states without any apparent limit by
fine-tuning the parameters of the initial data to more and
more significant digits. There are, however, also some
discrepancies. We find that clearly distinct near-periodic
states for various values of the pulsation frequency
1:365<!< 1:412 exist. According to our results, there
is little doubt that for any value of ! in this range a
corresponding near-periodic oscillon state exists. Our
data clearly shows that the near-periodic states also radiate,
although very weakly. The radiation becomes weaker and
weaker as !!

���
2
p

.
On the other hand, we have implemented a multidomain

spectral method in order to find directly stationary, time-
periodic solutions of the NLWE and compare them to the
long-living oscillon states obtained from the time evolu-
tion. This makes it possible to attack the problem of finding
directly the putative time-periodic breather(s). (One could
easily generalize our method for the quasiperiodic case.)
We find that there is a large family of time-periodic solu-
tions which are only weakly localized in space, in that they
have a well defined core, and an oscillatory tail decreasing
as / 1=r. We single out a special family among them by
minimizing the amplitude of their oscillatory tail. This
definition comes close to minimizing the energy density
of the oscillatory tail. These solutions are the closest to a
breather and for that reason we call them quasibreathers.
They seem to exist for any frequency, 0<!<

���
2
p

,
although in this paper we exhibit QBs only with 1:30<
!<

���
2
p

. The amplitude of the oscillatory tail of the QBs
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becomes arbitrarily small as the frequency approaches the
continuum threshold defined by the mass of the field, !!���

2
p

. Our numerical evidence speaks clearly against the
possible existence of a truly localized, breatherlike solu-
tion periodic in time, for the frequency range 1:30 � ! �
1:412 contrary to the claims of Ref. [17]. In view of these
conflicting numerical findings it is now highly desirable to
try to find an analytical proof or disproof of the existence of
a localized nonradiative solution to settle this issue. We do
not expect the situation being qualitatively different from
the 1� 1 dimensional case, and although the proofs of
Refs. [4,5] are not applicable for the 3� 1 dimensional
case, we see no reason that their negative conclusion would
be altered.

More importantly, we believe to have made a step to-
wards understanding the mechanism behind the existence
of such long-living oscillonic states without the need to
invoke genuine breather solutions, which even if they
would exist would be clearly nongeneric, while the QBs
seem to be generic. The total energy of the quasibreathers
is divergent, due to the lack of sufficient (exponential)
spatial localization, hence they are not of direct physical
relevance. Nevertheless a careful numerical study shows
that the oscillons produced during the time evolution of
some suitable Cauchy data are quantitatively very well
described by the quasibreathers. By comparing the
Fourier decomposition of an oscillon state at some instant,
t characterized by a frequency, !�t�, obtained during the
time evolution with that of the corresponding QB, we have
obtained convincing evidence that the localized part of the
oscillon corresponds to the core of the QB of frequency
!�t�. What is more, the oscillatory tail of the QB describes
very well the standing wave part of the oscillon. Our
oscillon scenario is based on this analysis and leads us to
propose that any oscillon contains the core and a significant
part of the oscillatory tail of the corresponding QB. The
time evolution of an oscillon can be approximatively de-
scribed as an adiabatic evolution through a sequence of
QBs with a slowly changing frequency !�t�. This oscillon
scenario is based on the existence and of the genericness of
the QBs.

Although in this paper we have investigated a specific
�4 theory in 3� 1 dimensions with spherical symmetry,
we expect that our main results remain true in other theo-
ries without any restriction on the symmetry properties of
the configurations, i.e. in general oscillons correspond to
spatially cut off QB’s. In view of the results of Ref. [22]
indicating that nonsymmetric oscillons evolve towards
symmetric ones (at least in 1� 2 dimensions), we expect
that the long time evolutions will be dominated by spheri-
cally symmetric configurations.

This paper is organized as follows. In Sec. II we study
the time evolution of localized, Gaussian-type initial data
in �4 theory and investigate some important aspects of the
oscillon solutions. In Sec. III we present an infinite system

of coupled ordinary differential equations (ODE’s) ob-
tained by the Fourier-mode decomposition of the NLWE
Eq. (3) and discuss some of its properties. Section IV is
devoted to the description of the spectral methods used to
solve this system. In particular, we carefully deal with the
asymptotic behavior of the Fourier modes. Various con-
vergence tests are exhibited. The quasibreathers are dis-
cussed in Sec. V, the results on our oscillon scenario are
discussed in Sec. VI, and conclusions are drawn in
Sec. VII.

II. TIME EVOLUTION

A. The nonlinear wave equation of the �4 theory

We consider the following �4 theory in 1� 3 dimen-
sions whose action can be written as

 S �
Z
dtd3x

�
1

2
�@t��2 �

1

2
�@i��2 �

1

4
��2 � 1�2

�
; (2)

where � is a real scalar field, @t � @=@t, @i � @=@xi, and
i � 1, 2, 3. In this paper we shall restrict ourselves to
spherically symmetric field configurations, when the cor-
responding NLWE is given by

 ��;tt � �� � ���2 � 1�; where � � @2
r �

2

r
@r:

(3)

The energy corresponding to the action (2) can be writ-
ten as

 E � 4�
Z 1

0
drr2�; (4)

where � denotes the energy density

 � � 1
2�@t��

2 � 1
2�@r��

2 � 1
4��

2 � 1�2: (5)

It is easy to see that the finiteness of the total energy is
guaranteed by �! �1�O�r�3=2� as r! 1.

B. Numerical techniques

We briefly outline here the main ideas for the imple-
mentation of our evolution code to solve numerically the
Cauchy problem for Eq. (3). Assuming �! 1 as r! 1,
we introduce the new field �̂ as

 ��t; r� �
�̂�t; r�
r
� 1: (6)

Then the NLWE Eq. (3) takes the form

 r2�@2
r�̂� @2

t �̂� � �̂��̂� r���̂� 2r�: (7)

The next step is to compactify in the spacelike directions
by a suitable coordinate transformation of r. This way we
can guarantee that our computational grid, associated with
a finite-difference scheme, covers the entire physical
space-time, at least in principle. Specifically, a new radial
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coordinate, R, is introduced in the following way:

 r �
2R

��1� R2�
; (8)

where � is an arbitrary positive constant. In the new radial
coordinate, R, the entire Minkowski space-time is covered
by the coordinate domain 0 � R< 1 while spacelike in-
finity is represented by the ‘‘hypersurface’’ R � 1. The
R � const ‘‘lines’’ represent world lines of ‘‘static observ-
ers,’’ i.e. integral curves of the vector field �@=@t�a. In the
compactified representation the field equation, (7), reads as

 R2

�
4�4

�2�1� R2�2
@2
R�̂� @

2
t �̂�

4�3R�R2 � 3�

��1� R2�3
@R�̂

�

� �̂���̂� R����̂� 2R�; (9)

where � is given by

 � �
�
2
�1� R2�: (10)

We remark that the spacelike compactification used here
is a simplified variant of the conformal transformation used
in [20,21]. There instead of the t � const hypersurfaces the
initial data are specified on hyperboloids. Furthermore,
Minkowski space-time is compactified mapping null infin-
ity to finite coordinate values. Since in the present case the
scalar field, �, is massive, i.e. never reaches null infinity,
the hyperboloidal compactification is not essential.

In order to obtain a system of first order equations we
introduce the independent variables �̂t � @t�̂ and �̂R �

@R�̂. Then Eq. (9) can be rewritten as

 @t�̂t �
4�4

�2�1� R2�2
@R�̂R �

4�3R�R2 � 3�

��1� R2�3
�̂R

� �̂
�

�

R
�̂� 1

��
�

R
�̂� 2

�
; (11)

which together with the integrability condition @t�̂R �

@R�̂t and the defining equation @t�̂ � �̂t form a strongly
hyperbolic system of first order differential equations for
the three variables �̂, �̂t, and �̂R (see e.g. [23]). The initial
value problem for such a first order system is known to be
well-posed [24]. Note that the relation @R�̂ � �̂R is pre-
served by the evolution equations, and therefore it corre-
sponds to a constraint equation.

In order to solve the initial value problem for Eq. (11),
we discretize the independent variables t and R. A simple
uniform grid with steps �t and �R is introduced. Spatial
derivatives are calculated by symmetric fourth order sten-
cils. Time integration is done using the ‘‘method of lines’’
in a fourth order Runge-Kutta scheme, following the rec-
ipes proposed by Gustafsson et al. [24]. A dissipative term
proportional to the sixth derivative of the field is added in
order to stabilize the evolution. Since this dissipative term
is also chosen to be proportional to ��R�5, it does not
reduce the order of the applied numerical method, in other

words, its influence is decreased by the increase of the used
resolution. The numerical methods and the actual numeri-
cal code we use for calculating time evolution in this paper
are also based on those developed in [20,21].

A few nonphysical grid points are introduced for both
negative radii R< 0 and for the region ‘‘beyond infinity’’
R> 1. Instead of calculating the time evolution of the R<
0 points, the symmetry property of � about the origin R �
0 is used to set the function values at each time step.
Similarly, �, being a massive field, decays exponentially
towards infinity, consequently all the field values �̂, �̂t,
and �̂R are set to zero for R 	 1 during the entire evolu-
tion. This takes care of the spacelike infinity � � 0 in
Eq. (11). Therefore it is possible to use symmetric stencils
exclusively when calculating spatial derivatives. The grid
point at the origin R � 0 needs special treatment since the
last term as it stands on the right-hand side of Eq. (11) is
apparently singular. However, this term, when evaluated in
terms of the original (nonsingular) field value �, has zero
limit value at R � 0.

Although compactifying in spatial direction restricts the
coordinate R to a finite domain, grid points in our numeri-
cal representation get separated by larger and larger physi-
cal distances as we approach R � 1. This far region, where
shells of outgoing radiation cannot be represented properly,
moves out to higher and higher physical radii as �R
decreases. Numerical simulations with an increasing num-
ber of grid points demonstrate that wave packets of out-
going massive fields get absorbed in the transitional region
without getting reflected back into the inner domain. In this
way our numerical simulations still give a good description
of the field behavior precisely in the central region for very
long time periods. The simple but physically nonuniform
grid together with the help of the dissipation term appears
to absorb outgoing radiation in a similar way to the explicit
adiabatic dumping term method applied by Gleiser and
Sornborger [25]. Furthermore, because of the very low
inward coordinate velocity of light in the asymptotic region
R � 1, the field behavior in the central region is correctly
given for a long time period even after the appearance of
numerical errors at R � 1.

Simulating time evolution of oscillons up to their typical
maximal lifetime of t � 7000 (measured in Minkowski
time units) using spatial resolution of 213 points took
usually a week on personal computers. However, because
of the need of several runs when fine-tuning parameters in
the initial data, we mostly used typical resolutions of 212

spatial points. The parameter � in the coordinate trans-
formation (8) was set to � � 0:05 in our simulations in
order to concentrate approximately the same number of
grid points to the central oscillon region and to the far away
region where the massive fields form high frequency ex-
panding shells. A Courant factor of �t

�R � 1 turned out to be
appropriate to obtain stable simulations with our choice of
�.
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The convergence tests confirmed that our code does
provide a fourth order representation of the selected evo-
lution equations. Moreover, we monitored the energy con-
servation and the preservation of the constraint equation
@R�̂ � �̂R. Most importantly, we compared the field val-
ues which can be deduced by making use of the Green’s
function and by the adaptation of our particular numerical
code to the case of massive linear Klein-Gordon fields [26].
The coincidence between the values in the central region
provided by these two independent methods for long time
evolutions (t � 104 measured in mass units) made it ap-
parent that the phenomena described below should be
considered as true physical properties of the investigated
nonlinear field configurations.

C. Oscillons

Following Refs. [9,17], we start with the following
Gaussian-type initial data:

 �jt�0 � �1 � ��c ��1� exp��r2=r2
0�; @t�jt�0 � 0;

(12)

with �c and �1 being the field values at the center r � 0
and at infinity r � 1 while r0 is the characteristic size of
the bubble at which the field values interpolates between
�c and�1. By fixing�1 � �1 as in [9,17] but varying r0

and �c, Eq. (12) provides a two-parameter family of
smooth and suitably localized initial data. For a large
open subset of the possible initial parameters �c and r0,
after a short transitional period the field evolves into a
long-living localized nearly periodic state, named oscillon
by Gleiser [8]. Although these configurations live much
longer than the dynamical time scale expected from the
linearized version of the problem (i.e. light crossing time),
their lifetime is clearly not infinite. The energy of these
oscillating states is slowly but definitely decreasing in
time, and after a certain time period they quickly disinte-
grate. For the time dependence of the energy in a compact
region, see Fig. 3 of [9]. We illustrate in Fig. 1 two such
oscillon states with rather different lifetimes.

The parameter dependence of the lifetime is illustrated
in Figs. 6, 7, and 8 of [9]. We note that since the final
decaying period is relatively short, furthermore its time
dependence is almost the same for each particular choice
of initial data, the lifetime plots are quite insensitive of the
precise definition of how one measures the lifetime of a
given configuration. In our calculations the lifetime � was
defined by observing when the value of the oscillating field
at the center r � 0 falls (and remains) below a certain
prescribed value (e.g. � � �0:95).

Already Copeland, Gleiser, and Müller have noticed that
a delicate fine structure appears in the lifetime plot. This
peculiar dependence on the precise value of the initial
parameter r0 has motivated the detailed investigation of
Honda and Choptuik (see Figs. 4 and 5 of Ref. [17]). The
calculations have shown that fixing the value �c the life-

time increases without any apparent upper limit when the
parameter r0 approaches some element of a large set of
discrete resonance values r
i . For example, in the case
�c � 1, Honda and Choptuik have found 125 peaks on
the lifetime plot between 2< r0 < 5. These fine-tuned
oscillons at a later stage during their evolution develop
into a state which is very close to a periodic (nonradiating)
one. In Fig. 2 we show the field value at the center for
typical oscillons close to a chosen peak. The seemingly
stable almost periodic stages of the fine-tuned oscillon
configurations will be referred as near-periodic states.
The closer the initial parameters are to the critical value,
the longer the lifetime of the near-periodic state becomes.
Although the period T of the underlying high frequency
oscillations remains constant to a very good approximation
during a chosen near-periodic state, different near-periodic
states, corresponding to various peaks on the lifetime
curve, oscillate with clearly distinct periods in the range
4:446< T < 4:556. Generic oscillon states and even the
not near-periodic initial part of fine-tuned oscillons pulsate
with longer period, in the range 4:6< T < 5.

Generic oscillons with initial data between two neigh-
boring resonance values r
i < r0 < r
i�1 may have already
quite a long lifetime without developing into a near-
periodic state. Plotting the field value at the center r � 0,
one can see a low frequency modulation of the amplitude
(called shape mode by Honda and Choptuik) of the high
frequency basic oscillating mode (see upper plot of Fig. 2).
Oscillons between the next two resonance values r
i�1 <
r0 < r
i�2 are distinguished from those in the previous
interval by the fact that they possess exactly one more or
one less peak associated with these low frequency oscil-
lations on the envelope of the field value��t; 0� before they
disperse. Longer living supercritical states arise when one

 

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0  1000  2000  3000  4000  5000  6000

φ r
=

0

t

φc=1, r0=2.70716

φc=1, r0=2.39   

FIG. 1. The upper and lower envelope of the oscillations of the
field ��r � 0� is shown for the evolution of Gaussian initial data
of the type (12) with two different sets of initial parameters. It is
important to note that the field � oscillates with a nonconstant
period 4:6< T < 5. For generic oscillons the period T shows a
decreasing tendency towards T � 4:6.
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closely approaches a critical value from one of the possible
two directions. Then the last low frequency modulation
peak gets shifted out to a later and later time as one goes
towards the resonance, making room for a near-periodic
state between the last two modulations. Close to the reso-
nance, but on the other side of it, the same long-living near-
periodic state appears, now called subcritical, with the only
difference that at the end the field disperses without form-
ing a last low frequency modulation peak.

D. Results

It was shown in Ref. [17] that close to a resonance the
oscillon lifetime � obeys a scaling law

 �� � lnjr0 � r


0j � �; (13)

where the scaling exponent � has specific values for each
resonance, while the constant � is also different for sub-
critical and supercritical states. Although the lifetime ap-
pears to increase without any limit by fine-tuning the initial
parameter, in practice it is very difficult to achieve very
long lifetimes because one cannot represent numbers very
close to the resonance value due to the limitation implied
by the applied machine precision. Achieving longer life-
time for the near-periodic state is possible by using high
precision arithmetics, although then there is a considerable
increase of the computation time which limits the applica-
bility of this approach. Using ‘‘long double’’ variables on
an appropriate machine, or applying the software ‘‘double-
double’’[27] on a personal computer, we could calculate

with twice as many significant digits than standard double
precision computer variables can represent (i.e. 32 instead
of 16). This way we could improve the fine-tuning and
double the observed lifetime of near-periodic states. In
Fig. 3 we plot the scaling law of the lifetime for oscillons
near three different resonances. Instead of choosing three
resonances with �c � 1, we calculated states close to the
first peak on the lifetime curves corresponding to three
different values of �c. The reason for this was that the
normal, slowly but evidently decaying, oscillon state is the
shortest near the first peak (i.e. no modulation on the
contour curve), thereby we could concentrate computa-
tional resources on the near-periodic state.

In order to clarify what we mean by fine-tuning the
parameter r0 to 16 (or 32) digits and what is the actual
error of the quantities, we present a table (Table I) on the
precise location of the first peak for�c � 1 when perform-
ing fine-tuning with five different numerical resolutions.
For each spatial resolution we could achieve approxi-
mately the same lifetime of approximately � � 1100
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0j is shown

for states close to 3 different resonances. The lower lines plotted
with a given line type represent subcritical, r0 < r
0, states while
the upper lines with the same line type correspond to supercriti-
cal, r0 > r
0, solutions.

TABLE I. The position r
�i�0 of the first peak for �c � 1 using
various resolutions. The number of spatial grid points used for a
specific fine-tuning is ni � 2i. The error is estimated as �i �
jr
�i�0 � r
�12�

0 j. The convergence factor is defined as ci �
log2j�r


�i�2�
0 � r
�i�1�

0 �=�r
�i�1�
0 � r
�i�0 �j.

i ni r
�i�0 �i ci

8 28 2.281 990 488 596 033 6:210�4

9 29 2.281 392 051 715 203 2:110�5

10 210 2.281 371 382 459 355 7:910�7 4.86
11 211 2.281 370 625 452 998 3:110�8 4.77
12 212 2.281 370 594 875 569 4.63
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when the parameter r0 approximated a resolution depen-
dent value to 16 digits. The convergence of the data in-
dicates that the actual position of the peak is at
r
0 � 2:281 370 594 with an error of 10�9.

Our numerical simulations clearly show that the differ-
ent resonance peaks on the lifetime plot correspond to
different near-periodic states. In fact, a one-parameter
family of distinct near-periodic states appears to exist.
This statement is in marked contrast with the claim of
Honda and Choptuik in [17], where in Sec. III A they
claim that the oscillation period is almost the same for all
oscillons and is roughly T ’ 4:6, which corresponds to a
pulsation frequency of ! ’ 1:366. From our numerical
analysis, we can clearly see that the period of the oscil-
lation depends on the resonance considered. In Fig. 4 the
upper envelope of the oscillating field value at the origin is
shown as a function of time for oscillon states close to the
same three resonances as in Fig. 3. In Fig. 5 the time
dependence of the frequency at the origin is shown for
the same three states during the time period where the
oscillation is almost periodic (i.e. during the near-periodic
states). The frequency ! of the oscillations along with its
time dependence at some radius r � �r has been determined
from our numerical results by minimizing the following
integral for the oscillation period T � 2�=!:

 

Z t�t0

t�t0
���t; �r� ���t� T; �r�
2dt (14)

using some suitably chosen integration interval determined
by t0. This procedure, applying polynomial interpolation,
yields significantly more precise frequency values than the
direct use of the fast Fourier transform method, especially
when the time step by which our evolution code outputs
data is not extremely short. Another advantage of our
procedure is it being much less sensitive to the particular

choice of the sampling interval (in this case 2t0) than the
fast Fourier transform algorithm. The relatively small
value of t0 (for example t0 � 10) makes it possible to
monitor relatively sharp changes in the time dependence
of the frequency.

All three near-periodic states show a low frequency
change of ! with a decaying amplitude, with the lowest
frequency modulation belonging to the state with the high-
est !. The amplitudes in Fig. 4 would show a similarly
decaying slight modulation if we would plot them indi-
vidually in time intervals where the oscillations are almost
time periodic. These observations suggest that near-
periodic states of frequency ! also contain a superposition
of states with frequencies !��! where �!=!� 1. In
the next sections we shall see that at least the core part of an
oscillon of frequency! can be extremely well described by
a weakly localized quasibreather of the same frequency.

We emphasize that the three chosen near-periodic states
are typical, i.e. the near-periodic states of all fine-tuned
oscillons (including all peaks belonging to �c � 1) are
qualitatively and quantitatively very similar to them.
Actually, the frequency of all calculated near-periodic
states fell into the interval [1.379, 1.413] spanned by the
frequency of the two chosen first peaks belonging to �c �
�0:4 and �c � �0:7.

On the third plot of Fig. 5, we can also see a slow but
steady decrease of the frequency !. For the other two
states, with frequencies closer to

���
2
p

no such behavior is
apparent in the time interval we could simulate. This slow
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decrease is also manifested in the energy of the configura-
tion. In Fig. 6 we plot the time dependence of the energy
contained inside spheres with three subsequent radii. The
decrease of the energy indicates that the near-periodic state
slowly loses its energy, consequently it cannot be exactly
time periodic. Looking at the energy in the sphere at r �
40:1, we can see that the decrease of energy from t � 1000
to t � 2000 is �E � 0:0041. Taking into account that the
total energy is E � 21:60, we can give a naive estimate on
the lifetime by calculating when the energy would decrease
into its half value at this rate, getting �e � 2:6� 106. We
expect that all near-periodic states radiate, but this radia-
tion is becoming considerably weaker as the frequency gets
closer to

���
2
p

. This expectation is confirmed by the direct
analysis of periodic solutions in the next sections.

In Fig. 6 the curve corresponding to the largest radius
(r � 107:1) indicates how slowly the energy moves out-
wards because of the massive character of the field. The
different endings of the curves belonging to subcritical and
supercritical states illustrate the two kinds of decay mecha-
nism of near-periodic states. In the first, subcritical mecha-
nism, the field quickly disperses, while energy moves
essentially outwards only. In the second supercritical
way, the energy of the field first collapses to a smaller
region near the origin and then disperses to infinity. This
resembles the behavior of some unstable spherical shell,
although no shell structure is visible on the density plots,
being the highest energy density always at the center. The
instability of the near-periodic states with two distinct
kinds of decay mechanisms gives a qualitative explanation
on why it is possible to reach long lifetimes by fine-tuning
the initial parameters.

E. Fourier decomposition of the evolution results

Since during the time evolution the field � becomes
approximately time periodic for any longer living oscillon
state, it is natural to look at the Fourier decomposition of
the results provided by our evolution code. Since the fast
Fourier transform algorithm is very sensitive to the size of
the time step with which our evolution code writes out data,
we use an alternative direct method which turns out to be
significantly more precise in determining the basis fre-
quency and the amplitude of the higher modes. As a first
step, we determine the oscillation period by locating two
subsequent maxima, at instants t1 and t2, of the field at the
origin r � 0. Since t1 and t2 fall in general between two
consequent time slices written out by our evolution code,
we approximate their position by fitting second order
polynomials on the data. It is apparent from our results
that for near-periodic states these maxima correspond to
two consecutive moments of time symmetry not only at the
center but also in a large region around the center to a very
good approximation. After determining the oscillation fre-
quency ! � 2�=�t2 � t1�, we obtain the nth Fourier mode
at a radius r by calculating the following integral using the
output ��t; r� of the evolution code

 �n�r� �
Z t2

t1
���t; r� � 1� exp�in!t�dt: (15)

We note that care must be taken for the first and last
incomplete time steps when evaluating the integral (15).
In the case of exact periodicity and time symmetry, the
imaginary part of this integral would be zero for all n. In
order to check the deviation from time symmetry for
various radii at the moments t1 and t2, we also evaluate
the imaginary part of the integral for each n and verify
whether it is small compared to the real part.

As an example, in Fig. 7 we give the Fourier decom-
position of the �c � �0:7, r0 � 9:382 83 near-periodic

 

FIG. 6. The time dependence of the energy contained in
spheres of radii r � 19:5, r � 40:1, and r � 107:1 for the �c �
�0:4 first peak. The thickness of the curve indicates that the high
frequency oscillation is still not negligible at these high radii.
The different endings of the curves correspond to subcritical and
supercritical states.
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state presented in Fig. 5. The integral (15) was calculated
between two subsequent maximums of the field at the
center at t1 � 5420:22 and t2 � 5424:67, yielding an os-
cillation frequency of ! � 1:412 03. For the decomposi-
tion of a near-periodic state with a lower frequency see
Fig. 9 of [17], where the frequency is ! � 1:38 (page 107
of [18]). From the two plots, one can already see the
general tendencies. As the basis frequency increases to-
wards the upper limit

���
2
p

the oscillon becomes wider,
although with a decreasing amplitude. The influence of
the higher modes (the relative amplitude ratio) is also
getting smaller when the frequency grows.

III. FOURIER DECOMPOSITION OF THE
QUASIBREATHERS

This section is concerned with a direct search for time-
periodic solutions of the NLWE Eq. (3) by means of a
Fourier-mode decomposition of the scalar field �. A sim-
ple parameter counting already indicates that an infinite
number of parameters would be necessary in order to
obtain an exponentially localized breather, so even if
some do exist, it seems to be difficult to produce them
directly. Therefore we look for weakly localized solutions
of Eq. (3), and by analyzing their behavior in the function
of the free parameters we expect to obtain a clear indica-
tion about the existence of truly localized breathers.

A. Equations and their asymptotic behaviors

Since we seek periodic solutions of Eqs. (3), we make a
Fourier-mode decomposition of the form

 ��t; r� � �1� ~� � �1��0�r� �
X1
n�1

�n�r� cos�n!t�:

(16)

We have assumed here that by a suitable choice of the time
origin the solutions are time symmetric. Inserting this form
in Eq. (3) gives rise to a system of coupled elliptic equa-
tions

 

��� 2
�0 � �2
0��0 � 3� �

3

2
��0 � 1�

X1
m�1

�2
m

�
1

4

X1
m;p;q�1

�m�p�q�m;�p�q

��� �2
n
�n � 3�0��0 � 2��n

�
3

2
��0 � 1�

X1
m;p�1

�m�p�n;�m�p

�
1

4

X1
m;p;q�1

�m�p�q�n;�m�p�q; (17)

where �2
n � �2� n

2!2�. In fact we have already regrouped
together all the linear (first order) terms of the correspond-
ing Fourier mode,�n, to the left-hand site of Eqs. (17). We
will make a systematic search for localized solutions of the
system (17). We shall not assume any a priori connection
with the oscillons presented in the previous section for the
possible frequencies, !. As we shall see below, the even-
tual existence of a localized solution can only be possible if
system (17) exhibits some very special properties.

In order to look for regular solutions of Eqs. (17), we
analyze the various asymptotic behaviors of the homoge-
neous solutions of the corresponding operator on the left-
hand side of Eqs. (17).

(i) If �2
n > 0 then there is one regular homogeneous

solution, which falls off exponentially:
exp��j�njr
=r. This function clearly decays suffi-
ciently fast at infinity so that the energy would al-
ways be convergent.

(ii) �2
n � 0 is a degenerate case when the operator is the

usual Laplacian. The nonsingular (decaying) homo-
geneous solution is simply 1=rwhich, however, does
not decay sufficiently fast for the energy to be
bounded.

(iii) If �2
n < 0, both homogeneous solutions tend to zero

at infinity, cos�j�njr
=r and sin�j�njr
=r. As for the
previous case, these functions do not decrease fast
enough to make the energy convergent. Apart from
that, both functions are regular at infinity and this
implies that there is no uniqueness of the solution
which is only defined up to a given phase (for more
details, see Sec. IV C).

Observe that no matter what the value of! is, there always
exists an n!, such that all modes, �nn > n! will be of the
third type (i.e. with �2

n < 0). It is now easy to understand
why, in the generic case, one cannot expect to find expo-
nentially localized (with finite energy) solutions of
Eqs. (17). To ensure localization, one has to suppress all
slowly decaying oscillatory modes which would normally
require an infinite set of freely tunable parameters. The
problem of finding a localized solution can be seen as a
matching problem between the set of modes regular in a
neighborhood of the origin, f�0

ng
1
n�0, and the set of modes

with fast (exponential) decay for r! 1, f�1n g1n�0. In this
case each mode�0

n, regular at the origin, has a single freely
tunable parameter, whereas none of the modes with fast
falloff, �1n for n > n!, have any free parameters and
therefore a sort of a miracle is needed that the two sets
could be matched. This counting implies that while one can
expect to find time-periodic solutions Eqs. (17) (even a
whole family), these solutions have generically oscillatory
tails for large values of r. This clearly reflects the argument
‘‘anything that can radiate does radiate’’ transposed to the
stationary case. On the other hand, it is not excluded that a
localized solution might exist for very particular values of
!, for which the oscillatory tails are absent.
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IV. NUMERICS FOR THE MODE
DECOMPOSITION

A. Partial differential equation solver

We solve the system (17) using the LORENE library [28].
The basic features of LORENE are the use of spectral
methods and multidomain decomposition. The problem
we are facing here being purely spherical, the fields are
expanded on Chebyshev polynomials. The physical space
is decomposed in various spherical domains.

Using such techniques, solving differential equations
can be reduced to, in each domain, inverting a matrix on
the coefficients space. Then, a linear combination of the
particular solutions with the homogeneous ones is done, in
order to impose regularity at the origin, appropriate bound-
ary conditions, and continuity of the overall solution. We
refer the reader to [29] for more details on the algorithm, in
the case of a Poisson equation.

For this work, we have extended the operators presented
in [29] and included the Helmholtz operators appearing in
Eqs. (17), i.e. �� �2

n with both signs of �2
n. This is rather

straightforward because, as for the Laplacian, they produce
two homogeneous solutions. Only the case of infinity has
to be treated differently as we will see in Sec. IV C.

B. Description of the sources

As we have seen in Sec. III A, for all value of !, there
exists a value of n after which all the modes are dominated
by homogeneous solutions of the type sin�j�njr� ’n�=r.
Such functions are not easily dealt with by our solver.
Indeed, in order to treat spatial infinity, LORENE usually
uses a simple compactification by means of the variable
u � 1=r in the exterior domain. In the past, this has en-
abled us to impose exact boundary conditions at infinity.
When waves are present, it is well known [30,31] that such
a compactification is not practical. Indeed, no matter what
scheme is used, there is always a point after which the
distance between computational points (grid or colloca-
tion) is greater than the characteristic length of change of
the wave, thus causing the scheme to fail. This issue is dealt
with by imposing boundary conditions at a finite radius
Rlim for the slowly decaying oscillatory modes. The reader
should refer to [32] where such methods have been applied
to gravitational waves. For the exponentially decaying
modes in Eqs. (17), we decide to keep in the right-hand
side (in the sources) only those terms that are dominated by
the exponentially decaying homogeneous solutions, i.e.,
only those modes for which �2

n > 0. As it will be seen
later, the range of interesting pulsations is !<

���
2
p

.
Therefore the only two exponentially decaying modes are
�0 and�1. In the equations for�0 and�1 for r > Rlim, we
set all the higher modes (n 	 2) to zero (including terms of
the type �3�2

1). So, we effectively solve for large values of
the radius the following equations:

 ��� 2
�0 �
3
2��0 � 1��2

1 ��
2
0��0 � 3� (18)

 ��� �2
1
�1 � 3�0��0 � 2��1 �

3
4�

3
1: (19)

This method yields solutions for �0 and �1 which are
correct for ‘‘intermediately large’’ values of r > Rlim ,
where the oscillatory and slowly decaying terms induced
by the nonlinearities do not dominate. It is clear that for
sufficiently large values of r, �0 and �1 do not decay
exponentially, since their behavior will be dominated by
the slowly decaying oscillatory nonlinear source terms. We
have carefully checked that changing the value of Rlim does
not influence the oscillatory modes, therefore we can con-
clude that the backreaction of the �0 and �1 is negligible
on �n, n 	 2 for r� Rlim.

C. The operators

When �2
n > 0, the Helmholtz operator �� �2

n admits
two homogeneous solutions of which only one tends to
zero at infinity. This situation is exactly the same as the one
for the standard Laplace operator and all the techniques
presented in [29] can be used. Once again, as we will be
working for !<

���
2
p

, this happens only for �0 and �1 and
the associated sources have been given in the previous
Sec. IV B.

The situation is quite different when dealing with the
Helmholtz operator with �2

n < 0. Apart from the compac-
tification problem previously mentioned, we have to note
that now there are two homogeneous solutions that are
regular at infinity. There is no reason to prefer one to the
other. This means that there is no unique solution to our
problem. Indeed, one can get a solution by doing the
matching with any homogeneous solution of the type
sin�j�njr� ’n�=r, where ’n can take any value in
�0; 2��. So to summarize, for all modes such that �2

n < 0
we have to match, at a finite radius Rlim, the solution with a
homogeneous one of the type

 �n	2�r > Rlim� � An sin�j�njr� ’n�=r: (20)

Clearly, we need additional conditions to fix the values of
the phases ’n. In order to do so, let us recall that we are
mainly interested in finite energy solutions. Such solutions
should not contain any oscillatory behavior in 1=r at
infinity, i.e. all the coefficients An of such homogeneous
solutions should be zero. One can hope to achieve that by
searching, in the parameter space of the phases
�’2; . . . ; ’n�, the values that minimize the absolute value
of the coefficient of the first oscillatory homogeneous
solution that appears: jA2j. This solution being ‘‘quite
close’’ to a localized breather, for that reason we refer to
it as a quasibreather.

Given the nonlinearity of the problem, the location of the
minimum cannot be found analytically and one has to rely
on a numerical search. We make use of the multidimen-
sional minimizer provided by the GSL numerical library
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[33]. The algorithm is based on the simplex algorithm of
Nelder and Mead [34]. We start by setting all the phases to
�=2 and iterate the procedure until the value of the mini-
mum converges with a given threshold. Let us mention that
the phases are searched in �0; ��, the rest of the interval,
being described by changing the sign of the amplitudes.
The simplex solver converges rapidly, the function jA2j
being very smooth, with no local extrema.

So the final situation is the following:
(i) For �0 and �1 the space is compactified and the

sources in the exterior region are given by Eqs. (18)
and (19).

(ii) For �n, n 	 2, we only solve for r < Rlim and match
the solution with a homogeneous solution
An sin�j�njr� ’n�=r, the ’n being determined by
the simplex solver by minimizing jA2j.

D. Avoiding the trivial solution

The system (17) is solved by iteration but a problem
arises from the fact that the trivial solution �n � 0 is a
solution of the equations (then �0 is a constant whose
value is either 0, 1, or 2). No matter what the initial guess
for the different modes is, the code always converges to a
trivial static solution of this type.

So, one needs to find a way to prevent this from happen-
ing. Given that the system (17) is coupled, it is sufficient to
impose �1�r � 0� � 0, in order to avoid the trivial solu-
tion. To do so, after each step of the iteration, we rescale�1

everywhere, by a factor 	 in order to impose that �1�r �
0� has a certain value. In the general case, after conver-
gence of the code, this scaling parameter is different from 1
meaning that the value of �1 we found is no longer the
solution of the system (17). However, for some values of!
(being in an interval, see Sec. V), it is possible to find
exactly one value of �1�r � 0� such that the scaling factor
is one. Thus, it is possible, at least for some values of !, to
find the appropriate value of �1�r � 0� such that the
obtained modes are nontrivial solutions of Eqs. (17).

In practice, after convergence to a threshold level of
typically 10�3, we switch on the convergence toward the
true value of�1�r � 0�. With a technique already used, for
example, to get neutron stars of appropriate mass (see
Sec. IV D 3 of [35]), at each step, we change the value
of �1 at the center, in order to make 	 closer to one. The
value of �1�r � 0� to which one wants to converge is
modified according to

 �1�r � 0� ! �1�r � 0�
�

2� log	
2� 2 log	

�
0:1
: (21)

Doing so, the value of �1 at the center converges to the
only value such that the scaling parameter 	 is one, pro-
viding us with the real, nontrivial, solution of the system
(17).

E. Influence of the phases

In order to verify that the simplex solver converges to the
proper minimum of jA2j, we show in Fig. 8 how various
quantities vary when one changes the precision at which
the extremum is found. Figure 8 presents the values of:
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FIG. 8. Convergence of the various results with respect to the
precision required when finding the minimum of jA2j.
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(i) the phase of the second mode ’2 at which the
minimum is found,

(ii) the values of the first modes at the origin �n�r � 0�,
(iii) and the value of the minimum of jA2j.

Those three quantities are shown as a function of !, for
three different values of the precision required for the
simplex solver, 10�3, 10�4, and 10�5.

From the values of the phase ’2, it appears that a
precision of 10�3 or 10�4 is not good enough, the curve
being quite noisy. The curve obtained with a precision of
10�5 is smoother and we will assume that this level of
precision is sufficient for the purpose of this paper and this
value will be chosen for all the rest of this work. The
situation is even better for both the values of the modes
at the origin and the actual value of the minimum. Indeed,
as can be seen in Fig. 8, those quantities show almost no
dependence on the level of precision. This is simply related
to the fact that the values of the fields depend very weakly
on the values of the phases of the homogeneous solutions
in the external region. This is true for the phase of the
second mode ’2 but even more for the higher order phases
’n>2.

The very moderate dependence of A2 on the phases is
illustrated by Fig. 9, where the value of the amplitude is
shown as a function of the phase ’2 for ! � 1:37. All the
other phases’n>2 are fixed to the same value, each of them
corresponding to one curve in Fig. 9. It is clear that the
influence of the phases of the modes n > 2 is very weak.
The extrema on the three curves of Fig. 9 are very close to
the real extremum found by the simplex solver. Therefore
we are quite confident that we can find the minimum of
jA2j with good accuracy, even if the associated values of
the phases are slightly less accurate.

F. Convergence tests

In order to further check the validity and accuracy of our
code with respect to the computational parameters, we
present in this section various additional convergence tests.
The idea is to take a reference set of computational pa-
rameters and to change one of those at a time, in order to
check that the obtained results do not change much. The
first three radial domains are chosen with boundaries [0, 1],
[1, 2], and [2, 4]. After r � 4, we keep the size of the
domain constant to 4 {i.e. the boundaries of the domain i
are �4�i� 3�; 4�i� 2�
g. We found that this is necessary to
ensure that in every domain we have enough collocation
points to resolve the oscillatory homogeneous solutions.

The various computational parameters are the following:
nz is the number of radial domains which relates directly to
the value of Rlim given the setting of the domain mentioned
above. Nr is the number of coefficients in each domain.
Finally, we will also check the convergence of the results
with respect to the finite number of modes we consider in
the system (17).

Our standard setting consists of nz � 14) Rlim � 44,
Nr � 33, and the use of 6 modes. We then change one
parameter at a time to verify that the obtained results are
indeed meaningful. The convergence is presented by show-
ing the same three quantities as in Sec. IV E: the phase ’2,
the values of the first modes at the origin, and the amplitude
jA2j.

The three plots of Fig. 10 show the dependence of the
results when varying the number of coefficients in every
domain. Since for the values of Nr the curves of Fig. 10
change only slightly, this is a strong sign that Nr � 33 is
greatly sufficient to get accurate results. It is also supported
by the fact that, after the end of the iterative scheme, we
find that the relative difference between the right- and left-
hand sides of Eqs. (17) is smaller than 10�9.

A strong test is provided by the plots of Fig. 11. They
show that the results are independent of the value of the
outer computational radius Rlim thus validating the match-
ing procedure with the oscillatory homogeneous solutions.
Finally, Fig. 12 illustrates the fact that the results do not
change substantially when increasing the number of
modes.

The last test of our code has been a comparison of the
right-hand side (rhs) and left-hand side (lhs) of Eq. (3),
using the Fourier expansion (16). We have computed the
relative difference between the rhs and lhs after averaging
over one period. The results for various number of modes
are depicted in Fig. 13 as a function of !. As expected, the
error decreases as the number of modes increases. This is
not surprising, given that Eq. (17) could be satisfied only
for an infinite number of modes. The error also increases
when! decreases. This can be understood by recalling that
the modes are more important when ! is small [i.e. see the
behavior of �n�r � 0� as a function of ! in Figs. 10–12].
Thus, the effect of the missing modes is more important for
smaller !.
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Finally, we would like to emphasize that the computa-
tional parameters exhibited in this section are sufficient to
compute solutions in the regime of ’’moderate’’ frequen-
cies (i.e. frequencies around 1.37–1.38). If one wishes to
go to much lower frequencies, one would need to include
more modes, for higher order modes will be more impor-
tant, as indicated by Fig. 13. On the other hand, as will be

seen in the next section, the matching point Rlim must be
increased when one approaches the critical value !c ����

2
p

.

V. RESULTS

As illustrated in Figs. 10–12, we do find time-periodic
quasibreather solutions of Eqs. (17) for any value of the
pulsation frequency 1:32 � ! � 1:41, and there is little
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doubt that such solutions exist for all frequencies in the
range 
0;

���
2
p
�. It is also clear from the very same figures

that for !! !c �
���
2
p

the family of solutions we consider
converges pointwise to the trivial solution. We do not
expect such quasibreather solutions of the system (17) to
exist for !>!c. The critical value !c �

���
2
p

is expected
to be related to the change of nature of the Helmholtz
operator for �1,

���
2
p

being the value at which �1 ceases
to decay like an exponential. In the 1� 1 dimensional

case, Coron [36] has proved that the allowed frequencies
are indeed constrained by !<!c. We have not attempted
to prove the analogous statement for our case, as it would
certainly require some sophisticated mathematical tools.

The quasibreather solutions obtained this way are not
well localized in space because of their slowly decaying /
1=r oscillatory tail. Consequently, none of these solutions
has finite energy. In fact, we have selected a special class of
time-periodic solutions by minimizing the amplitude of
their oscillatory tail. This is, in some sense, the closest
one can get to a breather and we have called those con-
figurations ‘‘quasibreathers.’’ There is no special value of
! for which the amplitude of the oscillatory tail would
show any tendency to become very small or going to zero.
This is illustrated in Fig. 14 where the logarithm of the
coefficients of ‘‘tails’’ are shown for the modes�2,�3,�4,
and �5, as a function of !. The only value of ! for which
the curves go to zero is the critical one for which the
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solution tends to the trivial one. The many convergence
tests of Sec. IV F show that we can accurately compute the
value of those coefficients and that they are not numerical
artifacts.

To illustrate the behavior of the quasibreathers, we show
in Fig. 15 and 16 the energy density � and the one includ-
ing the volume element, i.e. r2� as a function of the radius,
for values of! going from 1.36 to 1.40. We can clearly see
two qualitatively different behaviors: (i) the solutions have
a well defined ‘‘core,’’ where the behavior is dominated by
the exponential decay of the fields and so the density goes
to zero. This core is getting larger when !!

���
2
p

.
(ii) However, inevitably at some point, the oscillatory tails
start to dominate and the density reaches a plateau, ulti-
mately causing the total (integrated) energy to be infinite.
Let us mention that if for high values of! the plateau is not
seen, it comes solely from the fact that the value of Rlim

used in Fig. 15 and 16 is not sufficient. In spite of the
numerical smallness of the amplitude of this plateau, we

are quite confident that its value is reasonably accurate, and
also that it really corresponds to a physical effect. Indeed,
its value is very stable when varying the various computa-
tional parameters.

As! increases, the value of the plateau diminishes. This
is related to the fact that the coefficients of the homoge-
neous solutions are decreasing functions of ! and to the
quadratic nature of the energy density in�, i.e. the value of
the plateau is roughly the square of the greatest coefficient
(i.e. the one for �2).

As already stated, we can also confirm that the transition
radius between the core and the plateau increases as one
approaches ! �

���
2
p

. To be more quantitative, we define
the transition radius Rtrans as the first value of r for which
�1 reaches the amplitude of the oscillations:

 �1�r � Rtrans� �
jA2j

r
: (22)
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It is the radius at which the oscillatory behavior starts to
dominate. Rtrans as a function of ! is shown on the left
panel of Fig. 17. The precise location of the transition
radius cannot be computed for !> 1:39, given our nomi-
nal choice for Rlim � 44. Once again, this illustrates the
fact that, when going to higher values of !, one needs to
increase the boundary radius Rlim. In the right panel of
Fig. 17 we show the total energy inside the transition
radius, i.e. the total energy of the core of the configuration.
Contrary to the transition radius, this is not a monotonic
function and there is a configuration of minimum energy.
This nontrivial behavior is due to two competing effects
when increasing !, first the increase of the transition

radius, and second the decrease of the magnitude of the
modes. We also note that this minimum is very close to the
value of the frequency which Honda and Choptuik [17]
claim to be the one of their conjectured breather solution
(i.e. they quoted ! � 1:366) but this may very well be just
a coincidence. It seems likely that the energy contained in
the core diverges when !!

���
2
p

.
Finally, in Fig. 18 we show the first modes near the

origin (upper panels) and in the region of the transition
radius (lower panels). Three different values of ! are
shown, corresponding to a low value (1.32), the value
corresponding to the minimum of energy (1.365,
cf. Fig. 17) and one rather high frequency (1.39).
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VI. THE QUASIBREATHER CONTENT OF THE
OSCILLONS

A. Fourier decomposition of evolution results

In this section we present our oscillon scenario, based on
the existence of the quasibreathers. In particular, we
present some convincing evidence that an oscillon state
of main frequency ! is quantitatively described by a
quasibreather of the same frequency, whose tail is cut off
at some value of r. In order to do this we perform Fourier
decomposition of various long-lived oscillon solutions
found by doing the evolution (see Sec. II E for the actual
method). This gives us the fundamental pulsation fre-
quency ! and the various modes. Then, those modes are
compared to the ones found by directly solving the system
(17) for this particular value of !. The same kind of
comparison is done in Ref. [17] as to support the existence
of a periodic solution of frequency ! � 1:366. An impor-
tant difference is that in Ref. [17] the comparison is per-
formed only for higher frequency near-periodic states in an
interval of �0 � r � 10
 which is comparable to the core
part of the quasibreather and therefore its oscillatory tail is
not yet apparent.

It is apparent from the results provided by our evolution
code that the solutions corresponding to the time evolution
data are very close to being time symmetric not only at the
center but also in the intermediately far region, justifying
the choice of only cosine terms in the mode decomposition
(16) when constructing QBs.

B. Near-periodic states

First, we perform the Fourier decomposition of various
near-periodic states obtained by fine-tuning the initial pa-
rameter r0, since these states appear to be periodic and time
symmetric to a very high degree. For a specific case,
Figs. 19 and 20 show the real part of the modes coming
from the Fourier transform of the evolution and the modes
obtained by the direct solution of (17). The comparison is
done with a near-periodic state corresponding to the first
peak on the lifetime curve with initial data �c � 1. The
Fourier decomposition is performed between the two max-
ima at t1 � 1592:29 and t2 � 1596:78. The frequency
calculated from the position of the maxima is ! �
1:398 665, which is used to calculate the corresponding
periodic solution by solving (17). The agreement for the
first oscillating mode n � 2 is remarkably good even in the
oscillating tail region. The curves obtained by the two
different decompositions are indistinguishable in the cen-
tral region. In order to show the excellence of the agree-
ment, the radial dependence of the relative difference of the
corresponding modes obtained by the two methods is
shown in Fig. 21. We have obtained similarly good agree-
ment not only for! � 1:398 665 but for all frequencies for
which near-periodic states exist (i.e. for 1:365<!<

���
2
p

).

This comparison between the results coming from the
evolution code of Sec. II and from the Fourier-mode de-
composition of the quasibreathers is a very strong consis-
tency check. Let us recall that the two codes have been
developed completely independently.

Figure 22 shows, for large radii, the first mode for which
the oscillatory term appears, i.e. �2, in the case ! � 1:38.
It can be seen from the first of the three plots that the real
part of the Fourier transform agrees very well with the
decomposition of the corresponding QB, the two curves
can hardly be distinguished. However, just at those radii
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where the oscillatory behavior appears the imaginary part
starts being comparable to the real part, breaking the time
symmetry in this outer region. The second plot shows that

the absolute value of the complex �2 obtained by the
Fourier decomposition essentially behaves like a smooth
envelope curve covering the standing wave like peaks of
j�2j obtained by the mode decomposition. The presence of
the complex argument of the Fourier transform shown on
the third plot indicates that the oscillating tail obtained by
the evolution code is composed of outgoing waves carrying
out energy from the core region.

C. Oscillons from Gaussian initial data

Oscillons obtained by the evolution of generic Gaussian
initial data are relatively long living for a large set of the
possible values of the initial parameter r0. In Fig. 23 we
exhibit the time evolution of the frequency of the two
typical non-fine-tuned states presented in Fig. 1.
Although these states are clearly nonperiodic, their lifetime
is still very large compared to the period of the basic high
frequency oscillation mode. We have performed the
Fourier decomposition of these states at various moments
of time and compared the results to the mode decomposi-
tion of the corresponding QB. In Figs. 24–27 the Fourier
decomposition of the two oscillon states shown in Figs. 1
and 23 is given for moments of time where the frequency is
approximately 1.30 and 1.36. For comparison, the corre-
sponding modes calculated by solving (17) using the given
frequencies is also shown on the figures. Although the
agreement of the modes is not as excellent as for the
near-periodic states, the curves calculated by the two
methods are still remarkably close. Especially important
is the similarity at the tail section of the first oscillating
mode, i.e. mode 2. This indicates that the periodic quasi-
breather solutions can be used to describe, at least quali-
tatively, even the generic long living oscillons. In
particular, the existence of the oscillating tail region is
responsible for the slow but steady energy loss of these
configurations.
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D. Initial data obtained by mode decomposition

We have also tested our scenario in the reverse way.
First, for a given ! (1.38 in the first example), we have
solved the system (17) for the modes of the quasibreather.
In particular, we can compute ��t � 0� at the moment of
time symmetry, and use this as initial data for the evolution
code. The evolution of such initial data is shown in Fig. 28
for numerical simulation with various spatial resolutions.
The field (here its value at the origin) oscillates at the
appropriate frequency for a relatively long period (approxi-
mately t � 300, with about 66 oscillations) before it col-
lapses in a subcritical or supercritical way very similar to
the collapse of the �c � �0:4 states shown in Fig. 4. The
initial state is so close to the ideal configuration that it even

depends on the chosen numerical resolution whether in the
final stage the configuration collapses in a subcritical or
supercritical way. Strangely, the longest living state is not
the one with the highest resolution, which is probably
connected to the fact that the initial data still contain small
numerical errors. Although the lifetimes attainable by this
method are very long compared to the dynamical time
scale of the linearized problem, they are still shorter than
the � � 2000 achievable by fine-tuning the first peak of the
�c � �0:4 initial data. Actually, it should not be surpris-
ing that the numerically determined initial data corre-
sponding to a QB cannot be as long living as a
configuration which is fine-tuned to 32 decimal digits.
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FIG. 27. Comparison of the higher modes of the two systems
with frequency ! � 1:36 presented on the previous figure.
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FIG. 25. Comparison of the higher modes of the two systems
with frequency ! � 1:3 presented on the previous figure.
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after t � 298:72, where the frequency is 1.3011.
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Since the modes are matched to oscillating tails at large
radii, the initial data provided by the mode decomposition
of a QB is valid up to arbitrarily large r. However, because
of the slow falloff of the oscillating tails, the energy con-
tained in balls of radius r diverges as r goes to infinity.
Using such a configuration as initial data for our evolution
code does not cause serious problems, since the physical
distance between grid points in our numerical representa-
tion increases with the distance from the center, and con-
sequently the high frequency tails cannot be represented
numerically above a certain radius. This provides a cutoff
in the initial configuration and an effective outer boundary
during the evolution. An advantage of our conformal com-
pactification method is that this outer boundary moves to
higher and higher radii when increasing the numerical
resolution. In Fig. 29 we show the initial part of the upper
envelope curve for numerical runs with various spatial
resolutions. We emphasize that this strong resolution de-
pendence is entirely due to the inadequate representation of
the infinite energy initial data. When we used initial data
with compact support or sufficiently fast falloff, such as the
Gaussian initial data in (12), then the code remained con-
vergent up to much larger time periods (at the order of t �
10 000), and the curves with various resolutions agreed to
very high precision at the initial stage (at around t � 100).

An important point is that, with this method, we can
generate almost periodic oscillons at frequencies which are

difficult or impossible to attain by fine-tuning initial data of
the form (12). In Fig. 30 we show the upper envelope of the
oscillations at r � 0 in the initial stage of the evolutions
when using initial data provided by the mode decomposi-
tion method with frequencies ! � 1:30 and ! � 1:36.
Again, as the numerical resolution is increased, the size
of the oscillating tail that can be taken into account in the
numerical representation of the initial data gets larger, and
the evolution will remain nearly periodic for longer times.
The field can oscillate truly periodically only if the energy
lost by radiation through the dynamically oscillating tail is
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balanced out by an incoming radiation already present at
the tail section of the initial data. If the tail is cut off above
some radius r then the nonperiodic region moves inwards
from that radius essentially at the speed of light. Getting
into the nonperiodic domain, for the frequencies ! � 1:36
the tail amplitude appears to be large enough to cause a
small but significant energy loss, a decrease in amplitude,
and consequently a steady frequency increase. In Figs. 31
and 32 we show the long-time behavior of the amplitude
and frequency of the oscillations generated by initial data
with frequencies ! � 1:30 and ! � 1:36. Apart from a
relatively short stable initial stage, the main characteristic
of the evolution is a slow but steady decrease of the
amplitude accompanied by a simultaneous increase of the
frequency up to a point (approximately ! � 1:365) where
the configuration quickly decays. This evolution is very
similar to the behavior of generic (i.e. not fine-tuned)
oscillons started from Gaussian initial data of type (12).
A typical example of such evolution, with initial data
corresponding to an r0 close to the top of the lifetime curve
(but between two peaks) with �c � 1, is also shown in
Figs. 31 and 32 in order to facilitate comparison. It is also
rather remarkable that the onset of the rapid decay seems to
coincide with the configuration which minimizes the en-
ergy inside the core (see Fig. 17).

The long-time evolution of a low frequency initial data
provided by the mode decomposition method is very simi-
lar to the evolution of generic oscillons evolving from
Gaussian initial data. An important difference though is
the smaller low frequency modulation of the envelope
curve and of the time dependence of the frequency. From
this, one can expect that the Fourier decomposition of these
states is even closer to that of the quasibreather state with

the corresponding frequency. In Figs. 33 and 34 we give the
Fourier decomposition of the evolution of the 1.3 initial
data between the two maxima after t � 5257:45, where the
calculated frequency is 1:359 97. The agreement is mark-
edly better than in Figs. 26 and 27, which is most likely due
to the much lower amplitude of the low frequency modu-
lations on the envelopes of field value at the center. These
low frequency modes are excited to a higher amplitude by
the Gaussian type of initial data, while they appear to be
present to a much lower extent in the lower frequency
periodic initial data (with! � 1:3 in this case). We remind
the reader that the existence of the peaks on the lifetime
curve (see Fig. 4 of [17]) is closely related to these low
frequency oscillations. Namely, the peaks separate do-
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mains of the initial data in r0 with a different number of
low frequency oscillations on the envelope curve.

E. Virialization properties

Since the solutions are close to being periodic, it appears
to be worthwhile to apply a virial approach introduced in
[9]. The virial equation can be obtained by multiplying the
nonlinear wave equation (3) by 2�r2�, integrating over a
radial domain 0< r< rb, and then averaging for a time
period t0 < t < t1. Taking into account boundary terms,
one obtains

 hEki � hEsi � 2�
�Z rb

0
drr2�2��2 � 1�

�

�
2�

t1 � t0

Z rb

0
dr���@t��t1 � ��@t��t0


� 2�h�r2�@r��rbi; (23)

where

 Ek �
Z rb

0
dr�@t��

2; Es �
Z rb

0
dr�@r��

2 (24)

are the kinetic and surface energies, respectively, and the
time averaging is defined as

 h i �
1

t1 � t0

Z t1

t0
dt: (25)

The left-hand side of Eq. (23) is the ‘‘departure from
virialization’’ introduced in [9]. It is exactly zero when
the boundary terms on the right side are vanishing. If the
configuration is exactly periodic then the first term on the
right-hand side is zero, while limrb!1r

2�@r� � 0 ensures
that the second term also vanishes asymptotically.

Since the exactly periodic quasibreather configurations
contain infinite energy in the tails, Ek and Es increases
unboundedly when r! 1, and the virial equation can be
considered only for a finite radius domain. Furthermore,

for large radius � is dominated by the oscillating tail of
mode n � 2, i.e. � � A2 cos�2!t� sin�j�2jr�=r.
Consequently, the time average of the outer boundary
term for large rb behaves like 2�h�r2�@r��rbi �
�A2

2j�2j sin�2j�2jrb�=2, not tending to zero at infinity.
Since the boundary term oscillates around zero, by averag-
ing in a spherical shell �rb � �r; rb � �r
 the departure
from virialization tends to zero when �r� j�2j. This
means that, although the quasibreather solutions are
strictly periodic, they are virialized only in a radially
averaged sense.

We have shown in the previous subsections that the core
part of oscillons agree to a very high precision to the core
of the corresponding quasibreather. For larger radii, the
first essential difference that arises is in the phase of the
oscillating tail. As illustrated in Fig. 22, the oscillon con-
tains a component�A2 sin�2!t�, related to the fact that the
oscillons radiate. In this case the asymptotic behavior of
the field is � � A2 sin�2!t� j�2jr�=r, and consequently
the dominant part of the time average of r2�@r� will be
independent of the radial coordinate. The departure from
virialization will be proportional to A2

2, consistently with
the picture that the loss of energy of the oscillon is pro-
portional to the squared amplitude of the tail. In Fig. 8 the
dependence of A2 on the frequency is shown, indicating
that the closer the frequency is to

���
2
p

the smaller is the
departure from the virialization, corresponding to longer
oscillon lifetime.

VII. CONCLUSION

In this paper, we have adapted and applied spectral
methods implemented in the LORENE library to find time-
periodic solutions of the spherically symmetric wave equa-
tion of �4 theory. Our code passed numerous tests and we
are quite confident that it is sufficiently precise. With our
code we find that for frequencies 0<!<

���
2
p

there is a
whole family of standing wave-type solutions with a regu-
lar origin having a well localized core and an oscillatory
tail. Because of the slow decrease of the oscillatory tail the
total energy of these solutions in a ball of sufficiently large
radius, R, is proportional to R (cf. Figs. 15 and 16). We
have constructed a special class of solutions, called quasi-
breathers, defined by minimizing the amplitude of the
oscillatory tail of the solutions. The size of the core of
the QBs gets larger and larger as !!

���
2
p

and the ampli-
tude of the oscillatory tail is getting smaller and smaller.
Interestingly, the energy contained in the core of the QBs
exhibits a minimum for ! � 1:365.

Using our high precision time evolution code, we have
also investigated the time evolution of Gaussian initial
data. We observe that a generic oscillon state can be
characterized by a slowly varying frequency,!�t�, increas-
ing in time up to a critical one !c, when it decays rapidly.
We have also investigated in detail the near-periodic states
described first in Ref. [17] which can be characterized by
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an almost constant frequency. In contradistinction to
Ref. [17], we find such near-periodic states for any fre-
quency

���
2
p

>!>!c. Moreover, we find that the near-
periodic states decay in time (i.e. they cannot be truly time-
periodic states) (cf. Figs. 5 and 6). In particular, while
losing some of their energy their frequency decreases
very slowly with time.

By a careful comparison of the Fourier modes of an
oscillon state of frequency !�t� with that of the corre-
sponding QB, we have obtained convincing evidence that
the localized part of the oscillon is nothing but the core of
the QB of the same frequency. Our results demonstrate that
the time evolution of an oscillon state can be described to a
good approximation as an adiabatic evolution through a
sequence of QBs with a slowly changing frequency !�t�.
What is more, the oscillatory tail of the QB describes very
well the standing wave part of the oscillon. Therefore any
oscillon contains the core and a significant part of the

oscillatory tail of the corresponding QB. The existence of
near-periodic states is closely related to the fact that the
energy of the oscillon core exhibits a minimum for a
critical frequency !c � 1:365 and for

���
2
p

>!>!c a
single unstable mode appears which can be suppressed
by fine-tuning the initial data.

After completion of the manuscript our attention has
been drawn to the unpublished work of Watkins [37] dis-
cussing related ideas.
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