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ABSTRACT

Aims. We develop an accurate and general semi-classical formalism that deals with the definition and the calculation of the colli-
sional depolarizing constants of the levels of simple and complex singly-ionized atoms in arbitrary s-states perturbed by collisions
with hydrogen atoms. The case of ions with hyperfine structure is investigated fully.
Methods. We obtain potential energy curves based on the MSMA exchange perturbation theory by employing the Unsöld approxima-
tion. These potentials enter the Schrödinger equation to determine the collisional T -matrix elements in a semi-classical description.
We use the T -matrix elements for the calculation of the collisional depolarization rates of simple atoms. Then, we use these rates to
calculate the collisional coefficients in cases of ions with hyperfine structure.
Results. We evaluate the collisional depolarization and polarization transfer rates of the ground levels of the ionized alkaline earth
metals Be ii, Mg ii, Ca ii, Sr ii, and Ba ii. We study the variation of the collisional rates with effective principal quantum number n∗
characterizing an arbitrary s-state of a perturbed simple ion. We find that the collisional rates for simple ions obey simple power laws
as a function of n∗. We present direct and indirect formulations of the problem of the calculation of the depolarization and polarization
transfer rates of levels of complex atoms and hyperfine levels from those for simple atoms. In particular, the indirect method allows a
quick and simple calculation with its simple power-law relations. For the state 4s 2S1/2 of Ca ii, our computed rate of the destruction
of orientation differs from existing quantum chemistry calculations by only 4% at T = 5000 K.
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1. Introduction

The interaction of an atomic system with anisotropic unpolar-
ized radiation can create atomic linear polarization, i.e. popu-
lation imbalances and quantum coherences among the Zeeman
sub-levels. As a result one obtains a linearly polarized spec-
trum when observing close to the solar limb (the so-called “sec-
ond solar spectrum”). Under the physical conditions of the solar
photosphere and the low chromosphere, the isotropic collisions
between the atomic system and a bath of hydrogen atoms can
partially or completely destroy the linear polarization of the lev-
els. Thus, the role of these collisions should be considered when
analyzing the linear polarization of the spectral lines.

We consider the problem of theoretical modelling of a bi-
nary collision between an ion in an arbitrary (i.e. not necessar-
ily a ground state) s-state and the hydrogen atom in its ground
s-state. Since the impact approximation is well satisfied for
isotropic collisions between neutral hydrogen atoms and emit-
ting/absorbing atoms in the solar photosphere, the collisional
depolarization rates are simply obtained by multiplying the rates
for a binary collision by the hydrogen density.

The atomic polarization of the J-level of an emitting or ab-
sorbing atom is affected during the collision by an interaction
potential depending on its projection MJ ; i.e., the interaction
potential is anisotropic or, in other words, it depends on the

� Also associated researcher at CNRS UMR 8112 – LERMA,
Observatoire de Paris, Section de Meudon, 92195 Meudon, France.

orientation of the total angular momentum of the perturbed ion1.
For an atom or an ion in an s-state interacting with the hydrogen
atom in its ground s-state, the anisotropic part of the interaction
potential comes from the effect of the spin.

Evaluation of the depolarization rates of the ground states
of the ionized alkaline earth metals Be ii, Mg ii, Ca ii, Sr ii, and
Ba ii has been carried out. We have compared our results for
the Ca ii case with the results of Kerkeni et al. (2003) where
quantum chemistry potentials and a fully quantal description of
the dynamics have been employed. Very satisfactory agreement
is obtained. In fact, at T = 5000 K the difference is 4%.

We went on to define the collisional depolarization rates for
the case where the hyperfine structure of the odd isotopes is
taken into account. In the framework of the frozen nuclear spin
approximation, we obtain these rates using both a direct and an
indirect method for the case of Ba ii. For any value of the nuclear
spin of any ion, the hyperfine collisional depolarization rates can
be obtained via simple power law relations and algebraic coeffi-
cients which are specified.

We obtain the depolarization rates of the s-states 4f5d6s and
4f46s of the complex ions Ce ii and Nd ii, respectively, which are
of particular astrophysical interest. Manso Sainz et al. (2006)
studied the second solar spectrum of the Ce ii, and found that
the collisional depolarization rates are needed in order to better

1 In fact, this property is general, i.e. regardless of whether the per-
turbed particle is an ion, atom, or molecule, only the anisotropic part of
the interaction potential affects the atomic polarization.
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understand the role of the atomic polarization of the lower levels
on the observed scattering polarization.

2. Potentials

In a recent paper (Derouich et al. 2005b, hereafter Paper I),
a method for computing potentials using MSMA (Murrell &
Shaw 1967; Musher & Amos 1967) exchange perturbation the-
ory, employing the Unsöld approximation, was described for the
case of the interaction of a hydrogen atom with an atom in a
spherically symmetric s-state. For the present problem, we need
to extend the theory to the interaction of a hydrogen atom with
a singly ionized atom. The theory for the case of ions was ad-
dressed by Barklem et al. (1998), but neglecting exchange i.e.
employing the Rayleigh-Schrödinger perturbation theory where
spin is not considered, and then applied to collisional depo-
larization and polarization transfer involving p and d states in
Derouich et al. (2004). Using these two works as starting points,
it is not difficult to extend the method to s-states of ions.

The general theory is essentially the same as the one outlined
in Paper I, with three changes. First, we note that the interaction
term V in the Hamiltonian must account for the increased charge
of the core of the perturbed ion, and is now

V =
2
R
+

1
r12
− 2

p1
− 1

r2
· (1)

Second, we note that in Paper I some terms in the second-order
energy expression, which were within the same order of mag-
nitude as the first order energy were neglected. In this work
for ions, due to the increased magnitude of the interaction and
thus the larger first-order energy, we found it to be impor-
tant to retain these terms as they partially cancel the first-order
term. Finally the introduction of the Unsöld approximation, in-
cluding separation of dispersive and inductive interactions (see
Barklem et al. 1998), is made. We define the inductive part of
the interaction as

Vind =
1
R
− 1

p1
· (2)

Following the notation of Paper I, the expressions for the first
and second order energies are found to be

E(1) =
〈a0b0|V |a0b0〉 ± 〈a0b0|V |b0a0〉

1 ± S 00
, (3)

and

E(2) ≈ − (E(1))2

Ep(dir)
− E(1) + 〈a0b0|V |a0b0〉

+
1

1 ± S 00

{
1

Ep(dir)

[
〈a0b0|V2|a0b0〉 − 〈a0b0|V2

ind|a0b0〉
]

+
1

Ep(ind)
〈a0b0|V2

ind|a0b0〉

± 1
Ep(exch)

〈a0b0|V2|b0a0〉
}
, (4)

where S 00 = 〈a0b0|b0a0〉 = 〈a0|b0〉2 is the wavefunction overlap.
The singlet and triplet potentials, V

1Σ and V
3Σ respectively, to the

second order are given by E(1) + E(2) where the upper signs (+)
correspond to the singlet case and lower signs (−) to the triplet
case.

The appropriate choice for Ep(ind) is −4/9 atomic units,
as this term represents the interaction of the hydrogen atom

with the excess charge of the ion (see Barklem et al. 1998).
Appropriate values of Ep(dir) and Ep(exch) must be chosen.
Barklem et al. (1998) described how the appropriate choice of
Ep(dir) may be inferred from the long-range van der Waals in-
teraction constant C6, and from how C6 may be calculated. In
that paper and in Barklem & O’Mara (2000), Ep(dir) has been
calculated for the interactions of ions of the alkaline earth met-
als Be ii, Mg ii, Ca ii, Sr ii, and Ba ii, in their ground states and
some excited states. It is the ground s-states of these species that
are of interest here, and these values for Ep(dir) may be adopted.
The choice of Ep(exch) is more difficult, and as in Paper I we
obtain guidance from quantum chemistry type potentials. We in-
vestigated the cases of the ground states of BeH+, MgH+, and
CaH+. For BeH+ we used the X1Σ+ and a3Σ+ potentials from
Machado & Ornellas (1991), for MgH+ the 11Σ+ and 13Σ+ po-
tentials from García-Madroñal et al. (1992), and for CaH+ the
X1Σ+ and a3Σ+ potentials from Kerkeni et al. (2003). We then
performed calculations varying Ep(exch) to obtain the best fit to
the exchange splitting V

3Σ−V
1Σ in the region of potential around

R ∼ 6–8, 9, 12a0, the upper limits of the fitting region corre-
sponding to the Be ii, Mg ii, and Ca ii cases, respectively. From
these fits we obtain Ep(exch) = −26.9, −18.1 and −6.3 atomic
units for the three cases respectively. Note that these values are
significantly lower than those found for ground states of neutral
alkali atoms, which is expected. As mentioned in Paper I and
as noted by Musher & Amos (1967), the major contribution to
the exchange integral sum comes from continuum states, which
is a natural consequence of the fact that when a wavefunction
centred on one atom is expanded about the other atom, the most
important contributions will come from continuum states. As the
electronic wavefunctions of ions are much more compact than
for neutrals, we expect that the contributing continuum states
have higher energy, leading to a higher value of |Ep(exch)|.

As found in Paper I for ground states of neutral alkali atoms,
Ep(exch) correlates well with effective principal quantum num-
ber n∗ = [2E∞]−1/2, E∞ being the binding energy of the state in
atomic units. Following that work we may make a fit to these
values,

Ep(exch) = −0.4444 − exp (−3.710n∗ + 9.7742). (5)

Using this fit we may extrapolate to the cases of the ground states
of Sr ii and Ba ii (n∗ = 2.221 and 2.332, respectively), so poten-
tials for SrH+ and BaH+ were calculated in this manner. We may
also attempt to infer something about the general behaviour of
the depolarization rates with n∗. A grid of potentials was com-
puted for a range of n∗, adopting Ep(dir) = −4/9 and Ep(exch)
as given by Eq. (5) for this purpose.

3. Definitions of the depolarization
and polarization transfer probabilities

3.1. Fine structure levels

Let us consider collisions between a singly ionized atom in an s-
state with angular momentum J (J = 1/2) and a bath of neutral
hydrogen atoms in their ground state with angular momenta J2
(J2 = 1/2).

In the framework of the impact approximation, the contri-
bution of the collisions is simply added to the contribution of
the radiative rates in the statistical equilibrium equations (SEE).
We define the collisional depolarization and transfer of polariza-
tion rates in a way similar to that often adopted for the radiative
rates, based on the formalism of the irreducible spherical ten-
sors. In fact, the density matrix formalism expressed in the basis
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of the irreducible tensorial operators J,J′T kJ
qJ

has been shown to
be the most suitable for formulating the problem of the forma-
tion of polarized spectral lines (e.g. Sahal-Bréchot 1977; Landi
Degl’Innocenti & Landolfi 2004). On this basis, the internal state
of the ion is described by the density matrix elements JρkJ

qJ
.

In the absence of hyperfine structure (i.e. the nuclear spin
I = 0 or the hyperfine structure has a negligible effect), the con-
tribution of the isotropic collisions is:

⎛⎜⎜⎜⎜⎜⎝d JρkJ
qJ

dt

⎞⎟⎟⎟⎟⎟⎠
coll

= −DkJ (J, T ) JρkJ
qJ

(6)

−JρkJ
qJ

∑
J′�J

√
2J′ + 1
2J + 1

D0(J → J′, T )

+
∑
J′�J

DkJ (J ← J′, T ) J′ρkJ
qJ

where DkJ (J, T ), D0(J → J′, T ), and DkJ (J ← J′, T ) are the de-
polarization, the population transfer, and the polarization trans-
fer rates, respectively.

The polarization transfer from J to J′ levels of a perturbed
atom or ion due to isotropic collisions with neutral hydrogen
atoms is given in the basis of J,J′T kJ

qJ
by

〈PkJ (J → J′, b, v)〉av = (7)

∑
µ1,µ

′
1,ν1,ν

′
1

∑
γ2,γ

′
2

1
2J2 + 1

〈Jµ1|〈J2γ2|T (b, u)|J2γ
′
2〉|J′µ′1〉

×〈Jν1|〈J2γ2|T (b, u)|J2γ
′
2〉|J′ν′1〉∗

×
∑
α1

(−1)J−J′+µ1−µ′1
(

J′ J′ kJ
ν′1 −µ′1 α1

) (
J J kJ
ν1 −µ1 α1

)

and the depolarization probability of a J-level is

〈PkJ (J, b, v)〉av = 〈P0(J → J, b, v)〉av − 〈PkJ (J → J, b, v)〉av. (8)

Each collision is characterized by an impact-parameter vector b
and a relative velocity vector u. The symbol 〈 〉av denotes an av-
erage of the probabilities over all the orientations of the collision
plane (b, u).

Because of the semi-classical character of our approach, the
collisional cross sections are obtained after an integration of the
collisional depolarization and polarization transfer probabilities
over the impact parameter b. Then the corresponding depolariza-
tion rates Dk(J, T ) and polarization transfer rates Dk(J → J′, T )
are calculated for a local temperature T by an integration over
a Maxwell distribution of the relative velocities (see Eq. (12) of
Paper I).

3.2. Hyperfine structure levels

Many enigmatic features of the second solar spectrum require a
careful study taking the nuclear spin effects into account, i.e. the
hyperfine structure contribution. For example, for the studies of
the still not understood complications of the D1-D2 type systems
of sodium, barium, lithium, potassium, etc. (see e.g. Casini &
Manso Sainz 2005), one needs an accurate formulation includ-
ing hyperfine collisional depolarization rates. In the remainder
of this section we consider a particular isotope having nuclear
spin I, and, total angular momentum F = J + I.

In the spherical tensorial representation F,F′T kF
qF

, the contri-
bution of the isotropic collisions in the case of a multilevel atom
with hyperfine structure is⎛⎜⎜⎜⎜⎜⎝dJIρkF

qF

dt
(F, F′)

⎞⎟⎟⎟⎟⎟⎠
coll

= (9)

−
∑

F′′F′′′
DkF ((JI)FF′; (JI)F′′F′′′, T ) JIρkF

qF
(F′′, F′′′)

−
∑

F′′F′′′ ,J′�J

ζ((JI)FF′ → (J′I)F′′F′′′, T ) JIρkF
qF

(F′′, F′′′)

+
∑

F′′F′′′ ,J′�J

DkF ((JI)FF′ ← (J′I)F′′F′′′, T ) J′IρkF
qF

(F′′F′′′)

where DkF ((JI)FF′; (JI)F′′F′′′, T ) is the destruction rate of the
order k that is given by

Dk((JI)FF′; (JI)F′′F′′′, T ) = (10)

ζ0((JI)FF′ → (JI)F′′F′′′, T ) − ζk((JI)FF′ → (JI)F′′F′′′, T )

where

ζkF ((JI)FF′ → (J′I)F′′F′′′, T ) (J = J′ and J � J′) =

nH

∫ ∞

0
v f (v)dv

⎛⎜⎜⎜⎜⎜⎝πb2
0

+2π
∫ ∞

b0

〈PkF ((JI)FF′ → (J′I)F′′F′′′, b, v)〉av b db

⎞⎟⎟⎟⎟⎟⎠ (11)

and

〈PkF ((JI)FF′ → (J′I)F′′F′′′, b, v)〉av = (12)∑
µ1 ,µ
′
1

ν1 ,ν
′
1

∑
γ2,γ

′
2

1
2J2 + 1

〈(JI)Fµ1|〈J2γ2|T (b, u)|J2γ
′
2〉|(J′I)F′′µ′1〉

×〈(JI)F′ν1|〈J2γ2|T (b, u)|J2γ
′
2〉|(J′I)F′′′ν′1〉∗

×
∑
α1

(−1)F+F′′+k+µ1−µ′1
(

F′ F kF

ν1 −µ1 −α1

) (
F′′′ F′′ kF

−ν′1 µ′1 α1

)
.

We choose b0 = 3 a0 as the cutoff impact-parameter, and f (v) is
the Maxwellian distribution function for relative velocity v.

The hyperfine polarization transfer rates by isotropic colli-
sions are

DkF ((JI)FF′ → (J′I)F′′F′′′, T ) = (13)

ζkF ((JI)FF′ → (J′I)F′′F′′′, T ),

and in particular if kF = 0,

D0((JI)FF′ → (J′I)F′′F′′′, T ) = (14)

ζ0((JI)FF′ → (J′I)F′′F′′′, T )

= δ(F, F′) δ(F′′, F′′′)

√
2F + 1

2F′′ + 1
×ζ((JI)FF′ → (J′I)F′′F′′′, T ),

where ζ((JI)FF′ → (J′I)F′′F′′′, T ) are the collisional rates of
the transitions between the levels |(JI)FF′〉 and |(J′I)F′′F′′′〉 av-
eraged over all possible orientations of the collision plane (b, u).

Our semi-classical theory developed in the previous papers
should allow the calculation of the hyperfine rates involving
states with electronic angular momentum l > 0. The definitions
given in this section are the same independently of l. In the next
sections, we examine the case of a singly ionized atom having
electronic angular momentum l = 0 (s-state).
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4. Depolarization rates of the fine structure levels
with l =0

The quantum defect and thus the effective quantum number n∗
is used to characterize the state of the ion, and the interaction
potentials V

1Σ and V
3Σ calculated for n∗ in the interval [1.5, 3]

were used to compute depolarization rates. The potentials V
1Σ

and V
3Σ enter the semi-classical coupled differential equations,

derived from the time-dependent Schrödinger equation (Eq. (7)
of Paper I, Roueff 1974). The computed T -matrices are then em-
ployed to compute the tensorial components ζ0(J = 1/2, T ) and
ζ1(J = 1/2, T ), and the destruction rate of orientation:

D1(1/2, T ) = ζ0(J = 1/2) − ζ1(J = 1/2) (15)

for each n∗. We found that these rates obey a power law of the
form D1(1/2, T = 5000 K)( T

5000 )(1−λ1)/2. The velocity exponent
λ1(1/2) exhibits only a weak variation with n∗ and is approxi-
mately equal to 0.42.

Interestingly, D1(1/2, T = 5000 K), ζ0(J = 1/2, T ), and
ζ1(J = 1/2, T ) have striking power law behaviours with n∗,
which are, with correlation coefficients R > 0.9, fit by:

D1(1/2, T = 5000 K) � 1.35 × 10−9 nH × n∗
1.22

ζ0(1/2, T = 5000 K) � 7.01 × 10−9 nH × n∗
1.22

(16)

ζ1(1/2, T = 5000 K) � 5.65 × 10−9 nH × n∗
1.22
.

The tensorial components ζ0(J) and ζ1(J) describe the elastic
scattering of order zero and one, respectively. They are sensi-
tive to the diagonal elements of the T (b, u)-matrix. This leads
to ζ0(J) and ζ1(J) being clearly larger than D1(J) because the lat-
ter depends only on the off-diagonal elements. Note that all the
diagonal elements of the T (b, u)-matrix are non-zero and usually
larger than the off-diagonal elements.

The relationships of Eq. (16) will be used in the next sections
to calculate the depolarization rates of hyperfine structure levels
and levels of complex ions. The present method is not specific
for a given perturbed atom and thus allows the calculation of the
depolarization rates of any s-state.

The effective principal quantum numbers of the Be ii, Mg ii,
Ca ii, Sr ii, and Ba ii ground states are n∗ � 1.7288, 1.9025,
2.1411, 2.2213, and 2.3325, respectively. The destruction rates
of orientation for the ground states of alkaline earth ions can be
either determined directly from the numerical code associated to
our theory or inferred from Eq. (16). We used our code to di-
rectly compute the rates for 100 ≤ T ≤ 10 000 K, and we find
the following analytical expressions in units of s−1:

– Be ii (2s 2S1/2)- H i (1s 2S1/2):

D1(2 1 1/2, T ) = 2.67 × 10−9 × nH

( T
5000

)0.414

– Mg ii (3s 2S1/2)-H i (1s 2S1/2):

D1(3 1 1/2, T ) = 2.88 × 10−9 × nH

( T
5000

)0.407

– Ca ii (4s 2S1/2)-H i (1s 2S1/2):

D1(4 1 1/2, T ) = 3.43 × 10−9 × nH

( T
5000

)0.422

– Sr ii (5s 2S1/2)-H i (1s 2S1/2):

D1(5 1 1/2, T ) = 3.60 × 10−9 × nH

( T
5000

)0.415

Fig. 1. Destruction rates of the orientation in cm3 s−1 for the the Ca ii
(4s 2S1/2) level from the present calculations (solid line) and from
Kerkeni et al. (2003) (dotted line).

– Ba ii (6s 2S1/2)-H i (1s 2S1/2):

D1(6 1 1/2, T ) = 3.78 × 10−9 × nH

( T
5000

)0.422

·

The only existing result available for comparison is the quantal
destruction rate of the orientation obtained in the case of the Ca ii
(4s 2S1/2), which equals 3.29×10−9×nH at T = 5000 K as given
by Eq. (11) of Kerkeni et al. (2003). As seen in Fig. 1, a very
small difference of 4% at T = 5000 K is found.

5. Depolarization and polarization transfer rates
of the hyperfine structure levels

Levels with total angular momentum J = 1/2 cannot be aligned,
but if for example a level with J = 1/2 is split into hyperfine lev-
els due to coupling with a nuclear spin I = 3/2, both hyperfine
levels F = 1 and F = 2 can be aligned.

As can be seen in Eq. (12), an exact calculation of the hyper-
fine depolarization and polarization transfer rates first requires
the calculation of the required atomic wavefunctions and in-
teraction potentials fully taking the effect of the nuclear spin
into account. Second, the time-dependent Schrödinger equations
have to be solved on the basis of the set of eigenfunctions
|(JI)FMF J2MJ2〉. This is a very complicated problem. As dis-
cussed in the next section, we resort to an approximate treat-
ment by assuming that the nuclear spin is conserved during the
collision.

In the typical solar conditions where the temperature is
about 5700 K, the relative kinetic velocity of the collision is
∼9.7 km s−1 (i.e. relative kinetic energy of ∼0.5 eV). With a
typical interatomic distance R ∼ 10 Å, the inverse of the typ-
ical time duration of a collision between a hydrogen atom and
the perturbed ion is 1/τ ∼1013 s−1 (i.e. 1/τ ∼ 334 cm−1). In
these conditions, the hyperfine splitting is usually much smaller
than 1/τ, so that one can assume that the nuclear spin is con-
served during the collision2. This validates the frozen nuclear
spin approximation.

2 It is important, however, not to confuse this condition with the fact
that the SEE (Eq. (9)) must be solved for the hyperfine levels when the
inverse of the lifetime of the level is smaller than the hyperfine splitting;
i.e. the hyperfine levels are separated. In the second solar spectrum, the
inverse of the lifetime is often small compared to the hyperfine splitting
(if it exists).
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5.1. A direct formulation with hyperfine scattering matrix
in the dyadic basis

We adopt the frozen nuclear spin approximation, so the T -matrix
is diagonal in I and its elements do not depend on MI . The hyper-
fine structure T -matrix elements 〈(JI)FMF |T |(J′I)F′M′F〉 can be
written as a linear combination of the 〈JMJ |T |J′M′J〉, dropping
the symbol |J2M′J2

〉 for brevity:

〈(JI)FMF |T |(J′I)F′M′F〉 � (17)∑
MJ ,M′J ,MI

(−1)2I−2J+MF+M′F
√

(2F + 1)(2F′ + 1)

×
(

I J F
MI MJ −MF

) (
I J′ F′

MI M′J −M′F

)
〈JMJ |T |J′M′J〉.

This reasoning, which gives Eq. (17), is equivalent to expressing
the interaction potential elements 〈FMF J2MJ2 |V |F′M′F J2 MJ′2〉
as a linear combination of the singlet and triplet potentials V

1Σ

and V
3Σ.

To calculate the depolarization rates one has to

1. determine all the matrix elements given by Eq. (17);
2. calculate the depolarization and polarization transfer proba-

bilities in the tensorial matrix basis F,F′T kF
qF

;
3. integrate these probabilities over impact parameters and ve-

locities (see Eq. (11)).

As an example, we compute the destruction rate of the alignment
of the level F = 1. According to Eq. (17), the nine (F = 1) tran-
sition matrix elements 〈FMF |T |F′MF′ 〉 are given as a function
of the five (J = 1/2) elements 〈JMJ |T |J′M′J〉 by

〈1 − 1|T |1 − 1〉 = 3
4
×

〈
1
2

1
2
|T |1

2
1
2

〉
+

1
4
×

〈
1
2
−1
2
|T |1

2
−1
2

〉

〈1 − 1|T |10〉 = − 1√
8
×

〈
1
2
−1
2
|T |1

2
1
2

〉

〈1 − 1|T |11〉 = 0 (18)

〈10|T |1 − 1〉 = − 1√
8
×

〈
1
2
−1
2
|T |1

2
1
2

〉

〈10|T |10〉 = 1
2
×

〈
1
2

1
2
|T |1

2
1
2

〉
+

1
2
×

〈
1
2
−1
2
|T |1

2
−1
2

〉

〈10|T |11〉 = − 1√
8
×

〈
1
2
−1
2
|T |1

2
1
2

〉

〈11|T |1 − 1〉 = 0

〈11|T |10〉 = − 1√
8
×

〈
1
2

1
2
|T |1

2
−1
2

〉

〈11|T |11〉 = 1
4
×

〈
1
2

1
2
|T |1

2
1
2

〉
+

3
4
×

〈
1
2
−1
2
|T |1

2
−1
2

〉
·

Following steps 2 and 3 above we obtain:

D2((JI)11; (JI)11, T ) = 0.68 × 10−9 × nH

( T
5000

)0.439

s−1. (19)

This is a “direct” but computationally consuming method. We
propose an “indirect” and more practical way that allows the cal-
culation of the hyperfine depolarization and polarization trans-
fer rates via the values of D1(1/2, T ), ζ0(J = 1/2, T ), and
ζ1(J = 1/2, T ) given by Eq. (16).

5.2. An indirect formulation in the irreducible tensorial
operator basis

One considers an uncoupled basis JT kJ
qJ
⊗ IT kI

qI
in which the total

orbital angular momentum and the nuclear spin are considered
independently. Due to the frozen nuclear spin approximation, the
depolarization matrix is spin-independent – the order kI of the
nuclear spin is not affected by the isotropic collisions. The val-
ues of the collisional rates D1(1/2, T ), ζ0(J = 1/2, T ), and
ζ1(J = 1/2, T ) associated with the J-levels over the irreducible
tensorial operator basis JT kJ

qJ
are known.

As pointed out by Nienhuis (1976) and Omont (1977),

ζkF ((JI)FF′ → (J′I)F′′F′′′, T ) =
√

(2F + 1)(2F′ + 1)(2F′′ + 1)(2F′′′ + 1)

×
∑
kJ

(2kJ + 1)ζkJ (J → J′, T )

×
∑

kI

(2kI + 1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
J I F
J I F′
kJ kI kF

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎧⎪⎪⎪⎨⎪⎪⎪⎩

J′ I F′′
J′ I F′′′
kJ kI kF

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (20)

in particular

D2((JI)11; (JI)11, T ) = (21)

ζ0((JI)11→ (JI)11, T ) − ζ2((JI)11→ (JI)11, T )

and, according to Eq. (20),

ζ0((JI)11→ (JI)11, T ) = (22)

6
16
× ζ0(1/2, T ) +

10
16
× ζ1(1/2, T )

ζ2((JI)11→ (JI)11, T ) =
3

16
× ζ0(1/2, T ) +

13
16
× ζ1(1/2, T )

then

D2((JI)11; (JI)11, T ) =
3
16
× D1(J, T ) (23)

= 0.709 × 10−9 × nH

( T
5000

)0.422

·

The difference between the value of D2((JI)11; (JI)11, T ) ob-
tained by this indirect method and that of Eq. (19) is only 4%.

Taking into account the symmetry property

Dk((JI)FF′ → (J′I)F′′F′′′, T ) = (24)

Dk((JI)F′′F′′′ → (J′I)FF′, T ),

all the hyperfine depolarization rates associated to the J = 1/2
and I = 3/2 where k = 2 are

D2((JI)11; (JI)11, T ) =
3
16
× (ζ0(J, T ) − ζ1(J, T )) (25)

=
3
16
× D1(J, T )

D2((JI)11; (JI)22, T ) =

√
60 − √21

16
× D1(J, T )

D2((JI)12; (JI)12, T ) = − 3
16
× ζ0(J, T ) − 3

16
× ζ1(J, T )

D2((JI)12; (JI)21, T ) =
3
16
× D1(J, T )
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D2((JI)12; (JI)11, T ) = − 3
16
× D1(J, T )

D2((JI)21; (JI)11, T ) =
3
16
× D1(J, T )

D2((JI)12; (JI)22, T ) = −
√

21
16
× D1(J, T )

D2((JI)21; (JI)22, T ) =

√
21

16
× D1(J, T )

D2((JI)22; (JI)22, T ) =
3
16
× D1(J, T ).

Of course we recall that by definition Dk=0((JI)FF′ →
(JI)F′′F′′′, T ) ≡ 0 (see Eq. (10)). Using the indirect method,
one can easily calculate the higher-order terms of Dk((JI)FF′ →
(J′I)F′′F′′′, T ) with k > 2 when they play a non-negligible role
in the SEE. Note that the observed linear polarization spectrum
is the footprint of only the even orders k of the atom, and thus
only depolarization and polarization transfer rates with even k
are needed to study such a spectrum.

6. Depolarization and polarization transfer rates
of the levels of complex atoms with l =0

The ionized alkaline earth metals Be ii, Mg ii, Ca ii, Sr ii, and
Ba ii in their ground states are simple ions because they have
only one valence electron above a filled subshell. In contrast,
the electronic configuration of a complex ion has one valence
electron above an incomplete (open) subshell within the core.
We denote by Lc the total orbital angular momentum of the core
and by Sc its total spin.

6.1. Direct formulation

To infer the depolarization and polarization transfer rates of
complex ions, we adopt the same strategy as for complex neu-
tral atoms (Paper I). The orbital angular momentum of the
valence electron is l = 0 and the total angular momentum
of the simple atom is J = s. The total orbital momentum of
the atom is L = Lc + l = Lc. The total spin is S = Sc + s and
J = L + S = Lc + S is the total angular momentum of the com-
plex ion. This coupling scheme is similar to the coupling scheme
presented in Derouich et al. (2005a) for l > 0. Thus, the expres-
sion for the transition matrix elements of complex ions is easily
obtained from the formulae given by Eq. (7) in Derouich et al.
(2005a) if we make formal substitutions:

〈JMJ |T (complex)|J′MJ′〉 = (26)

(−1)J+J
′+MJ+MJ′

√
(2J + 1)(2J′ + 1)

×√
(2Lc + 1)(2Lc + 1)

∑
J′′

(2J′′ + 1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S c S J
Lc S J′
J J J′′

⎫⎪⎪⎪⎬⎪⎪⎪⎭

×
∑

MJ ,M′J ,MJ′′

〈JMJ |T (simple)|JM′J〉
(

J J′ J′′
M′J MJ′ MJ′′

)

×
(

J J J′′
MJ MJ MJ′′

)
.

Our collisional numerical code is adapted to the calculations of
the depolarization rate of the level 4f 5d (3F) 6s (4F3/2) of the

Ce ii complex ion3. For the Ce ii state 4f 5d (3F) 6s 4F, we have
n∗ = 2.274, Lc = 3, J = 1/2, L = 3, S = 3/2, S c = 1,
and J takes the values 3/2, 5/2, 7/2, and 9/2. We calculate
the collisional transition matrix 〈JMJ |T (simple)|JM′J〉 by solv-
ing the Schrödinger equation for the appropriate n∗, followed
by the transition matrix 〈JMJ |T (complex)|J′MJ′〉 according
to Eq. (26) above, and thus we obtain the depolarization rates
D2(J = 3/2, T ):

D2(J = 3/2, T ) = 0.485 × 10−9 nH

( T
5000

)0.412

s−1. (27)

Any calculations of the depolarization and the transfer of the po-
larization rates involving complex ions must proceed level by
level if one uses the above direct method. In the next section, we
present and demonstrate an indirect method of quickly calculat-
ing all the rates of complex ions.

6.2. Indirect formulation

As we have shown in Paper I for neutral complex atoms, the col-
lisional spherical tensor components associated to the J-levels
of a complex ion are:

ζk(LJ → LJ′, T ) =
1∑

kJ=0

ζkJ (J, T )Ak(LJ → LJ′; kJ)

= ζ0(J, T )Ak(LJ → LJ′; 0) (28)

+ζ1(J, T )Ak(LJ → LJ′; 1),

where the depolarization and polarization transfer rates are re-
spectively:

Dk(J , T ) = ζ0(LJ → LJ , T ) − ζk(LJ → LJ , T )

Dk(J → J′, T ) = ζk(LJ → LJ′, T )(J � J′). (29)

Then, Ak(LJ → LJ′; kJ) is the depolarization coefficient of
the state |LJ〉 of the complex atom, the expression for which is
given in Eq. (28) of Paper I. Also, ζkJ (J, T )(kJ = 0, 1) is given by
Eq. (16) as a function of the effective quantum number n∗. Since

ζ0(L J = 3/2, T ) = 0.4 × ζ0(1/2, T ) + 0.6 × ζ1(1/2, T )

ζ2(L J = 3/2, T ) = 0.28 × ζ0(1/2, T ) + 0.72 × ζ1(1/2, T ),

(30)

then

D2(J = 3/2, T ) = ζ0(L J = 3/2, T ) − ζ2(L J = 3/2, T ) =

0.12 × D1(J, T ) = 0.441 × 10−9 nH

( T
5000

)0.420

. (31)

As expected, the values of D2(J = 3/2, T ) for Ce ii calculated
by the direct method (Eq. (27)) and those obtained via the indi-
rect method (Eq. (31)) are in close agreement. In fact, the dif-
ference is 8%, slightly higher than the value of 4% obtained in
the case of the hyperfine rates. We notice, however, that the dif-
ference can be attributed to the fact that individual detailed cal-
culations are not perfectly reproduced by the simple power-law
relations. In addition, the population and the alignment transfer

3 As can be seen in Eq. (26), a given level of a complex atom/ion is
mainly characterized by an effective principal quantum number n∗, by
quantum numbers of the optical electron, and by the electrons in the
core.
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rates from J = 3/2 to J = 5/2 can be expressed respectively
by:

D0(J = 3/2→ J′ = 5/2, T ) = (32)

0.801 × 10−9 nH

( T
5000

)0.420

D2(J = 3/2→ J′ = 5/2, T ) =

0.588 × 10−9 nH

( T
5000

)0.420

.

For the Nd ii state 4f4 (5I) 6s 6I, n∗ = 2.253, Lc = 6, L = 6,
S = 5/2, S c = 2, and J takes the values 7/2, 9/2, 11/2, 13/2,
15/2, and 17/2. The collisional depolarization rate of the level
J = 7/2 and the polarization transfer rates between J = 7/2
and J = 9/2 are given by:

D2(J = 7/2, T ) = 0.135 × 10−9 nH

( T
5000

)0.420

(33)

D0(J = 7/2→ J′ = 9/2, T ) = 0.510 × 10−9 nH

( T
5000

)0.420

D2(J = 7/2→ J′ = 9/2, T ) = 0.468 × 10−9 nH

( T
5000

)0.420

.

Similarly, all the other rates for the states of Ce ii and Nd ii can
be estimated by simple calculations of the depolarization coeffi-
cientsAk(LJ → LJ′; kJ) and the simple relations of Eq. (16).

To obtain the depolarization rates of hyperfine levels of a
complex ion (if the complex ion has a nuclear spin), the proce-
dure is exactly the same as the one illustrated in the Sect. 5 for
simple ions.

7. Conclusion

We have presented a general, semi-classical method that may
be used to determine a large number of the depolarization and
the polarization transfer rates for the collisions of simple and
complex ions in an arbitrary s-state with neutral hydrogen. The
collisional depolarization of the lines of the hyperfine structured
ions is fully treated. Simple power-law relations are given that
constitute a powerful tool for obtaining accurate data quickly.

We have demonstrated how to calculate of the destruction
rate of the alignment by two equivalent methods: a) the direct
method of reference where the scattering matrix is calculated by
solving the Schrödinger equation and integrations over the im-
pact parameters and the relative velocities are performed; b) the
useful indirect method based on the simple power-law relations
for D1(J, T ), ζ0(J, T ), and ζ1(J, T ) as a function of the effective
quantum number n∗.

The comparison of our semi-classical destruction rate of ori-
entation to the quantal rate obtained in the case of Ca ii by
Kerkeni et al. (2003) gives a very good agreement, the differ-
ence being only 4% at T = 5000 K.

The depolarization and polarization transfer rates obtained
with our general approach are important ingredients for studies
concerned with determining weak unresolved magnetic fields by
their Hanle effect on the scattering polarization.
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