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We present a new three-dimensional general relativistic hydrodynamics code which is intended for
simulations of stellar core collapse to a neutron star, as well as pulsations and instabilities of rotating
relativistic stars. Contrary to the common approach followed in most existing three-dimensional
numerical relativity codes which are based in Cartesian coordinates, in this code both the metric and
the hydrodynamics equations are formulated and solved numerically using spherical polar coordinates. A
distinctive feature of this new code is the combination of two types of accurate numerical schemes
specifically designed to solve each system of equations. More precisely, the code uses spectral methods for
solving the gravitational field equations, which are formulated under the assumption of the conformal
flatness condition (CFC) for the three-metric. Correspondingly, the hydrodynamics equations are solved
by a class of finite difference methods called high-resolution shock-capturing schemes, based upon state-
of-the-art Riemann solvers and third-order cell-reconstruction procedures. We demonstrate that the
combination of a finite difference grid and a spectral grid, on which the hydrodynamics and metric
equations are, respectively, solved, can be successfully accomplished. This approach, which we call
Mariage des Maillages (French for grid wedding), results in high accuracy of the metric solver and, in
practice, allows for fully three-dimensional applications using computationally affordable resources,
along with ensuring long-term numerical stability of the evolution. We compare our new approach to two
other, finite difference based, methods to solve the metric equations which we already employed in earlier
axisymmetric simulations of core collapse. A variety of tests in two and three dimensions is presented,
involving highly perturbed neutron star spacetimes and (axisymmetric) stellar core collapse, which
demonstrate the ability of the code to handle spacetimes with and without symmetries in strong gravity.
These tests are also employed to assess the gravitational waveform extraction capabilities of the code,
which is based on the Newtonian quadrupole formula. The code presented here is not limited to
approximations of the Einstein equations such as CFC, but it is also well suited, in principle, to recent
constrained formulations of the metric equations where elliptic equations have a preeminence over
hyperbolic equations.

DOI: 10.1103/PhysRevD.71.064023 PACS numbers: 04.25.Dm, 02.70.Bf, 04.30.Db, 97.60.Bw
I. INTRODUCTION

A. Relativistic core collapse simulations

Improving our understanding of the formation of neu-
tron stars as a result of the gravitational collapse of the core
of massive stars is a difficult endeavour involving many
aspects of extreme and not very well understood physics of
the supernova explosion mechanism [1]. Numerical simu-
lations of core collapse supernova are driving progress in
the field despite the limited knowledge on issues such as
realistic precollapse stellar models (including rotation) or
realistic equation of state, as well as numerical limitations
due to Boltzmann neutrino transport, multidimensional
hydrodynamics, and relativistic gravity. Axisymmetric
and three-dimensional approaches based on Newtonian
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gravity are available since a few decades now (see e.g.
[2] and references therein). These approaches, which are
constantly improving over time, have provided valuable
information on important issues such as the dynamics of
the collapse of a stellar core to nuclear density, the for-
mation of a proto-neutron star, and the propagation of the
shock front which ultimately is believed to eject the outer
layers of the stellar progenitor. Currently, however, even
the most realistic simulations of both nonrotating and
rotating progenitor models do not succeed in producing
explosions (see [1] and references therein).

In addition, the incorporation of full relativistic gravity
in the simulations is likely to bring in well-known diffi-
culties of numerical relativity, where the attempts are tradi-
tionally hampered by challenging mathematical, compu-
tational, and algorithmic issues as diverse as the formula-
tion of the field equations, robustness, efficiency, and long-
term stability (particularly if curvature singularities are
either initially present or develop during black hole for-
mation). As high densities and velocities are involved in
combination with strong gravitational fields, gravitational
-1  2005 The American Physical Society
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collapse and neutron star formation constitute a challeng-
ing problem for general relativistic hydrodynamic simula-
tions. The pace of the progress is, no wonder, slow; for
instance, in the three-dimensional case, there is still no
description of core collapse in full general relativity today,
even for the simplest matter models one can conceive,
where all microphysics is neglected.

In recent years, the interest in performing core collapse
simulations has been further motivated by the necessity of
obtaining reliable gravitational waveforms from (rotating)
core collapse, one of the main targets of gravitational
radiation for the present and planned interferometer detec-
tors such as LIGO, GEO600, and VIRGO (see [3] for a
review). As a result of the complexities listed above, it is
not surprising that most previous studies aimed at comput-
ing the gravitational wave signature of core collapse super-
novae have considered greatly simplified parametrized
models [4–18]. In addition to the burst signal of gravita-
tional waves emitted during core bounce, multidimen-
sional simulations have also provided the signals
produced by convection [19] (see also [20] for the most
realistic simulations available at present), as well as those
from the resulting neutrino emission [19,21].

From the above references it becomes apparent that our
understanding of core collapse and neutron star formation
has advanced mainly by studies carried out employing
Newtonian dynamics. The situation is now slowly chang-
ing, at least for simplified matter models where microphys-
ics and radiation transport are not yet included, with new
formulations of the Einstein field equations and of the
general relativistic hydrodynamics equations. Unfortu-
nately, the 3� 1 Einstein equations describing the dynam-
ics of spacetime are a complicated set of coupled, highly
nonlinear hyperbolic-elliptic equations with plenty of
terms. Their formulation in a form suitable for accurate
and stable numerical calculations is not unique, and con-
stitutes one of the major fields of current research in
numerical relativity (see [22,23] and references therein).
Not surprisingly, approximations of those equations have
been suggested, such as the conformal flatness condition of
Isenberg-Wilson-Mathews [24,25] (CFC hereafter), who
proposed to approximate the 3-metric of the 3� 1 decom-
position by a conformally flat metric.

Using this approximation, Dimmelmeier et al. [10–12]
presented the first relativistic simulations of the core col-
lapse of rotating polytropes and neutron star formation in
axisymmetry, providing an in-depth analysis of the dynam-
ics of the process as well as of the gravitational wave
emission. The results showed that relativistic effects may
qualitatively change in some cases the dynamics of the
collapse obtained in previous Newtonian simulations [2,6].
In particular, core collapse with multiple bounces was
found to be strongly suppressed when employing relativ-
istic gravity. In most cases, compared to Newtonian simu-
lations, the gravitational wave signals are weaker and their
064023
spectra exhibit higher average frequencies, as the newly
born proto-neutron stars have stronger compactness in the
deeper relativistic gravitational potential. Therefore, tell-
ing from simulations based on rotating polytropes, the
prospects for detection of gravitational wave signals from
supernovae are most likely not enhanced by taking into
account relativistic gravity. The gravitational wave signals
computed by Dimmelmeier et al. [10–12] are within the
sensitivity range of the planned laser interferometer detec-
tors if the source is located within our Galaxy or in its local
neighborhood. A catalogue of the core collapse waveforms
presented in [12] is available electronically [26]. This
catalogue is currently being employed by gravitational
wave data analysis groups to calibrate their search algo-
rithms (see e.g. [27] for results concerning the VIRGO
group).

More recently, Shibata and Sekiguchi [17] have pre-
sented simulations of axisymmetric core collapse of rotat-
ing polytropes to neutron stars in full general relativity.
These authors used a conformal-traceless reformulation of
the 3� 1 gravitational field equations commonly referred
to in the literature by the acronym BSSN (Baumgarte-
Shapiro-Nakamura-Shibata) after the works of [28,29]
(but note that many of the new features of the BSSN
formulation were anticipated as early as 1987 by
Nakamura, Oohara, and Kojima [30]). The results obtained
for initial models similar to those of [12] agree to high
precision in both the dynamics of the collapse and the
gravitational waveforms. This conclusion, in turn, implies
that, at least for core collapse simulations to neutron stars,
CFC is a very precise approximation of general relativity.

We note that in the relativistic core collapse simulations
mentioned thus far [12,17], the gravitational radiation is
computed using the (Newtonian) quadrupole formalism.
To the best of our knowledge the only exception to this is
the work of Siebel et al. [31], where, owing to the use of the
characteristic (light-cone) formulation of the Einstein
equations, the gravitational radiation from axisymmetric
core collapse simulations was unambiguously extracted at
future null infinity without any approximation.

B. Einstein equations and spectral methods

The most common approach to numerically solve the
Einstein equations is by means of finite differences (see
[22] and references therein). However, it is well-known
that spectral methods [32,33] are far more accurate than
finite differences for smooth solutions (e.g. best for initial
data without discontinuities), being particularly well suited
to solve elliptic and parabolic equations. Good results can
be obtained for hyperbolic equations as well, as long as no
discontinuities appear in the solution. The basic principle
underlying spectral methods is the representation of a
given function f�x� by its coefficients in a complete basis
of orthonormal functions: sines and cosines (Fourier ex-
-2
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pansion) or a family of orthogonal polynomials (e.g.
Chebyshev polynomials Ti�x� or Legendre polynomials).
In practice, of course, only a finite set of coefficients is used
and one approximates f by the truncated series f�x� ’Pn

i�0 ciTi�x� of such functions. The use of spectral meth-
ods results in a very high accuracy, since the error made by
this truncation decreases like e�n for smooth functions
(exponential convergence).

In an astrophysical context spectral methods have al-
lowed to study subtle phenomena such as the development
of physical instabilities leading to gravitational collapse
[34]. In the last few years, spectral methods have been
successfully employed by the Meudon group [35] in a
number of relativistic astrophysics scenarios [36], among
them the gravitational collapse of a neutron star to a black
hole, the infall phase of a triaxial stellar core in a core
collapse supernova (extracting the gravitational waves
emitted in such process), the construction of equilibrium
configurations of rapidly rotating neutron stars endowed
with magnetic fields, or the tidal interaction of a star with a
massive black hole. Their most recent work concerns the
computation of the inertial modes of rotating stars [37], of
quasiequilibrium configurations of corotating binary black
holes in general relativity [38], as well as the evolution of
pure gravitational wave spacetimes [39]. To carry out these
numerical simulations the group has developed a fully
object-oriented library called LORENE [40] (based on the
C++ computer language) to implement spectral methods in
spherical coordinates. Spectral methods are now employed
in numerical relativity by other groups as well [41,42].

C. Hydrodynamics equations and HRSC schemes

On the other hand, robust finite difference schemes to
solve hyperbolic systems of conservation (and balance)
laws, such as the Euler equations of fluid dynamics, are
known for a long time and have been employed success-
fully in computational fluid dynamics (see e.g. [43] and
references therein). In particular, the so-called upwind
high-resolution shock-capturing schemes (HRSC schemes
hereafter) have shown their advantages over other type of
methods even when dealing with relativistic flows with
highly ultrarelativistic fluid speeds (see e.g. [44,45] and
references therein). HRSC schemes are based on the
mathematical information contained in the characteristic
speeds and fields (eigenvalues and eigenvectors) of the
Jacobian matrices of the system of partial differential
equations. This information is used in a fundamental way
to build up either exact or approximate Riemann solvers to
propagate forward in time the collection of local Riemann
problems contained in the initial data, once these data are
discretized on a numerical grid. These schemes have a
number of interesting properties: (1) The convergence to
the physical solution (i.e. the unique weak solution satisfy-
ing the so-called entropy condition) is guaranteed by sim-
ply writing the scheme in conservation form, (2) the
064023
discontinuities in the solution are sharply and stably re-
solved, and (3) these methods attain a high order of accu-
racy in smooth parts of the solution.

D. Mariage des Maillages

From the above considerations, it seems a promising
strategy, in the case of relativistic problems where coupled
systems of elliptic (for the spacetime) and hyperbolic (for
the hydrodynamics) equations must be solved, to use spec-
tral methods for the former and HRSC schemes for the
latter (where discontinuous solutions may arise). Showing
the feasibility of such an approach is, in fact, the main
motivation and aim of this paper. Therefore, we present
and assess here the capabilities of a new, fully three-
dimensional code whose distinctive features are that it
combines both types of numerical schemes and imple-
ments the field equations and the hydrodynamic equations
using spherical coordinates. It should be emphasized that
our Mariage des Maillages approach is hence best suited
for formulations of the Einstein equations which favor the
appearance of elliptic equations against hyperbolic equa-
tions, i.e., either approximations such as CFC [24,25] (the
formulation we adopt in the simulations reported in this
paper), higher-order post-Newtonian extensions [46], or
exact formulations as recently proposed by [39,47]. The
hybrid approach put forward here has a successful prece-
dent in the literature; using such combined methods, first
results were obtained in one-dimensional core collapse in
the framework of a tensor-scalar theory of gravitation [48].

We note that one of the main limitations of the previous
axisymmetric core collapse simulations presented in [10–
12] was the CPU time spent when solving the elliptic
equations describing the gravitational field in CFC. The
restriction was severe enough to prevent the practical ex-
tension of the investigation to the three-dimensional case.
In that sense, spectral methods are again particularly ap-
propriate as they provide accurate results with reasonable
sampling, as compared with finite difference methods.

The three-dimensional code we present in this paper has
been designed with the aim of studying general relativistic
astrophysical scenarios such as rotational core collapse to
neutron stars (and, eventually, to black holes), as well as
pulsations and instabilities of the formed compact objects.
Core collapse may involve, obviously, matter fields which
are not rotationally symmetric. While during the infall
phase of the collapse the deviations from axisymmetry
should be rather small, for rapidly rotating neutron stars
which form as a result of the collapse, or which may be
spun up by accretion at later times, rotational (nonaxisym-
metric) bar mode instabilities may develop, particularly in
relativistic gravity and for differential rotation. In this
regard, in the previous axisymmetric simulations of
Dimmelmeier et al. [12], some of the most extremely
rotating initial models yielded compact remnants which
are above the thresholds for the development of such bar
-3
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mode instabilities on secular or even dynamic time scales
for Maclaurin spheroids in Newtonian gravity (which are
	s 	 0:14 and 	d 	 0:27, respectively, with 	 � Er=jEbj
being the ratio of rotational energy and gravitational bind-
ing energy).

Presently, only a few groups worldwide have developed
finite difference, three-dimensional (Cartesian) codes ca-
pable of performing the kind of simulations we aim at,
where the joint integration of the Einstein and hydrody-
namics equations is required [49–51]. Further 3D codes
are currently being developed by a group in the U. S. [52]
and by a E. U. Research Training Network collaboration
[53,54].

E. Organization of the paper

The paper is organized as follows: In Section II we
introduce the assumptions of the adopted physical model
and the equations governing the dynamics of a general
relativistic fluid and the gravitational field. Section III is
devoted to describing algorithmic and numerical features
of the code, such as the setup of both the spectral and the
finite difference grids, as well as the basic ideas behind the
HRSC schemes we have implemented to solve the hydro-
dynamics equations. In addition, a detailed comparison of
the three different solvers for the metric equations and their
practical applicability is given. In Section IV we present a
variety of tests of the numerical code, comparing the
metric solver based on spectral methods to two other
alternative methods using finite differences. We conclude
the paper with a summary and an outlook to future appli-
cations of the code in Section V. We use a spacelike
signature ��;�;�;�� and units in which c � G � 1
(unless explicitly stated otherwise). Greek indices run
from 0 to 3, Latin indices from 1 to 3, and we adopt the
standard convention for the summation over repeated
indices.

II. PHYSICAL MODEL AND EQUATIONS

A. General relativistic hydrodynamics

1. Flux-conservative hyperbolic formulation

Let � denote the rest-mass density of the fluid, u� its
four-velocity, and P its pressure. The hydrodynamic evo-
lution of a relativistic perfect fluid with rest-mass current
J� � �u� and energy-momentum tensor T�� �
�hu�u� � Pg�� in a (dynamic) spacetime g�� is deter-
mined by a system of local conservation equations, which
read

r�J� � 0; r�T�� � 0; (1)

where r� denotes the covariant derivative. The quantity h
appearing in the energy-momentum tensor is the specific
enthalpy, defined as h � 1� �� P=�, where � is the
specific internal energy. The three-velocity of the fluid,
as measured by an Eulerian observer at rest in a spacelike
064023
hypersurface �t is given by

vi �
ui

�u0
�
	i

�
; (2)

where � is the lapse function and 	i is the shift vector (see
Section II B).

Following the work laid out in [55] we now introduce the
following set of conserved variables in terms of the primi-
tive (physical) hydrodynamic variables ��; vi; ��:

D � �W; Si � �hW2vi; � � �hW2 � P�D:

In the above expressions W is the Lorentz factor defined as
W � �u0, which satisfies the relation W � 1=

������������������
1� vivi

p
and vi � �ijvj, where �ij is the 3-metric.

Using the above variables, the local conservation laws
(1) can be written as a first-order, flux-conservative hyper-
bolic system of equations,

1�������
�g

p

�
@

����
�

p
U

@t
�
@

�������
�g

p
Fi

@xi

�
� Q; (3)

with the state vector, flux vector, and source vector given
by

U � �D; Sj; ��; Fi � �Dv̂i; Sjv̂
i � !ijP; �v̂

i � Pvi�;

Q �

�
0; T��

�@g�j
@x�

� �"
��g"j

�
; �

�
T�0 @ ln�

@x�
� T���0

��

��
:

(4)

Here v̂i � vi � 	i=�, and
�������
�g

p
� �

����
�

p
, with g �

det�g��� and � � det��ij� being the determinant of the
4-metric and 3-metric, respectively, (see Section II B 1).
In addition, �"

�� are the Christoffel symbols associated
with g��.

2. Equation of state

The system of hydrodynamic equations (3) is closed by
an equation of state (EoS) which relates the pressure to
some thermodynamically independent quantities, e.g. P �
P��; ��. As in [11,12,31] we have implemented in the code
a hybrid ideal gas EoS [56], which consists of a polytropic
pressure contribution and a thermal pressure contribution,
P � Pp � Pth. This EoS, which despite its simplicity is
particularly suitable for stellar core collapse simulations, is
intended to model the degeneracy pressure of the electrons
and (at supranuclear densities) the pressure due to nuclear
forces in the polytropic part, and the heating of the matter
by shock waves in the thermal part. The hybrid EoS is
constructed as follows.

For a rotating stellar core before collapse the polytropic
relation between the pressure and the rest-mass density,

Pp � K��; (5)

with � � �ini � 4=3 and K � 4:897� 1014 (in cgs units)
-4
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is a fair approximation of the density and pressure strati-
fication [2].

In order to start the gravitational collapse of a configu-
ration initially in equilibrium, the effective adiabatic index
� is reduced from �ini to �1 on the initial time slice. During
the infall phase of core collapse the matter is assumed to
obey a polytropic EoS (5), which is consistent with the
ideal gas EoS for a compressible inviscid fluid, P � ���
1���.

To approximate the stiffening of the EoS for densities
larger than nuclear matter density �nuc, we assume that the
adiabatic index � jumps from �1 to �2 at � � �nuc. At core
bounce a shock forms and propagates out, and the matter
accreted through the shock is heated, i.e., its kinetic energy
is dissipated into internal energy. This is reflected by a
nonzero Pth � ��th��th � 1�, where �th � �� �p with
�p � Pp=����� 1��, in the post-shock region. We choose
�th � 1:5. This choice describes a mixture of relativistic
(� � 4=3) and nonrelativistic (� � 5=3) components of an
ideal fluid.

Requiring that P and � are continuous at the transition
density �nuc, one can construct an EoS for which both the
total pressure P and the individual contributions Pp and Pth

are continuous at �nuc, and which holds during all stages of
the collapse:

P �
�� �th

�� 1
K��1��

nuc �� �
��th � 1���� �1�

��1 � 1���2 � 1�
K��1�1

nuc �

� ��th � 1���: (6)

For more details about this EoS, we refer to [11,56].
Our implementation of the hybrid EoS allows us to

suppress the contribution of the thermal pressure Pth. In
this case the EoS (6) analytically reduces to the polytropic
relation (5). We use this EoS, with different values for �
and K, in the simulations of polytropic neutron star models
presented below.

B. Metric equations

1. ADM metric equations

We adopt the Arnowitt-Deser-Misner (ADM) 3� 1 for-
malism [57] to foliate the spacetime into a set of non-
intersecting spacelike hypersurfaces. The line element
reads

ds2 � ��2dt2 � �ij�dxi � 	idt��dxj � 	jdt�; (7)

where � is the lapse function which describes the rate of
advance of time along a timelike unit vector n� normal to a
hypersurface, 	i is the spacelike shift three-vector which
describes the motion of coordinates within a surface, and
�ij is the spatial three-metric.

In the 3� 1 formalism, the Einstein equations are split
into evolution equations for the three-metric �ij and the
extrinsic curvature Kij, and constraint equations (the
064023
Hamiltonian and momentum constraints) which must be
fulfilled at every spacelike hypersurface:

@t�ij��2�Kij�ri	j�rj	i;

@tKij��rirj����Rij�KKij�2KikK
k
j ��	krkKij

�Kikrj	k�Kjkri	k�8(�
�
Sij�

�ij

2
�Skk��H�

�
;

0�R�K2�KijKij�16(�H;

0�ri�Kij��ijK��8(Sj: (8)

In these equations ri is the covariant derivative with
respect to the three-metric �ij, Rij is the corresponding
Ricci tensor, R is the scalar curvature, and K is the trace of
the extrinsic curvature Kij. The matter fields appearing in
the above equations, Sij, Sj, and �H � �hW2 � P, are the
spatial components of the stress-energy tensor, the three
momenta, and the total energy, respectively.

The ADM equations have been repeatedly shown over
the years to be intrinsically numerically unstable. Recently,
there have been numerous attempts to reformulate above
equations into forms better suited for numerical investiga-
tions (see [22,23,28,29] and references therein). These
approaches to delay or entirely suppress the excitation of
constraint violating unstable modes include the BSSN
reformulation of the ADM system [28–30] (see
Section I B), hyperbolic reformulations (see [58] and refer-
ences therein), or a new form with maximally constrained
evolution [39]. In our opinion a consensus seems to be
emerging currently in numerical relativity, which in gen-
eral establishes that the more constraints are used in the
formulation of the equations the more numerically stable
the evolution is.

2. Conformal flatness approximation for
the spatial metric

Based on the ideas of Isenberg [24] and Wilson et al.
[25], and as it was done in the work of Dimmelmeier et al.
[12], we approximate the general metric g�� by replacing
the spatial three-metric �ij with the conformally flat three-
metric, �ij � )4�̂ij, where �̂ij is the flat metric (�̂ij � !ij
in Cartesian coordinates). In general, the conformal factor
) depends on the time and space coordinates. Therefore, at
all times during a numerical simulation we assume that all
off-diagonal components of the three-metric are zero, and
the diagonal elements have the common factor )4.

In CFC the following relation between the time deriva-
tive of the conformal factor and the shift vector holds:

@t) �
)
6
rk	

k: (9)

With this the expression for the extrinsic curvature be-
comes time-independent and reads
-5
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Kij �
1

2�

�
ri	j �rj	i �

2

3
�ijrk	k

�
: (10)

If we employ the maximal slicing condition, K � 0, then
in the CFC approximation the ADM Eqs. (8) reduce to a set
of five coupled elliptic (Poisson-like) nonlinear equations
for the metric components,

�̂) � �2()5

�
�hW2 � P�

KijK
ij

16(

�
;

�̂��)� � 2(�)5

�
�h�3W2 � 2� � 5P�

7KijKij

16(

�
;

�̂	i � 16(�)4Si � 2)10Kijr̂j

�
�

)6

�
�

1

3
r̂ir̂k	k;

(11)

where r̂i and �̂ are the flat space Nabla and Laplace
operators, respectively. We note that the way of writing
the metric equations with a Laplace operator on the left-
hand side can be exploited by numerical methods specifi-
cally designed to solve such kind of equations (see
Sections III D 2 and III D 3below).

These elliptic metric equations couple to each other via
their right-hand sides, and in case of the three equations for
the components of 	i also via the operator �̂ acting on the
vector 	i. They do not contain explicit time derivatives,
and thus the metric is calculated by a fully constrained
approach, at the cost of neglecting some evolutionary
degrees of freedom in the spacetime metric. In the astro-
physical situations we plan to explore (e.g. evolution of
neutron stars or core collapse of massive stars), the equa-
tions are entirely dominated by the source terms involving
the hydrodynamic quantities �, P, and vi, whereas the
nonlinear coupling through the remaining, purely metric,
source terms becomes only important for strong gravity.
On each time slice the metric is hence solely determined by
the instantaneous hydrodynamic state, i.e., the distribution
of matter in space.

Recently, Cerdá-Durán et al. [46] have extended the
above CFC system of equations (and the corresponding
core collapse simulations in CFC reported in [12]) by the
incorporation of additional degrees of freedom in the ap-
proximation, which render the spacetime metric exact up to
the second post-Newtonian order. Despite the extension of
the five original elliptic CFC metric equations for the lapse,
the shift vector, and the conformal factor by additional
equations, the final system of equations in the new formu-
lation is still elliptic. Hence, the same code and numerical
schemes employed in [12] and in the present work can be
used. The results obtained by Cerdá-Durán et al. [46] for a
representative subset of the core collapse models in [12]
show only minute differences with respect to the CFC
results, regarding both the collapse dynamics and the
gravitational waveforms. We point out that Shibata and
Sekiguchi [17] have recently considered axisymmetric
core collapse of rotating polytropes to neutron stars in
full general relativity (i.e. no approximations) using the
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3� 1 BSSN formulation of the Einstein equations.
Interestingly, the results obtained for initial models similar
to those of [12] agree to high precision in the dynamics of
the collapse and on the gravitational waveforms, which
supports the suitability and accuracy of the CFC approxi-
mation for simulations of relativistic core collapse to neu-
tron stars (see also Section IV B 4).

In addition, there has been a direct comparison between
the CFC approximation and perturbative analytical ap-
proaches (post-Newtonian and effective-one-body), which
shows a very good agreement in the determination of the
innermost stable circular orbit of a system of two black
holes [59].

3. Metric equation terms with noncompact support

In general, the right-hand sides of the metric equa-
tions (11) contain nonlinear source terms of noncompact
support. For a system with an isolated matter distribution
bounded by some stellar radius rs, the source term of each
of the metric equations for a metric quantity u can be split
into a ‘‘hydrodynamic’’ term with compact support Sh and
a purely ‘‘metric’’ term with noncompact support Sm.
Where no matter is present, only the metric term remains:

�̂u �

�
Sh�u� � Sm�u� for r � rs;
Sm�u� for r > rs:

(12)

The source term Sm vanishes only for Kij � 0 and thus
	i � 0, i.e., if the three-velocity vanishes and the matter is
static. As a consequence of this, only a spherically sym-
metric static matter distribution will yield a time-
independent solution to Eq. (12), which is equivalent to
the spherically symmetric Tolman-Oppenheimer-Volkoff
(TOV) solution of hydrostatic equilibrium. In this case
the vacuum metric is given by the solution of a homoge-
neous Poisson equation, u � k1 � k2=r, the constants k1
and k2 being determined by boundary values, e.g., at rs.

A time-dependent spherically symmetric matter interior
suffices to yield a nonstatic vacuum metric (u � u�t�
everywhere). However, this is not a contradiction to
Birkhoff’s theorem, as it is purely a gauge effect. A trans-
formation of the vacuum part of the metric from an iso-
tropic to a Schwarzschild-like radial coordinate leads to the
static (and not conformally flat) standard Schwarzschild
vacuum spacetime.

Thus, in general, the vacuum metric solution to Eqs. (11)
cannot be obtained analytically, and therefore (except for
TOV stars) no exact boundary values can be imposed for
), �, and 	i at some finite radius r. We note that this
property of the metric equations is no consequence of the
approximative character of conformal flatness, as in spheri-
cal symmetry the CFC renders the exact ADM equa-
tions (8), but rather results from the choice of the
(isotropic) radial coordinate.
-6
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III. NUMERICAL METHODS

A. Finite difference grid

The expressions for the hydrodynamic and metric quan-
tities outlined in Section II are in covariant form. For a
numerical implementation of these equations, however, we
have to choose a suitable coordinate system adapted to the
geometry of the astrophysical situations intended to be
simulated with the code.

As we plan to investigate isolated systems with matter
configurations not too strongly departing from spherical
symmetry with a spacetime obeying asymptotic flatness,
the formulation of the hydrodynamic and metric equations,
Eqs. (3) and (11), and their numerical implementation are
based on spherical polar coordinates �t; r; ,; ’�. This coor-
dinate choice facilitates the use of fixed grid refinement in
form of nonequidistant radial grid spacing. Additionally, in
spherical coordinates the boundary conditions for the sys-
tem of partial differential metric equations. (11) are sim-
pler to impose (at finite or infinite distance) on a spherical
surface than on a cubic surface if Cartesian coordinates
were used. We have found no evidence of numerical in-
stabilities arising at the coordinate singularities at the
origin (r � 0) or at the axis (, � 0; () in all simulations
performed thus far with the code (see [60,61] for related
discussions on instabilities in codes based upon spherical
coordinates).

Both the discretized hydrodynamic and metric quantities
are located on the Eulerian finite difference grid at cell
centers �ri; ,j; ’k�, where i; j; k run from one to nr; n,; n’,
respectively. The angular grid zones in the ,- and
’-direction are each equally spaced, while the radial
grid, which extends out to a finite radius rfd larger than
the stellar radius rs, can be chosen to be equally or loga-
rithmically spaced. Each cell is bounded by two interfaces
in each coordinate direction. Values on ghost zone cell
centers, needed to impose boundary conditions, are ob-
tained with the symmetry conditions described in [11]. We
further assume equatorial plane symmetry in all simula-
tions presented below (the code, however, is not restricted
to this symmetry condition). Expressions containing finite
differences in space on this grid are calculated with
second-order accuracy.

Note that the space between the surface of the star, the
radius of which in general is angular dependent, and the
outer boundary of the finite difference grid is filled with an
artificial atmosphere (as done in codes similar to ours, see
[50,52,53]). This atmosphere obeys the polytropic EoS (5),
and has a very low density such that its presence does not
affect the dynamics of the star [11]. As an example, we
observe a slight violation of conservation of rest-mass and
angular momentum in simulations of axisymmetric rota-
tional core collapse of the order of 10�4. This small
violation can be entirely attributed to the interaction of
the stellar matter with the artificial atmosphere (see
Appendix 2).
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B. Spectral methods and grid

1. Spectral methods

Our most general metric solver is based on spectral
methods (see Section III D 3). The basic principle of these
methods has been given in Section I B. Let us now describe
some details of our implementation in the case of 3D
functions in spherical coordinates. The interested reader
can refer to [36] for details. A function f can be decom-
posed as follows (. is linked with the radial coordinate r, as
given below):

f�.; ,; ’� �
Xn̂’
k�0

X̂n,
j�0

X̂nr
i�0

cijkTi�.�Yk
j �,;’�; (13)

where Yk
j �,;’� are spherical harmonics. The angular part

of the function can also be decomposed into a Fourier
series, to compute angular derivatives more easily. If f is
represented by its coefficients cijk, it is easy to obtain the
coefficients of e.g. @f=@r, �f (or the result of any linear
differential operator applied to f) thanks to the properties
of Chebyshev polynomials or spherical harmonics. For
instance, to compute the coefficients of the radial deriva-
tive of f, we make use of the following recursion formula
on Chebyshev polynomials:

dTn�1�x�
dx

� 2�n� 1�Tn�x� �
n� 1

n� 1

dTn�1�x�
dx

8n > 1:

(14)

A grid is still needed for two reasons: firstly, to calculate
these coefficients through the computation of integrals, and
secondly to evaluate nonlinear operators (e.g. rf�rf),
using the values of the functions at grid points (in physical
space). The spectral grid points, called collocation points
are situated at �r̂i; ,̂j; ’̂k�, where i; j; k run from one to
n̂r; n̂,; n̂’, respectively. They are the nodes of a Gauss-
Lobato quadrature used to compute the integrals giving the
spectral coefficients. The use of Fast Fourier Transforms
(FFT) for the angular part requires equally spaced points in
the angular directions, whereas a fast Chebyshev transform
(also making use of FFT) requires that the radial grid
points correspond, in ., to the zeros of Tn̂r . Note that in
our simulations each of the domains contains the same
number of radial and angular collocation points.

In order to be able to cover the entire space (r 2
�0;�1�) and to handle coordinate singularities at the
origin (r � 0), we use several grid domains:
(i) a
-7
nucleus spanning from r � 0 to rd, where we set
r � �., with . 2 �0; 1� and � being a constant (we
use either only even Chebyshev polynomials
T2i�.�, or only odd polynomials T2i�1�.�);
(ii) a
n arbitrary number (including zero) of shells
bounded by the inner radius rd i and outer radius
rd i�1, where we set r � �i.� 	i with . 2
��1; 1� and �i and 	i being constants depending
on the shell number i;
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outer boundary of the finite difference grid at rfd to
radial infinity, where we set r � 1=��c�.� 1��,
with . 2 ��1; 1� and �c being a constant.
Furthermore, we assume that the ratio fd between the outer
boundary radii of two consecutive domains is constant,
which yields the relation

fd �
�
rfd
rd

�
1=�nd�2�

; (15)

where nd is the number of domains (including the nucleus
and the external compactified domain). Thus a particular
choice of nd and fixing the radius of the nucleus rd com-
pletely specifies the setup of the spectral grid:

rd 1 � rd;

..

.

rd i � fdrd i�1;

..

.

rd nd�1 � rfd;

rd nd � 1:

(16)
2500 3000
r [km]

r
fd

ghost zones

domain 5
ourth shell)

domain 6
(compactified, extending to radial infinity)

100 200 300 400 500
r [km]

r
d1

 = r
d

r
d2

domain 1
(nucleus)

domain 2
(first shell)

domain 3
(second shell)

//

Radial setup of the initial spectral grid (collocation
re marked by plus symbols) and the time-independent
fference grid (cell centers are marked by filled circles,
d by cell interfaces symbolized by vertical dashes) for a
core collapse simulation. The upper panel shows the
st 500 km containing the nucleus (ending at rd �
), the first shell, and a part of the second shell of the
grid. In the lower panel a part of the last regular shell
s confined by the outer boundary of the finite difference
rfd � 2200 km) and the beginning of the compactified
of the spectral grid are plotted. The domain boundaries
cated by vertical dotted lines.
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The setup of the spectral grid and the associated finite
difference grid for a typical stellar core collapse model is
exemplified in Fig. 1 for n̂r � 33 grid points per spectral
radial domain and nr � 200 finite difference grid points.
Particularly in the central parts of the star (upper panel) the
logarithmic radial spacing of the finite difference grid is
obvious. While the finite difference grid ends at the finite
radius rfd (with the exception of four ghost zones, which
are needed for the hydrodynamic reconstruction scheme;
see Section III C), the radially compactified outermost 6th
domain of the spectral grid covers the entire space to radial
infinity (lower panel). The finite difference grid is fixed in
time, while the boundaries rd i of the spectral radial do-
mains (and thus the radial collocation points) change
adaptively during the evolution (for details, we refer to
Section IV B 3). Note that the radial collocation points of
the spectral grid, which correspond to the roots of the
Chebyshev polynomials (for the Gauss-Lobato quadra-
ture), are concentrated towards the domain boundaries.

Generally speaking, in order to achieve a comparable
accuracy in the representation of functions and their de-
rivatives, the finite difference grid needs much more points
than the spectral one. For example, when considering the
representation of some function like exp��x2� on the
interval �0; 1�, spectral methods using Chebyshev polyno-
mials need 	30 coefficients (and grid points) to reach
machine double precision (10�16) for the representation
of the function and 10�13 for the representation of its first
derivative. For comparison, a third-order scheme based on
finite differences needs 	105 points to achieve the same
accuracy.

2. Communication between grids

Passing information from the spectral grid to the finite
difference grid is technically very easy. Knowing the spec-
tral coefficients of a function, this step simply requires the
evaluation of the sum (13) at the finite difference grid
points. The drawback of this method, as it will be discussed
in Section IVA, is the computational time spent. In 3D this
time can even be larger than the time spent by the spectral
elliptic solver. Going from the finite difference grid to the
spectral grid requires an actual interpolation, taking special
care to avoid Gibbs phenomena that can appear in the
spectral representation of discontinuous functions. The
matter terms entering in the sources of the gravitational
field equations can be discontinuous when a shock forms.
Thus, it is necessary to smooth or filter out high frequen-
cies that would otherwise spoil the spectral representation.
This introduces a numerical error in the fields that should
remain within the overall error of the code. The important
point to notice is that an accurate description needs not be
achieved in the spectral representation of the sources (the
hydrodynamic quantities are well described on the finite
difference grid), but in that of the gravitational field, which
is always continuous, as well as its first derivatives.
-8
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Technically, we interpolate from the finite difference
grid to the spectral grid using a one-dimensional algorithm
and intermediate grids. We first perform an interpolation in
the r-direction, then in the ,-direction and finally in the
’-direction. We can choose between piecewise linear or
parabolic interpolations, and a scheme that globally mini-
mizes the norm of the second derivative of the interpolated
function [48]. The filtering of spectral coefficients is per-
formed a posteriori by removing the coefficients corre-
sponding to higher frequencies. For example, in the radial
direction, this is done by canceling the cijk in Eq. (13) for i
larger than a given threshold. In practice, best results were
found when cancelling the last third of radial coefficients.
This can be linked with the so-called ‘‘two-thirds rule’’
used for spectral computations of quadratically nonlinear
equations [62]. Nevertheless, a different (higher) threshold
would also give good results, in the sense that there are no
high-frequency terms rising during the metric iteration.

C. High-resolution shock-capturing schemes

As in our previous axisymmetric code [11,12], in the
present code the numerical integration of the system of
hydrodynamic equations is performed using a Godunov-
type scheme. Such schemes are specifically designed to
solve nonlinear hyperbolic systems of conservation laws
(see, e.g. [43] for general definitions and [44,45] for spe-
cific details regarding their use in special and general
relativistic hydrodynamics). In a Godunov-type method
the knowledge of the characteristic structure of the equa-
tions is crucial to design a solution procedure based upon
either exact or approximate Riemann solvers. These solv-
ers, which compute at every cell-interface of the numerical
grid the solution of local Riemann problems, guarantee the
proper capturing of all discontinuities which may appear in
the flow.

The time update of the hydrodynamic equations (3) from
tn to tn�1 is performed using a method of lines in combi-
nation with a second-order (in time) conservative Runge-
Kutta scheme. The basic conservative algorithm reads:

Un�1
i;j;k � Un

i;j;k �
�t
�ri

�F̂r
i�1=2 � F̂r

i�1=2� �
�t
�,

�F̂,
i;j�1=2;k

� F̂,
i;j�1=2;k� �

�t
�’

�F̂’
i;j;k�1=2 � F̂’

i;j;k�1=2�

��tQi;j;k: (17)

The index n represents the time level, and the time and
space discretization intervals are indicated by �t and �ri,
�,, and �’ for the r-, ,-, and ’-direction, respectively.
The numerical fluxes along the three coordinate directions,
F̂r, F̂,, and F̂’, are computed by means of Marquina’s flux
formula [63]. A family of local Riemann problems is set up
at every cell-interface, whose jumps are minimized with
the use of a piecewise parabolic reconstruction procedure
(PPM) which provides third-order accuracy in space.
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We note that Godunov-type schemes have also been
implemented recently in 2D and 3D Cartesian codes de-
signed to solve the coupled system of the Einstein and
hydrodynamic equations, as reported in [49,50,53,64].

D. Elliptic solvers

In the following we present the three different ap-
proaches we have implemented in our code to numerically
solve the system of metric equations (11). We compare the
properties of these solvers with special focus on issues like
(i) r
-9
adius and order of convergence,

(ii) s
caling with resolution in various coordinate

directions,

(iii) i
mposition of boundary conditions,

(iv) a
ssumptions about the radial extension of the grid,

(v) p
arallelization issues, and
(vi) e
xtensibility from two to three spatial dimensions.

In order to formalize the metric equations we define a

vector of unknowns

û � up � �);�);	1; 	2; 	3�: (18)

Then the metric equations (11) can be written as

f̂�û� � fq�up� � 0; (19)

with f̂ � fq denoting the vector of the five metric equa-
tions for û (p; q � 1; . . . ; 5). For metric solvers one and
two the metric equations are discretized at cell centers
�ri; ,j; ’k� on the finite difference grid. Correspondingly,
for metric solver 3 the metric equations are evaluated at
collocation points �r̂i; ,̂j; ’̂k� on the spectral grid. Thus,
when discretized, Eq. (19) transforms into the following
coupled nonlinear system of equations of dimension 5�
nr � n, � n’ or 5� n̂r � n̂, � n̂’, respectively:

f̂�û� � f̂i;j;k�ûl;m;n� � fqi;j;k�u
p
l;m;n� � 0; (20)

with the vector of discretized equations f̂ � f̂i;j;k � fqi;j;k
for the unknowns û � ûl;m;n � upl;m;n. For this system we
have to find the roots. Note that, in general, each discre-
tized metric equation fqi;j;k couples both to the other metric
equations through the five unknowns (indices p), and to
other (neighboring) cell locations on the grid (indices
l;m; n).

All three metric solvers are based on iterative methods,
where the new value for the metric ûs�1 is computed from
the value at the current iteration s by adding an increment
�ûs which is weighted with a relaxation factor fr. The
tolerance measure we use to control convergence of the
iteration is the maximum increment of the solution vector
on the grid the iteration is executed on, i.e.

�ûsmax � max��ûs� � max��up s
i;j;k�: (21)
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1. Multidimensional Newton-Raphson solver (Solver 1)

Solver 1, which was already introduced in the core
collapse simulations reported in [11,12], uses a multidi-
mensional Newton-Raphson iteration method to find the
roots of Eq. (20). Thus, solving the nonlinear system is
reduced to finding the solution of a linear problem of the
same dimension during each iteration. The matrix A defin-
ing the linear problem consists of the Jacobi matrix of f̂
and additional contributions originating from boundary
and symmetry conditions (see [11] for further details). As
the spatial derivatives in the metric equations (which also
contain mixed derivatives of second-order) are approxi-
mated by second-order central differences with a three-
point stencil, A has a band structure with 1� 2d2 bands of
blocks of size 5� 5, where d is the number of spatial
dimensions of the finite difference grid. Furthermore, ma-
trix A is sparse and usually diagonally dominated.

A simple estimate already shows that the size n� n of
the linear problem grows impractically large in 3D. A
resolution of 100 grid points in each coordinate direction
results in a square �5� 106� � �5� 106� matrix A. Thus,
direct (exact) inversion methods, like Gauss-Jordan elimi-
nation or exact LU decomposition, are beyond practical
applicability, as these are roughly n3 processes, where n is
the dimension of the matrix. Even when exploiting the
sparsity and band structure of A the linear problem re-
mains too large to be solved on present-day computers in a
reasonable time by using iterative methods like successive
over-relaxation (SOR) or conjugate gradient (CG) methods
with appropriate preconditioning.

Because of these computational restrictions, the use of
solver 1 is restricted to 2D axisymmetric configurations,
where the matrix A has nine bands of blocks. Even in this
case, for coupled spacetime and hydrodynamic evolutions,
the choice of linear solver methods is limited: The compu-
tational time spent by the metric solver should not exceed
the time needed for one hydrodynamical time step by an
excessive amount. We have found that a recursive block
tridiagonal sweeping method [65] (for the actual numerical
implementation, see [11]) yields the best performance for
the linear problem. Here the three leftmost, middle, and
rightmost bands are combined into three new bands of nr
blocks of size �5� n,� � �5� n,� and which are inverted
in a forward-backward recursion along the bands using a
standard LU decomposition scheme for dense matrices.
Actual execution times for this method and the scaling
with grid resolution are given in Section IV B 1.

We point out that the recursion method provides us with
a noniterative linear solver, and the Newton-Raphson
method exhibits in general very rapid and robust conver-
gence. Therefore, solver 1 converges rapidly to an accurate
solution of the metric equations (19) even for strongly
gravitating, distorted configurations, irrespective of the
relative strength of the ‘‘hydrodynamics’’ term Sh and
metric term Sm in the metric equations (see Eq. (12)). Its
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convergence radius is sufficiently large, so that even the flat
Minkowski metric can be used as an initial guess for the
iteration, and the relaxation factor fr can be set equal to 1.
Note that in solver 1 every metric function is treated
numerically in an equal way; in particular, the equations
for each of the three-vector components of the shift vector
	i are solved separately.

In its current implementation, solver 1 exhibits a par-
ticular disadvantage, which will be discussed in more de-
tail in Section IV B 2. As its spatial grid, on which the
metric equations are discretized, is not radially compacti-
fied, there is a need for explicit boundary conditions of the
metric functions û at the outer radial boundary of the finite
difference grid. This poses a severe problem, as there exists
no general analytic solution for the vacuum spacetime
surrounding an arbitrary rotating fluid configuration in
any coordinate system. Even in spherical symmetry, our
choice of isotropic coordinates yields equations with non-
compact support terms, which leads to imprecise boundary
conditions, as demonstrated in Section II B 3. Therefore, as
an approximate boundary condition for an arbitrary matter
configuration with gravitational mass Mg, we use the
monopole field for a static TOV solution,

) � 1�
Mg

2r
; � �

1�
Mg

2r

1�
Mg

2r

; 	i � 0; (22)

evaluated at rfd. The influence of this approximation on the
accuracy of the solution for typical compact stars is dis-
cussed in Section IV B 2. We emphasize that the use of a
noncompactified finite radial grid is not an inherent re-
striction of this solver method. However in the case of
metric solver 1, for practical reasons we have chosen to
keep the original grid setup as presented in [11], where
both the metric and hydrodynamic equations are solved on
the same finite difference grid.

Finally, a further drawback of solver 1 is its inefficiency
regarding scalability on parallel or vector computer archi-
tectures. The recursive nature of the linear solver part of
this method prevents efficient distribution of the numerical
load onto multiple processors or a vector pipeline. In
combination with the disadvantageous scaling behavior
of the linear solver with resolution (see also Table III
below), these practical constraints render any extension
of solver 1 to 3D beyond feasibility.

2. Conventional iterative integral nonlinear Poisson
solver (Solver 2)

While solver 1 makes no particular assumption about the
form of the (elliptic) equations to be solved, solver 2
exploits the fact that the metric equations (11) can be
written in the form of a system of nonlinear coupled
equations with a Laplace operator on the left-hand side
(12). A common method to solve such kind of equations is
to keep the right-hand side S�û� fixed, solve each of the
-10
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resulting decoupled linear Poisson equations, �̂ûs�1 �
S�ûs�, and iterate until the convergence criterion (21) is
fulfilled.

The linear Poisson equations are transformed into inte-
gral form by using a three-dimensional Green’s function,

û s�1�r;,;’���
1

4(

�
Z
r02dr0

Z
sin,0d,0

Z
d’0S�û

s�r0;,0;’0��

jx�x0j
;

(23)

where the spatial derivatives in S are approximated by
central finite differences. The volume integral on the
right-hand side of Eq. (23) is numerically evaluated by
expanding the denominator into a series of radial functions
fl�r; r

0� and associated Legendre polynomials Pm
l �cos,�,

which we cut at l � 10. The integration in Eq. (23), which
has to be performed at every grid point, yields a problem of
numerical size �nr � n, � n’�

2. However, the problem
size can be reduced to nr � n, � n’ by recursion. Thus,
solver 2 scales linearly with the grid resolution in all spatial
dimensions (see Section IV B 1). However, while the nu-
merical solution of an integral equation like Eq. (23) is well
parallelizable, the recursive method which we employ to
improve the resolution scaling performance poses a severe
obstacle. In practice only the parallelization across the
expansion series index l (or possibly cyclic reduction)
can be used to distribute the computational workload
over several processors.

An advantage of solver 2 is that it does not require the
imposition of explicit boundary conditions at a finite radius
due to the integral form of the equations. Demanding
asymptotic flatness at spatial infinity fixes the integration
constants in Eq. (23). However, as the metric equations
contain in general source terms with noncompact support
(see Section II B 3), the radial integration must be per-
formed up to infinity to account for the source term con-
tributions. As the discretization scheme used in solver 2
limits the radial integration to some finite radius rfd, the
metric equations are solved only approximately if the
source terms with noncompact support are nonzero. The
consequences of this fact are discussed in Section IV B 2.
As in the case of metric solver 1, the metric solver 2 could
be used with a compactified radial coordinate as well.

One major disadvantage of solver 2 is its slow conver-
gence rate and a small convergence radius. For simplicity,
we decompose the metric vector equation for the shift
vector 	i into three scalar equations for its components.
If the ,-component of the shift vector does not vanish,
	2 � 0, and if the spacetime is nonaxisymmetric, solver 2
does not converge at all (probably due to diverging terms
like 	,=sin2, in the vector Laplace operator). Even when
using a known solution obtained with another metric solver
as initial guess, solver 2 fails to converge. Thus, the use of
solver 2 is limited to axisymmetry. Even so, when 	2 � 0,
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a quite small relaxation factor fr � 0:05 is required.
Furthermore, as the iteration scheme is of fix-point type,
it already has a much lower convergence rate than, e.g., a
Newton-Raphson scheme. Both factors result in typically
several hundred iterations until convergence is reached
(see Section IV B 1). For strong gravity, the small conver-
gence radius restricts the initial guess to a metric close to
the actual solution of the discretized equations.

3. Iterative spectral nonlinear Poisson solver (Solver 3)

The basic principles of this iterative solver are similar to
the ones used for solver 2: A numerical solution of the
nonlinear elliptic system of the metric differential equa-
tions is obtained by solving the associated linear Poisson
equations with a fix-point iteration procedure until con-
vergence. However, instead of using finite difference scalar
Poisson solvers, solver 3 is built from routines of the
publicly available LORENE library [40] and uses spectral
methods to solve scalar and vector Poisson equations [66].

Before every computation of the spacetime metric, the
hydrodynamic and metric fields are interpolated from the
finite difference to the spectral grid by the methods detailed
in Section III B 2. All three-dimensional functions are de-
composed into Chebyshev polynomials Tn�r� and spherical
harmonics Ym

l �,; ’� in each domain. When using solver 3
the metric equations (8) are rewritten in order to gain
accuracy according to the following transformations. The
scalar metric functions ) and � have the same type of
asymptotic behavior near spatial infinity, )jr!1 	 1�
�)�r�, �jr!1 	 1� ���r�, with �)�r� and ���r� ap-
proaching 0 as r ! 1. Therefore, to obtain a more precise
numerical description of the (usually small) deviations of
) and � from unity, we solve the equations for the loga-
rithm of ) and �), imposing that ln) and ln��)� ap-
proach zero at spatial infinity. Another important
difference to the other two solvers is that the vector
Poisson equation for the shift vector 	i is not decomposed
into single scalar components, but instead the entire linear
vector Poisson equation is solved, including the 1

3 r̂
ir̂k

operator on the left-hand side. Therefore, the system of
metric equation to be solved reads

�̂ln)��4()4

�
�hW2�P�

KijK
ij

16(

�

�r̂i ln)r̂i ln);

�̂ln�)�2()4

�
�h�3W2�2��5P�

7KijKij

16(

�

�r̂i ln�)r̂i ln�);

�̂	i�
1

3
r̂ir̂k	k�16(�)4Si�2)10Kijr̂j

�
�

)6

�
: (24)

During each iteration a spectral representation of the solu-
tion of the linear scalar and vector Poisson equations
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associated with the above system is obtained. The Laplace
operator is inverted (i.e. the linear Poisson equation is
solved) in the following way: For a given pair of indices
l and m of Ym

l �,; ’�, the linear scalar Poisson equation
reduces to an ordinary differential equation in r. The action
of the differential operator

@2

@r2
�

2

r
@
@r

�
l�l� 1�

r2
(25)

acting thus on each multipolar component (l and m) of a
scalar function corresponds to a matrix multiplication in
the Chebyshev coefficient space. The corresponding ma-
trix is inverted to obtain a particular solution in each
domain, which is then combined with homogeneous solu-
tions (rl and 1=rl, for a given l) to satisfy regularity and
boundary conditions. The matrix has a small size (about
30� 30) and can be put into a banded form, owing to the
properties of the Chebyshev polynomials, which facilitates
its fast inversion. For more details about this procedure,
and how the vector Poisson equation is treated, the inter-
ested reader is addressed to [66]. Note also that when
solving the shift vector equation, 	i is decomposed into
Cartesian components defined on the spherical polar grid
(see [66]).

The spatial differentials in the source terms on the right-
hand sides of the metric equations are approximated by
second-order central differences in solvers 1 and 2, while
they are obtained by spectral methods in solver 3 (see
Section III B 1). When using 	30 collocation points,
very high precision ( 	 10�13) can be achieved in the
evaluation of these derivatives. Another advantage of met-
ric solver 3 is that a compactified radial coordinate u �
1=r enables us to solve for the entire space, and to impose
exact boundary conditions at spatial infinity, u � 0. This
ensures both asymptotic flatness and fully accounts for the
effects of the source terms in the metric equations with
noncompact support. Solver 3 uses the same fix-point
iteration method as solver 2, but does not suffer from the
convergence problem encountered with that solver.
Because of the direct solution of the vector Poisson equa-
tion for the shift vector 	i, it converges to the correct
solution in all investigated models (including highly dis-
torted 3D matter configurations with velocity perturba-
tions, see Section IV B 1). Furthermore, this can be
achieved with the maximum possible relaxation factor,
fr � 1, starting from the flat metric as initial guess.

However, the strongest reason in favor of solver 3 is its
straightforward extension to 3D. As mentioned previously,
both metric solvers 1 and 2 are limited to axisymmetric
situations. The spectral elliptic solvers provided by the
LORENE library are already intrinsically three-dimensional.
Indeed, even in axisymmetry the spectral grid of solver 3
requires n̂’ � 4 grid points in the ’-direction order to
correctly represent the Cartesian components of the shift
vector.
064023
There is an additional computational overhead due to the
communication between the finite difference and the spec-
tral grids. These computational costs may actually become
a dominant part when calculating the metric (as will be
shown in Section IVA). The interpolation methods also
have to be chosen carefully to obtain the desired accuracy.
Furthermore, spectral methods may suffer from Gibbs
phenomena if the source terms of the Poisson-like equa-
tions contain discontinuities. For the particular type of
simulations we are aiming at, discontinuities are present
(supernova shock front, discontinuity at the transition from
the stellar matter distribution to the artificial atmosphere at
the boundary of the star). This can result in high-frequency
spurious oscillations of the metric solution, if too few
radial domains are used, or if the boundaries of the spectral
domains are not chosen properly. As mentioned before, a
simple way to reduce the oscillations is to filter out part of
the high-frequency spectral coefficients.

As the C++ routines of the LORENE library in the current
release are optimized for neither vector nor parallel com-
puters, solver 3 cannot yet exploit these architectures.
However, we were able to improve the computational
performance by coarse-grain parallelizing the routines
which interpolate the metric solution in the spectral repre-
sentation to the finite difference grid.

E. Extraction of gravitational waves

In a conformally flat spacetime the dynamical gravita-
tional wave degrees of freedom are not present [11].
Therefore, in order to extract information regarding the
gravitational radiation emitted in core collapse events and
in rotating neutron star evolutions, we have implemented in
the code the 3D generalization of the axisymmetric
Newtonian quadrupole formula used in [10–12]. Note
that we use spherical polar components for the tensors of
the radiation field.

Whereas in axisymmetry there exists only one indepen-
dent component of the quadrupole gravitational radiation
field hTTij in the transverse traceless gauge,

hTTij �r; ,� �
1

r
A��,�e�; (26)

in three dimensions we have

hTTij �r; ,; ’� �
1

r
�A��,; ’�e� � A��,; ’�e��; (27)

with the unit vectors e� and e� defined as

e� � e, � e, � e’ � e’; (28)

e� � e, � e’ � e’ � e,: (29)

The amplitudes A� and A� are linear combinations of
the second time derivative of some components of the
quadrupole moment tensor Iij, which for simplicity we
evaluate at ’ � 0 on the polar axis and in the equatorial
-12
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plane, respectively:

Ap
� � &I11 � &I22; A

p
� � 2 &I12; at , � 0 �pole�; (30)

Ae
� � &I33 � &I22; A

e
� � �2 &I13; at , � (=2 �equator�:

(31)

A direct numerical calculation of the quadrupole mo-
ment in the standard quadrupole formulation,

Iij �
Z
dV��

�
xixj �

1

3
!ij�x21 � x22 � x23�

�
; (32)

results in high-frequency noise completely dominating the
wave signal due to the presence of the second time deriva-
tives in Eq. (31). Therefore, we make use of the time-
differentiated quadrupole moment in the first moment of
momentum density formulation,

_I ij�
Z
dV��

�
vixj�vjxi�

2

3
!ij�v1x1�v2x2�v3x3�

�
;

(33)

and stress formulation,

&I ij �
Z
dV���2vivj � xi@j(� xj@i(�; (34)

of the quadrupole formula [67,68].
In the above equations, xi and vi are the coordinates and

velocities in Cartesian coordinates, respectively. When
evaluating Eq. (34) numerically, we transform vi to spheri-
cal polar coordinates. In the quadrupole moment, we use
�� � �W)6 instead of � as in [10–12], as this quantity is
evolved by the continuity equation (note that both quanti-
ties have the same Newtonian limit). This also allows a
direct comparison with the results presented in [69], which
we show in Section IV B 4. For a discussion about the
ambiguities arising from the spatial derivatives of the
Newtonian potential ( in Eq. (34) in a general relativistic
framework and their solution (which we also employ in
this work), we refer to [12].

The total energy emitted by gravitational waves can be
expressed either as a time integral,

Egw �
2

15

Z
dt��I

:::
11I
:::
22 � I

:::
11I
:::
33 � I

:::
22I
:::
33 � I

:::2
11 � I

:::2
22

� I
:::2
33 � 3�I

:::2
12 � I

:::2
13 � I

:::2
23��; (35)

or, equivalently, as a frequency integral,

Egw �
1

15

Z
�2d��� &̂I11 &̂I22 � &̂I11 &̂I33 � &̂I22 &̂I33 � &̂I

2
11

� &̂I
2
22 � &̂I

2
33 � 3� &̂I

2
12 � &̂I

2
13 � &̂I

2
23��; (36)

where &̂Iij��� is the Fourier transform of &Iij�t�. We point out
that the above general expressions reduce to the following
ones in axisymmetry:
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Ap
��0; Ap

��0; Ae
�� &I; Ae

��0; (37)

Egw �
2

15

Z
dtI
:::2 �

1

15

Z
�2d� &̂I

2
; (38)

with I � I33 � I22 being the only nonzero independent

component of the quadrupole tensor, and &̂I
2

being the
Fourier transform of &I2. The quadrupole wave amplitude
AE2
20 used in [8,10,12] is related to I according to AE2

20 �

8
������������
(=15

p
&I.

We have tested the equivalence between the waveforms
obtained by the axisymmetric code presented in [10–12]
and those by the current three-dimensional code using the
corresponding axisymmetric model. In all investigated
cases, they agree with excellent precision.

IV. CODE TESTS AND APPLICATIONS

We turn now to an assessment of the numerical code
with a variety of tests and applications. We recall that we
do not attempt in the present paper to investigate any
realistic astrophysical scenario, which is deferred to sub-
sequent publications. Instead, we focus here on discussing
standard tests for general relativistic three-dimensional
hydrodynamics code, which were all passed by our code.
In particular, we show that the code exhibits long-term
stability when evolving strongly gravitating systems like
rotational core collapse and equilibrium configurations of
(highly perturbed) rotating relativistic stars. Each separate
constituent methods of the code (HRSC schemes for the
hydrodynamics equations and elliptic solvers based on
spectral methods for the gravitational field equations) has
already been thoroughly tested and successfully applied in
the past (see e.g. [44,45,66] and references therein).
Therefore, we mainly demonstrate here that the coupled
numerical schemes work together as desired.

A. Interpolation efficiency and accuracy

The interpolation procedure from the finite difference
grid to the spectral grid has been described in
Section III B 2. Among the three possible algorithms we
have implemented in the code, the most efficient turned out
to be the one based on a piecewise parabolic interpolation
(see Table I). It is as fast as the piecewise linear interpo-
lation, and more accurate than the algorithm based on the
minimization of the second derivative of the interpolated
function. Table I shows, for a particular example of an
interpolated test function ft�r; ,; ’� � exp��r2�1�
sin2,cos2’��, the relative accuracy �fint (in the L0

norm) achieved by this interpolation, as well as the CPU
time spent on a Pentium IV Xeon processor at 2.2 GHz.
The spectral grid consists of two domains (nucleus � shell)
with n̂r � 17, n̂, � 17, and n̂’ � 16. The outer radius of
the nucleus is located at 0.5, and the outer boundary of the
shell is at 1.5 (corresponding to the radius of the finite
difference grid rfd).
-13



TABLE I. Execution time tfd!sp and accuracy �ffd!sp for the
interpolation of a test function ft�r; ,; ’� (see text) from the
finite difference grid to the spectral grid, listed for different finite
difference grid resolutions nr � n, � n’ and interpolation types.
The interpolation methods are piecewise linear (type 1), piece-
wise parabolic (type 2), and globally minimizing the norm of the
second derivative of the interpolated function [48] (type 0). The
spectral grid has a resolution of n̂r � 17, n̂, � 17, and n̂’ � 16
grid points.

nr � n, � n’ Type tfd!sp [s] �ffd!sp [L0 norm]

400� 200� 800 2 5:13 5:0� 10�8

400� 200� 800 1 5:12 7:0� 10�6

400� 200� 800 0 9:44 1:8� 10�6

400� 200� 400 2 2:92 3:1� 10�7

400� 200� 200 2 1:43 1:6� 10�6

400� 200� 100 2 0:77 1:7� 10�5

400� 200� 10 2 0:09 1:3� 10�2

400� 100� 800 2 2:55 3:1� 10�7

400� 50� 800 2 1:60 1:8� 10�6

400� 5� 800 2 0:32 2:0� 10�3

200� 200� 800 2 3:61 2:7� 10�7

100� 200� 800 2 1:81 2:1� 10�6

50� 200� 800 2 1:40 1:6� 10�5

5� 200� 800 2 0:99 1:4� 10�2

TABLE II. Execution time tsp!fd and accuracy �fsp!fd for the
evaluation of a test function ft�r; ,; ’� (see text) on the finite
difference grid from its representation in spectral coefficients,
listed for different numbers of spectral grid points n̂r � n̂, � n̂’.
The finite difference grid has a resolution of nr � 100, n, � 50,
and n’ � 30 grid points.

n̂r � n̂, � n̂’ tsp!fd [s] �fsp!fd [L0 norm]

33� 17� 64 75:8 1:5� 10�15

33� 17� 32 38:4 5:5� 10�9

33� 17� 16 19:6 2:6� 10�4

33� 17� 8 10:3 2:8� 10�2

33� 9� 64 40:8 6:4� 10�9

33� 5� 64 23:4 3:2� 10�4

17� 17� 64 41:2 1:9� 10�13

9� 17� 64 24:6 9:2� 10�7

5� 17� 64 16:7 1:9� 10�3
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This test demonstrates that the piecewise parabolic in-
terpolation is indeed third-order accurate, and that the time
spent scales roughly linearly with the number of points of
the finite difference grid in any direction. We have made
other tests which show that the interpolation accuracy is
independent of n̂, and that it scales in time like O�n̂3� �
O�n3�, where n̂ and n are the number of points used in each
dimension by the spectral and the finite difference grid,
respectively. The interpolation is exact, up to machine
precision, for functions which can be expressed as poly-
nomials of degree � 2 with respect to all three coordinates.

The direct spectral summation from the spectral to the
finite difference grid is a very precise way of evaluating a
function: For smooth functions, the relative error decreases
like exp��n̂� (infinite order scheme). This property is
fulfilled in our code, as shown in Table II for the same
test function ft�r; ,; ’� and the same domain setup as for
Table I (again the timings are for a Pentium IV Xeon
processor at 2.2 GHz). Double precision accuracy is
reached with a reasonable number of points (n̂r � 33,
n̂, � 17, and n̂’ � 64). According to Table II the CPU
cost scales linearly with the number of coefficients n̂ in any
direction. We have also confirmed that it scales linearly
with the number of finite difference grid points n in any
direction. The drawback of this most straightforward pro-
cedure is that it requires O�n̂3n3� operations, which is
much more expensive than the interpolation from the finite
difference grid to the spectral one, and even more expen-
sive than the iterative procedure providing the solution of
system (24). Nevertheless, it is computationally not pro-
064023
hibitive since the overall accuracy of the code does not
depend on n̂ (which can thus remain small). A way to
reduce the execution time is to use a partial summation
algorithm (see e.g. [62]), which needs only O�n̂n3� �
O�n̂2n2� �O�n̂3n� operations, at the additional cost of
increased central memory requirement. Another alterna-
tive is to truncate the spectral sum, staying at an accuracy
level comparable to that of finite difference differential
operators.

B. Solver comparison in 2D

1. Convergence properties

The theoretical considerations about the convergence
properties of the three implemented metric solvers (as
outlined in Section III D) are checked by solving the space-
time metric for a 2D axisymmetric rotating neutron star
model in equilibrium (labeled model RNS), which we have
constructed with the method described in Komatsu et al.
[70]. This model has a central density �c � 7:905�
1014 g cm�3, obeys a polytropic EoS with � � 2 and K �
1:455� 105 (in cgs units), and rotates rigidly at the mass
shedding limit, which corresponds to a polar-to-equatorial
axis ratio of 0.65. These model parameters are equivalent to
those used for neutron star models in [50,71].

To the initial equilibrium model we add an r- and
,-dependent density and velocity perturbation,

� � �ini

�
1� 0:02sin2

�
(
r
rs

�
�1� sin2�2,��

�
;

vr � 0:05sin2
�
(
r
rs

�
�1� sin2�2,��;

v, � 0:05sin2
�
(
r
rs

�
sin2�2,�;

v’ � v’ini � 0:05sin2
�
(
r
rs

�
�1� sin2�2,��;

(39)
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where rs is the (,-dependent) stellar radius, and vr ������������
v1v1

p
, v, �

�����������
v2v2

p
, and v’ �

�����������
v3v3

p
. The metric equa-

tions (Eqs. (11) for solvers 1 and 2, and Eqs. (24) in the
case of solver 3) are then solved using the three imple-
mented metric solvers. The perturbation of vr and v,
ensures that the metric equations yield the general case
of a shift vector with three nonzero components, which
cannot be obtained with an initial model in equilibrium.

We point out that by adding the perturbations specified
in Eq. (39) and calculating the metric for these perturbed
initial data, we add a small inconsistency to the initial value
problem. As the Lorentz factor W in the right-hand sides of
the metric equations contains metric contributions (which
are needed for computing the covariant velocity compo-
nents), it would have to be iterated with the metric solution
until convergence. However, as the perturbation amplitude
is small, and as we do not evolve the perturbed initial data,
we neglect this small inconsistency.

The most relevant quantity related to convergence prop-
erties of the metric solver is the maximum increment
�ûsmax of all metric components on the grid (see Fig. 2).
As expected solver 1 exhibits the typical quadratic decline
of a Newton-Raphson solver to its threshold value �ûsthr �
10�15. As the methods implemented in solvers 2 and 3
correspond to a fix-point iteration, the decline of their
metric increment is significantly slower. Therefore, for
the Poisson-based solvers, we typically use a less restric-
tive threshold �ûsthr � 10�6. While the spectral Poisson
0 10 20 30 40 50 60
s

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

∆u
 s

∆u
 s

thr
 for solver 1

∆u
 s

thr
 for solver 2 and 3

FIG. 2. Comparison of the convergence behavior for the three-
metric solvers in 2D. For solver 1 (filled circles), the maximum
increment �ûsmax per iteration s decreases to the threshold
�ûsthr � 10�15 (lower horizontal dotted line) within less than
10 iterations, while solver 3 (asterisks) needs more than 40
iterations to reach its (less restrictive) threshold (upper horizon-
tal dotted line) of 10�6. The very low relaxation factor needed
for solver 2 (filled squares) results in a remarkably slow con-
vergence, requiring more than 700 iterations. The solid lines
mark the approximate linear decrease of log�ûsmax.
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solver 3 allows for a relaxation factor of 1 and thus for a
still quite rapid convergence, the conventional Poisson
solver 2 requires more than 700 iterations due to its
much smaller relaxation factor imposed by the
	2-equation.

It is worth stressing that all three solvers show rather
robust convergence, if one keeps in mind that the initial
guess is the flat spacetime metric. If the metric is changing
dynamically during an evolution, the metric values from
the previous computation can be used as new starting
values, which reduces the number of iterations by about a
factor of 2 with respect to those reported in Fig. 2.

Besides the convergence rate, the execution time tm
required for a single metric computation and its depen-
dence on the grid resolution is also of paramount relevance
for the practical usefulness of a solver. These times for one
metric computation of the perturbed RNS stellar model on
a finite difference grid with various r- and ,-resolutions on
an IBM RS/6000 Power4 processor are summarized in
Table III. As theoretically expected, both solver 1 and 2
show a linear scaling of tm with the number of radial grid
points nr, i.e., the ratio rnr � tm�nr�=tm�nr=2� is approxi-
mately 2. While the integration method of solver 2 shows
linear dependence also for the number of meridional grid
zones n,, the inversion of the dense n, � n, matrices
during the radial sweeps in solver 1 is roughly a n3, process.
Thus, the theoretical value of rn, � 8 for that solver is well
met by the results shown in Table III. We note that for even
larger values of n,, specific processor properties like
cache-miss problems can even worsen the already cubic
scaling of solver 1, while for n, * 64 solver 2 fails to
converge altogether. On the other hand for solver 3 tm is
approximately independent of the number of finite differ-
ence grid points in either coordinate direction, as the
number of spectral collocation points is fixed. A depen-
TABLE III. Metric solver execution time tm for different finite
difference grid resolutions nr � n, for the three metric solvers in
2D applied to the perturbed rotating neutron star model RNS.
The ratios anr (an, ) between execution times for a given nr (n,)
and for half that resolution exhibit the behavior expected from
theoretical considerations. The spectral grid has a resolution of
n̂r � 33, n̂, � 17, and n̂’ � 4 grid points.

Solver 1 Solver 2 Solver 3
nr � n, tm [s] anr an, tm [s] anr an, tm [s] anr an,

50� 16 1:8 2:8 20:7
100� 16 3:7 2:0 5:9 2:1 20:6 1:0
200� 16 7:4 2:0 12:9 2:2 20:8 1:0
50� 32 12:5 6:9 5:9 2:1 20:8 1:0
100� 32 25:4 2:0 6:9 12:3 2:1 2:1 20:5 1:0 1:0
200� 32 50:8 2:0 6:9 27:1 2:2 2:1 21:7 1:1 1:0
50� 64 109:7 8:8 12:4 2:1 20:9 1:0
100� 64 224:2 2:0 8:8 � � � 21:5 1:0 1:1
200� 64 445:2 2:0 8:8 � � � 21:7 1:0 1:1
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FIG. 3. Equatorial profile of the shift vector component 	’ e

obtained by different metric solvers compared with the correct
profile from the initial data solver (solid line) for the rotating
neutron star model RNS. Because of its approximate boundary
value, the profile from solver 1 (dashed line) shows large
deviation from the correct solution, particularly for a grid
boundary rfd close to the stellar equatorial radius rs e (upper
panel). As solver 2 (dashed-dotted line) needs no explicit bound-
ary conditions, its solution matches well with the correct solu-
tion, with improving agreement as rfd is at larger distance from
rs e (lower panel). The compactified radial grid of solver 3
(dotted line) fully accounts for noncompact support terms, and
thus agrees very well with the correct solution, independent of
the location of rfd. The radii rs e and rfd are indicated by vertical
dotted lines.
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dence on nr and n, can only enter via the interpolation
procedure between the two grids, the time for which is,
however, entirely negligible in 2D.

The break even point for the three solvers corresponds
roughly to a resolution of 100� 32 grid points at tm 	
20 s. We emphasize that this value of tm is much larger
than the time needed for one hydrodynamic step at the
same resolution, which is roughly th 	 0:1 s. From the
results reported in Table III it becomes evident that due
to the independence of tm on the finite difference grid
resolution in the spectral metric solver 3, this method is
far superior to the other two solvers for simulations requir-
ing a large number of grid points in general, and particu-
larly in ,-direction.

2. Radial fall-off of the metric components

When comparing in Section III D the theoretical foun-
dations of the three alternative metric solvers implemented
in the code, we already raised the issue of the existence of
source terms with noncompact support in the metric equa-
tions (11) (see Section II B 3). Neither the Newton-
Raphson-based solver 1, which requires explicit boundary
conditions at the finite radius rfd (which are in general not
exactly known and possibly time-dependent), nor the con-
ventional iterative Poisson solver 2, which integrates the
Poisson-like metric equations only up to the same finite
radius rfd, are able to fully account for the nonlinear source
terms, even if the radial boundary of the finite difference
grid is in the vacuum region outside the star, rfd > rs.

Hence, both solvers yield a numerical solution of the
exact metric equations only in very few trivial cases, like,
e.g., the solution for the metric of a spherically symmetric
static matter distribution (TOV solution), when the metric
equations reduce to Poisson-like equations with compact
support. However, due to the radial compactification of the
spectral grid, which allows for the Poisson equations to be
numerically integrated out to spacelike infinity, the spectral
solver 3 can consistently handle all noncompact support
source terms in the metric equations in a nonapproximative
way. This property holds even when the metric quantities
are mapped from the spectral grid onto the finite difference
grid, the latter extending only to rfd. Thus, we expect that
only solver 3 captures the correct radial fall-off behavior of
the metric quantities outside the matter distribution.

In the following we illustrate the effects of noncompact
support terms in the metric equations on the numerical
solution using the three different solvers. Figure 3 shows
the radial equatorial profiles of the rotational shift vector
component 	’ �

�������
�33

p
	3 for the rapidly rotating neutron

star initial model (RNS) specified in Section IV B 1, ob-
tained with the three alternative metric solvers. While we
restrict our discussion to the particular metric quantity 	’ e

we notice that the radial fall-off behavior and the depen-
dence on the solver method is equivalent for all other
metric components.
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In the upper panel of Fig. 3 the equatorial stellar bound-
ary rs e is very close to the radial outer boundary of the
finite difference grid, rs e � 0:9rfd (both indicated by ver-
tical dotted lines). The star and the exterior atmosphere are
resolved using nr s � 90 radial grid points for the star and
nr a � 10 radial grid points for the atmosphere (along the
equator), respectively, and n, � 30 meridional points. The
spectral solver 3 uses n̂r � 33 radial and n̂, � 17 meri-
dional grid points.

If the boundary value for the metric at rfd is exact, solver
1 always yields the correct solution, irrespective of the
source terms not having compact support. For stationary
solutions like rotating neutron stars these exact values can
in principle be provided by the initial data solver. However,
for instance in a dynamical situation, exact values cannot
be provided, and we are forced to use approximate bound-
ary conditions, which we choose according to Eq. (22). As
the approximate boundary value for solver 1, 	’�rfd� � 0,
is far from the exact value, the corresponding profile of the
shift vector (dashed line) strongly deviates from the correct
	’ e obtained by the initial data solver (solid line). Note
that the exact solution is given only for r � rs e, due to
limitations of the initial solver method [70]. As shown in
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FIG. 4. Time evolution of the central conformal factor )c

(upper panel) for the core collapse model SCC, using metric
solver 1 (solid line), 2 (dashed line), and 3 (dashed-dotted line),
respectively. All three solvers yield similar results. The small
relative differences of less than 10�3 in )c (lower panel)
obtained with solvers 1 and 3 (solid line) and solvers 2 and 3
(dashed line) prove that numerical variations of the metric from
each solver are of the order of the small overall discretization
error of the entire evolution code. The time of bounce tb is
indicated by the vertical dotted line.
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the lower panel of the figure, with increasing distance of
the finite difference grid boundary from the stellar bound-
ary (rfd � 2:0rs e with nr s � nr a � 90), the approxima-
tion for 	’ e�rfd� improves noticeably, and so does the
matching of 	’ e with the correct solution.

On the other hand, as the integral approach of solvers 2
and 3 requires no specific boundary conditions at a finite
radius (contrary to solver 1), the numerical solution for
	’ e agrees well with the correct solution even for an
integration boundary rfd close to the stellar boundary rs e
(dashed-dotted and dotted lines in Fig. 3, respectively). For
rfd � rs e, when the influence of the source terms with
noncompact support is increasingly picked up by the radial
integral, the solutions supplied by solver 2 rapidly ap-
proach the correct one. The terms with noncompact sup-
port usually do not contribute strongly to the solution of the
metric equations (except in cases of very strong gravity and
extremely rapid contraction or rotation). Thus, solver 2 is
superior to solver 1 when approximate boundary values
must be used, Eq. (22). Solver 3, on the other hand, has the
key advantage over solver 2 of using very accurate spectral
methods for solving the Poisson equation over the entire
spatial volume due to its compactified radial coordinate.
Hence, irrespective of the distance of rfd from rs e�, it
yields the same results on the finite difference grid, onto
which the results are mapped from the spectral grid.

The (small) difference between the results for 	’ e from
solver 3 and from the initial data solver is partly due to the
accuracy of the numerical schemes and the mapping be-
tween different grids, and particularly a result of the CFC
approximation of the field equations employed by the
evolution code (note that the initial data are generated
from a numerical solution of the exact Einstein metric
equations). In the case of rapidly rotating neutron star
models we have found that the truncation error and the
error arising from the mapping of the initial data to the
evolution code is typically more than 1 order of magnitude
smaller than the error which can be attributed to the CFC
approximation, if a grid with a resolution nr 	 100, n, 	
30 and n̂r � 33, n̂, � 17 is used. For estimates of the
quality of the CFC approximation in such cases, see [11]
and references therein.

We again note that, in principle, the use of a compacti-
fied radial grid is not confined to the spectral solver 3. A
finite difference grid extending to spatial infinity could be
used for solvers 1 and 2 as well. However, in that case
either the exterior atmosphere would also have to be ex-
tended to the entire grid too (generating unnecessary com-
putations), or only the relevant portion of the grid
containing the star would have to be evolved in time
(creating an additional boundary). When using solver 3,
there is a clear-cut split between the finite difference grid
and the spectral grid. Thus, the hydrodynamic quantities
can be defined on a grid with an atmosphere of only small
size, while the metric in the compactified domain can be
064023
computed very accurately with only few radial collocation
points due to the exponential convergence of spectral
methods in this smooth region. Additionally, the LORENE

library provides the use of a compactified radial domain as
an already implemented option at no extra cost.

3. Axisymmetric core collapse to a neutron star—
Construction of the spectral grid domains

As all three metric solvers yield equally precise numeri-
cal solutions of the spacetime metric in 2D, they give
nearly identical results when applied to simulations of
rotational core collapse, as shown in Fig. 4. For the results
presented in this figure we have chosen the stellar core
collapse model labeled A3B2G4 in [12] (model SCC in the
following), which rotates differentially and moderately
fast, and has an initial central density �c � 1010 g cm�3.
The initial adiabatic index is reduced from �i � 4=3 to
�1 � 1:3 during contraction, and is increased to �2 � 2:5
beyond supranuclear matter densities, � > �nuc � 2:0�
1014 g cm�3. The details of the EoS for this model are
given by Eq. (6). As the metric calculation is computation-
ally very expensive, it is done only every 100/10/50 hydro-
dynamic time steps before/during/after core bounce, and
extrapolated in between (for details on the satisfactory
accuracy of this procedure see [11]). The number of zones
used in the finite difference grid is nr � 200 and n, � 30,
with logarithmic spacing in the r-direction and a central
resolution of 500 m, and an equidistant spacing in the
-17
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,-direction. Again, the grid resolution of the spectral solver
3 is n̂r � 33 and n̂, � 17.

In the upper panel of Fig. 4 we plot the time evolution of
the central conformal factor )c, which rises steeply when
the central density increases to supranuclear densities,
reaches a maximum at the time of core bounce tb (vertical
dotted line), and subsequently approaches a new equilib-
rium value with decreasing ringdown oscillations. This
new state, which is reached asymptotically, signals the
formation of a pulsating compact remnant which can be
identified with the nascent proto-neutron star. Each of the
three curves in this upper panel is the result of using one of
the three available metric solver (see caption for details).
The lower panel of the figure demonstrates that the relative
differences found in the dynamical evolution of our repre-
sentative core collapse model are negligibly small when
using either metric solver, which proves the applicability of
any of the metric solvers in 2D.

However, in such a highly dynamical situation, where
the relevant radial scales vary by a factor of about 100,
solver 3 requires a special treatment of the radial domain
setup of the spectral grid defined in Section III B 1. During
the infall phase of a core collapse simulation the contract-
ing core must be sufficiently resolved by the radial grid,
and thus we adjust the radius of the nucleus rd dynamically
before core bounce. (Note that this is no contradiction to
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FIG. 5a. Two different methods for determining the domain
radii of the spectral grid boundary. The upper panel shows the
time evolution of the domain radius parameter rd for the core
collapse model SCC, where rd is either set by the sonic point
method (solid line; sonic point first detected at t	 23 ms) or by
the rest-mass fraction method (dashed line). The boundary of the
finite difference grid rfd, the stellar equatorial radius rs e, the
minimal domain radius rd min (set to r40), and the approximate
location of shock formation rsh are indicated by horizontal
dotted lines. The relative difference between the values of )c

from simulations using the two methods (lower panel) is less
than 10�4 throughout the evolution. The time of bounce tb is
indicated by the vertical dotted line.
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the assumption fd � const: in Eq. (15), as fd may change
between subsequent metric calculations during the evolu-
tion.) Initially the value of rd is given by half the stellar
radius. As the evolution proceeds it is set equal to the radial
location of the sonic point in the equatorial plane (once
unambiguously detected). Alternatively rd can be deter-
mined by the radius enclosing a shell of a fixed fraction of
the total rest-mass of the star (typically 10%), whereby rd
moves inward during the collapse, too. In either case rd is
held fixed when some minimal radial threshold rd min is
crossed, which we set equal to the radius of some given
radial grid point (e.g. the 40th grid point at r40). This
ensures that there is always a sufficient number of grid
points on the finite difference grid, such that the interpo-
lation to the spectral grid is well-behaved. For nd � 6
domains, both approaches yield equally accurate results,
the relative difference between the values of )c being less
than 10�4 throughout the evolution of the collapse model
SCC (see lower panel of Fig. 5).

At least for core collapse simulations, the appropriate
choice of the radial spectral domain setup parameters nd
and rd�t� is crucial, as exemplified in Fig. 6. The reduction
of rd with time must follow the contraction of the core to a
sufficiently small radius, while rd min must retain enough
grid points for the nucleus. Furthermore, when splitting the
spectral grid into several radial domains, well-behaved
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FIG. 6. Importance of the correct spectral domain setup for
highly dynamic simulations, shown for the core collapse model
SCC. If the domain radius parameter is not reasonably adjusted
(upper panel), e.g. rd is held fixed at 10% of the initial stellar
equatorial radius (dashed line), or if the minimal domain radius
is too large, rd min � r100 (dashed-dotted line), the central con-
formal factor )c deviates strongly from the correct value (solid
line; cf. Fig. 4). If the number of domains is too small (lower
panel), e.g. nd � 3 (dashed line) instead of nd � 6 (solid line),
the metric inside the star (here the equatorial conformal factor
)r100e at the 100th radial grid point) shows strong oscillations
after core bounce. The time of bounce tb is indicated by the
vertical dotted line.
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differential operators (in particular, the Poisson operator)
are only obtained if, for a shell-type domain, the criterion
of thin shell-type domains, fd & 2, is fulfilled. This re-
striction for the ratio fd between the outer and the inner
radii originates from the requirement to keep the condition
number of the matrix representing (for a given multipolar
momentum l) the radial Poisson operator (25), which is a
very fast growing function of fd, lower than 	103.

In particular Fig. 6 shows that if rd is not properly
adjusted or if rd min is too large, the central conformal
factor deviates strongly from the correct value (upper
panel). In addition, if the number of domains is too small
while keeping the radial resolution n̂r � 33 fixed, the
conformal factor inside the core shows large amplitude
oscillations after core bounce, due to a too large value of
fd (lower panel). If fd & 2 is violated because of too few
domains in a collapse situation, such oscillations are even
present if the radial resolution n̂r is increased.

On the other hand, in quasistationary situations with no
large dynamical radial range (e.g. oscillations of neutron
stars), one can safely reduce nd from 6 to 3 and keep rd
fixed throughout the evolution. The optimal number of
domains nd is thus determined by balancing radial resolu-
tion and the requirement of thin shell-type domains against
computational costs.

4. Axisymmetric core collapse to a neutron star—
Comparison with fully general relativistic simulations

Only recently, fully general relativistic simulations of
axisymmetric rotational core collapse have become avail-
able [17]. We now estimate the quality of the CFC ap-
proximation adopted in our code by simulating one of the
core collapse models presented in [17] and comparing the
results.

In their simulations, Shibata and Sekiguchi [17] make
use of the CARTOON method [72] which reduces the dimen-
sionality of a code based on 3D Cartesian coordinates to
2D in the case of axisymmetric configurations. Using this
approach, and solving the full set of BSSN metric equa-
tions, these authors present a series of rotational core
collapse models with parameters close (but not exactly
equal) to the ones simulated by Dimmelmeier et al. [12].
As an additional difference, �� � �W)6 is employed by
[17] in the gravitational wave extraction with the first
moment of momentum density formula, while in [12] the
wave extraction is performed with the stress formula using
the density � (see Section III E for details). Furthermore, in
the simulations reported in [17], the equidistant Cartesian
finite difference grid is repeatedly remapped during the
collapse, so that the grid spacing in the center increases
from initially 	3 km to 	300 m during core bounce. As
the outer boundary moves in accordingly, matter leaves the
computational grid, resulting in a mass loss of about 3%.

In their paper, Shibata and Sekiguchi investigated a core
collapse model which is identical to our model SCC
064023
(A3B2G4 in [12]) with the exception of a slightly smaller
rotation length parameter Â � A=rs e � 0:25 (compared to
Â � 0:32 in [12]) in the initial equilibrium model. They
found that the evolution of this model (labeled SCCSS

hereafter) computed with their fully general relativistic
code agrees qualitatively well with the evolution of our
model SCC simulated with our CFC code. However, it
produces an increased gravitational wave amplitude of
about 20% at the peak during core bounce, and up to a
factor 2 in the ringdown. Furthermore, the damping time of
the ringdown signal of model SCCSS as shown in [17] is
significantly longer compared to that of model SCC pre-
sented in [12].

Shibata and Sekiguchi offer several possible explana-
tions for this noticeable disagreement, the most plausible
ones being the different functional forms of the rest-mass
density used in the wave extraction method, and the differ-
ent formulations (stress formulation (34) versus first mo-
ment of momentum density formulation (33)). By
comparing waveforms obtained from evolutions of oscil-
lating neutron stars (as presented in [69]), both using the
quadrupole formula and by directly reading off metric
components, they find that the quadrupole formula under-
estimates the wave amplitude of model SCCSS by 	10%.
Extrapolating these results they arrive at the estimate that
the waveforms presented in [12] are accurate at best to
within 	20%. Shibata and Sekiguchi claim that other
differences, namely, the CFC approximation versus the
BSSN formulation, different grid setups, coordinate
choices and slicing conditions, or the small discrepancy
of Â in the initial model, have only negligible impact on the
waveform.

To test this conjecture, we have simulated the evolution
of model SCC with our new version of the CFC code in 2D,
and extracted the wave amplitude Ae

� using the first mo-
ment of momentum density formulation (33) with �, and
also alternatively substituting � by ��. As our results show
(see upper panel of Fig. 7), the use of �� results in a small
increase of Ae

� by about 20% during the bounce and the
ringdown phase, limiting possible deviations due to the
difference in the quadrupole formula stated in [17] to about
20%. However, the results depicted in Fig. 7 exclude that
the doubling of Ae

� observed by [17] for the ringdown
signal is due to the wave extraction method. On the con-
trary, comparing the waveforms for model SCC and SCCSS

(see lower panel of Fig. 7), both computed with our CFC
method, shows that the strong qualitative difference found
by Shibata and Sekiguchi is clearly due to the differences
in the core collapse initial model, notably the small de-
crease of the differential rotation length scale Â in model
SCCSS. This gives rise to an approximately 50% higher
peak value of the amplitude during bounce, and a strong
increase of the post bounce wave amplitude, as also ob-
served by Shibata and Sekiguchi (compare with Fig. 13b in
[17]).
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FIG. 7. Influence of the density used in the wave extraction
equations (upper panel) and of small differences in the initial
model (lower panel) on the gravitational waveforms from rota-
tional core collapse. If �� � �hW2 is used in the quadrupole
formula (solid line) instead of � (dashed line), the wave ampli-
tude Ae

� increases by about 20% at core bounce (upper panel). A
change from model SCC (solid line) to model SCCSS (dashed
line), which corresponds solely to a difference in the initial
configuration, results in a qualitatively different waveform, in
particular, during the ring-down phase (lower panel). The times
of bounce tb are indicated by the vertical dotted lines.
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Furthermore, from the evolution of the central density
computed with our code (see Fig. 8), it is evident that
model SCCSS exhibits significantly stronger ringdown os-
cillations than model SCC with a somewhat longer damp-
ing timescale, which is also in good agreement with the
results in [17] (see their Fig. 7b). Clearly the small differ-
ence in the rotation length parameter Â of the initial model
has a major impact on the post-bounce dynamics of the
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FIG. 8. Influence of differences in the initial model on the
evolution of the central density �c for rotational core collapse.
Changing from the collapse model SCC (solid line) to SCCSS

(dashed line) only slightly shifts the time of bounce tb (indicated
by the vertical dotted line), but leads to much stronger post-
bounce ringdown oscillations. Nuclear matter density �nuc is
indicated by the horizontal dotted line.
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dense core, which is in turn reflected in the gravitational
wave signal.

We have also simulated the evolution of models SCC
and SCCSS using a larger number of radial and meridional
grid points (nr � 250 and n, � 60 with a central radial
resolution �rc � 250 m) as compared to the standard grid
setup with nr � 200, n, � 30, and �rc � 500 m (in either
case the spectral grid resolution is n̂r � 33 and n̂, � 17).
Neither improving the resolution of the finite difference
grid nor discarding a significant mass fraction in the outer
parts of the star (to mimic the mass loss introduced by the
regridding method in [17]) have a significant impact on the
collapse dynamics or the waveform for both initial models.
When simulating the same collapse model, the observed
small differences to Shibata and Sekiguchi’s results in, e.g.,
the central density or the waveform are most likely due to
the use of the CFC approximation for the spacetime metric
employed in our code. Nevertheless, for core collapse
simulations, the results obtained using either CFC or the
full Einstein equations agree remarkably well.

C. Applications of the spectral solver 3 in 3D

1. Computation of a nonaxisymmetric spacetime metric

While the previous tests were all restricted to 2D (and
thus solvers 1 and 2 could as well be used), the genuine 3D
properties of the spectral metric solver 3 can be fully
exploited and tested when applied to the computation of
the metric for a nonaxisymmetric configuration. For this
purpose we consider now the uniformly rotating neutron
star initial model RNS (see Section IV B 1) to which we
add a nonaxisymmetric perturbation. This is done by gen-
eralizing the expressions in Eq. (39) through the multi-
plication of a ’-dependent term of the form �1� sin2’�.
The effect of such a perturbation on representative quanti-
ties is depicted in Fig. 9. The metric equations (24) are then
integrated using solver 3. Convergence is reached after
about 50 iterations (threshold value �ûsthr � 10�6), and
the solution for the metric is interpolated from the spectral
to the finite difference grid.

To exclude convergence to an incorrect solution and
errors within the interpolation routine, we compare the
left and right-hand sides, lhsu and rhsu, of selected metric
components u on the finite difference grid, in Fig. 10. We
note that in this figure, along each of the profile directions,
the two other coordinates are kept fixed (r � r50, , � (=4,
and ’ � 0, respectively). The left and right-hand sides of
the metric equations (24) for the conformal factor ) and
the shift vector components 	1 and 	3, when evaluated on
the finite difference grid, match very accurately along all
three coordinate directions. The largest deviations are
found near the rotation axis (, � 0) for 	1.

The accuracy of the metric calculation can be better
quantified by plotting the relative difference of the left
and right-hand sides, �rel u � jlhsu=rhsu � 1j, rather than
lhsu and rhsu alone. This is shown for the metric quantities
-20



0 1 2 3 4 5 6
φ

   
  l

hs
φ, r

hs
φ

[a
rb

itr
ar

y 
un

its
]

0 0.5 1 1.5
θ

   
 lh

s β1 , 
rh

s β1

[a
rb

itr
ar

y 
un

its
]

0 5 10
r [km]

   
 lh

s β3 , 
rh

s β3

[a
rb

itr
ar

y 
un

its
]

0 1 2 3 4 5 610
-5

10
-4

10
-3

∆ re
l
φ

0 0.5 1 1.510
-3

10
-2

10
-1

∆ re
l
β1

0 5 1010
-4

10
-2

10
0

∆ re
l
β3

FIG. 10. Left (solid line) and right (dashed line) hand sides
(computed on the finite difference grid) of the equation for the
metric components ) along the azimuthal direction ’ (upper
panel), 	1 along the meridional direction , (center panel), and
	3 along the radial direction (lower panel). Even for strong
nonaxisymmetric perturbations of the rotating neutron star
model RNS, the metric solver 3 yields a highly accurate match-
ing, such that the lines almost lie on top of one another. The
insets show the relative difference �rel u between the left and
right-hand sides of the equation for the same metric components.
The relative differences are & 10�2, except where they exhibit a
pole.

0 1 2 3 4 5 6
ϕ

5.2

5.4

5.6

5.8

ρ 
[1

014
 g

 c
m

-3
]

0 0.25 0.5 0.75 1 1.25 1.5
θ

0.00

0.02

0.04

0.06

v r [
c]

0 5 10
r [km]

0.00

0.05

0.10

0.15

0.20

v ϕ [
c]

FIG. 9. Nonaxisymmetric density and velocity perturbation of
the rapidly rotating neutron star equilibrium model RNS. By
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), 	1, and 	3 in the insets of Fig. 10. Along any of the
plotted profiles, the spectral solver yields a solution for
which the relative difference measure is better than 10�2.
As lhsu and rhsu contain second spatial derivatives of the
metric, evaluated by finite differencing, this is an accurate
numerical result. We note that some of the metric compo-
nents are close to zero or change sign. Hence, the relative
difference may become large or develop a pole at some
locations, as can be seen in the insets of Fig. 10.

Under idealized conditions (i.e. without discontinuities
in the source terms of the metric equations, no artificial
atmosphere, only laminar matter flows, uniform grid spac-
ing of the finite difference grid, and perturbations which
are regular at the grid boundaries), such a test case also
offers an opportunity to examine the order of convergence
of the metric solver 3 on the spectral and finite difference
grid, respectively. To this end we perform a metric calcu-
lation using increasingly finer resolutions on the two grids.
By varying the number of spectral collocation points in all
three spatial directions while keeping the number of finite
difference grid points fixed (at high-resolution), we ob-
serve an exponential decrease of the relative differences
�rel u between the left and right-hand sides of the equation
for the various metric components u. Correspondingly, the
metric solution evaluated on the finite difference grid ex-
064023
hibits second-order convergence with grid resolution for a
fixed (and high) spectral grid resolution. Furthermore, the
(at least) second-order accurate time integration scheme of
the code in combination with the PPM reconstruction of
the Riemann solver also guarantees second-order conver-
gence during time evolution. For fixed time steps we
actually observe this theoretical convergence order glob-
ally and even locally (except close to the grid boundaries,
where symmetry conditions and ghost zone extrapolation
spoil local convergence).

In the three-dimensional case the computational load of
the interpolation from the spectral grid to the finite differ-
ence grid after every metric calculation on the spectral grid
becomes significant. The time spent in the interpolation
between grids can, in fact, even surpass the computational
costs of the spectral metric solution itself (see
Section IVA). As a consequence, the independence of
-21



TABLE IV. Dependence of the metric solver execution time tm
on the finite difference grid resolution nr � n, � n’ and the
spectral grid azimuthal resolution n̂’ using the metric solver 3 in
3D for the nonaxisymmetrically perturbed rotating neutron star
model RNS. For typical finite difference grid point numbers, the
ratio rn’ between execution times for a given n’ and for half that
resolution is smaller than 2, i.e., the increase of tm is less than
linear. Furthermore, when doubling both the radial and meri-
dional grid zones, a sublinear increase in the corresponding ratio
rnr;, < 4 is observed. Doubling the spectral resolution n̂’ in-
creases tm by rn̂’ 	 2. For comparison, the values of tm for the
corresponding axisymmetric model are given at the bottom.

n̂’ � 6 n̂’ � 12
nr � n, � n’ tm [s] rn’ rnr;, tm [s] rn’ rnr;, rn̂’

100� 32� 8 37:2 71:5 2:0
100� 32� 16 39:9 1:1 77:8 1:1 2:0
100� 32� 32 47:4 1:2 90:6 1:2 1:9
100� 32� 64 62:3 1:3 116:1 1:3 1:9
200� 64� 8 48:3 1:3 90:7 1:3 1:9
200� 64� 16 62:5 1:3 1:6 116:6 1:3 1:5 1:9
200� 64� 32 92:0 1:5 1:9 166:2 1:4 1:8 1:8
200� 64� 64 149:9 1:6 2:4 269:5 1:6 2:3 1:8

n̂’ � 4
nr � n, � n’ tm [s]

100� 32� 1 20:5
200� 32� 1 21:7
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the metric execution time tm on the number of finite
difference grid points found in the axisymmetric case (as
shown in Table III) cannot be maintained. Table IV reports
the summary of runtime results for a single metric compu-
tation of the above neutron star model on an IBM RS/6000
Power4 processor. These results indicate an (albeit sub-
linear) increase of tm with the number of finite difference
grid points. As expected, a doubling of the spectral grid
resolution, e.g., in the ’-direction (while keeping n̂r � 33
and n̂, � 17 fixed) results in a proportional increase of tm.
The runtime scaling results reported in Table IV also
demonstrate that the different coordinate directions con-
tribute equally to the computational costs.

It is worth pointing out that the other two metric solvers
we have available in the code fail to compute the metric for
the nonaxisymmetric neutron star configuration considered
in this section due to the known limitations (excessive
computing time for solver 1, convergence problems for
solver 2).

2. Stability of symmetric configurations against
perturbations

An important requirement for any hydrodynamics code
is the preservation of the symmetry of an initially symmet-
ric configuration during time evolution. In a practical
application this means that if a small perturbation is added
to symmetric and stable initial data, the perturbation am-
064023
plitude must not grow in time. Because of the choice of
spherical polar coordinates �r; ,; ’�, our code is particu-
larly well suited to test the preservation of the symmetry of
spherically symmetric and axisymmetric initial data.
Additionally, this coordinate choice implies that when
simulating axisymmetric or spherically symmetric prob-
lems, either one or two dimensions can be trivially sup-
pressed, respectively, which results in considerable savings
of computational time.

Next, we present results from the evolution of both a
spherically symmetric neutron star model (labeled SNS)
and the axisymmetric rapidly rotating neutron star model
RNS. Model SNS has the same central density and EoS as
model RNS described in Section IV B 1. To each equilib-
rium model SNS and RNS we, respectively, add an axi-
symmnetric �r; ,�- and a nonaxisymmetric
�r; ,; ’�-dependent three-velocity perturbation of the form

vr � 0:02sin2
�
(
r
rs

�
�1� asin2�2,��;

v, � 0:02sin2
�
(
r
rs

�
asin2�2,�;

(40)

and

vr � 0:02sin2
�
(
r
rs

�
�1� sin2�2,���1� asin2’�;

v, � 0:02sin2
�
(
r
rs

�
sin2�2,��1� asin2’�;

v’ � v’ ini � 0:02sin2
�
(
r
rs

�
�1� sin2�2,���1� asin2’�;

(41)

respectively, where a is the perturbation amplitude. Model
SNS is then evolved in time using the code in axisymmetric
2D mode, and model RNS using the fully 3D capabilities
of the code. The metric is calculated every 100 (300) time
steps in 2D (3D) and extrapolated in between. The number
of finite difference grid zones is nr � 80, n, � 16, n’ � 1
in the 2D case and nr � 80, n, � 16, n’ � 12 in the 3D
case. Correspondingly, for the spectral grid we use n̂r �
25, n̂, � 13, n̂’ � 4 in 2D, and n̂r � 25, n̂, � 13, n̂’ � 6
in 3D.

The results of the evolution of the symmetry violating
perturbations in both models are depicted in Fig. 11. The
upper panels correspond to model SNS which is evolved up
to five ms, while the bottom panels correspond to model
RNS which is only evolved up to 1 ms. The left and right
panels differ by the value of the initial amplitude a of the
velocity perturbation. We observe that the perturbation
amplitude, measured as the relative difference �q of an
arbitrary matter or metric quantity q evaluated at two
points of constant r (for model SNS) and constant r; ,
(for model RNS), remains practically unchanged for
many hydrodynamic time scales. Note that the spikes in
�q appearing in Fig. 11 are the poles associated with a
-22
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FIG. 12. Radial profile of the equatorial rotation velocity v’ e

for the unperturbed axisymmetric rapidly rotating neutron star
model RNS evolved in 3D. The profile of v’ e at t � 10 ms
(dashed line) closely reproduces the initial profile (solid line).
The stellar equatorial radius rs e and the boundary of the finite
difference grid rfd are indicated by vertical dotted lines.
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FIG. 11. Time evolution of a symmetry violating perturbation.
The upper two panels correspond to the spherically symmetric
model SNS, and the lower two panels to the axisymmetric model
RNS. The relative variation in density �� (solid line), radial
velocity �vr (dashed line), rotational velocity �v’ (dotted line),
and conformal factor �) (dashed-dotted line) show a remark-
able constancy in time (note that �v’ is nonzero only for the
rotating model RNS). The symmetry violating variation of the
different fields scale with the initial perturbation amplitude
(horizontal dotted lines; left panels: a � 10�3; right panels: a �
10�6).
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vanishing q. Figure 11 also shows that the amplitude of the
symmetry violation �q approximately scales with the
amplitude a of the initial velocity perturbation (indicated
by horizontal dotted lines).

In the course of many hydrodynamic time scales, the
perturbations (which are of small amplitude, a � 1) will
be finally damped due to the intrinsic numerical viscosity
of the schemes implemented in the code. However, if the
rotation rate 	 of a rotating neutron star were high enough
such that 	 * 	s or even 	 * 	d, perturbations of the
form given by Eq. (41) could trigger the onset of physically
growing modes, leading to bar mode instabilities.

3. Evolution of an axisymmetric uniformly rotating
neutron star in 3D

The ability to handle long-term evolutions of rapidly
rotating relativistic equilibrium configurations is a difficult
test for any numerical code. To demonstrate the capabil-
ities of our code to pass this stringent test we evolve the
rotating neutron star initial model RNS in 3D until t �
10 ms, which corresponds to about ten hydrodynamic time
scales and rotation periods. The simulation is performed
with a resolution for the finite difference grid of nr � 100,
064023
n, � 30, n’ � 8, and n̂r � 33, n̂, � 17, n̂’ � 6 for the
spectral grid. During the evolution, the metric is calculated
every 100 time steps and extrapolated in between.

The preservation of the radial profile of the rotation
velocity v’e along the equator over a long evolution time
is shown in Fig. 12. Depicted is the initial equilibrium
solution (solid line) as a function of the radial coordinate
(in the equatorial plane) and the final configuration (dashed
line), after an evolution time of 10 ms (about ten rotational
periods). The figure shows that v’ remains close to its
initial value in the interior of the star, showing the strongest
(but still small) deviations near the stellar surface (at the
interface to the artificial atmosphere). This local decrease
of v’ due to interaction of stellar matter with the atmo-
sphere and its dependence on the order of the reconstruc-
tion scheme has also been observed in other studies (see
e.g. [71]).

It is important to emphasize that the accurate preserva-
tion of the rotational profile is achieved because of the use
of third-order cell-reconstruction schemes for the hydro-
dynamics equations, such as PPM, as first shown by [71].
Despite the comparably coarse resolution of the finite
difference grid and the use of the CFC approximation for
the gravitational field equations, our code captures the
profile of v’ e at the stellar boundary about as accurately
as codes solving the full Einstein metric equations coupled
to the hydrodynamics equations [50], or codes restricted to
hydrodynamic evolutions in a fixed curved spacetime (i.e.
using the so-called Cowling approximation) [71].

Long-term evolutions of rotating neutron stars as the one
presented here can be effectively used for extracting the
oscillation frequencies of the various pulsation eigenmodes
of the star. This topic has been traditionally studied using
perturbation theory (see e.g. [73] and references therein).
In recent years fully nonlinear hydrodynamical codes have
helped to drive progress in the field. They have provided
the quasiradial mode-frequencies of rapidly rotating rela-
-23
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FIG. 13. Time evolution of the radial velocity at half the stellar
equatorial radius vr he for the perturbed rapidly rotating neutron
star model RNS. The radial velocity shows regular oscillations
with neither a noticeable drift nor damping when the 3D code is
used in low resolution (solid line) as well as for the 2D code with
high-resolution (dashed line). For comparison, the dashed-dotted
line shows vr he when no explicit perturbation is added. In this
case the oscillations are triggered by truncation errors and
(mostly) by the error resulting from using the CFC approxima-
tion in the evolution code.
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tivistic stars, both uniformly and differentially rotating,
which is a problem still not amenable to perturbation
techniques (see e.g. [50,71,74–76]).

In order to test our code against existing results we show
next an example of the procedure to compute mode-
frequencies using the model RNS. The frequencies can in
principle be extracted from a Fourier transform of the time
evolution of various pulsating quantities when the oscilla-
tions are triggered by numerical truncation errors.
However, the results significantly improve when a pertur-
bation of some specific parity is added to the initial equi-
librium model. To excite small amplitude quasiradial
oscillations, we hence apply an l � 0 radial velocity per-
turbation to the equilibrium configuration of the form

vr � asin2
�
(
r
rs

�
; (42)

with an amplitude a � �0:01.
Because of this perturbation, various metric and hydro-

dynamic quantities exhibit very regular periodic oscilla-
TABLE V. Comparison of the oscillation frequ
star models SNS and RNS with different axis ratio
in 2D and 3D) and with the CACTUS code [50]. The
for the first harmonic fH1 computed with the curre
to the CACTUS code (in parentheses) of at most 2%
the 3D code results were only calculated to three

SNS
rs p=rs e � 1:00

Code fF [kHz] fH1 [kHz]

current (3D) 1:40 �3:4� 3:95 �

current (2D) 1:463 �0:9� 3:951 �

CACTUS 1:450 3:958
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tions around their equilibrium state, as shown for the radial
velocity vr in Fig. 13. The pulsations, which show no
noticeable numerical damping during the entire duration
of the simulation (10 ms), are extracted at half the stellar
equatorial radius. The same oscillation pattern is obtained
when instead of using the 3D code (solid line in the figure)
the model is evolved using the code in axisymmetric mode
(dashed line in Fig. 13 with finite difference grid size of
nr � 160, n, � 60). The latter, axisymmetric setup is
currently being used in a comprehensive parameter study
of the oscillation frequencies of rotating neutron star mod-
els [76]. Note that Fig. 13 also demonstrates that the
oscillation amplitude scales linearly with the initial pertur-
bation amplitude a (at least if a � 1), which was chosen as
a � �0:005 in the 2D simulations. In the radial velocity,
neither an offset nor a noticeable drift with time can be
observed. This is in agreement with previous results using
alternative formulations and different numerical codes
[50,71].

Time evolution data like the one shown in Fig. 13 can be
used to extract the eigenmode frequencies. A Fourier trans-
formation of different metric and hydrodynamic quantities
at various locations in the star yields identical (discrete)
frequencies. Table V summarizes the frequencies fF and
fH1 for the quasiradial fundamental mode and its first
harmonic overtone, respectively. Both frequencies ob-
tained with the current 3D code differ only by a few
percent from those computed with the code in 2D [76] or
the CACTUS code, which is based on a Cartesian grid and
uses the BSSN formulation for the Einstein equations [50].

Additionally, we have investigated the influence of grid
resolution and finite evolution time on the accuracy of the
frequency extraction. We have found that the differences in
the frequencies between the 2D and 3D simulations pre-
sented in Table V can be almost entirely attributed to the
twice as long evolution time of the 2D simulation (20 ms),
for which the Fourier transformation renders more accurate
frequencies. For practical evolution times of several tens of
milliseconds and for grid resolutions better than nr 	 100
and n, 	 30, the extracted oscillation frequencies are al-
most independent of the number of grid points used.
encies of two perturbed equilibrium neutron
s rs p=rs e obtained with the current code (both
frequencies for the fundamental mode fF and

nt code show a relative difference with respect
. Because of the coarse spatial resolution used,
significant figures.

RNS
rs p=rs e � 0:65

fF [kHz] fH1 [kHz]

0:2� 1:20 �0:4� 3:68 �1:0�
0:2� 1:219 �2:0� 3:659 �1:6�

1:195 3:717
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Note also that the mode-frequencies agree well even
though we have used different perturbation amplitudes a
in the 3D and 2D simulations (while in the CACTUS run an
l � 0 rest-mass density perturbation with an amplitude
a � 0:02 was used). Table V hence proves that our code
is able to simulate rotating neutron stars in a fully three-
dimensional context for sufficiently long time scales to
successfully extract oscillation frequencies.

4. Evolution of a nonaxisymmetric uniformly rotating
neutron star in 3D

Contrary to the small amplitude nonaxisymmetric per-
turbations employed in Section IV C 2, we turn now to
assess the ability of the numerical code to manage long-
term stable evolutions of strongly gravitating systems with
large departures from axisymmetry. This is an essential test
for future astrophysical applications of the code as, e.g., the
numerical investigation of bar mode instabilities in rotating
neutron stars.

For this purpose we construct a uniformly rotating neu-
tron star model with the same parameters as model RNS,
but with only half the central density. The finite difference
grid extends out to rfd � 80 km, with 60 equidistant radial
grid points resolving the neutron star out to rs e � 18:6 km.
The atmosphere is covered by 80 logarithmically spaced
radial grid points. The number of angular zones used in the
finite difference grid is n, � 24 and n’ � 32, respectively,
while the spectral grid has n̂r � 17, n̂, � 13, and n̂’ � 12
grid points in three radial domains.
60.0 40.0 20.0 0.0
r [km

7.00 9.00 11.0

t = 0.5

60.0 40.0 20.0 0.0 20.0 40.0 60.0
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t = 0.0 ms

log ρ

FIG. 14 (color online). Evolution of a strongly distorted nonaxisym
of log� on the equatorial plane shows how the initial perturbation (lef
into spiral arms (center panel). After about one rotation period of the
size (right panel). The rotation velocity v’ is indicated by white arro
of much less than 107 g cm�3, and that only the innermost 60 km o
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On top of the equilibrium neutron star model we add a
strongly nonaxisymmetric (i.e. ’-dependent) perturbation
of the rest-mass density

� � �ini � a�csin
2

�
(
�
r
2rs

�
2
�
sin10’ for r � 2rs; (43)

with an amplitude a � 0:1, which yields an l � m � 2
barlike structure. The rotation velocity of the uniformly
rotating unperturbed neutron star is extrapolated into the
areas filled with matter by the perturbation. The initial
configuration with the perturbation added is shown in the
left panel of Fig. 14.

We have chosen this particular (albeit unphysically
strong) perturbation and velocity field in order to prevent
both, an immediate accretion of the added matter bars on to
the neutron star or an ejection. This allows us to follow the
rotation of the neutron star for a time comparable to its
rotation period (which is about 1 ms for the unperturbed
neutron star). The density and rotation velocity plots in
Fig. 14 after t � 0:5 ms (center panel) and t � 1:0 ms
(right panel) prove this property of the chosen perturbation.
These plots also demonstrate that the corotating bar struc-
tures slowly disappear. The innermost parts are being
gradually accreted by the neutron star, which leads to a
significant initial rise in the central density, as shown in
Fig. 15. At later times the more massive neutron star
oscillates with a period of tosc 	 1:0 ms around a new
quasiequilibrium state, which possesses a central density
of more than 50% above the initial equilibrium central
density. Despite this strong interaction of the bar perturba-
60.0 40.0 20.0 0.0 20.0 40.0 60.0
r [km]

t = 1.0 ms

20.0 40.0 60.0
]

0 13.00 15.00

 ms

metric rotating neutron star model. The color coded distribution
t panel) is partly accreted by the neutron star, and partly stretched
neutron star, the trailing spiral arms have grown considerably in

ws. Note that the atmosphere (color coded in black) has a density
f the computational domain are shown.
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tion with the neutron star, the rotation profile inside the
neutron star remains uniform throughout the evolution,
although the rotation velocity nearly doubles during the
oscillation maxima. This behavior is most likely due to the
particular choice of a uniform rotation profile for the initial
bar perturbation.

For the outer parts of the initial bar, the increasing
distance from the neutron star and the sufficiently high
specific angular momentum prevents their accretion onto
the neutron star. Thus the matter in this region of the bar
drifts to larger radii during the evolution. As on the dy-
namical timescales considered of one rotation period there
is no efficient transport mechanism of local angular mo-
mentum by viscous effects (which act on much longer
timescales), the evolution leads to the development of
spiral arms which are clearly visible in the middle and
right panels of Fig. 14. The outer parts of these arms are
centrifugally expelled from the finite difference grid, cross-
ing the outer boundary at t	 0:84 ms. By the end of the
simulation, at t � 4 ms, there is neither significant back-
scattering of matter from the outermost boundary of the
radial grid, nor there are numerical artifacts visible at the
leading or trailing edges of the spiral arms. This proves that
our numerical treatment of the radial boundary conditions
and of the artificial low density atmosphere surrounding
the star have the desired behavior.

Figure 15 shows that already after an evolution time of
	1 ms, the evolution of the spiral arms has no further
significant impact in the dynamics of the neutron star, as
then the slowly decaying oscillation around the final equi-
librium state exhibits a rather regular ringdown pattern.
Plotted in this figure is also the time evolution of the central
density for a model with an amplitude a � 0:01 of the
initial perturbation given by Eq. (43) (dashed line). In
addition, the dashed-dotted line shows the corresponding
time evolution of �c for an unperturbed model (the small
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FIG. 15. Time evolution of the central density �c for distorted
nonaxisymmetric rotating neutron star models. If the distortion is
strong (a � 0:1, solid line), matter accretion from the rotating
bars results in a steep initial increase of �c, which slowly settles
down to a new equilibrium state (indicated by the horizontal
dotted line). For a small perturbation (a � 0:01, dashed line), the
evolution of �c follows very closely that of an unperturbed
model (dashed-dotted line).
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amplitude oscillations are in this case triggered by the
truncation errors of the numerical schemes and by the
use of the CFC approximation in the evolution code).
The similarity in the behavior of �c in these cases demon-
strates that for perturbations with an amplitude a & 0:01,
the dynamics of the central neutron star is virtually un-
affected by the initial bar and by the spiral arms forming at
later times. However, we observe that also for small values
of a spiral arms develop which are stable over many
rotation periods.

Apparently, strong nonaxisymmetric perturbations of
the form (43) give rise to significant gravitational wave
emission. The waveforms of the nonzero gravitational
wave amplitudes Ae

�, Ap
�, and Ap

� (as shown in the upper,
center, and lower panel of Fig. 16, respectively) exhibit
peak values of up to 	15� 103 cm for the model with a
perturbation amplitude a � 0:1 (solid lines). In Fig. 16 we
also present the waveforms for the model with a bar
perturbation of amplitude a � 0:01 (dashed lines). Their
amplitudes are roughly a factor 10 smaller than those of the
corresponding waveforms of the model with a � 0:1. Thus
we can infer that the gravitational radiation amplitude
approximately scales with a.

We emphasize that owing to the particular form of the
perturbation (43), the �-mode of the gravitational radia-
tion is zero at the equator, Ae

� � 0. We also note that if
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FIG. 16. Gravitational wave signal for distorted nonaxisym-
metric rotating neutron star model. If the distortion is strong
(a � 0:1, solid lines), the nonzero gravitational wave amplitudes
Ae
� (upper panel), Ap

� (center panel), and Ap
� (lower panel) reach

peak values of up to 	15 000 cm. The amplitudes reduce sig-
nificantly for a � 0:01 (dashed lines). If an axisymmetric per-
turbation with a � 0:1 is applied (dashed-dotted line), only the
Ae
� gravitational wave mode is present.
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instead of the nonaxisymmetric perturbation in Eq. (43) we
use an axisymmetric one,

� � �ini � a�c inisin
2

�
(
�
r
2rs

�
2
�

for r � 2rs; (44)

then the �-mode of gravitational radiation vanishes com-
pletely, and only the �-mode is present (dashed-dotted line
in the upper panel of Fig. 16). Additionally, in axisymme-
try the �-mode on the pole is always zero, Ap

� � 0.
We point out that the waveform pattern for the model

with the a � 0:1 bar perturbation in Fig. 16 does not solely
reflect the oscillation and ring-down structure of the central
neutron star, as visible in the time evolution of �c in
Fig. 15. For instance the �-mode at the equator (upper
panel) decays on a much longer time scale than the corre-
sponding ring-down time of �c. On the other hand, the
waveforms for the two polarizations of the radiation at the
pole exhibit their peaks during the first oscillation of �c
and then decay rapidly (center and lower panel). However,
after an evolution time of 	2 ms their amplitudes increase
again. From this behavior we deduce that initially the
waveform signal is dominated by the gravitational wave
emission from the oscillating neutron star. As this contri-
bution decays during the ringdown, the wave emission
from spiral arms becomes increasingly important. As
they expand into the atmosphere the radial weight arm in
the quadrupole formula compensates for the relatively low
density of the spiral arms, and the radiation emitted in this
region becomes visible in the signal. We cannot clearly
attribute the late-time increase in the waveform amplitude
to the onset of a bar mode instability, because the rotation
parameter 	 of our model clearly falls short of the ap-
proximate threshold for dynamical growth of bar modes:
		 0:14 � 	d. We plan to investigate this issue more
thoroughly in the future.

The maximum amplitude A	 15� 103 cm of the wave
signal for a � 0:1 corresponds to a dimensionless gravita-
tional wave amplitude h	 5� 10�19 at a distance of r �
10 kpc to the source. Thus, in this case of a strongly
nonaxisymmetric artificial perturbation, the typical wave
amplitudes have a value of roughly 1 order of magnitude
above the ones of waveforms obtained from the simplified
models of rotational supernova core collapse in axisym-
metry by Dimmelmeier et al. [12]. For the waveforms
plotted in Fig. 16 we utilize the stress formula (34) with
�� as density. The use of this formula efficiently reduces
the numerical noise in the signal as compared with the first
moment of momentum density formula and particularly
with the standard quadrupole formula.

We consider the grid resolution used in this test simula-
tion to be the minimal one required for obtaining reason-
ably converged results. By repeating the same model with
different grid resolutions we are able to estimate that the
waveform amplitudes are correctly computed within
	30% accuracy.
064023
V. CONCLUSIONS

In this paper we have presented a new three-dimensional
general relativistic hydrodynamics code which is primarily
intended for applications of stellar core collapse to a
neutron star or a black hole, as well as for studies of rapidly
rotating relativistic stars which may oscillate in their qua-
sinormal modes of pulsation, emitting gravitational radia-
tion, or which may be subject to nonaxisymmetric
instabilities. The main novelty of this code compared to
other existing numerical relativistic codes is that it com-
bines very accurate state-of-the-art numerical methods
specifically tailored to solve the general relativistic hydro-
dynamics equations on the one hand, and the gravitational
field equations on the other hand. More precisely, the
hydrodynamic equations, formulated in conservation
form, are solved using high-resolution shock-capturing
schemes based upon approximate Riemann solvers and
third-order cell-reconstruction interpolation procedures,
while the elliptic metric equations are solved using an
iterative nonlinear solver based on spectral methods.
Furthermore, the present code also departs noticeably
from other three-dimensional codes in the coordinate sys-
tem used in the formulation of the equations and in the
discretization. In our approach both the metric and the
hydrodynamics equations are formulated and solved nu-
merically using spherical polar coordinates. In the present
investigation we have adopted the so-called conformal
flatness approximation of the Einstein equations, which
reduces them to a set of five elliptic nonlinear equations,
particularly suited for the use of spectral methods.
Recently, constrained formulations of the full Einstein
equations in which elliptic equations have a preeminence
over hyperbolic equations have been reported, and appear
to be amenable to the current code.

The main purpose of the paper has been to assess the
code by demonstrating that the combination of the finite
difference grid and the spectral grid, on which the hydro-
dynamics and metric equations are, respectively, solved,
can be successfully accomplished. This approach, which
we call Mariage des Maillages (French for grid wedding),
results in high accuracy of the metric solver and, in prac-
tice, has allowed for fully three-dimensional applications
using computationally affordable resources, along with
ensuring long-term numerical stability of the evolution.
To facilitate the Mariage des Maillages, i.e., the combina-
tion of the finite difference grid for the hydrodynamic
solver and the spectral grid for the metric solver, a sophis-
ticated interpolation and grid communication scheme has
been used. In addition, we have compared our novel ap-
proach to two other, finite difference based, methods to
solve the metric equations, which we already employed in
earlier axisymmetric investigations [11,12].

We have presented a variety of tests in two and three
dimensions, involving neutron star spacetimes and stellar
core collapse. Axisymmetric simulations have also been
-27
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performed to compare core collapse to neutron stars using
the CFC approximation and full general relativity, for
which only very recently results have become available
[17]. This comparison has shown the suitability of the
conformally flat approximation for such mildly relativistic
scenarios. Furthermore, the code has succeeded in simu-
lating the highly perturbed nonaxisymmetric configuration
of a uniformly rotating neutron star for several dynamical
times. This simulation has also been used to assess the 3D
gravitational waveform extraction capabilities of the code.
In summary the numerical experiments reported in the
paper demonstrate the ability of the code to handle space-
times with and without symmetries in strong gravity. In
future work we plan to apply this code to simulations of
stellar core collapse to neutron stars or black holes in three
dimensions, and particularly to studies of the nonlinear
development of bar mode instabilities in rapidly rotating
neutron stars.
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APPENDIX: DIFFERENCES TO PREVIOUS 2D CFC
SIMULATIONS

1. Compact form of the Euler equation sources

In the axisymmetric CFC code presented in [11,12] the
source terms Qj for the hydrodynamic momentum equa-
tions (Euler equations) were evaluated on the finite differ-
ence grid using a formulation containing time derivatives
and explicit Christoffel symbols (see Eq. (4)):

Qj � T��
�@g�j
@x�

� �"
��g"j

�
: (A1)

Using the relation between the Christoffel symbols and the
derivatives of the spacetime metric,

�"
�� �

1

2
g"!

�
@g!�
@x�

�
@g!�
@x�

�
@g��
@x!

�
; (A2)

the sources Qj can be written in a more compact form as

Qj �
1

2
T�� @g��

@xj
: (A3)
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In this formulation, only spatial derivatives of the metric
are needed, and the numerical evaluation of Qj involves
significantly fewer terms, making a numerical implemen-
tation both faster and more accurate. For these reasons, we
have preferred the use of Eq. (A3) to Eq. (A1) in the code
presented in this paper.

2. Exact numerical conservation of the hydrodynamic
equations

As emphasized in Section 5.4 in [11], the conserved
hydrodynamic quantity in the system of conservation equa-
tions (3) is not simply the state vector U but rather

����
�

p
U

with
����
�

p
� )6r2 sin,. Therefore, if only the state vector U

is evolved, this gives rise to an additional source term Q̂
which contains time derivatives of the conformal factor ).
These generally time-dependent source terms result in a
variation of the volume-integrated state vector with time,
and thus in a violation of exact numerical rest-mass and
angular momentum conservation of several percent, even
though the ‘‘physical’’ sources vanish, Q � 0 (see Figs. 9
and 10 in Ref. [11]).

It is not possible to evolve
����
�

p
U in a straightforward way

and then consistently solve the elliptic metric equa-
tions (11) on the new time slice. This is due to the fact
that the sources for these equations contain the pressure P,
which can only be extracted from U but not from

����
�

p
U.

However, one can make use of the time evolution equation
for the conformal factor, Eq. (9), to obtain an auxiliary
value for) and thus for

����
�

p
on the new time slice. With this

the state vector U can be consistently calculated from
����
�

p
U

after the time evolution step to the new time slice, which in
turn is used in the sources of the metric equations (11).
These are subsequently solved on the new time slice. With
the help of this reformulation of the hydrodynamic time
evolution problem in the current code (in combination with
the compact time-independent form for the sources in the
Euler equations, Eq. (A3)), we are able to achieve exact
numerical conservation of the total rest-mass and angular
momentum up to machine roundoff errors, provided that
there is no artificial atmosphere and no mass flow across
the outer radial grid boundary.

3. Shift vector boundary conditions

The results for the evolution of the central density �c and
the waveform for the core collapse model SCC (A3B2G4
in [12]) presented in this paper slightly differ from those
reported in the previous paper by Dimmelmeier et al. [12].
This is partly due to the improvements related to evaluating
the Euler equation source terms in compact form and using
exact numerical conservation in the new code, as discussed
above. However, the main reason for the small discrepancy
is that in the simulations in [12] a symmetric boundary
condition for the shift vector component 	2 across the
equatorial plane was chosen. This leads to a nonzero value
-28
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for 	2 at , � (=2 close to and after core bounce, i.e.,
when meridional motions set in. As a consequence of this,
the deviation is stronger for models where rotation plays a
significant role in the collapse dynamics.

The physically accurate antisymmetric equatorial
boundary condition for 	2 which is used in the present
code, systematically yields lower post-bounce values for
�c in regular collapse type models compared to the simu-
lations presented in [12], with a difference of 11% on
average. For models which show multiple bounce behav-
ior, we obtain a lower �c also at core bounce.

Accordingly, the waveform amplitudes and frequencies
of the gravitational radiation are altered by a small amount
( � 11% for jAE2

20 jmax and �18% for �). Despite of these
064023
small quantitative changes, the qualitative statements re-
lated to the influence of general relativistic effects in rota-
tional core collapse made by Dimmelmeier et al. [12]
remain unaffected, even when the antisymmetric boundary
condition is used. We particularly emphasize that the
change in the boundary condition for 	2 plays no role
when comparing our results with the fully general relativ-
istic simulations by Shibata and Sekiguchi [17] discussed
in Section IV B 4.

We note that for all core collapse models presented in
the parameter study by Dimmelmeier et al. [12], results
obtained with the new boundary condition for 	2 can be
found in the revised waveform catalogue [26].
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