The tight correlation of CCH, and c-C3H2 in diffuse and translucent clouds Maryvonne Gerin, M. Kazmierczak, M. Jastrzebska, Edith Falgarone, Pierre Hily-Blant, Benjamin Godard, Massimo de Luca ## ▶ To cite this version: Maryvonne Gerin, M. Kazmierczak, M. Jastrzebska, Edith Falgarone, Pierre Hily-Blant, et al.. The tight correlation of CCH, and c-C3H2 in diffuse and translucent clouds. Astronomy and Astrophysics - A&A, 2011, 525, pp.116. 10.1051/0004-6361/201015050. hal-03732375 HAL Id: hal-03732375 https://hal.science/hal-03732375 Submitted on 20 Oct 2022 **HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. ## The tight correlation of CCH and c-C₃H₂ in diffuse and translucent clouds* M. Gerin¹, M. Kaźmierczak², M. Jastrzebska³, E. Falgarone¹, P. Hily-Blant⁴, B. Godard¹, and M. De Luca¹ - ¹ LERMA, UMR 8112 du CNRS, Observatoire de Paris, École Normale Supérieure, UPMC & UCP, France e-mail: [maryvonne.gerin;edith.falgarone;benjamin.godard;massimo.de.luca]@lra.ens.fr - ² Centre for Astronomy, Nicolaus Copernicus University, Gagarina 11, 87-100 Toruń, Poland e-mail: maja.kazmierczak@gmail.com - ³ Astronomical Observatory of the Jagiellonian University, Orla 171, Kraków, Poland e-mail: kulczak@oa.uj.edu.pl - ⁴ Laboratoire d'Astrophysique de Grenoble, Université Joseph Fourier and CNRS UMR 5571, Observatoire de Grenoble, France e-mail: pierre.hily-blant@obs.ujf-grenoble.fr Received 26 May 2010 / Accepted 27 September 2010 #### **ABSTRACT** Using the IRAM 30 m telescope we observed molecular absorption lines from CCH and c-C₃H₂ produced by diffuse and translucent clouds along the lines of sight towards massive star forming regions. The same sources are surveyed with Herschel/HIFI as part of the PRISMAS guaranteed time program, for molecular absorption lines due to hydrides and carbon clusters. The background sources are massive star-forming regions (G34.3 + 0.1, G10.62 - 0.39, W51, W49N) and SgrA*. The line profiles of the CCH and c-C₃H₂ are strikingly similar for all lines of sight, showing that the ratio of the opacities of the probed transitions, ($J_{K_a,K_c} = 2_{1,2} - 1_{0,1}$) for c-C₃H₂ and (J = 1 - 0, F = 5/2 - 3/2) for CCH, is nearly constant along all lines of sight, at $\tau_{\text{CCH}} \sim 1.8 \times \tau_{\text{c-C_3H_2}}$. As a consequence, the ratio of the column densities of CCH and c-C₃H₂ is nearly constant and similar to the value derived earlier for diffuse clouds detected along lines of sight towards extragalactic continuum sources, $N(\text{CCH}) = (28 \pm 1.4)N(\text{c-C_3H_2})$ (Lucas & Liszt 2000, A&A, 358, 1069). PDR models are able to reproduce the observed CCH column densities for the range of physical conditions appropriate for the absorbing matter ($n = 100 - 3000 \text{ cm}^{-3}$; $A_V = 1 - 5 \text{ mag}$) but can neither fit the observed c-C₃H₂ column densities nor the tight correlation between CCH and c-C₃H₂. **Key words.** ISM: clouds – ISM: molecules ## 1. Introduction Small carbon containing molecules, with a total of about 1 to 3 carbon atoms, have several interesting properties: they are ubiquitous in the interstellar medium, they are key actors in the formation of long carbon chains and other hydrocarbons, and they are involved in photo-fragmentation process of larger species like PAHs. Of particular interest is the sputtering of carbonaceous nanoparticules, which form a likely source for the high abundance of hydrocarbon molecules detected in the ISM (Pety et al. 2005). It is widely believed that carbon-chain or ring species with more atoms than species detected by radio telescopes might be the candidates for the diffuse interstellar bands (Douglas 1977; Herbig 1975; Herbig 1995). Laboratory studies of the fragmentation process of PAHs have provided further support to this conjecture (Tielens 2008; Useli-Bacchitta & Joblin 2007), but no definitive proof yet. The carbon chemistry is particularly complex. It is initiated in the gas phase by the slow radiative association of ionized carbon with molecular hydrogen leading to CH₂ since the direct formation of CH⁺ has a high endothermicity of over 4000 K (see the discussion in Godard et al. 2009, and references therein). CH_2^+ then rapidly reacts with H_2 , leading to CH₃⁺ which acts as the seed for most of the interstellar hydrocarbons (e.g. CH, C₂H₂), as well as the carbon clusters C_2 and C_3 . Comparison of carbon clusters and carbon hydrides abundances is therefore an excellent test of the chemical paths to the carbon chemistry and, more generally, to the buildup of molecular complexity in the ISM. The interstellar ethynyl radical (CCH) was discovered in 1974 by Tucker et al. (1974). It was identified by its radioastronomical spectra, with the help of its four intense hyperfine components, before laboratory spectroscopy of gaseous CCH was performed. In the interstellar medium, CCH is thought to result from the photodissociation of acetylene (C₂H₂) and from the dissociative recombination of C₂H₂⁺ and C₂H₂⁺ (Mul & McGowan 1980). The neutral-neutral reaction between C and CH₂ also contributes to forming CCH especially in moderately shielded regions. This route has been confirmed by the recent measurements of Sakai et al. (2010), who obtained different abundances for the two isotopologues C¹³CH and ¹³CCH. Since the two carbon atoms play equivalent roles in the photodissociation of acetylene and in the dissociative recombination of C₂H₂⁺ and $C_2H_3^+$, the reaction between C and CH_2 is the sole $CC\tilde{H}$ formation mechanism that can produce such a difference in the C¹³CH and ¹³CCH abundances because the two carbon atoms have different origins. Cyclopropenylidene (c- C_3H_2) is the first hydrocarbon ring detected in space. It was reported by Thaddeus et al. (1985); c- C_3H_2 lines were detected as early as 1981 (Thaddeus et al.) but $^{^{\}star}\,$ Based on observations obtained with the IRAM 30 m telescope. **Table 1.** Characteristics of the observed sources. | Object | RA(J2000) | Dec(J2000) | D | $V_{ m LSR}$ | $T_{\rm c}$ | $V_{ m abs}{}^a$ | |-------------------|------------|-------------|-------|-----------------|-------------|------------------| | | | | [kpc] | $[km s^{-1}]$ | [K] | $[km s^{-1}]$ | | G34.3+0.1 | 18 53 18.7 | +01 14 58 | 3.8 | 57 | 1.2 | 6-66 | | G10.62-0.39(W31C) | 18 10 28.7 | -195550 | 4.8 | -3 | 1.0 | 10 - 50 | | $W51^b$ | 19 23 43.9 | +14 30 30.5 | 7.0 | 55 | 1.0 | 2 - 70 | | W49N | 19 10 13.2 | +09 06 12 | 11.5 | 7 | 1.8 | 14 - 74 | | Sgr A* | 17 45 51.7 | -28 59 08.7 | 8.6 | 50 | 1.5 | -30 - 80 | **Notes.** (a) Velocity range of the absorption features. (b) This position lies between W51-E1 and W51-E2. **Table 2.** Spectroscopic parameters for the observed species. | Molecule | Freq. [GHz]* | $E_{\text{low}}[\text{cm}^{-1}]$ | Transition | A [s ⁻¹] | I_{rel} | Ref. | |------------------------------|--------------|----------------------------------|-------------------------|-----------------------|--------------------|------| | CCH, (N_{LF}) | 87.284105 | 0.0015 | $1_{3/2,1}-0_{1/2,1}$ | 2.59×10^{-7} | 0.1 | CDMS | | , , ,,,,, | 87.316898 | 0.0015 | $1_{3/2,2} - 0_{1/2,1}$ | 1.53×10^{-6} | 1.0 | CDMS | | | 87.328585 | 0.0000 | $1_{3/2,1}-0_{1/2,0}$ | 1.27×10^{-6} | 0.5 | CDMS | | | 87.401989 | 0.0015 | $1_{1/2,1} - 0_{1/2,1}$ | 1.27×10^{-6} | 0.5 | CDMS | | | 87.407165 | 0.0015 | $1_{1/2,0} - 0_{1/2,1}$ | 1.53×10^{-6} | 0.2 | CDMS | | | 87.446470 | 0.0000 | $1_{1/2,1} - 0_{1/2,0}$ | 2.61×10^{-7} | 0.1 | CDMS | | $c-C_3H_2$, (J_{K_a,K_c}) | 85.338893 | 1.6332 | $2_{1,2}-1_{0,1}$ | 2.55×10^{-5} | | JPL | | $HCS^+, (J)$ | 85.347890 | 1.4235 | 2-1 | 1.11×10^{-5} | | CDMS | Notes. (*) CCH frequencies derived from Padovani et al. (2009); JPL refers to the JPL spectral line catalog (Pickett et al. 1998); CDMS refers to the Cologne Data Base for Molecular Spectroscopy (Müller et al. 2001, 2005). were not identified as a cyclopropenylidene until 1985. $c-C_3H_2$ is also one of the most abundant molecules with 3 carbon atoms in the interstellar medium (Teyssier et al. 2004). Its main gas phase formation route is the dissociative recombination of $c-C_3H_3^+$. Both CCH and c-C₃H₂ are therefore good probes for hydrocarbons in the diffuse interstellar medium, especially carbon chains and radicals. While the inventory of gas-phase carbon molecules with two or three C-atoms is fairly complete (Marcelino et al. 2007), knowledge of species with more carbon atoms is still fragmentary. Combined measurements of CCH and c-C₃H₂ can shed light on the chemical processes leading to larger hydrocarbons. Lucas & Liszt (2000) show that interstellar absorption features from CCH and c-C₃H₂ are correlated well in the millimeter spectra of extragalactic background radio sources with $N(CCH)/N(c-C_3H_2) = 27.7 \pm 8$. Pety et al. (2005) found a spatial correlation of emission maps of the edge of the Horsehead nebula, with a strong similarity between maps of CCH, c-C₃H₂ and C₄H, but with differences in the mean abundance ratios: $N(CCH)/N(c-C_3H_2) = \sim 12$ and $N(CCH)/N(C_4H) = \sim 7.$ In this paper, we present new absorption spectra, sampling the diffuse and translucent matter in the Galactic Plane, along lines of sight towards bright millimeter continuum sources. The data set belongs to complementary absorption spectroscopy data obtained with the IRAM-30 m telescope towards the targets of the PRISMAS (PRobing
InterStellar Molecules with Absorption line Studies) Herschel key program. This project aims at probing the first steps of the oxygen, carbon and nitrogen chemistry in the diffuse interstellar medium. Extensive spectroscopic studies of key interstellar molecules not easily accessible at other wavelengths, namely hydrides and carbon clusters, are currently performed by Herschel/HIFI. The target sources have been selected as strong (sub)millimeter continuum sources, with known intervening interstellar features along the lines of sight. The same sources can be observed at millimeter wavelengths, although the continuum emission is produced by the embedded HII regions rather than by dust. While a first set of observations, covering HCO⁺, HCN, HNC and CN spectra, has been presented by Godard et al. (2010), the data relative to the hydrocarbon chemistry are presented in this paper. The analyzed objects are listed in Table 1. Table 1 also lists their distances from Fish et al. (2003). The next section describes the IRAM-30 m observations. The results are presented in Sect. 3; a comparison with PDR models is given in Sect. 4, while Sect. 5 presents the conclusions. ## 2. Observations #### 2.1. Data analysis and processing The observations were performed with the IRAM-30m telescope in 2006 August and December. We used the A100 and B100 receivers, simultaneously with either the A230, B230 or the C150, D150 receivers. All receivers were operated in single side band mode, with a rejection of the image side band better than a factor of 20 (13dB). The observations were performed with the wobbling secondary reflector to obtain flat and stable baselines, and an accurate measurement of the 3 mm radio continuum intensity. The wobbler throw was 240 arcsec and the switching rate 0.5 Hz. The weather conditions were averaged with 5-10 mm of water vapor in August 2006 and less than 3 mm in December 2006. The pointing was checked on nearby planets and continuum sources, and was found accurate within 5 arcsec. The lines were analyzed with the flexible, high spectral resolution backend VESPA, tuned to a spectral resolution of $40 \,\mathrm{kHz} \,(\sim 0.13 \,\mathrm{km \, s^{-1}})$, and spectral bandpass of $120 \,\mathrm{MHz}$ covering a velocity range of ~ 400 km s⁻¹. We also used the 1 MHz filterbank to obtain broad band spectra. We searched for the ground state transition of CCH at 87.316 GHz and the $2_{1,2}$ – $1_{0,1}$ transition of ortho c-C₃H₂ at 85.338 GHz. The J = 2-1 line of HCS⁺ was observed simultaneously with c-C₃H₂ as their frequencies are very close (the velocity shift is -31.6 km s^{-1}). The spectroscopic parameters of the observed molecular transitions are listed in Table 2. The IRAM-30 m spectra are shown in Fig. 1. The data processing was done with the GILDAS¹ softwares (e.g. Pety 2005). The IRAM-30 m data were first calibrated to the $T_{\rm A}^*$ scale using the chopper wheel method (Penzias & Burrus 1973), and finally converted to main beam temperatures $T_{\rm mb}$ using the forward and main beam efficiencies $F_{\rm eff}$ and $B_{\rm eff}$ appropriate for 85 and 87 GHz: $F_{\rm eff}$ = 0.95 and $B_{\rm eff}$ = 0.75. The resulting temperature accuracy is ~10%, as checked by the variation of the intensity of the strong CCH emission lines in the spectra between different days. The spectra show strong emission lines associated with the massive cores surrounding the compact HII regions, together with absorption lines from the foreground matter along the line of sight. In the massive star forming regions, the continuum emission is mainly free-free emission while we detect the non thermal millimeter continuum emission from SgrA*. The continuum intensities are listed in Table 1. Except for SgrA*, emission lines of CCH $(1_{3/2,2}-0_{1/2,1})$ at 87.316 GHz, CCH $(1_{3/2,1}-0_{1/2,0})$ at 87.328 GHz, and c-C₃H₂ 2_{1,2}-1_{0,1} at 85.339 GHz are detected at the velocities of the background sources. The J = 2-1line of HCS⁺ at 85.347 GHz i.e. -31.6 km s⁻¹ relative to the $c-C_3H_2$ $(2_{1,2}-1_{0,1})$ line is also detected in all sources. Emission lines have close to Gaussian profiles towards G10.6-0.39, G34.3+0.15 and W51, while they are clearly double peaked towards W49N, a feature also seen in other molecular lines Williams et al. (2004). In this paper, we analyse the absorption produced by the foreground matter along the line of sight and will not comment further on the emission spectra. The continuum intensity $T_{\rm c}$ was measured by fitting flat baselines to the spectra. The spectra were then normalized by dividing them by $T_{\rm c}$. The parameters (central opacity τ , velocity V and line width δV) of the detected absorption features were derived by fitting Gaussian absorption profiles to the normalized spectra. They are defined as: $$T_{\rm mb} = T_{\rm c} {\rm e}^{-\tau} \tag{1}$$ and hence: $$\tau = -\ln\left(\frac{T_{\rm mb}}{T_{\rm c}}\right). \tag{2}$$ The CCH and c-C₃H₂ absorption profiles are strikingly similar, with narrow components superposed with broad and shallow features. Given the complexity of these profiles, we did not attempt to fit them entirely but preferred to restrict the analysis to the narrow features that have Gaussian profiles and are easily identified in the spectra (Fig. 2). We started with the CCH data that have the best S/N ratio. As the main CCH hyperfine components is separated from the nearest satellite line by ~11.7 MHz ~40 km s⁻¹, the absorptions caused by these components do not overlap in most cases. We used the detection of the main and satellite lines to check the quality of the fit of the line parameters. Once the fit of the CCH spectra was satisfactory, and in order to decrease the number of free parameters in the fit, we used the centroid velocities of the CCH velocity components as constraints for the fit of the c-C₃H₂ line profiles. The high spectral resolution used in this study allowed us to separate velocity **Fig. 1.** Spectra obtained with the IRAM-30 m telescope. The velocity scale is given relative to the Local Standard of Rest (LSR). The spectra have been normalized by dividing the individual measurements by the source continuum intensities. The CCH spectra have been offset for clarity. Except for G10.6, the two strongest CCH hyperfine components at 87.317 and 87.329 GHz are shown. The emission line shifted by -31.6 km s^{-1} from c-C₃H₂ is the HCS⁺ J = 2-1 transition at 85.347 GHz. An inset showing the velocities of the absorption features is presented for G10.62. ¹ See http://www.iram.fr/IRAMFR/GILDAS Fig. 2. The multiple velocity component fit overlayed on a zoom of the W49N data. Broad absorption is clearly detected in CCH and $c-C_3H_2$ in the velocity ranges $\sim 30-45$ and $\sim 50-70$ km s⁻¹corresponding to the Sagittarius and Scutum spiral arms. components which were blended in previous studies (Madden et al. 1989; Cernicharo et al. 1999; Cox et al. 1988). The global analysis of the CCH and $c-C_3H_2$ absorption profiles (Fig. 4) shows that the broad absorption features have similar properties to the narrow lines. Although the available HI data (Fish et al. 2003; Koo 1997) have a lower spectral resolution than the data presented here, there is a generally good correspondence of the velocity ranges where absorption is detected in HI and in other molecules such as HCO+ or CCH. Note however that some HI features seem to have little molecular counterpart while the reverse is never seen. As discussed further in (Godard et al. 2010; Neufeld et al. 2010b), the opacities of the absorption features do not scale with the HI opacities, indicating that the abundances of the different species relative to HI vary among velocity components. The recent Herschel-HIFI spectra obtained within the framework of the PRISMAS key programme show more extensive examples of molecular line profiles towards G10.6, W49N and W51 (Falgarone et al. 2010; Gerin et al. 2010a,b; Neufeld et al. 2010a,b; Sonnentrucker et al. 2010; Persson et al. 2010). The Herschel data revealed that absorption features from the molecular ions CH⁺, OH⁺ and H₂O⁺, and from the HF molecule are better correlated with HI than those from triatomic molecules such as CCH and HCO⁺ (Falgarone et al. 2010; Gerin et al. 2010a; Neufeld et al. 2010a,b; Sonnentrucker et al. 2010). #### 2.2. Derivation of CCH column densities We analyzed the main CCH hyperfine component at 87.316 GHz. As shown in Fig. 1, the absorption spectra are not saturated, for all hyperfine components, including the strongest one. Furthermore, the satellite hyperfine components that have lower relative intensities (Table 2) present weaker absorption features than the strongest component. For all sources, the ratio of the opacities of the satellite line at 87.328 GHz divided by the opacity of the main line at 87.317 GHz is equal to 0.5, the ratio of the relative intensities, as expected for unsaturated lines. This shows that the opacity of the absorption features is truly moderate, and does not result from partial coverage of the background source of saturated absorption lines, because in the latter case, we would expect that the relative intensities of the CCH hyperfine components would depart from their theoretical values, that are listed in Table 2. At millimeter wavelengths, the covering factor of the absorbing matter is close to unity. We derived the molecule column densities using the relation: $$N_{\text{tot}} = Z(T_{\text{ex}}) \times N_u \times \frac{e^{\frac{E_u}{kT_{\text{ex}}}}}{g_u}$$ $$= Z(T_{\text{ex}}) \frac{8\pi v^3}{c^3} \frac{e^{E_u/kT_{\text{ex}}}}{(g_u A_{\text{ul}})(e^{hv/kT_{\text{ex}}} - 1)} \int \tau \cdot dv$$ (3) where $Z(T_{\rm ex})$ is the partition function computed at the excitation temperature $T_{\rm ex}$, $N_{\rm tot}$ and N_u are the total column density and the column density in the upper state of the transition respectively, g_u is the statistical weight of the
upper level, $A_{\rm ul}$ is the Einstein coefficient for spontaneous emission, v is the line frequency and $\int \tau \cdot \mathrm{d}v$ is the line opacity integrated over the line profile. For molecules with hyperfine structure like CCH it can be easier to compute the column density without taking the hyperfine structure into account, provided that the correct line opacity, i.e. the sum of the opacities of all hyperfine components, is used. Following the latter approach and assuming that the excitation temperature is equal to the CMB, 2.73 K, i.e. collisional excitation is negligible because of the low gas density and moderate kinetic temperature, this leads to the relation given by Lucas & Liszt (2000): $$N(C_2H) = 2.71 \times 10^{13} \cdot 2.4 \cdot \int \tau dv \text{ [cm}^{-2]}$$ = $(2.4 \cdot 2.71 \cdot 1.065) \times 10^{13} \cdot fwhm \cdot \tau \text{[cm}^{-2]}$ (4) where fwhm is the line full width at half maximum in $km\,s^{-1}$ and τ is the opacity of the main hyperfine component $(1_{3/2,2}-0_{1/2,1})$ at 87.316 GHz). The factor 2.4 corrects for the opacities of the satellite lines because Lucas & Liszt (2000) quoted this formula differently, with the sum of the opacities of all hyperfine components rather the opacity of the main component $(1_{3/2,2}-0_{1/2,1})$ we are using. For a Gaussian line profile the integrated line opacity is proportional to the product of the line width at half maximum fwhm and central opacity τ . The factor is very close to unity, and can be written as $\sqrt{\frac{\pi}{4ln(2)}} \simeq 1.065$. The hypothesis of negligible collisional excitation has been confirmed by the multi transition analysis of the HCO+ profiles (Godard et al. 2010) and by additional, non LTE, statistical equilibrium calculations performed with the RADEX software (van der Tak et al. 2007, Black private communication). We checked that the excitation temperature of the observed CCH transition stays below 3 K, for most of the domain of physical conditions applicable to the line of sight clouds: the absorption features are formed in moderately dense gas: $n(H_2) = 100-3000 \text{ cm}^{-3}$ (Plume et al. 2004; Vastel et al. 2000; Godard et al. 2010). These analyses have shown that, with such physical conditions, the collisional excitation of polar molecules is rather ineffective, and the excitation temperature remains close to the cosmic background temperature. The excitation temperature starts to depart significantly from the cosmic background temperature at the highest densities $(n(H_2) > 3000 \text{ cm}^{-3})$, but never rises above 5 K. Therefore, we can confidently derive the molecular column densities assuming that the excitation temperature is equal to the CMB. #### 2.3. Derivation of c-C₃H₂ column densities Absorption in the strong $2_{12}-1_{01}$ transition of ortho c-C₃H₂ at 85.338 GHz is detected in all sources. The similarity of the spectra to those of CCH (Fig. 4) suggests that the absorption features are not saturated and that we can derive accurate column densities from the measured line opacities. The $c-C_3H_2$ column densities were derived from the relation of Lucas & Liszt (2000): $$N(c - C_3 H_2) = 4.36 \cdot 10^{12} \cdot fwhm \cdot \tau \text{ [cm}^{-2]}.$$ (5) As for CCH, this equation is based on the assumption of no collisional excitation. The results are listed in Table 3. #### 2.4. HCS+ The HCS⁺ J=2-1 transition at 85.347 GHz is detected in emission, shifted by $-31.6~{\rm km\,s^{-1}}$ from c-C₃H₂ line at 85.338 GHz, but does not show any detectable absorption down to the noise level. Assuming $T_{\rm ex}=2.73~{\rm K}$, we derived an upper limit of $\tau \le 0.1$ and $N(HCS^+)=9.27\times 10^{12} fwhm \cdot \tau < 9.3\times 10^{11}~{\rm cm^{-2}}$ for a line width of 1 km s⁻¹. #### 3. Results Table 3 summarizes the derived CCH and c-C₃H₂ line parameters and column densities. For each velocity component, the full line width at half maximum (fwhm), the opacity (τ) and column density (N) are given. The distance to the different velocity components is also listed. It is derived assuming a flat rotation curve using: $\theta_0 = 220 \text{ km s}^{-1}$ and $R_0 = 8.5 \text{ kpc}$ as recommended by the IAU (Kerr & Lynden-Bell 1986). ## 3.1. Analysis of CCH and c-C₃H₂ line profiles As shown in Fig. 1, the CCH and c-C₃H₂ spectra are strikingly similar. To be more quantitative, we show in Figs. 3a and 3b comparisons of the line full width at half maximum fwhm and central opacity τ for the analyzed absorption features. The correlation coefficients for the derived central opacity and line width are 0.85 and 0.89 respectively, showing that these variable are strongly correlated. Figure 4 presents direct comparisons of the line profiles expressed in opacity units, for the entire velocity ranges where absorption is detected. The symbols indicate the different sources. The five sources share the same mean relation. We therefore conclude that the data are consistent with the hypothesis that the CCH and c-C₃H₂ absorption features have identical line widths, and that their line opacities are proportional with $\tau(\text{CCH}) = 1.8 \pm 0.2 \cdot \tau(\text{c-C}_3\text{H}_2)$, where $\tau(\text{CCH})$ refers to the opacity of the main hyperfine component. This conclusion is based on the sole analysis of the line profiles and does not depend on any assumption on the line formation mechanism, nor on the decomposition method of the complex profiles into individual velocity components. ## 3.2. Comparison of CCH and c-C₃H₂ column densities As expected from the tight relationship of the CCH and $c-C_3H_2$ line opacities and line widths, column densities of CCH and $c-C_3H_2$ are linearly correlated, with a correlation coefficient of 0.88. Fig. 3c) illustrates this correlation. It is interesting to note that we obtained a very similar relationship between the CCH and $c-C_3H_2$ column densities as in the study of local diffuse clouds performed by Lucas & Liszt (2000): $N(\text{CCH})/N(\text{c-C}_3\text{H}_2) = 28.2 \pm 1.4$ while they found $N(\text{CCH})/N(CthHtw) = 27.7 \pm 8$. ### 4. Chemistry We used the Meudon-PDR code (Le Petit et al. 2006; Goicoechea & Le Bourlot 2007; González-García et al. 2008) to investigate the production mechanisms of CCH and c-C₃H₂. The cold gas is modeled as a slab of either constant density or constant pressure, illuminated by the average interstellar radiation field on both sides. The code assumes that the chemistry has reached steady state, and computes the thermal equilibrium by balancing the cooling and heating rates at each point in the slab. The main input parameters are listed in Table 4. We used the default values for the elemental abundances, extinction curve and cosmic ray ionization rate ζ as discussed by e.g. (Le Petit et al. 2006). The physical conditions of the matter giving rise to the absorption features are fairly well known from previous works: the gas densities and total extinction across each absorption feature are low to moderate (Godard et al. 2010; Gerin et al. 2010b). We therefore chose to run models with constant gas densities ranging from 100 to 1000 cm⁻³, and added two models with constant pressure. We show models with total hydrogen densities of n(H) = 100, 250, 500, 750 and 1000 cm^{-3} , gas pressures of 3500 and 10⁴ K cm⁻³, and total extinction across the slab of $A_{\rm V} = 1, 3$, and 5 mag. For all models, the radiation field has been set to the mean interstellar radiation field in the solar neighborhood $G_0 = 1$. We briefly explored the role of the cosmic ray ionization rate ζ , by running models with $\zeta = 10^{-16} \text{ s}^{-1}$ and 2×10^{-16} s⁻¹ for $n_{\rm H} = 500$ cm⁻³, following the recent H₃⁺ observations summarized in Indriolo et al. (2007) that suggest that ζ may be higher in the diffuse interstellar medium than in the dense gas. Table 5 lists the model predictions for the column densities across the slab. Figure 5 shows the predicted column densities of C⁺, C, CO, CH, CCH and c-C₃H₂ across the slab for the models. The constant density models are plotted with squares, while the constant pressure models are indicated by stars. Models with $A_{\rm V}=3$ mag are shown with black symbols and full lines, while we show models with $A_{\rm V}=5$ mag with white symbols and dotted lines and models with $A_{\rm V}=1$ mag with crosses. To ease the comparison, we scaled all model predictions to $A_{\rm V}=3$ mag. The predicted column densities of the $A_{\rm V}=5$ mag cases are therefore multiplied by 0.6, while the predicted column densities of the $A_{\rm V}=1$ mag are multiplied by 3. The constant pressure models are plotted using the maximum density as abscissa. In these models, CCH reaches total column densities ranging from comparable to somewhat higher than what we measured, while the c-C₃H₂ column densities remain lower than observed. The abundance ratio ranges from \sim 160 to >400, the highest value being obtained for the lowest density models. The spatial distribution of the CCH and c-C₃H₂ abundances is also different: while CCH is present as soon as $A_v > 0.5$ mag or even at lower extinctions for the $n = 1000 \text{ cm}^{-3} \text{ models, c-C}_3 \text{H}_2$ is confined in the inner core of the slab with $A_v > 1$ mag. The behaviors of the predicted CCH and c-C₃H₂ column densities with the slab density and total extinction also differ. Except for the densities in the $A_{\rm V}=1\,{\rm mag}$ case, the predicted CCH column density is independent of the model density and scales with $A_{\rm V}$. On the contrary, the highest c-C₃H₂ column densities are obtained for the models with highest extinction, and at a given extinction for the highest density. Fig. 3. a) Comparison of the Full Width at Half Maximum (FWHM) of the velocity components identified in the CCH and c-C₃H₂ line profiles. The straight line indicates a slope of 1. b) Comparison of the line
center opacities τ of the observed CCH and c-C₃H₂ lines. For CCH the opacity of the strongest hyperfine component at 87.317 GHz is plotted. The line shows the mean relation with a slope of a = 1.8. c) Comparison of the column densities of CCH and c-C₃H₂. The line shows a slope of 2.8, corresponding to the relation obtained by Lucas & Liszt (2000) towards diffuse clouds at high Galactic latitude, $N(\text{CCH}) \sim 28 \ N(\text{c-C}_3\text{H}_2)$. We get a similar result, $N(\text{CCH})/N(\text{c-C}_3\text{H}_2) = 28.2 \pm 1.4$. **Fig. 4.** Comparison of the opacities of the individual velocity channels for the CCH $(1_{5/2,5/2}-0_{3/2,3/2})$ and $c-C_3H_2(2_{1,2}-1_{0,1})$ lines. The straight line shows the mean ratio $\tau(\text{CCH})/\tau(c-C_3H_2)=1.8$. The typical error on the opacities in each velocity channel is about ~ 0.1 . All models predict a high molecular fraction $f(H_2) = \frac{2N(H_2)}{N(H) + 2N(H_2)} > 0.9$, since atomic hydrogen is only dominant over molecular hydrogen in the most external layers ($A_V < 0.1$ mag) of the modeled clouds. The molecular fraction is not known for all lines of sight. For G10.6–0.4 and W49N, it is possible to estimate this parameter from the comparison of the total extinction along the line of sight with the observed HI absorption. The average molecular fraction is 0.4–0.6 (Godard et al. 2010; Neufeld et al. 2010a) but the detailed comparison of the HI and molecular absorption profiles reveals that a variety of conditions is present, from very diffuse phases with mostly atomic gas to mostly molecular gas (Neufeld et al. 2010b). Figure 6 presents abundances relative to H_2 derived from the PDR models in the sampled parameter space. Because both CH and CCH scale well with the extinction across the slab, their abundances relative to H_2 show little variation with the gas density. The PDR models reproduce the well known correlation of CH with molecular hydrogen (Sheffer et al. 2008, and references therein). The predicted abundances are slightly higher than the mean CH abundance derived from visible absorption spectroscopy: we deduce $[CH] \sim 1.3 \pm 0.2 \times 10^{-7}$ and $[CCH] \sim 7.0 \pm 1.5 \times 10^{-8}$ relative to the H_2 column density, while Sheffer et al. (2008) derived $[CH] = 3.6 \times 10^{-8}$ for diffuse and translucent clouds of somewhat lower total extinctions. It is remarkable that, for both CH and CCH, the variation of their abundance relative to H_2 does not exceed 20% for most of the studied models. **Table 3.** Results of measurements for absorption structures of CCH and c-C₃H₂ (the full width at half maximum fwhm, the line center opacity τ , the column density N). | Source | | CCH | | | c-C3H2 | | D [kpc] | |---------|-------------------|-----------------|------------------------------|-------------------|-----------------|------------------------------|---------| | v[km s] | $fwhm[km s^{-1}]$ | au | $N[10^{13} \text{ cm}^{-2}]$ | $fwhm[km s^{-1}]$ | au | $N[10^{12} \text{ cm}^{-2}]$ | | | G34.26 | | | | | | | | | 51.95 | 2.50 ± 0.13 | 0.32 ± 0.06 | 5.57 ± 1.35 | 2.10 ± 0.13 | 0.12 ± 0.02 | 1.20 ± 0.28 | 3.4 | | 61.30 | 0.98 ± 0.13 | 0.30 ± 0.06 | 2.01 ± 0.65 | 1.21 ± 0.13 | 0.21 ± 0.04 | 1.18 ± 0.35 | 4.0 | | G10.62 | | | | | | | | | 16.55 | 1.65 ± 0.13 | 0.75 ± 0.18 | 8.59 ± 2.75 | 1.81 ± 0.13 | 0.38 ± 0.07 | 3.17 ± 0.86 | 2.5 | | 19.08 | 0.37 ± 0.13 | 0.46 ± 0.09 | 1.19 ± 0.67 | 0.65 ± 0.13 | 0.28 ± 0.05 | 0.84 ± 0.33 | 2.8 | | 22.83 | 0.96 ± 0.13 | 0.87 ± 0.22 | 5.80 ± 2.29 | 0.94 ± 0.13 | 0.49 ± 0.10 | 2.14 ± 0.75 | 3.2 | | 28.06 | 0.70 ± 0.13 | 0.87 ± 0.22 | 4.24 ± 1.89 | 0.40 ± 0.13 | 0.57 ± 0.12 | 1.06 ± 0.59 | 3.6 | | 30.20 | 0.60 ± 0.13 | 0.82 ± 0.20 | 3.42 ± 1.61 | 0.30 ± 0.13 | 0.52 ± 0.11 | 0.73 ± 0.49 | 3.7 | | 40.93 | 1.30 ± 0.13 | 0.61 ± 0.13 | 5.47 ± 1.77 | 0.73 ± 0.13 | 0.40 ± 0.08 | 1.37 ± 0.53 | 4.4 | | W51 | | | | | | | | | 5.31 | 1.40 ± 0.13 | 0.27 ± 0.05 | 2.60 ± 0.73 | 1.70 ± 0.13 | 0.11 ± 0.02 | 0.84 ± 0.21 | 0.4 | | 6.49 | 0.48 ± 0.13 | 0.13 ± 0.02 | 0.43 ± 0.19 | 0.73 ± 0.13 | 0.11 ± 0.02 | 0.39 ± 0.14 | 0.5 | | 45.59 | 0.61 ± 0.13 | 0.30 ± 0.06 | 1.27 ± 0.52 | 0.55 ± 0.13 | 0.09 ± 0.02 | 0.24 ± 0.10 | 3.9 | | 65.20 | 2.03 ± 0.13 | 0.57 ± 0.12 | 7.95 ± 2.24 | 2.18 ± 0.13 | 0.33 ± 0.06 | 3.33 ± 0.84 | | | W49N | | | | | | | | | 16.94 | 1.00 ± 0.13 | 0.77 ± 0.03 | 5.31 ± 1.99 | 1.04 ± 0.13 | 0.41 ± 0.08 | 1.97 ± 0.65 | 1.3 | | 18.29 | 0.80 ± 0.13 | 0.54 ± 0.12 | 3.00 ± 1.14 | 0.58 ± 0.13 | 0.24 ± 0.04 | 0.64 ± 0.27 | 1.3 | | 33.27 | 0.48 ± 0.13 | 0.33 ± 0.06 | 1.11 ± 0.52 | 0.45 ± 0.13 | 0.16 ± 0.03 | 0.33 ± 0.16 | 2.4 | | 34.07 | 0.55 ± 0.13 | 0.33 ± 0.06 | 1.27 ± 0.55 | 0.80 ± 0.13 | 0.18 ± 0.03 | 0.65 ± 0.23 | 2.4 | | 39.56 | 1.56 ± 0.13 | 0.66 ± 0.15 | 7.10 ± 2.21 | 1.20 ± 0.13 | 0.35 ± 0.07 | 1.95 ± 0.60 | 2.8 | | 59.44 | 1.55 ± 0.13 | 0.49 ± 0.10 | 5.30 ± 1.55 | 1.89 ± 0.13 | 0.22 ± 0.04 | 1.93 ± 0.49 | 4.4 | | 62.84 | 1.47 ± 0.13 | 0.50 ± 0.10 | 5.08 ± 1.52 | 1.70 ± 0.13 | 0.23 ± 0.04 | 1.84 ± 0.48 | 4.7 | | Sgr A | | | | | | | · | | -6.35 | 0.90 ± 0.13 | 0.69 ± 0.16 | 4.29 ± 1.62 | 1.10 ± 0.13 | 0.33 ± 0.06 | 1.68 ± 0.53 | 8.4 | | 1.4 | 1.00 ± 0.13 | 0.68 ± 0.16 | 4.75 ± 1.73 | 1.00 ± 0.13 | 0.37 ± 0.07 | 1.74 ± 0.58 | 8.9 | | 3.49 | 1.00 ± 0.13 | 0.57 ± 0.12 | 3.94 ± 1.38 | 1.10 ± 0.13 | 0.28 ± 0.05 | 1.41 ± 0.44 | 8.6 | Table 4. Parameters of the PDR models | Radiation field G ₀ | 1 | |------------------------------------|--------------------------------------| | Helium abundance | 0.1 | | Oxygen abundance | 3.2×10^{-4} | | Carbon abundance | 1.3×10^{-4} | | Nitrogen abundance | 7.5×10^{-5} | | Fe abundance | 1.5×10^{-8} | | Cosmic ray ionization rate ζ | $5 \times 10^{-17} \mathrm{s}^{-1}$ | | $R_V = A_V / E(B - V)$ | 3.1 | | Gas to Dust ratio | 100 | | Grain size distribution index | 3.5 | | Minimum grain radius | $0.003 \ \mu m$ | | Maximum grain radius | $0.3 \mu \mathrm{m}$ | The PDR models also predict that the ratio of the CH and CCH abundances is well defined: $N(CH)/N(CCH) = 1.8 \pm 0.3$. This close association of CH and CCH is confirmed when looking at the spatial gradients of the CH and CCH densities in a single slab as the spatial variations of CH and CCH are very similar. This behavior can be understood since these species are closely chemically related. CCH is produced by the photodissociation of acetylene (Roberge et al. 1991) and by the reaction of atomic carbon with CH₂ (Smith et al. 2004; Sakai et al. 2010). The dissociative recombination of molecular ions such as C₂H₂⁺ and C₂H₃⁺ also plays a role. CCH is destroyed by photodissociation and by reaction with ionized and atomic carbon, initiating the formation of polyynes. As the carbon chemistry is initiated by the radiative association between C⁺ and H₂ producing CH₂⁺ (Black & Dalgarno 1973), it is expected that CH scales with H₂. The formation of diatomic hydrocarbons is relatively easy once CH_2^+ is formed because the reactions with C^+ and C are rapid. Hence models predict that CH and CCH reside in the same environment. Furthermore, the predicted CH₂ column densities are similar to those of CH and slightly higher than those of CCH, with a trend with the gas density. CH is more abundant for the low densities, while CH₂ becomes dominant for $n \ge 500 \text{ cm}^{-3}$. Within the limited parameter space sampled, we did not find any strong variation of the predicted CCH or CH abundances with the cosmic ray ionization rate ζ . We recovered the known decrease of the CO abundance with increasing ζ (see Table 5 and Fig. 6). It will be interesting to confirm these model predictions by observing CH along the same lines of sight as CCH. Observations of the ground state rotational lines of CH at 532 and 536 GHz at high spectral resolution are now feasible using the HIFI instrument on board the Herschel Space Observatory. First observations presented by (Gerin et al. 2010b) show a tight association of CH and CCH for a limited source sample. If the trend is confirmed, it will be possible to use CCH as a proxy for molecular hydrogen in diffuse and translucent gas, since CH has been shown to be tightly correlated with the molecular hydrogen (Federman 1982; Liszt & Lucas 2002; Weselak et al. 2004; Sheffer et al. 2008). On the contrary, the model does not reproduce the observed properties of $c\text{-}C_3H_2:i$) the predicted column densities are lower than the observed column densities; ii) the predicted column density does not scale with the total extinction across the slab. Moreover, because CCH is present across most of the slab, while $c\text{-}C_3H_2$ is confined to the inner regions, the resulting line profiles are expected to bear the signature of these different environments, with $c\text{-}C_3H_2$ profiles sampling quieter regions with smaller velocity dispersions than CCH. Therefore a loose correlation between the CCH and $c\text{-}C_3H_2$ line profiles would be Table 5. Column densities $N[\text{cm}^{-2}]$ predicted by the PDR models. Models 1–15 and 18–21 are isochoric (constant n_{H}) models 16 and 17 are isobaric. | Model A | $A_{\rm v}[{\rm mag}]$ | $n_{\rm H}[{\rm cm}^{-3}]$ | $N(H_2)$ | N(H) | $N(\mathbf{C}^+)$ | $N(\mathbf{C})$ | N(CO) | N(CH) | $N(C_2H_2)$ | $N(CH_2)$ | N(CCH) | $N(C_3H_2)^*$ | |---------|------------------------|----------------------------|----------|--------|-------------------|-----------------
--------|--------|-------------|-----------|--------|---------------| | 1 | 5 | 100 | 4.5E21 | 3.9E20 | 7.6E17 | 3.9E17 | 7.4E16 | 6.3E14 | 1.1E12 | 4.6E14 | 3.0E14 | 8.4E11 | | 2 | 5 | 250 | 4.6E21 | 1.8E20 | 5.9E17 | 4.3E17 | 1.9E17 | 6.1E14 | 1.7E12 | 5.4E14 | 3.4E14 | 1.5E12 | | 3 | 5 | 500 | 4.6E21 | 1.1E20 | 4.8E17 | 4.3E17 | 3.0E17 | 5.7E14 | 1.9E12 | 5.9E14 | 3.4E14 | 1.8E12 | | 4 | 5 | 750 | 4.6E21 | 8.0E19 | 4.1E17 | 4.4E17 | 3.6E17 | 5.3E14 | 2.0E12 | 6.0E14 | 3.3E14 | 1.9E12 | | 5 | 5 | 1000 | 4.6E21 | 6.6E19 | 3.7E17 | 4.4E17 | 4.0E17 | 5.0E14 | 2.0E12 | 6.0E14 | 3.3E14 | 2.0E12 | | 6 | 3 | 100 | 2.7E21 | 3.1E20 | 6.6E17 | 7.5E16 | 3.5E15 | 3.2E14 | 7.5E10 | 1.7E14 | 1.1E14 | 5.8E10 | | 7 | 3 | 250 | 2.7E21 | 1.5E20 | 5.7E17 | 1.5E17 | 1.8E16 | 3.9E14 | 2.8E11 | 3.0E14 | 1.8E14 | 2.2E11 | | 8 | 3 | 500 | 2.8E21 | 9.2E19 | 4.7E17 | 2.0E17 | 5.3E16 | 4.1E14 | 6.4E11 | 4.1E14 | 2.3E14 | 4.9E11 | | 9 | 3 | 750 | 2.8E21 | 7.0E19 | 4.1E17 | 2.2E17 | 8.9E16 | 4.1E14 | 9.4E11 | 4.6E14 | 2.5E14 | 7.3E11 | | 10 | 3 | 1000 | 2.8E21 | 5.9E19 | 3.7E17 | 2.3E17 | 1.2E17 | 4.1E14 | 1.2E12 | 4.8E14 | 2.6E14 | 9.2E11 | | 11 | 1 | 100 | 8.3E20 | 2.2E20 | 2.5E17 | 1.4E15 | 5.2E13 | 4.6E13 | 7.0E08 | 1.6E13 | 5.4E12 | 3.8E08 | | 12 | 1 | 250 | 8.9E20 | 9.6E19 | 2.4E17 | 4.4E15 | 4.2E13 | 9.2E13 | 6.0E09 | 4.4E13 | 2.4E13 | 5.5E09 | | 13 | 1 | 500 | 9.1E20 | 5.6E19 | 2.4E17 | 1.0E16 | 1.0E14 | 1.3E14 | 2.3E10 | 8.2E13 | 4.9E13 | 2.3E10 | | 14 | 1 | 750 | 9.1E20 | 4.3E19 | 2.3E17 | 1.6E16 | 2.0E14 | 1.4E14 | 4.4E10 | 1.1E14 | 6.4E13 | 4.2E10 | | 15 | 1 | 1000 | 9.2E20 | 3.6E19 | 2.2E17 | 2.2E16 | 3.3E14 | 1.5E14 | 6.7E10 | 1.3E14 | 7.3E13 | 6.0E10 | | model A | $A_{\rm v}[{\rm mag}]$ | $p[\text{K cm}^{-3}]$ | $N(H_2)$ | N(H) | $N(C^+)$ | $N(\mathbf{C})$ | N(CO) | N(CH) | $N(C_2H_2)$ | $N(CH_2)$ | N(CCH) | $N(C_3H_2)^*$ | | 16 | 5 | 3500 | 4.4E21 | 5.9E20 | 5.6E17 | 3.8E17 | 2.8E17 | 4.6E14 | 1.5E12 | 4.2E14 | 2.5E14 | 1.5E12 | | 17 | 5 | 10000 | 4.6E21 | 1.1E20 | 3.9E17 | 3.8E17 | 4.4E17 | 4.1E14 | 1.5E12 | 4.6E14 | 2.5E14 | 1.6E12 | | model A | $A_{\rm v}[{\rm mag}]$ | ζ [s ⁻¹] | $N(H_2)$ | N(H) | $N(C^+)$ | N(C) | N(CO) | N(CH) | $N(C_2H_2)$ | $N(CH_2)$ | N(CCH) | $N(C_3H_2)^*$ | | 18 | 5 | 1E-16 | 4.6E21 | 1.4E20 | 4.9E17 | 4.7E17 | 2.5E17 | 6.3E14 | 2.5E12 | 6.8E14 | 4.0E14 | 2.4E12 | | 19 | 5 | 2E-16 | 4.6E21 | 2.2E20 | 5.1E17 | 5.0E17 | 1.9E17 | 7.4E14 | 3.5E12 | 8.5E14 | 5.0E14 | 3.1E12 | | 20 | 3 | 1E-16 | 2.8E21 | 1.1E20 | 4.8E17 | 2.0E17 | 4.6E16 | 4.2E14 | 6.6E11 | 4.2E14 | 2.4E14 | 5.0E11 | | 21 | 3 | 2E-16 | 2.7E21 | 1.6E20 | 4.8E17 | 2.0E17 | 3.6E16 | 4.4E14 | 7.0E11 | 4.5E14 | 2.6E14 | 5.2E11 | **Notes.** (*) PDR models do not separate cyclic and linear C₃H₂. **Fig. 5.** Prediction of the column densities of C⁺, C, CO, CH, CCH and c-C₃H₂ from the PDR Meudon models with various hydrogen densities and pressures. The constant density models are plotted with squares while the constant pressure models are shown with stars. These models correspond to $A_V = 3$ mag. Results from models with $A_V = 5$ mag are scaled by 0.6 to compensate for the higher total gas content, they are shown with open squares and dotted lines. Results from models with $A_V = 1$ mag are scaled by 3 to compensate for the lower total gas content, they are shown with crosses. The constant pressure models are plotted using the highest density point as abscissa. expected based on the PDR model predictions, that contrasts with the observed tight correlation. In the PDR model, $c-C_3H_2$ is formed by the dissociative recombination of $c-C_3H_3$ and by the reaction of C with acetylene. It is destroyed by photodissociation and by reactions with atomic carbon. It is likely that other formation mechanisms, yet to be identified, participate to the production of $c-C_3H_2$. The tight correlation of CCH and c-C₃H₂ was recognized earlier by Lucas & Liszt (2000) and Pety et al. (2005) in **Fig. 6.** Prediction of the abundances relative to H_2 of C^+ , C, CO, CH, CCH and c- C_3H_2 from the PDR Meudon models with various hydrogen densities and pressures. Models with $A_V = 5$ mag are plotted with open squares, $A_V = 3$ mag with black squares and $A_V = 1$ mag with crosses. Constant pressure models are plotted using the highest density point as abscissa. Models with elevated cosmic ray ionization fluxes are drawn in red, using larger symbols. The gray bars indicate the observed abundances of CH (Sheffer et al. 2008), CCH (Gerin et al. 2010) and c- C_3H_2 (this work, using the scaling with CCH). different environments (diffuse clouds for the former case and the Horsehead nebula for the latter). The modeling attempts, using an earlier version of the Meudon-PDR code, failed to reproduce this correlation in the context of the Horsehead nebula, a dense molecular cloud illuminated by a moderately intense radiation field (Pety et al. 2005). These authors put forward the hypothesis that the production of c-C $_3$ H $_2$ and other carbon radicals is increased by the destruction of very small carbon grains and/or PAHs in the intense FUV radiation field at the surface of the molecular cloud, directly exposed to the radiation from massive stars. In diffuse or translucent clouds, the same mechanism could operate. This scenario needs to be fully tested by including the PAH chemistry in the PDR models. Godard et al. (2009) have explored the impact of the dissipation of turbulence on the chemistry of diffuse interstellar clouds. They show that the chemical abundances of some molecular species, notably HCO^+ and CH^+ , are significantly modified and become in a much better agreement with observations than the predictions obtained by steady-state PDR models. Their chemical network includes CCH but not c- C_3H_2 . Models with a more extensive chemical network are currently under investigation, to search whether c- C_3H_2 could be partially produced in the dissipation regions of the interstellar turbulence. #### 5. Conclusion We confirm that the tight correlation of CCH and c-C₃H₂ first established by Lucas & Liszt (2000) towards high latitude diffuse clouds is present in the diffuse and translucent matter along the line of sight towards distant massive star forming regions, with $N(CCH) = (28.2 \pm 1.4)N(c-C_3H_2)$. This correlation confirms the finding by Lucas & Liszt (2000) and extends it to the more distant interstellar matter in the Galactic Plane. While PDR models seem to reproduce the observed properties of CCH, they fail by at least one order of magnitude for c-C₃H₂. We suggest that CCH might be used as a complementary tracer of molecular hydrogen in diffuse and translucent matter, that can replace CH in environments where no visible spectroscopy can be performed. The HIFI instrument on board the Herschel Space Observatory is now capable of detecting the submillimeter transitions of CH with high accuracy, enabling the direct comparison of CH and CCH. Acknowledgements. The work was carried out within the framework of the European Associated Laboratory "Astrophysics Poland-France" and also was supported by the Science and High Education Ministry of Poland, grants N203 39/3334. We thank the anonymous referee for her/his very interesting comments that helped to improve the paper. #### References Black, J. H., & Dalgarno, A. 1973, ApL, 15, 79 Cernicharo, J., Cox, P., Fossé, D., & Güsten, R. 1999, A&A, 351, 341 Cox, P., Güsten, R., & Henkel, C. 1988, A&A, 206, 108 Douglas, A. E. 1977, Nature, 269, 130 Falgarone, E., Godard, B., & Cernicharo, J., et al. 2010, A&A, 521, L15 Federman, S. R. 1982, ApJ, 257, 125 Fish, V. L., Reid, M. J., Wilner, D. J., & Churchwell, E. 2003, ApJ, 587, 701 Gerin, M., de Luca, M., Black, J., et al. 2010a, A&A, 518, L110 Gerin, M., De Luca, M., Goicoechea, J. R., et al. 2010b, A&A, 521, L16 Godard, B., Falgarone, E., & Pineau des Forêts, G. 2009, A&A, 495, 847 Godard, B., Falgarone, E., Gerin, M., et al. 2010, A&A, 520, A20 Goicoechea, J. R., & Le Bourlot, J. 2007, A&A, 467, 1 González-García, M., Le Bourlot, J., Le Petit, F., & Roueff, E. 2008, A&A, 485, Herbig, G. H. 1975, ApJ, 196, 129 Herbig, G. H. 1995, ARA&A, 33, 19 Indriolo, N., Geballe, T. R., Oka, T., & McCall, B. J. 2007, ApJ, 671, 1736 Kerr, F. J., & Lynden-Bell, D. 1986, MNRAS, 221, 1023 Koo, Bon-Chul 1997, ApJS, 108, 489 Le Petit, F., Nehmé, C., Le Bourlot, J., & Roueff, E. 2006, ApJS, 64, 506 Liszt, H., & Lucas, R. 2002, A&A, 391, 693 Lucas, R., & Liszt, H. S. 2000, A&A, 358, 1069 Madden, S. C., Irvine, W. M., Swade, D. A., Matthews, H. E., & Friberg, P. 1989, AJ, 97, 1403 Marcelino, N., Cernicharo, J., Agundez, M., et al. 2007, ApJ, 665, L127 Mul, P. M., & McGowan, J. W. 1980, ApJ, 237, 749 Müller, H. S. P., Thorwirth, S., Roth, D. A., & Winnewisser, W. 2001, A&A, 370. I.49 Müller, H. S. P., Schlöder, F., Stutzki, J., & Winnewisser, W. 2005, J. Mol. Struct., 742, 215 Neufeld, D. A., Sonnentreuker, P., Phillips, T. G., et al. 2010a, A&A, 518, L108 Neufeld, D. A., Goicoechea J. R., Sonnentrucker, P., et al. 2010b, A&A, 521, Padovani, M., Walmsley, C. M., Tafalla, M., Galli, D., & Müller, H. S. P. 2009, A&A, 505, 1199 Penzias, A. A., & Burrus, C. A. 1973, ARA&A, 11, 51 Persson, C., Black, J., Cernicharo, J., et al. 2010, A&A, 521, L45 Pety, J. 2005, in SF2A-2005: Semaine de l'Astrophysique Française, meeting held in Strasbourg, France, ed. F. Casoli, T. Contini, J. M. Hameury, & L. Pagani, (EDP Sciences), Conf. Ser., 721 Pety, J., Teyssier, D., Fossé, D., et al. 2005, A&A, 435, 885 Pickett, H. M., Poynter, R. L., Cohen, E. A., et al. 1998, Submillimeter, Millimeter, and Microwave Spectral Line Catalog, J. Quant. Spectrosc. & Rad. Transfer, 60, 883 Plume, R., Kaufman, M. J., Neufeld, D. A., et al. 2004, ApJ, 605, 247 Roberge, W. G., Jones, D., Lepp, S., & Dalgarno, A. 1991, ApJS, 77, 287 Sakai, N., Saruwatari, O. Sakai, T., Takano, S., & Yamamoto, S. 2010, A&A, 512, 31 Sheffer, Y., Rogers, M., Federman, S. R., et al. 2008, ApJ, 687, 1075 Smith, I. W. M.,
Herbst, E., & Chang, Q. 2004, MNRAS, 350, 323 Sonnentrucker, P., Neufeld, D. A., Phillips, T. G., et al. 2010, A&A, 521, L12 Teyssier, D., Fossé, D., Gerin, M., et al. 2004, A&A, 417, 135 Thaddeus, P., Guélin, M., & Linke, R. A. 1981, ApJ, 246, L41 Thaddeus, P., Vritlek, J. M., & Gottlieb, C. A. 1985, ApJ, 299, L63 Tielens, A. G. G. M. 2008, ARA&A, 46, 289 Tucker, K. D., Kutner, M. L., & Thaddeus, P. 1974, A&AS, 6, 341 Useli-Bacchitta, F., & Joblin, C. 2007, Molecules in Space and Laboratory, meeting held in Paris, France, May 14-18, ed. J. L. Lemaire, & F. Combes Vastel, C., Caux, E., Ceccarelli, C., et al. 2000, A&A, 357, 994 Van der Tak, F. F. S., Black, J. H., Schoier, F. L., Jansen, D. J., & van Dishoeck, E. F. 2007, A&A, 468, 627 Weselak, T., Galazutdinov, G. A., Musaev, F. A., & Krelowski, J. 2004, A&A, Williams, J. A., Dickel, H. R., & Rauer, L. H. 2004, ApJS, 153, 463