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ABSTRACT

Context. Amplitudes of stellar p modes result from a balance between excitation and damping processes taking place in the upper-
most part of convective zones in solar-type stars and can therefore be used as a seismic diagnostic for the physical properties of these
external layers.
Aims. Our goal is to improve the theoretical modelling of stochastic excitation of p modes by turbulent convection.
Methods. With the help of the closure model with plume (CMP) developed in a companion paper, we refine the theoretical descrip-
tion of the excitation by the turbulent Reynolds stress term. The CMP is generalized for two-point correlation products so as to apply
it to the formalism developed by Samadi & Goupil (2001, A&A, 370, 136). The excitation source terms are then computed with this
improvement, and a comparison with solar data from the GOLF instrument is performed.
Results. The present model provides a significant improvement when comparing absolute values of theoretical amplitudes with obser-
vational data. It gives rise to a frequency dependence of the power supplied to solar p modes, which agrees with GOLF observations.
It is shown that the asymmetry of the turbulent convection zone (up and downflows) plays a major role in the excitation processes.
Despite an increase in the Reynolds stress term contribution due to our improved description, an additional source of excitation, iden-
tified as the entropy source term, is still necessary for reproducing the observational data.
Conclusions. Theoretical excitation rates in the frequency range ν ∈ [2.5 mHz, 4 mHz] now are in agreement with the observational
data from the GOLF instrument. However, at lower frequencies, it exhibits small discrepancies at the maximum level of a few per
cent. Improvements are likely to come from a better physical description of the excitation by entropy fluctuations in the superadiabatic
zone.
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1. Introduction

Amplitudes of solar-like oscillations result from a balance be-
tween excitation and damping. Excitation is attributed to tur-
bulent motions that excite the p modes. In the uppermost part
of the convection zone, entropy fluctuations and eddy motions
drive oscillations. In this region, convection becomes inefficient
and there is an increase of the eddy velocities and entropy fluc-
tuations. Solar-like oscillations are mainly excited in such a re-
gion, thus a theoretical model of the excitation processes is a
powerful tool in understanding the properties of the convective
zones of solar-type stars. Goldreich & Keeley (1977) have pro-
posed a model for the excitation process using the turbulent
Reynolds stress and deduced an estimation of the power supplied
to the p modes. The underestimation of the excitation rates by
around a factor 103 compared to the observed solar values (Osaki
1990) led to alternative formulations (Goldreich & Kumar 1990;
Goldreich et al. 1994). Another source of excitation was iden-
tified by Goldreich et al. (1994): the so-called entropy source
term. Its contribution cannot be neglected, even though Stein &
Nordlund (2001) have shown that excitation from the Reynolds
stress remains dominant in comparison with the entropy fluctua-
tion source term.

Samadi & Goupil (2001) propose a generalized formalism,
taking the Reynolds and entropic fluctuation source terms into
account. This approach allows investigation of the effects of sev-
eral models of turbulence (Samadi et al. 2003b,a) by express-
ing the source terms as functions of the turbulent kinetic energy
spectrum and the time-correlation function.

A confrontation of this model with data from the BiSON in-
strument (data from Chaplin et al. 1998) led to the conclusion
that the theoretical predictions were in good agreement with the
observations (Samadi et al. 2003a). Nevertheless, observational
data from the GOLF instrument and a study of the BiSON data
indicate that some discrepancies remain between the theoretical
computation and observational data. In Samadi & Goupil (2001)
(see also Samadi et al. 2005), one of the main assumptions is the
quasi-normal approximation (QNA), which is useful for corre-
lation functions of the turbulent Reynolds stress and the entropy
fluctuation source terms (Samadi & Goupil 2001).

The uppermost part of the convection zone being a turbu-
lent convective system composed of two flows, the probability
distribution function of the fluctuations of the vertical velocity
and temperature does not follow a Gaussian law (Lesieur 1997).
Thus, the use of the QNA, which is exact for a normal distribu-
tion, becomes a doubtful approximation.
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In a companion paper (Belkacem et al. 2006, hereafter
Paper I), we propose another approach in order to build a clo-
sure model that expresses fourth-order correlation functions in
terms of the second-order ones. This alternative approach con-
sists in considering the convection zone as composed of two
flows (the updrafts and downdrafts). Starting from the Gryanik
& Hartmann (2002) approach, we develop a generalized two-
scale mass-flux model (GTFM) that takes the physical proper-
ties of each flow into account. Then a theoretical description of
the plumes developed by Rieutord & Zahn (1995) is used to con-
struct the closure model with plumes (CMP). This model is valid
for one-point correlation functions and in the quasi-adiabatic
zone. However, what is needed here is a closure model for two
point correlation functions. In the present paper, we then propose
a simple way to obtain this closure model to use it for calculat-
ing of the excitation rates according to Samadi & Goupil (2001).
Only the Reynolds stress source term is corrected, mainly be-
cause it is the dominant term (Stein & Nordlund 2001; Samadi
et al. 2003a). The entropy fluctuations are considered in the same
way as explained in Samadi & Goupil (2001) (i.e. using the
QNA approximation).

The paper is organized as follows: the theoretical model of
stochastic excitation of p modes is briefly summarized in Sect. 2.
In Sect. 3, the closure model with plume (CMP) is generalized
for two-point correlation products and implemented into the for-
malism of Samadi & Goupil (2001). In Sect. 4, the calculation
of theoretical power is explained. In Sect. 5, GOLF observa-
tional data are presented together with the derivation of observ-
able quantities. A comparison between the theoretical power and
heights computed as described in Sect. 4 with the corresponding
observed quantities defined in Sect. 5 is performed in Sect. 6.
Section 7 is dedicated to discussions and conclusions.

2. A model for stochastic excitation of solar-like
p modes

The theoretical model of stochastic excitation considered here
is basically that of Samadi & Goupil (2001; see also Samadi
et al. 2005). It takes two sources into account that drive the
resonant modes of the stellar cavity. The first one is related to
the Reynolds stress tensor and as such represents a mechanical
source of excitation. The second one is caused by the advec-
tion of the turbulent fluctuations of entropy by the turbulent mo-
tions (the so-called “entropy source term”) and thus represents
a thermal source of excitation (Goldreich et al. 1994; Stein &
Nordlund 2001).

The power fed into each mode, P, is given by (see e.g.
Samadi et al. 2001):

P ≡ dE
dt
= 2η E = η 〈|A|2〉 I ω2

0, (1)

where 〈〉 denotes the ensemble average, 〈|A|2〉 the mean square
amplitude, η the damping rate, and E the energy that is defined as

E =
1
2
〈|A|2〉 Iω2

0 (2)

where I is the mode inertia and ω0 is the oscillation eigenfre-
quency (see Samadi & Goupil 2001, for details).

The mean square amplitude, as explained in Samadi &
Goupil (2001), is

〈
| A |2

〉
=

1
8 η (Iω0)2

(
C2

R + C2
S

)
(3)

where C2
R and C2

S are the turbulent Reynolds stress and entropy
contributions, respectively. Their expressions for radial modes
are given by

C2
R =

∫
d3x0 ρ

2
0 fr

∫ +∞

−∞
dτ e−iω0τ

∫
d3r

〈
w2

1w
2
2

〉
(4)

C2
S =

∫
d3x0 gr

∫ +∞

−∞
dτ e−iω0τ

∫
d3r 〈(wst)1 (wst)2 〉 (5)

where w is the vertical component of the velocity, st the turbu-

lent entropy fluctuation and fr(ξr,m) ≡
(
∂ξr
∂r

)2
, where ξr is the

radial component of the eigenfunction, and gr a function that
involves the first and second derivatives of ξr (see Eq. (9) of
Samadi et al. 2003b). Quantities labelled with 1 and 2 denote two
spatial and temporal positions, hence

〈
w2

1w
2
2

〉
and 〈(wst)1 (wst)2 〉

correspond to two-point fourth-order correlation products. These
correlation products are usually approximated by expressions in-
volving second-order products only (closure model). In Samadi
& Goupil (2001), the simplest approximation was used i.e. the
quasi-normal hypothesis. We study here consequences of using a
closure model closer to reality (i.e. the CMP from Paper I). Both
are recalled in the next section.

3. Closure models

3.1. The quasi-normal approximation

The QNA (Lesieur 1997, Chap. VII-2) is adopted in Samadi &
Goupil (2001) as a convenient means to decompose the fourth-
order velocity correlations in terms of a product of second-order
vertical velocity correlations, that is, one uses

〈w2
1w

2
2〉QNA = 2 〈w1w2〉2 + 〈w2

1〉〈w2
2〉

〈(wst)1 (wst)2 〉QNA = 〈w1w2〉 〈st1st2〉 , (6)

where st is considered as a passive scalar.
This approximation (Eq. (6)) remains strictly valid for nor-

mally distributed fluctuating quantities with zero mean. As
shown by Kraichnan (1957) in the context of turbulent flows
and Stein (1967) in the solar context, the cumulant (the devia-
tion from the QNA) can be large and therefore not negligible.
The CMP presented in Paper I was shown to be a significant
improvement on the QNA for the one-point correlation prod-
ucts. However, we need two-point correlation products here (see
Eqs. (4) and (5)). A generalization of the CMP for two-point
correlation products is therefore developed in Sect. 3.2 below.

The second-order correlation products in Eq. (6) are ex-
pressed in the Fourier domain (k, ω) where k and ω are the
wavenumber and the frequency associated with a turbulent
element (see Samadi & Goupil 2001, for details).

3.2. The closure model with plumes

The closure model with plumes (see Paper I) has been estab-
lished only for one-point correlation products. Here we gen-
eralize the CMP to two-point correlation products. We start
in Fig. 1 by comparing the correlation product 〈w2

1w
2
2〉 calcu-

lated directly from 3D numerical simulations obtained from the
Stein & Nordlund code (see Sect. 4) with those calculated using
Eq. (6) of the QNA with second-order correlation products taken
from the 3D simulation. The question is whether the modelling
of the k dependency on the two-point correlation function by the
QNA can be used. For the sake of simplicity, we assume that the
QNA can be used for the ω dependency.
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Fig. 1. Fourth-order correlation function calculated in the quasi-
adiabatic zone directly from the 3D numerical simulation (solid
line) and using the QNA approximation (Eq. (6); dashed lines). The
fourth-order moments are presented as a function of the correlation
length (∆X), and the two curves are normalized so as to emphasise only
their k dependency.

The correlation products 〈w2
1w

2
2〉 in Fig. 1 are normalized

so as to compare only the k dependency of these quantities.
In the quasi-adiabatic region, the line width at half-maximum
of the QNA and the numerical product are roughly the same.
Discrepancies at high values of ∆X (the correlation length) are
expected to have a negligible influence on the correlation prod-
uct. Hence, we assume that the modelling of the k dependency
on the two-point correlation product by the QNA is valid due
to a small difference between the line width at half-maximum.
Hence it is legitimate to use the (k, ω) dependency given by the
QNA. One then needs only to correct the value of the correla-
tion product at (k = 0, ω = 0) (which corresponds to the one
point correlation function) with the CMP (see Paper I) for the
turbulent Reynolds stress term contribution. We use the interpo-
lation formula of Gryanik & Hartmann (2002) for the FOM of
the velocity (Paper I, Eq. (13))

〈w2
1w

2
2〉CMP =

(
1 +

1
3

S 2
w

)
〈w2

1w
2
2〉QNA, (7)

with 〈w2
1w

2
2〉QNA given by Eq. (6) the skewness S w is calculated

from the CMP (see Paper I for details).
In Fig. 2, calculations using Eqs. (6) and (7) are compared

to the direct numerical correlation product. The above general-
ization of the CMP to two-point correlation products provides a
good approximation mainly in the quasi-adiabatic region where
the CMP is the more accurate one (see Paper I). The k depen-
dence is approximatively modelled by the QNA (Fig. 1) except
for large correlation lengths (∆X > 0.2 Mm), but these con-
tribute only negligibly to 〈w2

1w
2
2〉. However, in the superadia-

batic zone, the generalization of the CMP and the QNA both
fail to describe the two-point correlation function. In that zone,
the temperature gradient is varying quickly, which is not the
case in the CMP. In the plume model (Paper I) the tempera-
ture gradient appears only through a polytropic law, and for sake
of simplicity we assume an isentropic atmosphere. In addition,
for modelling the FOM 〈w4〉, the interpolated formula derived
by Gryanik & Hartmann (2002) (Paper I, Eq. (13)) is not valid
in the superadiabatic zone. Thus, in this zone the treatment of

Fig. 2. Fourth-order correlation function calculated in the superadia-
batic zone (at the top) and in the quasi-adiabatic zone (at the bottom)
directly from the 3D numerical simulation (dotted line), using the QNA
approximation (Eq. (6); dashed lines) and using the CMP (Eq. (7); solid
line).

Eqs. (6) and (7) will introduce an energy excess injected into
high-frequency p modes.

4. Calculation of the theoretical p mode excitation
rates

The rate (P) at which energy is injected per unit time into a mode
is calculated according to the set of Eqs. (4)−(6) when the QNA
is used and Eqs. (4)−(7) using the CMP (see Sect. 4.1). The cal-
culation thus requires the knowledge of four different types of
quantities:

1) quantities that are related to the oscillation modes: the eigen-
functions (ξr) and associated eigenfrequencies (ω0);

2) quantities that are related to the spatial and time-averaged
properties of the medium: the density ρ0, the vertical veloc-
ity w̃, the entropy s̃, and αs = ∂P0/∂s̃;

3) quantities that contain information about spatial and tempo-
ral correlations of the convective fluctuations: E(k), Es(k),
and χk(ω);

4) quantities that take anisotropies into account: a and Φ. The
value of a is the mean horizontal fractional area of the up-
drafts (see Paper I), whereas Φ measures the anisotropy of
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turbulence and is defined according to Gough (1977; see also
Samadi & Goupil 2001, for details) as:

Φ =
〈w2〉
〈u2〉 , (8)

where u2 = w2 + u2
h and uh is the horizontal velocity.

Both a and Φ are necessary to describe the flow because
a measures the geometric anisotropy between up and downflows
while Φ corresponds to the measure of the velocity anisotropies.
However, these two quantities are linked because of mass con-
servation. An explicit relation can be easily derived between
them using the formalism developed in Paper I to obtain

Φ =
a(1 − a)δw2 + a〈w̃2〉u + (1 − a)〈w̃2〉d
a(1 − a)δw2 + a〈ũ2〉u + (1 − a)〈ũ2〉d (9)

where the ˜ refers to the velocities of only one flow (updraft
or downdraft) and δw is defined as in Paper I. For consistency
reason, a and Φ are provided by the 3D numerical simulation.

4.1. The solar case

Calculations of the eigenfrequencies and eigenfunctions (in
point 1) above) are performed as in Samadi et al. (2003b) on the
basis of a 1D solar model built according to Gough’s (1977) non-
local formulation of the mixing-length theory (GMLT hereafter).

The spatial and time-averaged quantities in point 2) are ob-
tained from a 3D simulation of the solar surface. The 3D sim-
ulations used in this work were built with Stein & Nordlund’s
3D numerical code (see Stein & Nordlund 1998; Samadi et al.
2003a). Two simulations with different spatial mesh grids are
considered, namely 253 × 253 × 163 and 125 × 125 × 82, in or-
der to verify that the results are not sensitive to the spatial mesh
resolution.

Finally, for the quantities in point 3) the total kinetic en-
ergy contained in the turbulent kinetic spectrum, E(k), its depth
dependence, and its k-dependence are obtained directly from a
3D simulation of the uppermost part of the solar convective zone.
It was found in Samadi et al. (2003a) from 3D simulations that
a Gaussian – usually used for modelling χk – is inadequate: a
Lorentzian fits the frequency dependence of χk best. Hence, we
adopt a Lorentzian here for χk.

4.2. Calculation of the power injected into the solar p modes
with the CMP

We use the generalized CMP for two-point correlation functions
presented in Sect. 3.2 (Eq. (7)) to model the Reynolds-stress
source term. By replacing Eq. (6) with Eq. (7) in Eq. (4), the
calculation of C2

R (as in Samadi & Goupil 2001) yields:

C2
R =

64
15
π3

∫ M

0
dm (1 +

1
3

S 2
w) ρ0

(
dξr
dr

)2 ∫ ∞

0
dk

×
∫ ∞

−∞
dω

E2(k)
k4
χk(ω0 + ω, r) χk(ω, r). (10)

Equation (10) shows that the CMP causes an increase in the
power injected into p modes in comparison with calculation us-
ing only the QNA. On the other hand, the entropy source term,
C2

S, is still computed using the QNA closure model (see Samadi
& Goupil 2001, for details).

5. Observational data and inferring observed
excitation rates

The observational data set selected here for comparison with the-
oretical calculations was obtained with the GOLF instrument,
onboard SOHO. GOLF (Gabriel et al. 1997) is a spectrome-
ter measuring velocities of the photosphere integrated over the
whole solar disc. Its location on the space platform yields a very
good signal-to-noise ratio and also continuous observations (the
actual duty cycle reaches almost 100%). This latter characteristic
greatly improves the signal to noise ratio in the Fourier spectrum.

However, GOLF suffers from some technical problems,
which restricts the measurements to one wing of the Na D1 line
instead of both wings. This results in a more difficult absolute
calibration of the measured velocity and thus a possible bias
(which does not exceed 20% in terms of the acoustic rate of ex-
citation). Characteristics of the data set used here are described
in Baudin et al. (2005).

These observations correspond to two periods when GOLF
was observing in the same instrumental configuration (blue wing
of the Na line) with a duration of 805 and 668 days, starting on
April 11, 1996 and November 11, 2002, respectively. The level
of solar activity was different during these two periods, but the
measured excitation rate shows no dependence on activity, as the
increase in width compensates for the decrease in height of the
peaks, as shown by Chaplin et al. (2000) or Jiménez-Reyes et al.
(2003).

The GOLF results were compared to BiSON observations
and are compatible with them over a wide frequency range.
A discrepancy appears at high frequency (ν > 3.2 mHz). As
the height and width of peaks in the Fourier spectrum are
affected by the presence of noise and gaps in the data (see
Chaplin et al. 2003), GOLF was chosen for the comparison
model/observations. We consider only the � = 1 modes for
which their properties (line-width, amplitude) are more accu-
rately determined than the � = 0 modes (see Baudin et al. 2005,
for details).

In order to compare theoretical results and observational
data, the mode excitation rates are inferred from the observa-
tions according to the relation

Pobs(ω0) = 2 π ΓνM v2s (ω0) (11)

where M ≡ I/ξ2r (h) is the mode mass, h the height above the
photosphere where oscillations are measured, Γν = η/π the mode
linewidth at half maximum (in Hz), and v2s the mean square of the
mode surface velocity. The last is derived from the observations
according to

v2s = πH ΓνCobs (12)

where H is the maximum height of the mode profile in the
power spectrum and Cobs the multiplicative constant factor that
depends on the observation technique (see Baudin et al. 2005).
Equation (12) supposes that the mode line profiles are symmet-
ric, but it is well known that the mode profile deviates from a
Lorentzian. However, Baudin et al. (2005) show that this equa-
tion is accurate enough for the evaluation of the mean square of
the mode velocity, Eq. (12). On the other hand, the mode asym-
metry is taken into account when determining mode line widths
from observational data.

The mode mass is very sensitive to altitude at high frequency
(see Fig. 1 of Baudin et al. 2005), so the layer (h) where the mode
mass is evaluated must be properly estimated to derive correct
values of the excitation rates. Indeed, solar seismic observations
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in Doppler velocity are usually measured from a given spectral
line. The layer where oscillations are measured then depends on
the height where the line is formed. The GOLF instrument uses
the Na I D 1 and D 2 lines whose height of formation is estimated
at the height h ≈ 340 km (see Baudin et al. 2005).

As an alternative to comparing theoretical results and obser-
vational data, Chaplin et al. (2005) propose to derive the max-
imum height of the mode profile (H) from the theoretical exci-
tation rates and the observed mode line width according to the
relation:

H =
P

2π2MΓ2
νCobs

, (13)

where Cobs = 2.59 for � = 1 modes.
Representation of the excitation rates themselves (Eq. (11))

emphasises disagreement at high frequencies, whereas disagree-
ment at low frequency is more apparent with a representation
using the profile height (Eq. (13)). Note that in the case of the
observable height, only the slopes are the meaningful quantities,
as the amplitude magnitude depends on the phase of the solar
cycle when the observations were recorded.

As the maximum height H strongly depends on the obser-
vation technique, one cannot compare values of H coming from
two different instruments. In Fig. 6, we therefore plot the prod-
uct HCobs, a quantity that is less dependent on the observational
data (but still throughM). Note that for ease of notation, HCobs
is noted H in the following.

It is important to stress that the mode height (H) calculated
from the theoretical excitation rates (Eq. (11)) depends on the
observations through the line width Γν. This is why in Figs. 5
and 6 error bars appear in the theoretical results. In any case,
the observational data can be characterised by at least three
main features that the theoretical calculations (see above) must
reproduce:

1. the frequency dependence from low to medium frequencies
(ν < 3 mHz);

2. the maximum of amplitude at 3 mHz for H and the slope for
frequencies between 3 and 4 mHz or a nearly flat maximum
between ν ≈ 3.8 mHz and 4 mHz for P;

3. the slope at very high frequencies ν > 4 mHz.

6. Comparison between theoretical and observed
excitation rates

6.1. Turbulent Reynolds stress contribution

Figure 3 compares the observed power P injected into solar
p modes with the theoretical one computed with only the tur-
bulent Reynolds stress term assuming either the CMP or the
QNA closure models. Figure 4 shows the associated heights H
as computed according to Eq. (13). The comparison shows that
the closure model has a significant effect on the resulting ex-
citation rates. Indeed, the CMP induces an increase in the en-
ergy injected into the mode by about a factor two in comparison
with the QNA closure model and brings the theoretical excita-
tion rates closer to the observational ones. This energy increase
is not uniform in terms of frequencies, due to the variation in
the skewness with the depth (z) (see Paper I for details) and to
the fact that the mean square velocity amplitudes of the turbulent
elements decrease with depth. Indeed, at the top of the convec-
tion zone where the highest frequency modes are confined, the
inefficiency of the convective transport causes an increase in the

Fig. 3. Rate P at which acoustic energy is injected into the solar ra-
dial modes. Only the Reynolds stress contribution is computed. Cross
dots represent P computed from Baudin et al. (2005) solar seismic data
from the GOLF instrument (see Sect. 5). The associated error bars take
into account uncertainties both from the line width (Γν) and from the
maximum height of the mode profile (H). The curves represent theo-
retical values of P computed as explained in Sect. 4: dash-dotted lines
correspond to the calculation of P using the QNA closure model, and
solid lines represent P using the CMP for the Reynolds stress term. We
present the results in linear (at the top) and logarithmic scale (at the
bottom).

velocities. Thus the effect of the flow anisotropy becomes domi-
nant for such high-frequency modes.

At low frequencies (ν < 2.5 mHz), the turbulent Reynolds
stress contribution reproduces the observed power P (Fig. 3)
within the observational uncertainties. As best emphasised in
Fig. 4, it is possible that the theoretical results are slightly over-
estimated, although this remains within the observational error
bars.

At intermediate frequencies 4 > ν > 3 mHz), the turbulent
Reynolds stress term is not sufficient to reproduce the observa-
tions, so the additional excitation coming from entropy fluctua-
tions is necessary.

At high frequencies ν > 4 mHz), Observational data seem to
indicate a decrease in the power, which is not reproduced by the
theoretical power.
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Fig. 4. Mode height H calculated as explained in Sect. 5 using only
the Reynolds stress contribution. The solid (resp. dash-dotted) line rep-
resents H calculated with the CMP (resp. QNA) closure model, and
cross-dots represent GOLF data with associated error bars. Error bars
associated with the curves are due to mode line widths that are taken
from observations (see Eq. (13)).

6.2. Adding the entropy fluctuation contribution

To proceed further, we add the C2
S contribution (Eq. (5)). Results

for the excitation rate and the maximum height are presented
in Fig. 5. The additional (positive) entropy contribution causes
an overall increase in the excitation rates as shown in Fig. 5.
The theoretical modelling now reproduces the maximum of the
power supplied to the modes when compared with the observa-
tional data. For the frequency behaviour of the excitation rate
and height, Fig. 5 show:

At low frequency (ν ∈ [1.6 mHz; 3 mHz]). We pointed out
in Sect. 6.1 that the contribution from the Reynolds stress term
can be sufficient for reproducing the GOLF data, perhaps even
overestimating it. The combination of both Reynolds stress and
entropy fluctuation is too large compared with the observation,
and the resulting slope differs from the observational one in this
frequency domain. Note however, that in Fig. 5 error bars repre-
sent 1σ error bars (Fig. 5).

For intermediate and high frequencies (ν ∈ [3 ; 4] mHz), the
Reynolds (CMP) and entropy excitation model reproduces the
ν variation in P. This is confirmed with the H representation
(Fig. 5 at the bottom). However from a theoretical point of view,
the description of the behaviour at high frequencies (ν > 4 mHz)
is more complicated because these p modes are mainly excited
in the superadiabatic zone, which is difficult to model properly.
On the observational side, it must be kept in mind that even data
with a signal-to-noise ratio as good as GOLF lead to linewidths
difficult to measure at high frequencies.

7. Discussions and conclusions

We use a closure model (CMP, Paper I) that is more realistic than
the usual QNA approximation to model the correlation prod-
ucts in a semi-analytical description of the excitation process
of solar p modes. The present excitation model gives the the-
oretical slope of the power at intermediate and high frequencies
(ν ∈ [2.5 mHz; 4 mHz]), which agrees with the observed data.
We also find that including the CMP causes a global increase
in the injected power. This brings the power computed with the

Fig. 5. Top: rate (P) at which acoustic energy is injected into the solar
radial modes as a function of frequency. Cross dots represent P com-
puted from the Baudin et al. (2005) solar seismic data from the GOLF
instrument (see Sect. 5). The curves represent theoretical values of P
computed as explained in Sect. 4: the solid line represents P using both
the Reynolds stress (using the CMP) and entropy source contributions.
The dotted line corresponds to the calculation for the Reynolds stress
term only (using the CMP). Bottom: mode height (H) calculated as
explained in Sect. 5. The solid line represents H calculated with the
CMP closure model, using the Reynolds stress and entropy fluctuation
contributions. The dotted line represents H computed with the CMP
closure model, using only the Reynolds stress contribution. Cross-dots
represent GOLF data with the associated error bars. Error bars associ-
ated with the curves are due to mode line widths that are taken from
observations (see Eq. (13)). Only observations near minimum solar ac-
tivity have been used, and they correspond to the second period as
explained in Sect. 5.

Reynolds stress contribution alone closer to (although, at inter-
mediate frequency, still below) the observations. On the other
hand, the power obtained by including both the Reynolds stress
and the entropy fluctuation contributions reproduces the obser-
vations at the maximum of the excitation rates. The compari-
son can now be made in linear scale, hence at lower frequencies
there is still a small over-estimation (which amounts roughly to
a few per cents and the errors bars represent 1σ error bars). The
reason for this overestimation cannot be attributed to the CMP.
Indeed, the Reynolds stress contribution was compared to the
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Fig. 6. Mode height H calculated as explained in Sect. 5 using only the
Reynolds stress contribution. Solid lines represent H calculated with the
CMP closure model and dots-line is the same except that a Gaussian is
used for χk . Crosses represent GOLF data with associated error bars.
Error bars associated with the curves are due to mode line widths which
are taken from observation (see Eq. (13)).

3D numerical simulation (see Paper I), and the one-point fourth-
order moment 〈w4〉was found to agree with the simulation result.
The remaining departure from the numerical simulation shows
that the CMP actually underestimates the FOM in the quasi-
adiabatic region, so correcting for this bias would result in an
even larger overestimation of the power.

Various sources of discrepancies are likely to exist: the sep-
aration of scales used in the formalism that consists in assum-
ing that the stratification and the oscillations have characteristic
scale lengths larger than the eddies contributing to the excitation
(see Samadi & Goupil 2001, for details). The physical descrip-
tion of the outer layers in the 1D solar model can also play an im-
portant role directly through the velocity and indirectly through
the eigenfunctions. In this paper, we use Gough’s (1977) non-
local formulation of the mixing-lenght theory which shows an
improvement in comparison with the local formulations in terms
of the maximum of power P (Samadi et al. 2006) by about a few
percent. Concerning the excitation model itself, some improve-
ments in the modelling of Reynolds and entropy contributions
that ought to be investigated are outlined below.

7.1. Turbulent Reynolds stress tensor contribution shortages

At low frequencies, a possibly small overestimation of the
Reynolds stress contribution can be attributed to the frequency
dependent factor (χk, see Eq. (10) in Sect. 4.1). Chaplin et al.
(2005) use a Gaussian χk whereas Samadi et al. (2003b) use
a Lorentzian factor. In Fig. 6, we present the calculation as-
suming a Gaussian and a Lorentzian for χk. As shown there,
the frequency-dependent factor χk is likely between these two
regimes. In the quasi-adiabatic convection zone, plumes are
well-formed, and the convective system must be treated as com-
posed of two flows (see Paper I). Hence, the upflows that are
less turbulent can be modelled by a white noise (Gaussian), but
downflows are turbulent creating a departure from a Gaussian.
We expect this effect to cause a decrease in the theoretical power
and bring it closer to the observation. A rough idea can be ob-
tained by taking this effect into account as follows: we split
the computation of the power supplied into the modes into two

parts. Those parts correspond to upflow (χk: Gaussian) and to
downflows (χk: Lorentzian). The result indicates a decrease in
the power at low frequency, which brings the theoretical power
closer to the observation. This is true mainly for low-frequency
modes, which are less sensitive to the superadiabatic zone where
plumes are formed, because this region cannot be modelled by
such a simple model. This issue needs further investigation.

7.2. Entropy source contribution shortages

In the present model, the turbulent entropy fluctuations are as-
sumed to behave as a passive scalar, in other words, the entropy
fluctuations are assumed to be advected by the turbulent velocity
field without dissipation. It means that the entropy field does not
have any effect on the velocity field.

This assumption associated with the QNA has the advantage
of simplifying the closure of the fourth-order moments involving
the entropy fluctuations (see Eq. (3.1)). However the biases in-
troduced by this assumption remain to be evaluated. If the biases
turn out to be large, alternative models must be developed.

7.3. Perspectives

Finally, we stress that there is an additional dependency, the co-
efficient a, which is the mean fractional area of updraft on the
horizontal plane (see Eq. (9)). It is a measure of the asymmetry
of the flows and a small variation in its value plays a major role
on the excitation rates. This parameter has been fixed here us-
ing the results of 3-D simulations. The influence of parameter a
is very important, as a small variation of its value leads to an
increase in power P through the skewness S w (see Paper I). It
is beyond the scope of this paper to estimate the true effect of a
variation in this parameter because its value is linked to the phys-
ical properties of the flows through, for instance, conservation of
the mass flux. Hence a consistent approach is to investigate a set
of different numerical simulations.

The CMP closure model, indeed, strongly depends on the
structure of the upper convection zone, which again emphasises
that the structure of this region is very important in the theoret-
ical prediction of the power injected into the p modes, because
the skew introduced by the asymmetry increases with the depar-
ture of a from the value 0.5. It is then possible to obtain physical
constraints on the asymmetry of the convection zone flows.

To understand what can affect a is therefore an important is-
sue, and in near future it will be necessary to study the variation
in a with the type of star and from a hydrodynamical point of
view to determine what the main processes that are responsible
for this asymmetry. One interesting issue is the influence of a
magnetic field on this parameter: as described by Weiss et al.
(2002) and Vögler et al. (2005), the effect of a strong magnetic
field induces a reduction in the typical length scale of convec-
tion, as well as the structure of the flows (hence the value of a).

The study of the mean fractional area a as a function of the
magnetic field intensity therefore represents an interesting per-
spective for characterising B from the excitation rates, at least
for stars with an expectedly strong magnetic field.
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