N
N

N

HAL

open science

Symplectic structure for elastic and chiral conducting
cosmic string models

Brandon Carter, Daniele A. Steer

» To cite this version:

Brandon Carter, Daniele A. Steer. Symplectic structure for elastic and chiral conducting cosmic string
models. Physical Review D, 2004, 69, pp.125002. 10.1103/PhysRevD.69.125002 . hal-03732328

HAL Id: hal-03732328
https://hal.science/hal-03732328
Submitted on 30 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03732328
https://hal.archives-ouvertes.fr

PHYSICAL REVIEW D 69, 125002 (2004
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This article is based on the covariant canonical formalism and corresponding symplectic structure on phase
space developed by Witten, Zuckerman, and others in the context of field theory. After recalling the basic
principles of this procedure, we construct the conserved bilinear symplectic current for generic elastic string
models. These models describe current carrying cosmic strings evolving in an arbitrary curved background
spacetime. Particular attention is paid to the special case of the chiral string for which the worldsheet current
is null. Different formulations of the chiral string action are discussed in detail, and as a result the integrability
property of the chiral string is clarified.
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[. INTRODUCTION sary analysis is facilitated by the relatively new development
[13-117 of suitably covariant methods of geometrical analy-
F0||owing a pre|iminary Study:]_] whose app”cation was Sis, which have already been shown to be far more efficient
restricted to nonconducting Nambu-Goto strings, in this arfhan the more cumbersom¢and error-prong frame-
ticle we focus on conducting cosmic string models in arbi-dependent methods used in earlier work for treating other

trary curved spacetimes, and in this context discuss the ge%t%?fc?jﬁ[fgfga as the divergences arising from self-
eral principles of the covariant canonical variational analysis. The earlier artiéle[l] demonstrates the agreement of the

As emphasised by. Witten, Zuckermaq, and'ott[épsg]. N canonical approach, as developed by Cartas-Fuentevilla
the context _o_f relat|V|_st|c fleld_theones mc_:lugjmg gravity, t_he [10,11, with the result of an earlier and rather different ap-
potential utility of this covariant analysis is as a starting proach[13] to the construction of the symplectic surface cur-
point for covariant quantization. . rent. Both these analyses focused on strings with no internal
The analysis culminates in the construction of a correphysical structure on the worldsheet, that is, on actions of the
sponding symplectic structure which is locally representableimple Dirac-Nambu-Goto type which are proportional to the
as a current. This symplectic current—which should not beyorldsheet surface measure.
confused with the worldsheet current of the conducting The present work deals with the more general case of
string—is defined as an antisymmetric bilinear functional ofelastic string models of the kiNd.9] appropriate for macro-
a pair of independent perturbations, and it is conservedcopic applications, such as the strings used for musical in-
whenever both perturbations are on sh@ill the sense of struments since the time of Pythagoras, and in particular for
satisfying the relevant dynamical field equatipnehe Pois- the macroscopic description of the effect in cosmic strings of
son brackets on classical phase spéle space of solutions mechanisms of the varioyfermionic and bosonic supercon-
of the classical equations of motipare then expressed in a ducting kinds originally proposed by Witte[20]. The ear-
manifestly covariant form in terms of the symplectic struc-liest work on the consequences of the Witten mechanism
ture[3,5], and as usual one quantizes by replacing the Poisemphasized effects due to electromagnetic coupling, but it
son brackets with commutators. was recognized by Davis and Shelldr2il] that the most
Despite this, we stress that our aim is not to quantizeimportant consequence would be the formation of vortons,
Rather, we carry out the first and already rather complicatedheaning centrifugally supported equilibrium configurations
step in this direction by simply calculating the symplectic of loops in which effects of electromagnetic coupliri§
current for conducting cosmic string models. As such, thigpresent at all are relatively unimportant. While it is also
will not give us any further insights into the evolution of possible to have noncircular vorton configurati¢gg], the
current carrying strings in curved spacetimes nor of theisimplest possibility is that of circular configurations. In this
quantization. However, in the process we will be able tocase(provided electromagnetic effects are absent or negli-
formulate the relevant string actions in a rather more convegible) both the static equilibrium and full dynamical evolu-
nient form which may aid further analysis. tion are particularly amenable to an exact mathematical treat-
The task of extending the covariant analysis from ordi-ment: this was provided by a recent stufi®3] whose
nary fields to branes—meaning systems with support connotation scheme will be followed here.
fined to a lower dimensional world sheet—was recently This paper is set up in the following way. In Sec. Il we
taken up by Cartas-Fuentevilld0,11. (See also an earlier review the generic elastic string model and the limit case of
paper{12] in which the method was used to quantize Nambuthe chiral model, and derive the relevant equations of mo-
strings in three-dimensional Minkowski spac&he neces- tion. Different formulations of the chiral string action are
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discussed in detail in Sec. Il A, and as a result we are able tkeft- (or purely right) moving modes and hence to a null
reinterpret more simply the integrability property of the chi- current. Furthermore, it was recently recognif2d—29 that
ral string. The purpose of Sec. lll is to summarize the basithe chiral string equations of motion are exactly integrable in
steps of the canonical analysis of Witten and others, and thia flat backgroundsee also further comments on this in Sec.
is done in the context of a general worldsheet action densityll A). This has led to a number of analyses of the cosmologi-
In Sec. IV we discuss in which reference system the symeal consequences of chiral cosmic strifig8,30d. The chiral
plectic current will be evaluated; the result for the generalstring can also be thought of as a useful approximation for
elastic string is given in Sec. V and for the chiral string in the treatment of nearby solutions of the less tractable generic
Sec. VI. Finally, this paper contains an appendix in which weelastic class.
use Dirac’s Hamiltonian method for constrained systems in As in the simple Nambu-Goto case € 0), the full set of
order to write the chiral string action in a linearized dynamical equations for the generic elastic case is given by
Polyakov-like form. the local surface energy-momentum conservation equation,
which takes the standard form
Il. ELASTIC AND CHIRAL STRING MODELS

. . . V,T#=0. (5)
The string models we consider are governed by an action

integral of the form Here the surface covariant differentiation opera%is de-

fined in terms of the fundamental tenspt” by
7= | Uyes @ _ A,
Vo=m,V,,  p*'=yIxEXY, (6)
over a supporting worldsheet with internal coordinates
(i=0,1) and induced metrig; =g,,x“xj, in a background
with coordinatesx* (x=0,1,...d) (d=2) and (flat or

and the surface stress-momentum-energy density is defined

curved spacetime metrig,,, . In the Nambu-Goto case, the AL v]¥?)
scalar Lagrangian action densityis just a constant. For the THY =2y Yoere——. (7)
more general categofy23] of elastic string models consid- 99w

ered herel depends on the magnitude of the gradient of
freely variable phase field. More explicitly, the equation of
state isL{w} where

aThe motion of the worldsheet is governed by the orthogo-
nally projected part of Eq5), which takes the form

- g p—
w=y?ylo e, 2 THKL=0, ®)
whereK ,,” is the second fundamental tensor as defirie

with ¢ a normalization parameter with fixed value given by by

=K. ()] _
Ku=nV,mb . 9
The constantk, may be fixed according to convenience
without loss of generality of the model: the standard conven- For the Nambu-Goto string#” is simply proportional to
tion [23], however, is to choos&, such that the derived the first fundamental tensof*”, and the extrinsic evolution

guantity K defined by equation(9) by itself constitutes the complete set of dynami-
cal equations. However, in the general case, the surface
_1 dL stress-energy tensor will have the slightly more complicated
dw orm
tends to unity in the null limiw—0 [see Eq(17) and Sec. TH'=Lg*"+ Kckc?, (10
A7

For any such elastic string action there is a correspondingivolving a surface currert* given by
chiral string action which is obtained by relaxing the condi-
tion that ¢ is fixed and letting it instead be a freely varying c#:fWF
auxiliary field. On application of the variation principle, it K
follows that the on-shell configurations satisfy the same dy-
namical equations as in the corresponding elastic model, aNow the full set of dynamical equations is given by the
though there is now the further constraint that 0. It can  extrinsic evolution equatior8), together with the surface
be verified that this null constraint is consistent with thecurrent conservation law

dynamical equations: fv=0 at an initial time, it will auto-

v
Exffy” @ (11

matically be preserved by the evolution of the system. V,c#=0. (12
This chiral string is of interedt24] since in a number of
different and cosmologically relevant cage$,2q Witten's For a generic state of an elastic string model, the first

fermionic zero mode mechanism indeed gives rise to pureljundamental tensor and the worldsheet stress energy tensor
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will be given[19] in terms of a preferred orthonormal pair (For a Nambu-Goto stringe= 1, while ¢, has no analogug.
of, respectively, timelike and spacelike unit worldsheet tan-Subject to the usual presumption that the mass density can
gent vectorau# andu* by never be negative, it follows that in the case of a stijag
opposed to a fluidit is not the pressure but the tensidithat
= —ufu’+ TR0 (13)  has to be positive.
In the chiral case the formil4) will no longer be valid,
and but Egs.(10) and (11) still apply, although they must be
supplemented by the constraint=0, which means that the
Tev=Uuru’— TUATY, (14) currentc* is null. In this null current limit, the Lagrangidn
tends to a fixed value specified by the relevant Kibble mass
scalem, say, and for the standard choicef in Eq. (3) the

in which U andT are, respectively, interpretable as the local . . . L
ﬂuantltyIC tends to unity according to the specifications

rest frame energy density and the tension of the string. Whe
w is negativepu* will be aligned with the current, which will ) —

be expressible in the forro*= s~ 1vu*, wherev is a con- Li0} m’, K{0p=1 an
served number density, and we shall be able to make thgee Sec. Il A Thus in the chiral case the stress-energy ten-
identificationsT=—L, U=T—wK ! so that the effective sor will take the form

mass(or chemical potentialdefined byu=dU/dv will be

given directly byu?=—y¢ ;¢ ;. On the other hand, when THY= —m2p*"+ckc?, (18

w is positive, it isT* that will be aligned with the current, ) _ -

which will then be given byc#= ¢~ 1uT*, and we shall be Subject to the nullity condition

able to make the identificatidd=—L, T=U—wkK 1, for a

Mo =
winding number density v=—dT/du given by v? ¢’c,=0, (19
=7eie,- o o where the current is given simply by
In so far as its internal dynamics is concerned, such an
elastic string is the one-dimensional analogue of an ordinary Ch=yVHe= Yxhyle ;. (20)

barotropic perfect fluid, whose mass densitys specified

just as a function of a conserved number density equiva-  Recall that, whereag is held constant in the analogous for-
lently of the corresponding pressu=uv—p, with «  mula(11) for the elastic case, it may vary in E@O) for the
=dp/dv, by an “equation of state” function which provides chiral case. However, the on-shell variations ipfare se-
the corresponding sound velocity by the well-known differ- verely restricted since on a two-dimensional worldsheet the
ential formulacfzdP/dp. In the elastic string casd plays  nullity condition(19) (i.e.,w=0) automatically imposes that
the role ofp, while the tensiorT plays the role of- P, sothe the phase field must satisfy the harmonicity condition
speedc, say (relative to the preferred rest fragnef longi- -

tudinal “woggle” (sound typé perturbations will be given (Y2 ¢ ) ;=0. (21)

19,31 b . . .
[ 1 by It can thus be seen from the internal coordinate version of the

current conservation laWl2), namely,

(™27 g ) j=0, (22)
whose right-hand side must be positite avoid local insta-
bility) and less than unityto avoid causality violationfor that the auxiliary fieldyy must satisfy the dynamical evolu-
any physically admissible “equation of state.” However, the tion condition
kind of “equation of state” that is physically admissible for i
an elastic string is qualitatively different from that of an Y ei;=0, (23

ordinary—positive pressure—perfect fluid, as exemplifiedby . . . . .
the polytropic case defined for a fixed ind&%1 by P which implies thatiy will be restricted on shell to be a func-

c2=—dT/dU, (15)

=kv! with a positive value of the constant coefficiest tion of just ¢.

This givesp=P/W+mv, where the reduced polytropic in- _ _ _ _

dex is given byw=T—1, and the mass parameteris a A. Different actions for the chiral string model
constant of integratiortwhich may be neglected in the ul- Whereas different equations of state fdw} give quali-

trarelativistic limit that is relevant in the usual cosmological tatively different elastic string models, the chiral model on
applicationg. The reason why such a polytropic ansatz isthe other hand isinique (just as in the Nambu-Goto case
inapplicable is that, in order to be admissible, a string “equamodulo the choice of the fixed mass scaleThus there is no
tion of state” must provide stability not just with respect to |oss of generality in taking the chiral string equation of state
longitudinal perturbations but also with respect to transversgp have the simple linear form originally proposed by Witten
“wiggle” type perturbations, whose propagation veloctty  [20], namely,

is given[19,3]] by

1
2 _
c2=TIU. (16) L m 5 w=K=1. (24
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However, it is instructive to consider the many different al- sible for the action coming from Ed24): in the Appendix
lowed alternatives which may, for instance, make the intewe demonstrate this using Dirac’s Hamiltonian formalism for
grability property of the chiral string mentioned above moreconstrained systen|85,36 and also discuss the algebra of
transparent. Indeed, one can see that the equations of motiaonstraints. As expected, the result for the Polyakov action is
(19 and(22) as well as the stress-energy ten&t®) for the

chiral string can be obtained from any action of the form I _mzf A20]| o 21+ wim?) V2 (32)

L:—m2—1w+a W2+ agwi+- - (25)
2 2 3 ! 2

m? 2 1241i] d
=—7J d?a]h[|**h| g ,,dixH3;x" + —2diedie|,
where thea, (n=2,3,...) are arbitrary numerical constants. 33

These additional terms do not contribute on shell since in the
equations of motion they lead to terms proportionaho * \yhere bl is now an auxilliary metric fieldagain see the

which vanish in the chiral limiw=0. Off shell, however, ~ aApnendiy. Note that this Polyakov action is reparametriza-
they are important. As we now explain, a particularly usefulijon and scale invariant so that coordinates can be chosen

version of this action for many reasons is the nonlinear fombuch thath,; = 7;; wherez; is the Minkowski metric. As for
] ij i .

L= —m2(1+ 212y jo— (14 20 1/2 > the Nambu §tring[37], _this. could be a gtarting point to dis-
m(L+w/m) K= (L+wim*™ (26) cuss a possible quantization of the chiral striB§].
which may be described as the “square root” action.
First consider the actio(26) for arbitrary(generally non-  1ll. GENERAL CANONICAL SYMPLECTIC STRUCTURE
zerg w. From the corresponding stress-energy tensor it fol-

lows that the energy density and tensiorT satisfy Our aim is to subject the elastic and chiral string models

to a canonical analysis of the kind described in the earlier
UT=const. (27) article [1]. However, before doing so, we summarize in this
section the main features of the canonical analysis. The fol-
Hence the two sound speedsandc, defined for the action lowing discussion is general and is not restricted to a particu-
(26) by Egs.(15) and(16) will be equal, lar string model.
Consider the general case of a worldsheet action density
CL: CE . (28)
_ . : . L=[7lI*L, (34)
This characterizes the transonic elastic string model that was
already known to be integrable for amy[32]. Thus, tuming  jn which the Lagrangian density depends on a set of field
now to the chiral case, once one has realized the equwalen%mponemqu and on their surface derivatives’ = d,q"
of actions(24) and (26), it comes as no surprise that the _ 54A/5, where thes' are the worldsheet coordinates. In
chiral action is also integrablgas was first proved in Ref. s giscussion we do not restrict the worldsheet dimension
[27] though on the basis of the action in the fo(@4)]. to 2, so that the formalism presented here will be applicable

A second feature of the action corresponding to the Lay jyst to strings but also to higher dimensional branes. The
grangian given in Eq(26) is that it can be viewed as a fig|q variablesq® can be of internal or external kind, the

Kaluza-Klein projection of a Nambu-Goto action in a space-nost obvious example of the latter kind being the back-
time of one higher dimensiof83,34. Indeed, ground coordinates* themselves[In the case of the elastic
string g*= (x*,¢).]
I= —mzj d?o| v Y31+ w/m?) 2= —mZJ d?a|T|| Y2, Subject to the understanding that the internal coordinates
are held fixed,

(29)
whereT’;; is now the projection of thed+ 2)-dimensional S0'=0, (39
metric . . -
the generic action variation
g/.w 0 .
GAB=< 0 ¢2/m2) (30 SL=LA89 "+ PpSa’; (36)

specifies a set of partial derivative componefjs and an

with the brane embedding given b
99 y associated set of generalized momentum componghts

x“(a) which can be used to construct a corresponding pseudo-
qt= i | (31)  Hamiltonian scalar density
e(a')
SO thatF,J B aiqA&quGAB . ﬂ: pkqﬁ—ﬁ (37)

Finally, it is interesting to observe that the action coming
from Eq. (26) can be put into a Polyakov-like form—that is, [The covariance of such a pseudo-Hamiltonian distinguishes
a form which depends linearly op;—but this is not pos- it from the ordinary kind of Hamiltonian, which depends on
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the introduction of some preferred time foliation, as, for in-the symplectic two-form will be interpretable as a conserved

stance, in the Appendix of this article, E@8).] worldsheet current in the sense that it will satisfy
According to the variational principle, the dynamically :
admissible “on-shell” configurations are those characterized w ;=0. (45)

by the vanishing of the Eulerian derivative given by
We now follow the strategy of13] and (as far as pos-

S _ sible) work with quantities that are purely tensorial with re-

ﬁzﬁxx— Pai - (38)  spect to the background space. Hence we translate the sur-
face current densities, whose componeditsindw' depend

For an on-shell configuration, i.e., when the dynamical equa" the choice of the internal coordinaie into correspond-

tions ing quantities which have stricly vectorial background coor-
dinate components. These are given by

SL oy i P
Fra (39 O =[lyI" V%9, Qr=[ly|T Ve (46)
The divergence law41l) is now rewritten in terms of the

are satisfied, the pseudo-Hamiltonian variation will take th%/ectorial version of the Liouville form as

form
- o V,0 "= 7 2s(L|¥). (47
SH=0" 6P~ Phi 00", (40)
Similarly the conservation lay44) simply becomes
Thus the Lagrangian variation can be written as a pure sur-
face divergence ?VQV:O_ (48)

SL=1", (41)
' IV. COMOVING REFERENCE SYSTEM FOR THE SIMPLY

where ' is the generalized Liouville one-forifon the con- ELASTIC CASE

figuration space cotangent bundtéefined by We now apply the previous formalism to the elastic string
o for which g*=(x*,¢) and pA=(p*,m) where p
9'=paoq”™. 42 =sc15%m, =51 5. '

. . L The meaning of the conventigi85) that the local varia-
Equation(41) shows that the Liouville one-form is interpret- 5 5 should be evaluated at a fixed value of the internal

able as a surface current that will be conseriadhe sense  ordinatesr' depends on how these coordinates are chosen.
of having vanishing surface divergengerovidedit is con- o explicit solutions of the field equations it may be most
structed from a perturbation that generates a local symmetty,nyenient to choose coordinates that are constant along
of the Lagrangian density, i.e., such thif=0. In the gen-  characteristics—as discussed in Sec. Il A, this is particularly
eral case it is not conserved. __true in the transonic case for which the extrinsic and intrinsic
We can go on to construct a surface current that will al-characteristics coincide. However, in the generic elastic case,

ways be conserved when the relevant dynamical equationge most convenient option is to take the internal coordinates
are satisfied. This is done by taking the exterior differentiaky e comoving with respect to the intrinsic material struc-

of the Liouville form, i.e., by evaluating the commutator of @ yre. For a generip-brane this is specified in terms of a set
pair of successive independent variations, in the manner dey , independent scalar fields; for an ordinary perfect fluid or
scribed in detail in the previous articld]. This exterior  mqre general elastic solid in four-dimensional spacetime one
variation procedure provides us with a clossthce mani-  pagsp=3: while in the elastic string case we are concerned
festly exact symplectic two-form expressible as with here one simply hap=1 with the field in question
being the phase scalar Assuming the absence of singulari-
ties where the phase gradient is not just null but actually
vanishes, there will be no loss of generality in postulating
that the internal coordinates are comoving with respect.to
1n other words, we postulate that there is a vanishing varia-
tion, 6¢=0, and hence also vanishing gradient variation,
“5¢ =0, with respect to these coordinates.

Subject to the choice of such a comoving internal refer-

w' =609 = sp,06g", (43)

where we have used the wedge symbbto indicate anti-
symmetrization with respect to the two independent varia
tions involved.(Many authors prefer to use an extreme kind
of abbreviation scheme in which the wedge symbol is omit
ted, but—as discussed [d]—the use of such ultraconcise

nottgtlon can II?ad to (E[_onfusmr; n ct:.asrﬁs' mvolvmg Sym.rpe""ence system, the only remaining independent field variables
zation as well as antisymmetrizatiorit is easy to verify in the elastic string model are the background coordinates

that, whenever bpth perturbations satisfy the relevant P so the generic variatio(86) will take the specific form
turbed field equations

SL\
5( W) =0, (44)

SL=L,&"+p, e, (49)
using the notation
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EF= SxH (50) V. EVALUATION OF THE SYMPLECTIC CURRENT

In order to evaluate the symplectic current a little more
Xwork is required. To start witlas in the earlier work1)), it
is convenient to go over from parallel variations to the cor-
responding Lagrangian variations using the relations

for the relevant displacement vector. The corresponding e
pression for the Liouville form{42) is given by

¥=p, &, (51)
N
while the symplectic two-forn{43) is given by the expres- orXimXe (©0
sion
and
= 5-p TDex, 52 v v v v
w'=orp,'0é (52) Sr T, =8, T, "+ T, "V, —T PV, &". (61)

Here the parallel variatiomrpMi is given in terms of the

simple momentum variatiop,' by The vectorial version(47) of the symplectic current is

thereby obtained in the form
i— i v i¢p .
51“p,4 5p,u F,u ppv é ’ (53) Qv:||y||71/2X36FpMID§#’ (62)

wherel’ ,”,, are the Riemannian connection components. InWith
view of the symmetry of the latter it actually makes no dif-
ference whethebrp,' or p,,' is used in Eq(53), but use of

L . . —-1/2,,v i v v v
the parallel variation is more convenient for our next step, Iy~ x5 6rp,t = 6T, = T,"V, 7+ T,"V, €. (63)
which is the evaluation of the corresponding background ten- _ o . _
sorial formulas. The advantage of Lagrangian variations is their conve-

Since the background coordinate displacement will affecfience in relating the relevant intrinsic physical quantities

the Lagrangian only via the change of the induced metric, th¥ia the appropriate equations of state. Following the example
resulting variation will be given simply by of Friedman and Schu{89] in the context of ordinary rela-

tivistic fluid dynamics, we use the second order derivative of
1 the action with respect to the background metric to obtain the
SL= §|| M2 TS g, (54  hyper Cauchy tensdgeneralized elasticity tengaaccording
to the prescription

whereT#” is the surface stress-energy tensor defined in Eq. A(TH 472

(7), and 6,9, is the Lagrangian variation of the metric, pro:”ynfllz—ychow_ (64)
meaning the change with respect to a coordinate system that 99p0

is comoving with respect to the displacement. In the absence

of any Eulerian variatiofmeaning that the spacetime back- The Lagrangian variation of the surface stress-energy tensor
ground is held fixefthe Lagrangian variation is just given Will thus be obtained in the form

by the corresponding Lie derivative:

1
2 S THY=| CHIPT— STH P71 5, 0,0 (65)
8L9,=E£0,,=2V,.&, . (55) - 2 £Se

Comparing Eq.(54) with the canonical variation formula The symplectic current can thereby be expressed in purely
(49), the partial derivatives involved can be read out as  tensorial form as

Lo=lAY ", T (56) 0'=(2C,", V£ + TV, &,) 0", (66)
and Using the explicit expressiofil0) for the surface stress-
_ B energy tensor in a generic elastic string model, the corre-
p,= ||y||1’2TM,,17”x3 : (570  sponding expression for the required hyper Cauchy tensor is

obtainable from the definitiof64) in the form
It is thus immediately apparent that the pseudo-Hamiltonian
density(37) will be given by 1 K
CHYPI= | 5 P — 77M(p 7]0)1/ 4 E(n#vcpca_,_ nPochc?
A~V H=T,"~L, (58) ik
. . . — 4c# ) PgO)) 4 K2— cHcPcPcl. 6
and that the vectorial versio@®6) of the Liouville current K ) dw (67)
will be given simply by
Recall that the explicit meaning of the concise wedge prod-
O"=T,"&" (59 uct notation used in Ed66) is that for a pair of independent
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(e.g., virtua! and reaxldisplacement figldg“ qnd &* say, the Q'=(c,c,n"+ 21—[0771/] —Tve | Mp)gyﬂgggp, (71)
corresponding symplectic current will be given by wte
Q¢ &=¢m(2C," oV TV ) in which the chiral stress energy tensor is given by @§).
’ mp Yo pSp
—{M(2C," VTPV E,). (68) VIl. CONCLUSION

Our aim in this paper was first and foremost to calculate
the symplectic current central to the covariant canonical
As remarked above, the only way in which the off-shell analysis of Witten and othef2-9] for generic elastic and
action for the chiral model differs from that of the generic chiral string models. The purpose of this analysis was as a
elastic case in versiof6) of the Liouville current is that ~precursor to a covariant quantization. However, the symplec-
instead of being held constant the auxiliary figlds treated tic current also provides potentially useful conservation laws
as a free variable. However, as its gradient is not involved irfor perturbations in a purely classical context, the most ob-
the action, this extra variable will not give rise to any corre-vious example being provided when the background space-

sponding momentum contribution, so the formulas of the twdime has a continuous symmetry generated by a soliktfon
preceding sections will remain valid for the chiral model assay, of the Killing equatiorV,k,,=0. Since such a Killing
characterized on shell by the current nullity conditid®  vector obviously displaces solutions into solutions, and thus
and the corresponding restrictiofisy). trivially satisfies the relevant perturbed field equatiofd),

It was remarked that, for a given value of the overallit can be substituted in place ¢f in Eqg. (68), so that for any
normalization as fixed by the mass scalgthe same unique other(nontrivial) solutioné* of the perturbed field equations
chiral model with the same on-shell stress-energy tei®r it can be seen that we shall obtain a corresponding conserved
is obtained independently of the equation of state. Noticegurrent given by
however, that due to the presence of the final term propor-
tional to dXC/dw, the formula(67) for the hyper Cauchy Q{k,g}yzgﬂ-l—u,ﬁpk“_k#(zcﬂypagvgmrppvpgﬂ).

VI. THE CHIRAL CASE

tensor gives a result thdbesdepend on the choice of equa- (72)
tion of state even in the chiral limit for whictv=0 and/C
=1. The simplest possibility is provided by the cho[&Y] Our work is based on the concise and efficient covariant

of Witten's simple linear equation of sta(@4), which gives  5a1ysis developed if.3-15, rather than the more cumber-
dC/dw=0, so that the final term in Ed67) will drop out  gome frame-dependent methods which have been used by
altogether. However, for other choices such as the more Us@iners in the case of the simpler Nambu-Goto string. Our
ful one (26) discussed in Sec. I, there will be an extra term ey ts are presented in Secs. V and VI for elastic and chiral
proportional toc¥c”c’c” with an arbitrary proportionality  gyings, respectively. In the process, in Sec. Il A and the Ap-
constant. Although it is uniquely defined on shell, the reasomengix, we also studied with care the different formulations
the chiral model does not provide a unique specification Oy the chiral string model. We showed the equivalence of the
the on-shell hyper Cauchy tensor is that the range of variayjitten action(used in most studies to dagavith the square

tion in the relevant partial derivative formulés) is re- 1ot action(26) and in this way we were able to understand

stricted by the requirement that, in order to preserve the nuly, 5 gifferent way the integrability properties of the chiral
lity condition (19), the allowable displacements must be SUChstring.

as to ensure that the Lagrangian metric variation satisfies the

on-shell chiral variation condition
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However, for this same reason, the final term in &) will sions on the quantization of chiral strings and the Appendix
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sponding symplectic tensor, whose value for the chiral modeMixte de Recherche du CNR&MR 8627).

will thus be given unambiguously by substitution in E66)

of the expression obtained from the linear actiy), APPENDIX

namely,
In this appendix we demonstrate how the Polyakov action

(33) can be obtained from the original square root acts)
using Dirac’s Hamiltonian formalism for constrained sys-
tems[35,36. The bulk of this appendix is valid for arbitrary

w and hence for general elastic string models: the special
chiral limit w=0 will be discussed after E488) where the
Poisson algebra of constraints—including the chiral one—is
In terms of the orthogonal projectar,=g%— #/, it can be  studied.(For a different approach to constrained supercon-
seen that this leads to an expression giving the conserveatlicting membranes, s¢40].)

symplectic current for the chiral string model in the form Our starting point is the actio(26)

CHVPT=m? nM(P ,70)1/_ > Y P

1
+ 5 (ere+ P oete — Actpe?). (70)
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straints arise from imposing that the primary constraints
I:J d?o L= _mzf d?o]y|YA1+w/m?)*2 (A1) should be preserved under time evoluti@s]. Here, given
that #.=0 and that the Poisson brackets of thg , are
in an arbitrary background metrg;, , and brane embedding closed[see Egs(A13)—(A15) belowl, it follows that there
x*. Let the two worldsheet coordinates be denoted byare no secondary constraints. Hence the “total” Hamiltonian
o®D=(7,0) with rtimelike, and let a prime indicat® and  density[35,36 which determines the dynamics of the system
an overdot dg. The canonical momentum densiti% is simply a linear combination of the primary constraints,
= 8L 8x*, w=SL18p, andp,= 8L/ 5¢=0 are given by

A A
mé : HEHt g ot =g Hat e, (A9)

PL=—| (X-X)x, —x'?k +£2(X’<'P<P’_5( <P'2)}
kL # Kome e a ’ where . and\ are dimensionless Lagrange multipliers. We
(A2)  now briefly turn away from the phase space approach to

) calculate thgPolyakoy Lagrangian

m . . ’ ’
m= =P [X 2= (- x)e'], (A3) Lp=X,p+pm—H (A10)

corresponding to Eq(A9). From the equation of motion
X, (7,0")=[do{x,(7,0"),H(7,0)} (with a similar one for
o) it follows that pM=(m2/)\)(XM—,ux}’L), and similarly
=—(°I\)(ue' — ). These enable all the momenta to be
eliminated from£Lp of Eq. (A10), and one finds in the par-
ticular case of the square root action

and the phase space of the systenixs,¢,p,,}. It fol-
lows directly from these definitions qf,, and 7 that there
are two primary constraints independent’ofand ¢. One
[see Eq(A7) below] is straightforward to deduce. In order to
find the other, it is easiest to express bpthand 72 in terms
of w=y?yl¢ ¢ ; defined in Eq(2), leading to

w 1 I=J d’c L
_Eé[p2+lﬁ2€0'2m2]zx’2+W[P2+2¢2€0'2m2], P
(A4) m? , LY
:_7 d20_||h||1/2hlj g,uvaixluajx +Wai()0&j@ y
2
T
x’?lzszrm7 =yte'2— 72 (A5) (A11)

o ] ) _Where the components bf; are simply expressible in terms
Eliminating w between these equations gives the other priof \ and u:

mary constraint, so that the two constraints are

2
22 V=RRO= - = (=hRR=S (—hbte -

—n2 412 1202 12 N A
Hi=p“+ 7 +m*x' “+meyp’ =0, (AB) (A12)

_ , , This is the result given in Eq(33). Note that the action
= M =
Ho=p, X HHme"=0. (A7) (A11) has reparametrization and Weyl scale invariance gen-

The Nambu-Goto limit is obtained whep—0 (note that €rated by the two primary constrairits, ,, and reflected in

72~ ) in which case these expressions reduce to the stafthe two free para_metehsand,u,. For instance, an appropriate

dard constraint§36] for the bosonic string. choice of coordinates can séf;=; where 7; is the
Had we started instead from the linear Witten actigs) ~ Minkowski metric[or more simply one can choose=1 and

and calculated the new momenta, it would have followed=0 i Ed.(A12)]. As for the Nambu string37], this is an

that the second constraifA7) still holds. On the other hand, @PPropriate starting point with which to quantize the chiral

a constraint of the first form linking? and#2 can no longer ~ Stfing [38]. _ _ .

be obtained: although one can still exprggsas a function As noted above, this result is a special property of the

of win a manner analogous to E@4), there is no analogue Sduare root action. For example, m_the case of 'Fhe linear

of Eq. (A5) for the linear Witten action. Indeedr? now (Witten) action, Eqg.(24), only the primary constraint{,

depends ori andx* in a combination that can no longer be exists so that the “full” Hamiltonian would now contain a
expressed solely in terms of single termH = uH,. Following a similar procedure to that

Going back to the square root action, it follows from the 2P0Ve shows that one would no longer be able to eliminate
above expressions that the canonical Hamiltonian densit)!® Mmomenta in order to calculate the corresponding La-
vanishes: grangian(The equations of motion do not give equations for

p, and but rather the equalities,= ux; andp=pue'.) _
He=mop+X,p*~L=0. (A8) We now make a comment about the algebra of constraints
for the square root action. As for the Nambu strj86] (and
As explained by Dira¢35,3€], this Hamiltonian is ambigu- also as previously notedit follows from the equations of
ous since one is free to add arbitrary multiples of the vanishmotion that generator${, and H, form a closed algebra
ing primary and secondary constraints. These secondary cofie., they are first class constraints

w
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J for initially arbitrary « and 8. Recall, howeve(Sec. I)), that
{Ha(0), Ha(o" )} Hy — 60— o), (A13)  the null constraintw=0 is consistent with the dynamical
equations, being conserved under time evolution. At the level
9 of constraints, we demand that the chiral constréhty
{Hl(o),Hz((r’)}ocHl&— S(o—a'), (A14) should also be conserved under time evolution—in other
7 words, that it does not lead to a secondary constraint.
g Equivalently, this imposes that the Poisson bracketg{gf
{Ho(0), Ho(o" )y Ho— (o —0"). (A15)  with the other two constraint®,, H, should be closed. In
do turn one can show that this is true only far=1/2 andg

= — -+ i i
Is it also consistent to impose the chiral constraint at the a(1+v2), in which case

algebraic level? As noted in Sec. Il, the chiral constraint
dLldy=0 imposes the nullity condition

Jd
w=0, (A16) {H3(0), Hi(o )}O<H2£ So—da'), (A18)

which we would like to express on the same footing as the
primary constraint$A6) and (A7)—that is, in terms of mo-

J
menta only. Let this constraint be denotedMgy. From Egs. {Hs(0), Hz(0" )} Ham— (o — o), (A19)
(A4) and (A5), if therefore follows that do

2
ko
HgEa[m4X,2+p2+ 2¢2(p/2m2]+ ¢2m2ﬂ[¢12_ F =

d
AL {Ha(0) Hal0 My (o—0').  (A20)
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