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This article is based on the covariant canonical formalism and corresponding symplectic structure on phase
space developed by Witten, Zuckerman, and others in the context of field theory. After recalling the basic
principles of this procedure, we construct the conserved bilinear symplectic current for generic elastic string
models. These models describe current carrying cosmic strings evolving in an arbitrary curved background
spacetime. Particular attention is paid to the special case of the chiral string for which the worldsheet current
is null. Different formulations of the chiral string action are discussed in detail, and as a result the integrability
property of the chiral string is clarified.
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I. INTRODUCTION

Following a preliminary study@1# whose application was
restricted to nonconducting Nambu-Goto strings, in this
ticle we focus on conducting cosmic string models in ar
trary curved spacetimes, and in this context discuss the
eral principles of the covariant canonical variational analy
As emphasised by Witten, Zuckerman, and others@2–9# in
the context of relativistic field theories including gravity, th
potential utility of this covariant analysis is as a starti
point for covariant quantization.

The analysis culminates in the construction of a cor
sponding symplectic structure which is locally representa
as a current. This symplectic current—which should not
confused with the worldsheet current of the conduct
string—is defined as an antisymmetric bilinear functional
a pair of independent perturbations, and it is conser
whenever both perturbations are on shell~in the sense of
satisfying the relevant dynamical field equations!. The Pois-
son brackets on classical phase space~the space of solutions
of the classical equations of motion! are then expressed in
manifestly covariant form in terms of the symplectic stru
ture @3,5#, and as usual one quantizes by replacing the P
son brackets with commutators.

Despite this, we stress that our aim is not to quant
Rather, we carry out the first and already rather complica
step in this direction by simply calculating the symplec
current for conducting cosmic string models. As such, t
will not give us any further insights into the evolution o
current carrying strings in curved spacetimes nor of th
quantization. However, in the process we will be able
formulate the relevant string actions in a rather more con
nient form which may aid further analysis.

The task of extending the covariant analysis from or
nary fields to branes—meaning systems with support c
fined to a lower dimensional world sheet—was recen
taken up by Cartas-Fuentevilla@10,11#. ~See also an earlie
paper@12# in which the method was used to quantize Nam
strings in three-dimensional Minkowski space.! The neces-
0556-2821/2004/69~12!/125002~9!/$22.50 69 1250
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sary analysis is facilitated by the relatively new developm
@13–15# of suitably covariant methods of geometrical ana
sis, which have already been shown to be far more effic
than the more cumbersome~and error-prone! frame-
dependent methods used in earlier work for treating ot
problems, such as the divergences arising from s
interaction@16–18#.

The earlier article@1# demonstrates the agreement of t
canonical approach, as developed by Cartas-Fuente
@10,11#, with the result of an earlier and rather different a
proach@13# to the construction of the symplectic surface cu
rent. Both these analyses focused on strings with no inte
physical structure on the worldsheet, that is, on actions of
simple Dirac-Nambu-Goto type which are proportional to t
worldsheet surface measure.

The present work deals with the more general case
elastic string models of the kind@19# appropriate for macro-
scopic applications, such as the strings used for musica
struments since the time of Pythagoras, and in particular
the macroscopic description of the effect in cosmic strings
mechanisms of the various~fermionic and bosonic supercon
ducting! kinds originally proposed by Witten@20#. The ear-
liest work on the consequences of the Witten mechan
emphasized effects due to electromagnetic coupling, bu
was recognized by Davis and Shellard@21# that the most
important consequence would be the formation of vorto
meaning centrifugally supported equilibrium configuratio
of loops in which effects of electromagnetic coupling~if
present at all! are relatively unimportant. While it is also
possible to have noncircular vorton configurations@22#, the
simplest possibility is that of circular configurations. In th
case~provided electromagnetic effects are absent or ne
gible! both the static equilibrium and full dynamical evolu
tion are particularly amenable to an exact mathematical tr
ment: this was provided by a recent study@23# whose
notation scheme will be followed here.

This paper is set up in the following way. In Sec. II w
review the generic elastic string model and the limit case
the chiral model, and derive the relevant equations of m
tion. Different formulations of the chiral string action ar
©2004 The American Physical Society02-1



e
i-
s
th
sit
m
ra
in
w

i
d

tio

e

-
f

by

e
en

in
i-
g
it
dy
, a

he

re

ll

in
c.
gi-

for
eric

by
ion,

ned

o-

i-
face
ted

e

rst
nsor
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discussed in detail in Sec. II A, and as a result we are abl
reinterpret more simply the integrability property of the ch
ral string. The purpose of Sec. III is to summarize the ba
steps of the canonical analysis of Witten and others, and
is done in the context of a general worldsheet action den
In Sec. IV we discuss in which reference system the sy
plectic current will be evaluated; the result for the gene
elastic string is given in Sec. V and for the chiral string
Sec. VI. Finally, this paper contains an appendix in which
use Dirac’s Hamiltonian method for constrained systems
order to write the chiral string action in a linearize
Polyakov-like form.

II. ELASTIC AND CHIRAL STRING MODELS

The string models we consider are governed by an ac
integral of the form

I5E Ligi1/2d2s ~1!

over a supporting worldsheet with internal coordinatess i

( i 50,1) and induced metricg i j 5gmnx,i
mx, j

n , in a background
with coordinatesxm (m50,1,...,d) (d>2) and ~flat or
curved! spacetime metricgmn . In the Nambu-Goto case, th
scalar Lagrangian action densityL is just a constant. For the
more general category@23# of elastic string models consid
ered here,L depends on the magnitude of the gradient o
freely variable phase fieldw. More explicitly, the equation of
state isL$w% where

w5c2g i j w ,iw , j ~2!

with c a normalization parameter with fixed value given

c25k0 . ~3!

The constantk0 may be fixed according to convenienc
without loss of generality of the model: the standard conv
tion @23#, however, is to choosek0 such that the derived
quantityK defined by

K21522
dL

dw
~4!

tends to unity in the null limitw→0 @see Eq.~17! and Sec.
II A #.

For any such elastic string action there is a correspond
chiral string action which is obtained by relaxing the cond
tion thatc is fixed and letting it instead be a freely varyin
auxiliary field. On application of the variation principle,
follows that the on-shell configurations satisfy the same
namical equations as in the corresponding elastic model
though there is now the further constraint thatw50. It can
be verified that this null constraint is consistent with t
dynamical equations: ifw50 at an initial time, it will auto-
matically be preserved by the evolution of the system.

This chiral string is of interest@24# since in a number of
different and cosmologically relevant cases@25,26# Witten’s
fermionic zero mode mechanism indeed gives rise to pu
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left- ~or purely right-! moving modes and hence to a nu
current. Furthermore, it was recently recognized@27–29# that
the chiral string equations of motion are exactly integrable
a flat background~see also further comments on this in Se
II A !. This has led to a number of analyses of the cosmolo
cal consequences of chiral cosmic strings@28,30#. The chiral
string can also be thought of as a useful approximation
the treatment of nearby solutions of the less tractable gen
elastic class.

As in the simple Nambu-Goto case (w50), the full set of
dynamical equations for the generic elastic case is given
the local surface energy-momentum conservation equat
which takes the standard form

¹̄mTmn50. ~5!

Here the surface covariant differentiation operator¹̄ is de-
fined in terms of the fundamental tensorhmn by

¹̄m5hm
n ¹n , hmn5g i j x,i

mx, j
n , ~6!

and the surface stress-momentum-energy density is defi
by

Tmn52igi21/2
]~Ligi1/2!

]gmn
. ~7!

The motion of the worldsheet is governed by the orthog
nally projected part of Eq.~5!, which takes the form

TmnKmn
r50, ~8!

whereKmn
r is the second fundamental tensor as defined@19#

by

Kmn
r5hn

s¹̄mhs
r . ~9!

For the Nambu-Goto stringTmn is simply proportional to
the first fundamental tensorhmn, and the extrinsic evolution
equation~9! by itself constitutes the complete set of dynam
cal equations. However, in the general case, the sur
stress-energy tensor will have the slightly more complica
form

Tmn5Lhmn1Kcmcn, ~10!

involving a surface currentcm given by

cm5
c

K ¹̄mw5
c

K x,i
mg i j w , j . ~11!

Now the full set of dynamical equations is given by th
extrinsic evolution equation~8!, together with the surface
current conservation law

¹̄mcm50. ~12!

For a generic state of an elastic string model, the fi
fundamental tensor and the worldsheet stress energy te
2-2
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will be given @19# in terms of a preferred orthonormal pa
of, respectively, timelike and spacelike unit worldsheet t
gent vectorsum and ūm by

hmn52umun1ũmũn ~13!

and

Tmn5Uumun2Tũmũn, ~14!

in which U andT are, respectively, interpretable as the loc
rest frame energy density and the tension of the string. W
w is negative,um will be aligned with the current, which will
be expressible in the formcm5c21num, wheren is a con-
served number density, and we shall be able to make
identificationsT52L, U5T2wK21 so that the effective
mass~or chemical potential! defined bym5dU/dn will be
given directly bym252g i j w ,iw , j . On the other hand, whe
w is positive, it isũm that will be aligned with the current
which will then be given bycm5c21mũm, and we shall be
able to make the identificationU52L, T5U2wK21, for a
winding number density n52dT/dm given by n2

5g i j w ,iw , j .
In so far as its internal dynamics is concerned, such

elastic string is the one-dimensional analogue of an ordin
barotropic perfect fluid, whose mass densityr is specified
just as a function of a conserved number densityn or equiva-
lently of the corresponding pressureP5mn2r, with m
5dr/dn, by an ‘‘equation of state’’ function which provide
the corresponding sound velocity by the well-known diffe
ential formulacL

25dP/dr. In the elastic string caseU plays
the role ofr, while the tensionT plays the role of2P, so the
speedcL say ~relative to the preferred rest frame! of longi-
tudinal ‘‘woggle’’ ~sound type! perturbations will be given
@19,31# by

cL
252dT/dU, ~15!

whose right-hand side must be positive~to avoid local insta-
bility ! and less than unity~to avoid causality violation! for
any physically admissible ‘‘equation of state.’’ However, t
kind of ‘‘equation of state’’ that is physically admissible fo
an elastic string is qualitatively different from that of a
ordinary—positive pressure—perfect fluid, as exemplified
the polytropic case defined for a fixed indexG>1 by P
5knG with a positive value of the constant coefficientk.
This givesr5P/W1mn, where the reduced polytropic in
dex is given byW5G21, and the mass parameterm is a
constant of integration~which may be neglected in the u
trarelativistic limit that is relevant in the usual cosmologic
applications!. The reason why such a polytropic ansatz
inapplicable is that, in order to be admissible, a string ‘‘eq
tion of state’’ must provide stability not just with respect
longitudinal perturbations but also with respect to transve
‘‘wiggle’’ type perturbations, whose propagation velocitycE
is given @19,31# by

cE
25T/U. ~16!
12500
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~For a Nambu-Goto stringcE51, whilecL has no analogue.!
Subject to the usual presumption that the mass density
never be negative, it follows that in the case of a string~as
opposed to a fluid! it is not the pressure but the tensionT that
has to be positive.

In the chiral case the form~14! will no longer be valid,
but Eqs. ~10! and ~11! still apply, although they must be
supplemented by the constraintw50, which means that the
currentcm is null. In this null current limit, the LagrangianL
tends to a fixed value specified by the relevant Kibble m
scalem, say, and for the standard choice ofk0 in Eq. ~3! the
quantityK tends to unity according to the specifications

L$0%52m2, K$0%51 ~17!

~see Sec. II A!. Thus in the chiral case the stress-energy t
sor will take the form

Tmn52m2hmn1cmcn, ~18!

subject to the nullity condition

cmcm50, ~19!

where the current is given simply by

cm5c¹̄mw5cx,i
mg i j w , j . ~20!

Recall that, whereasc is held constant in the analogous fo
mula ~11! for the elastic case, it may vary in Eq.~20! for the
chiral case. However, the on-shell variations ofc are se-
verely restricted since on a two-dimensional worldsheet
nullity condition~19! ~i.e.,w50) automatically imposes tha
the phase field must satisfy the harmonicity condition

~ igi1/2g i j w ,i ! , j50. ~21!

It can thus be seen from the internal coordinate version of
current conservation law~12!, namely,

~ igi1/2g i j cw ,i ! , j50, ~22!

that the auxiliary fieldc must satisfy the dynamical evolu
tion condition

g i j w ,ic , j50, ~23!

which implies thatc will be restricted on shell to be a func
tion of just w.

A. Different actions for the chiral string model

Whereas different equations of state forL$w% give quali-
tatively different elastic string models, the chiral model
the other hand isunique~just as in the Nambu-Goto case!,
modulo the choice of the fixed mass scalem. Thus there is no
loss of generality in taking the chiral string equation of sta
to have the simple linear form originally proposed by Witt
@20#, namely,

L52m22
1

2
w⇒K51. ~24!
2-3
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However, it is instructive to consider the many different
lowed alternatives which may, for instance, make the in
grability property of the chiral string mentioned above mo
transparent. Indeed, one can see that the equations of m
~19! and~22! as well as the stress-energy tensor~18! for the
chiral string can be obtained from any action of the form

L52m22
1

2
w1a2w21a3w31¯ , ~25!

where thean (n52,3,...) are arbitrary numerical constan
These additional terms do not contribute on shell since in
equations of motion they lead to terms proportional town21

which vanish in the chiral limitw50. Off shell, however,
they are important. As we now explain, a particularly use
version of this action for many reasons is the nonlinear fo

L52m2~11w/m2!1/2⇒K5~11w/m2!1/2, ~26!

which may be described as the ‘‘square root’’ action.
First consider the action~26! for arbitrary~generally non-

zero! w. From the corresponding stress-energy tensor it
lows that the energy densityU and tensionT satisfy

UT5const. ~27!

Hence the two sound speedscE andcL defined for the action
~26! by Eqs.~15! and ~16! will be equal,

cL5cE . ~28!

This characterizes the transonic elastic string model that
already known to be integrable for anyw @32#. Thus, turning
now to the chiral case, once one has realized the equival
of actions ~24! and ~26!, it comes as no surprise that th
chiral action is also integrable@as was first proved in Ref
@27# though on the basis of the action in the form~24!#.

A second feature of the action corresponding to the
grangian given in Eq.~26! is that it can be viewed as
Kaluza-Klein projection of a Nambu-Goto action in a spac
time of one higher dimension@33,34#. Indeed,

I52m2E d2sigi1/2~11w/m2!1/252m2E d2siGi1/2,

~29!

whereG i j is now the projection of the (d12)-dimensional
metric

GAB5S gmn 0

0 c2/m2D ~30!

with the brane embedding given by

qA5S xm~s i !

w~s i ! D , ~31!

so thatG i j 5] iq
A] jq

BGAB .
Finally, it is interesting to observe that the action comi

from Eq. ~26! can be put into a Polyakov-like form—that is
a form which depends linearly ong i j —but this is not pos-
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sible for the action coming from Eq.~24!: in the Appendix
we demonstrate this using Dirac’s Hamiltonian formalism
constrained systems@35,36# and also discuss the algebra
constraints. As expected, the result for the Polyakov actio

I52m2E d2sigi1/2~11w/m2!1/2 ~32!

52
m2

2 E d2sihi1/2hi j S gmn] ix
m] j x

n1
c2

m2 ] iw] jw D ,

~33!

where hi j is now an auxilliary metric field~again see the
Appendix!. Note that this Polyakov action is reparametriz
tion and scale invariant so that coordinates can be cho
such thathi j 5h i j whereh i j is the Minkowski metric. As for
the Nambu string@37#, this could be a starting point to dis
cuss a possible quantization of the chiral string@38#.

III. GENERAL CANONICAL SYMPLECTIC STRUCTURE

Our aim is to subject the elastic and chiral string mod
to a canonical analysis of the kind described in the ear
article @1#. However, before doing so, we summarize in th
section the main features of the canonical analysis. The
lowing discussion is general and is not restricted to a part
lar string model.

Consider the general case of a worldsheet action den

L5ihi1/2L, ~34!

in which the Lagrangian densityL depends on a set of field
componentsqA and on their surface derivativesq,i

A5] iq
A

5]qA/]s i where thes i are the worldsheet coordinates.
this discussion we do not restrict the worldsheet dimens
to 2, so that the formalism presented here will be applica
not just to strings but also to higher dimensional branes. T
field variablesqA can be of internal or external kind, th
most obvious example of the latter kind being the ba
ground coordinatesxm themselves.@In the case of the elastic
string qA5(xm,w).]

Subject to the understanding that the internal coordina
are held fixed,

ds i50, ~35!

the generic action variation

dL5LAdqA1pA
i dq,i

A ~36!

specifies a set of partial derivative componentsLA and an
associated set of generalized momentum componentspA

i ,
which can be used to construct a corresponding pseu
Hamiltonian scalar density

H̃5pA
i q,i

A2L. ~37!

@The covariance of such a pseudo-Hamiltonian distinguis
it from the ordinary kind of Hamiltonian, which depends o
2-4
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the introduction of some preferred time foliation, as, for
stance, in the Appendix of this article, Eq.~A8!.#

According to the variational principle, the dynamical
admissible ‘‘on-shell’’ configurations are those characteriz
by the vanishing of the Eulerian derivative given by

dL
dqA 5LA2pA, i

i . ~38!

For an on-shell configuration, i.e., when the dynamical eq
tions

dL
dqA 50 ~39!

are satisfied, the pseudo-Hamiltonian variation will take
form

dH̃5q,i
AdpA

i 2pA, i
i dqA. ~40!

Thus the Lagrangian variation can be written as a pure
face divergence

dL5q ,i
i , ~41!

whereq i is the generalized Liouville one-form~on the con-
figuration space cotangent bundle! defined by

q i5pA
i dqA. ~42!

Equation~41! shows that the Liouville one-form is interpre
able as a surface current that will be conserved~in the sense
of having vanishing surface divergence! provided it is con-
structed from a perturbation that generates a local symm
of the Lagrangian density, i.e., such thatdL50. In the gen-
eral case it is not conserved.

We can go on to construct a surface current that will
ways be conserved when the relevant dynamical equat
are satisfied. This is done by taking the exterior differen
of the Liouville form, i.e., by evaluating the commutator of
pair of successive independent variations, in the manner
scribed in detail in the previous article@1#. This exterior
variation procedure provides us with a closed~since mani-
festly exact! symplectic two-form expressible as

Ã i5d∧q i5dpA
i ∧dqA, ~43!

where we have used the wedge symbol∧ to indicate anti-
symmetrization with respect to the two independent va
tions involved.~Many authors prefer to use an extreme ki
of abbreviation scheme in which the wedge symbol is om
ted, but—as discussed in@1#—the use of such ultraconcis
notation can lead to confusion in cases involving symme
zation as well as antisymmetrization.! It is easy to verify
that, whenever both perturbations satisfy the relevant
turbed field equations

dS dL
dqAD50, ~44!
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the symplectic two-form will be interpretable as a conserv
worldsheet current in the sense that it will satisfy

Ã ,i
i 50. ~45!

We now follow the strategy of@13# and ~as far as pos-
sible! work with quantities that are purely tensorial with r
spect to the background space. Hence we translate the
face current densities, whose componentsq i andÃ i depend
on the choice of the internal coordinatess i , into correspond-
ing quantities which have stricly vectorial background co
dinate components. These are given by

Qn5igi21/2x,i
n q i , Vn5igi21/2x,i

n Ã i . ~46!

The divergence law~41! is now rewritten in terms of the
vectorial version of the Liouville form as

¹̄nQn5ihi21/2d~Ligi1/2!. ~47!

Similarly the conservation law~44! simply becomes

¹̄nVn50. ~48!

IV. COMOVING REFERENCE SYSTEM FOR THE SIMPLY
ELASTIC CASE

We now apply the previous formalism to the elastic stri
for which qA5(xm,w) and pA5(pm,p) where pm
5dL/d ẋm, p5dL/dẇ.

The meaning of the convention~35! that the local varia-
tion d should be evaluated at a fixed value of the inter
coordinatess i depends on how these coordinates are chos
For explicit solutions of the field equations it may be mo
convenient to choose coordinates that are constant a
characteristics—as discussed in Sec. II A, this is particula
true in the transonic case for which the extrinsic and intrin
characteristics coincide. However, in the generic elastic c
the most convenient option is to take the internal coordina
to be comoving with respect to the intrinsic material stru
ture. For a genericp-brane this is specified in terms of a s
of p independent scalar fields; for an ordinary perfect fluid
more general elastic solid in four-dimensional spacetime
hasp53; while in the elastic string case we are concern
with here one simply hasp51 with the field in question
being the phase scalarw. Assuming the absence of singular
ties where the phase gradient is not just null but actua
vanishes, there will be no loss of generality in postulati
that the internal coordinates are comoving with respect tow.
In other words, we postulate that there is a vanishing va
tion, dw50, and hence also vanishing gradient variatio
dw ,i50, with respect to these coordinates.

Subject to the choice of such a comoving internal ref
ence system, the only remaining independent field variab
in the elastic string model are the background coordina
xm, so the generic variation~36! will take the specific form

dL5Lmjm1pm
ij ,i

m , ~49!

using the notation
2-5
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jm5dxm ~50!

for the relevant displacement vector. The corresponding
pression for the Liouville form~42! is given by

q i5pm
ijm, ~51!

while the symplectic two-form~43! is given by the expres
sion

Ã i5dGpm
i∧jm. ~52!

Here the parallel variationdGpm
i is given in terms of the

simple momentum variationdpm
i by

dGpm
i5dpm

i2Gm
n

rpn
ijr, ~53!

whereGm
n

r are the Riemannian connection components
view of the symmetry of the latter it actually makes no d
ference whetherdGpm

i or dpm
i is used in Eq.~53!, but use of

the parallel variation is more convenient for our next st
which is the evaluation of the corresponding background t
sorial formulas.

Since the background coordinate displacement will aff
the Lagrangian only via the change of the induced metric,
resulting variation will be given simply by

dL5
1

2
ihi1/2TmndL gmn , ~54!

whereTmn is the surface stress-energy tensor defined in
~7!, and dLgmn is the Lagrangian variation of the metric
meaning the change with respect to a coordinate system
is comoving with respect to the displacement. In the abse
of any Eulerian variation~meaning that the spacetime bac
ground is held fixed! the Lagrangian variation is just give
by the corresponding Lie derivative:

dL gmn5jW L– gmn52¹~mjn) . ~55!

Comparing Eq.~54! with the canonical variation formula
~49!, the partial derivatives involved can be read out as

Lm5igi1/2Gm
n

rTn
r ~56!

and

pm
i 5igi1/2Tmnh i j x, j

n . ~57!

It is thus immediately apparent that the pseudo-Hamilton
density~37! will be given by

igi21/2H̃5Tn
n2L, ~58!

and that the vectorial version~46! of the Liouville current
will be given simply by

Qn5Tm
njm. ~59!
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V. EVALUATION OF THE SYMPLECTIC CURRENT

In order to evaluate the symplectic current a little mo
work is required. To start with~as in the earlier work@1#!, it
is convenient to go over from parallel variations to the c
responding Lagrangian variations using the relations

dGx,i
m5x,i

n ¹njm ~60!

and

dGTm
n5dL Tm

n1Tr
n¹mjr2Tm

r¹rjn. ~61!

The vectorial version~47! of the symplectic current is
thereby obtained in the form

Vn5igi21/2x,i
n dGpm

i∧jm, ~62!

with

igi21/2x,i
n dGpm

i5dLTm
n2Tr

n¹mjr1Tm
n¹̄rjr. ~63!

The advantage of Lagrangian variations is their con
nience in relating the relevant intrinsic physical quantit
via the appropriate equations of state. Following the exam
of Friedman and Schutz@39# in the context of ordinary rela-
tivistic fluid dynamics, we use the second order derivative
the action with respect to the background metric to obtain
hyper Cauchy tensor~generalized elasticity tensor! according
to the prescription

Cmnrs5igi21/2
]~Tmnigi1/2!

]grs
5Crsmn. ~64!

The Lagrangian variation of the surface stress-energy te
will thus be obtained in the form

dLTmn5S Cmnrs2
1

2
TmnhrsD dL grs . ~65!

The symplectic current can thereby be expressed in pu
tensorial form as

Vn5~2Cm
n

r
s¹̄sjr1Tnr¹̄rjm!∧jm. ~66!

Using the explicit expression~10! for the surface stress
energy tensor in a generic elastic string model, the co
sponding expression for the required hyper Cauchy tenso
obtainable from the definition~64! in the form

Cmnrs5LS 1

2
hmnhrs2hm~rhs)nD1

K
2

(hmncrcs1hrscmcn

24c~mhn)(rcs))1K2
dK
dw

cmcncrcs. ~67!

Recall that the explicit meaning of the concise wedge pr
uct notation used in Eq.~66! is that for a pair of independen
2-6
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~e.g., virtual and real! displacement fieldszm andjm say, the
corresponding symplectic current will be given by

V$z,j%n5jm~2Cm
n

r
s¹̄szr1Tnr¹̄rzm!

2zm~2Cm
n

r
s¹̄sjr1Tnr¹̄rjm!. ~68!

VI. THE CHIRAL CASE

As remarked above, the only way in which the off-sh
action for the chiral model differs from that of the gene
elastic case in version~46! of the Liouville current is that
instead of being held constant the auxiliary fieldc is treated
as a free variable. However, as its gradient is not involved
the action, this extra variable will not give rise to any corr
sponding momentum contribution, so the formulas of the t
preceding sections will remain valid for the chiral model
characterized on shell by the current nullity condition~19!
and the corresponding restrictions~17!.

It was remarked that, for a given value of the over
normalization as fixed by the mass scalem, the same unique
chiral model with the same on-shell stress-energy tensor~18!
is obtained independently of the equation of state. Not
however, that due to the presence of the final term prop
tional to dK/dw, the formula ~67! for the hyper Cauchy
tensor gives a result thatdoesdepend on the choice of equa
tion of state even in the chiral limit for whichw50 andK
51. The simplest possibility is provided by the choice@27#
of Witten’s simple linear equation of state~24!, which gives
dK/dw50, so that the final term in Eq.~67! will drop out
altogether. However, for other choices such as the more
ful one ~26! discussed in Sec. II, there will be an extra te
proportional tocmcncrcs with an arbitrary proportionality
constant. Although it is uniquely defined on shell, the rea
the chiral model does not provide a unique specification
the on-shell hyper Cauchy tensor is that the range of va
tion in the relevant partial derivative formula~65! is re-
stricted by the requirement that, in order to preserve the
lity condition ~19!, the allowable displacements must be su
as to ensure that the Lagrangian metric variation satisfies
on-shell chiral variation condition

crcsdL grs50. ~69!

However, for this same reason, the final term in Eq.~67! will
provide no contribution to the on-shell value of the cor
sponding symplectic tensor, whose value for the chiral mo
will thus be given unambiguously by substitution in Eq.~66!
of the expression obtained from the linear action~24!,
namely,

Cmnrs5m2S hm~rhs)n2
1

2
hmnhrsD

1
1

2
~hmncrcs1hrscmcn24c~mhn)(rcs)!. ~70!

In terms of the orthogonal projector'n
m5gn

m2hn
m , it can be

seen that this leads to an expression giving the conse
symplectic current for the chiral string model in the form
12500
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Vn5~cmcrhns12Tm
[shr

n]2Tns'mr!jm∧¹̄sjr, ~71!

in which the chiral stress energy tensor is given by Eq.~18!.

VII. CONCLUSION

Our aim in this paper was first and foremost to calcul
the symplectic current central to the covariant canoni
analysis of Witten and others@2–9# for generic elastic and
chiral string models. The purpose of this analysis was a
precursor to a covariant quantization. However, the symp
tic current also provides potentially useful conservation la
for perturbations in a purely classical context, the most
vious example being provided when the background spa
time has a continuous symmetry generated by a solutionkm,
say, of the Killing equation¹(mkn)50. Since such a Killing
vector obviously displaces solutions into solutions, and th
trivially satisfies the relevant perturbed field equations~44!,
it can be substituted in place ofzm in Eq. ~68!, so that for any
other~nontrivial! solutionjm of the perturbed field equation
it can be seen that we shall obtain a corresponding conse
current given by

V$k,j%n5jmTnr¹̄rkm2km~2Cm
n

r
s¹̄sjr1Tnr¹̄rjm!.

~72!

Our work is based on the concise and efficient covari
analysis developed in@13–15#, rather than the more cumbe
some frame-dependent methods which have been use
others in the case of the simpler Nambu-Goto string. O
results are presented in Secs. V and VI for elastic and ch
strings, respectively. In the process, in Sec. II A and the A
pendix, we also studied with care the different formulatio
of the chiral string model. We showed the equivalence of
Witten action~used in most studies to date!, with the square
root action~26! and in this way we were able to understa
in a different way the integrability properties of the chir
string.
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APPENDIX

In this appendix we demonstrate how the Polyakov act
~33! can be obtained from the original square root action~26!
using Dirac’s Hamiltonian formalism for constrained sy
tems@35,36#. The bulk of this appendix is valid for arbitrar
w and hence for general elastic string models: the spe
chiral limit w50 will be discussed after Eq.~88! where the
Poisson algebra of constraints—including the chiral one—
studied.~For a different approach to constrained superc
ducting membranes, see@40#.!

Our starting point is the action~26!
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I5E d2s L52m2E d2sigi1/2~11w/m2!1/2 ~A1!

in an arbitrary background metricgmn and brane embeddin
xm. Let the two worldsheet coordinates be denoted
s (0,1)[(t,s) with t timelike, and let a prime indicate]1 and
an overdot ]0 . The canonical momentum densitiespm

5dL/d ẋm, p5dL/dẇ, andpc5dL/dċ50 are given by

pm5
m4

L F ~ ẋ•x8!xm8 2x82ẋm1
c2

m2 ~xm8 ẇw82 ẋmw82!G ,
~A2!

p52c2
m2

L @x82ẇ2~ ẋ•x8!w8#, ~A3!

and the phase space of the system is$xm,w,pm ,p%. It fol-
lows directly from these definitions ofpm and p that there
are two primary constraints independent ofẋ and ẇ. One
@see Eq.~A7! below# is straightforward to deduce. In order t
find the other, it is easiest to express bothp2 andp2 in terms
of w5c2g i j w ,iw , j defined in Eq.~2!, leading to

2
w

m6 @p21c2w82m2#5x821
1

m4 @p212c2w82m2#,

~A4!

wFx82c21
p2

m2G5c4w822p2. ~A5!

Eliminating w between these equations gives the other
mary constraint, so that the two constraints are

H1[p21
m2p2

c2 1m4x821m2c2w8250, ~A6!

H2[pmx8m1pw850. ~A7!

The Nambu-Goto limit is obtained whenc→0 ~note that
p2;c4) in which case these expressions reduce to the s
dard constraints@36# for the bosonic string.

Had we started instead from the linear Witten action~24!
and calculated the new momenta, it would have follow
that the second constraint~A7! still holds. On the other hand
a constraint of the first form linkingp2 andp2 can no longer
be obtained: although one can still expressp2 as a function
of w in a manner analogous to Eq.~A4!, there is no analogue
of Eq. ~A5! for the linear Witten action. Indeed,p2 now
depends onẇ andẋm in a combination that can no longer b
expressed solely in terms ofw.

Going back to the square root action, it follows from t
above expressions that the canonical Hamiltonian den
vanishes:

Hc[pẇ1 ẋmpm2L50. ~A8!

As explained by Dirac@35,36#, this Hamiltonian is ambigu-
ous since one is free to add arbitrary multiples of the van
ing primary and secondary constraints. These secondary
12500
y

i-

n-

d

ty

-
n-

straints arise from imposing that the primary constrai
should be preserved under time evolution@35#. Here, given
that Hc50 and that the Poisson brackets of theH1,2 are
closed@see Eqs.~A13!–~A15! below#, it follows that there
are no secondary constraints. Hence the ‘‘total’’ Hamiltoni
density@35,36# which determines the dynamics of the syste
is simply a linear combination of the primary constraints,

H[Hc1
l

2m2 H11mH25
l

2m2 H11mH2 , ~A9!

wherem and l are dimensionless Lagrange multipliers. W
now briefly turn away from the phase space approach
calculate the~Polyakov! Lagrangian

LP[ ẋmpm1ẇp2H ~A10!

corresponding to Eq.~A9!. From the equation of motion
ẋm(t,s8)5*ds$xm(t,s8),H(t,s)% ~with a similar one for
w! it follows that pm5(m2/l)( ẋm2mxm8 ), and similarlyp
52(c2/l)(mw82ẇ). These enable all the momenta to b
eliminated fromLP of Eq. ~A10!, and one finds in the par
ticular case of the square root action

I5E d2s LP

52
m2

2 E d2sihi1/2hi j S gmn] ix
m] j x

n1
c2

m2 ] iw] jw D ,

~A11!

where the components ofhi j are simply expressible in term
of l andm:

A2hh0052
1

l
, A2hh015

m

l
, A2hh115l2

m2

l
.

~A12!

This is the result given in Eq.~33!. Note that the action
~A11! has reparametrization and Weyl scale invariance g
erated by the two primary constraintsH1,2, and reflected in
the two free parametersl andm. For instance, an appropriat
choice of coordinates can sethi j 5h i j where h i j is the
Minkowski metric@or more simply one can choosel51 and
m50 in Eq. ~A12!#. As for the Nambu string@37#, this is an
appropriate starting point with which to quantize the chi
string @38#.

As noted above, this result is a special property of
square root action. For example, in the case of the lin
~Witten! action, Eq.~24!, only the primary constraintH2
exists so that the ‘‘full’’ Hamiltonian would now contain
single termH5mH2 . Following a similar procedure to tha
above shows that one would no longer be able to elimin
the momenta in order to calculate the corresponding
grangian.~The equations of motion do not give equations f
pm andp but rather the equalitiesẋn5mxn8 and ẇ5mw8.)

We now make a comment about the algebra of constra
for the square root action. As for the Nambu string@36# ~and
also as previously noted!, it follows from the equations of
motion that generatorsH1 and H2 form a closed algebra
~i.e., they are first class constraints!:
2-8
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$H1~s!,H1~s8!%}H2

]

]s
d~s2s8!, ~A13!

$H1~s!,H2~s8!%}H1

]

]s
d~s2s8!, ~A14!

$H2~s!,H2~s8!%}H2

]

]s
d~s2s8!. ~A15!

Is it also consistent to impose the chiral constraint at
algebraic level? As noted in Sec. II, the chiral constra
]L/]c50 imposes the nullity condition

w50, ~A16!

which we would like to express on the same footing as
primary constraints~A6! and ~A7!—that is, in terms of mo-
menta only. Let this constraint be denoted byH3 . From Eqs.
~A4! and ~A5!, if therefore follows that

H3[a@m4x821p212c2w82m2#1c2m2bFw822
p2

c4G50

~A17!
,’’

,

y

ur

ys

12500
e
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e

for initially arbitrary a andb. Recall, however~Sec. II!, that
the null constraintw50 is consistent with the dynamica
equations, being conserved under time evolution. At the le
of constraints, we demand that the chiral constraintH3
should also be conserved under time evolution—in ot
words, that it does not lead to a secondary constra
Equivalently, this imposes that the Poisson brackets ofH3
with the other two constraintsH1 , H2 should be closed. In
turn one can show that this is true only fora51/2 andb
52a(16&), in which case

$H3~s!,H1~s8!%}H2

]

]s
d~s2s8!, ~A18!

$H2~s!,H3~s8!%}H3

]

]s
d~s2s8!, ~A19!

$H3~s!,H3~s8!%}H2

]

]s
d~s2s8!. ~A20!
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