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Tour 24, 5 ème. étage, 4, Place Jussieu, 75252 Paris, Cedex 05, France
(Received 12 April 2006; published 21 September 2006)

We study the single field slow-roll inflation models that better agree with the available CMB and LSS
data including the three years WMAP data: new inflation and hybrid inflation. We study these models as
effective field theories in the Ginsburg-Landau context: a trinomial potential turns out to be a simple and
well motivated model. The spectral index ns of the adiabatic fluctuations, the ratio r of tensor to scalar
fluctuations and the running index dns=d lnk are studied in detail. We derive explicit formulas for ns, r and
dns=d lnk and provide relevant plots. In new inflation, and for the chosen central value ns � 0:95, we
predict 0:03< r < 0:04 and �0:000 70< dns=d lnk <�0:000 55. In hybrid inflation, and for ns � 0:95,
we predict r ’ 0:2 and dns=d lnk ’ �0:001. Interestingly enough, we find that in new inflation ns is
bounded from above by ns max � 0:961 528 . . . and that r is a two valued function of ns in the interval
0:96< ns < ns max. In the first branch we find r < rmax � 0:114 769 . . . . In hybrid inflation we find a
critical value�2

0 crit for the mass parameter �2
0 of the field � coupled to the inflaton. For�2

0 <�0M
2
Pl=192,

where �0 is the cosmological constant, hybrid inflation yields a blue tilted ns > 1 behavior. Hybrid
inflation for �2

0 >�0M
2
Pl=192 fulfills all the present CMB� LSS data for a large enough initial inflaton

amplitude. Even if chaotic inflation predicts ns values compatible with the data, chaotic inflation is
disfavored since it predicts a too high value r ’ 0:27 for the ratio of tensor to scalar fluctuations. The
model which best agrees with the current data and which best prepares the way to the expected data
r & 0:1, is the trinomial potential with negative mass term: new inflation.

DOI: 10.1103/PhysRevD.74.063519 PACS numbers: 98.80.Cq, 05.10.Cc, 11.10.�z, 98.70.Vc

I. INTRODUCTION AND RESULTS

Inflation was introduced to solve several outstanding
problems of the standard Big Bang model [1] and became
an important part of the standard cosmology. At the same
time, it provides a natural mechanism for the generation of
scalar density fluctuations that seed large scale structure,
thus explaining the origin of the temperature anisotropies
in the cosmic microwave background (CMB), as well as
that of tensor perturbations (primordial gravitational
waves) [2,3].

A distinct aspect of inflationary perturbations is that
these are generated by quantum fluctuations of the scalar
field(s) that drive inflation. After their wavelength becomes
larger than the Hubble radius, these fluctuations are am-
plified and grow, becoming classical and decoupling from
causal microphysical processes. Upon re-entering the ho-
rizon, during the matter era, these classical perturbations
seed the inhomogeneities which generate structure upon
gravitational collapse [2,3]. A great diversity of inflation-
ary models predict fairly generic features: a Gaussian,
nearly scale invariant spectrum of (mostly) adiabatic scalar
and tensor primordial fluctuations, making the inflationary
paradigm fairly robust. The Gaussian, adiabatic and nearly
scale invariant spectrum of primordial fluctuations provide
an excellent fit to the highly precise wealth of data pro-
vided by the Wilkinson Microwave Anisotropy Probe

(WMAP) [4,5] Perhaps the most striking validation of
inflation as a mechanism for generating superhorizon
(‘‘acausal‘‘) fluctuations is the anticorrelation peak in the
temperature-polarization (TE) angular power spectrum at
l� 150 corresponding to superhorizon scales [4]. The
confirmation of many of the robust predictions of inflation
by current high precision observations places inflationary
cosmology on solid grounds.

Amongst the wide variety of inflationary scenarios,
single field slow-roll models provide an appealing, simple
and fairly generic description of inflation. Its simplest
implementation is based on a scalar field (the inflaton)
whose homogeneous expectation value drives the dynam-
ics of the scale factor, plus small quantum fluctuations. The
inflaton potential is fairly flat during inflation. This flatness
not only leads to a slowly varying Hubble parameter, hence
ensuring a sufficient number of e-folds, but also provides
an explanation for the Gaussianity of the fluctuations as
well as for the (almost) scale invariance of their power
spectrum. A flat potential precludes large nonlinearities in
the dynamics of the fluctuations of the scalar field.

The current WMAP data seem to validate the simpler
one-field slow-roll scenario [4,5]. Furthermore, because
the potential is flat the scalar field is almost massless,
and modes cross the horizon with an amplitude propor-
tional to the Hubble parameter. This fact combined with a
slowly varying Hubble parameter yields an almost scale
invariant primordial power spectrum. The slow-roll ap-
proximation has been recently cast as a 1=Ne folds expan-
sion [6], whereNe folds � 50 is the number of e-folds before
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the end of inflation when modes of cosmological relevance
today first crossed the Hubble radius.

The observational progress permit to start to discrimi-
nate among different inflationary models, placing stringent
constraints on them. The upper bound on the ratio r of
tensor to scalar fluctuations obtained by WMAP [4,5] rules
out the massless �4 model and necessarily implies the
presence of a mass term in the inflaton potential [5,6].

Besides its simplicity, the trinomial potential is a physi-
cally well-motivated potential for inflation in the grounds
of the Ginsburg-Landau approach to effective field theories
(see, for example, Ref. [7]). This potential is rich enough to
describe the physics of inflation and accurately reproduce
the WMAP data [4,5].

The slow-roll expansion plus the WMAP data con-
straints the inflaton potential to have the form [6]

 V��� � Ne foldsM
4w���; (1.1)

where � is the inflaton field, � is a dimensionless, slowly
varying field

 � �
���������������

Ne folds

p
MPl

; (1.2)

w��� �O�1� and M is the energy scale of inflation which
is determined by the amplitude of the scalar adiabatic
fluctuations [4] to be

 M� 0:003 19MPl � 0:77� 1016 GeV:

Following the spirit of the Ginsburg-Landau theory of
phase transitions, the simplest choice is a quartic trinomial
for the inflaton potential [6,8]:

 w��� � w0 	
1

2
�2 �

h
3

���
y
2

r
�3 �

y
32
�4; (1.3)

where the coefficients w0, h and y are dimensionless and of
order one and the signs 	 correspond to large and small
field inflation, respectively, (chaotic and new inflation,
respectively). Inserting Eq. (1.3) in Eq. (1.1) yields,

 V��� � V0 	
m2

2
�2 �

mg
3
�3 �

�
4
�4; (1.4)

where the mass m2 and the couplings g and � are given by
the following see-saw-like relations,

 m �
M2

MPl
; g � h

�������
y

2N

r �
M
MPl

�
2
;

� �
y

8N

�
M
MPl

�
4
; V0 � NM4w0;

(1.5)

where N � Ne folds. Notice that y�O�1� � h guarantee
that g�O�10�6� and ��O�10�12� without any fine tun-
ing as stressed in Ref. [6]. That is, the smallness of the
couplings directly follow from the form of the inflaton
potential Eq. (1.1) and the amplitude of the scalar fluctua-
tions that fixes M [6].

The small coupling limit y! 0 of Eqs. (1.3) and (1.4)
corresponds to a quadratic potential while the strong cou-
pling limit y!1 yields the massless quartic potential.
The extreme asymmetric limit jhj ! 1 yields a massive
model without quadratic term. In such limit the product
~M2 � jhjM2 characterizes the energy scale of inflation and

must be kept fixed since it is determined by the amplitude
of the scalar fluctuations.

We study here new inflation with the trinomial potential
Eqs. (1.3) and (1.4) and hybrid inflation (see below), the
two models fulfill the observational constraints. We com-
pute in both scenarios ns, r and the running dns=d lnk as
functions of the parameters of the models, derive explicit
formulas for ns, r and dns=d lnk and provide relevant plots.
Moreover, we plot the ratio r and the running dns=d lnk as
functions of the scalar index ns. Since the value of ns is
now known [5,9–11], these plots allow us to predict the
values of r and dns=d lnk for the different inflationary
models considered. These predictions and plots are solely
produced from theory and not from any fitting of the data.

The three years WMAP data indicate a red tilted spec-
trum (ns < 1) with a small ratio r < 0:28 of tensor to scalar
fluctuations [5]. The present data do not permit to find the
precise values neither of the ratio r nor of the running index
dns=d lnk, only upper bounds are obtained [4,5]. We there-
fore think that the value of ns [Eq. (4.2)] obtained through a
fit of the data assuming r � dns=d lnk � 0 is more precise
than the values of ns obtained through fits allowing both r
and dns=d lnk to vary. Notice that ns � 0:95 was indepen-
dently found from the 2dF data under similar assumptions
[9]. More precisely, from the three years WMAP data [5] as
well as Ref. [9] we choose

 ns � 0:95	 0:02: (1.6)

This value is obtained with the priors r � 0 and
dns=d lnk � 0 [5].

We find that for ns � 0:95 and any value of the asym-
metry h [see Figs. 4 and 5], new inflation with the trinomial
potential Eqs. (1.3) and (1.4) predicts

 trinomial potential new inflation for ns

� 0:95: 0:03< r< 0:04

and � 0:00070< dns=d lnk <�0:00055:

We find for the lower value ns � 0:93,

 trinomial potential new inflation for ns

� 0:93: 0:003< r< 0:015

and � 0:0011< dns=d lnk <�0:00033:

Moreover, in new inflation with the trinomial potential, we
find that ns is bounded from above by

 new inflation : ns < ns maximum � 0:961 528 . . . :

For ns � 0:961528 . . . we have in this model r �
0:114 769 . . . (see Figs. 4 and 6). Interestingly enough,
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there exists two values (two branches) of r for one value of
ns in the interval 0:96< ns < 0:961 528 . . . [see Fig. 4].
The value rmax � 0:114 769 . . . is the maximum r in the
first branch. The values 0:16 
 r 
 0:114 769 . . . corre-
spond to a second branch of r as a function of ns in the
interval 0:96< ns < 0:961 528 . . . . In the first branch we
have

 rmax � 0:114 769 . . . :

The absolute maximum value rabs max � 0:16 belongs to
the second branch and corresponds to the quadratic mono-
mial potential obtained from Eq. (1.3) at y � 0.

These predicted values of the ratio r fulfill the three
years WMAP bound including SDSS galaxy survey [5]

 r < 0:28�95% CL�: (1.7)

Moreover, one can see from fig. 14 in Ref. [5] that r <
0:1�68% CL� from WMAP� SDSS.

Chaotic inflation with the trinomial potential Eq. (1.3)
and (1.4) yields larger values of r than new inflation for a
given value of ns [8]. More precisely, for ns � 0:95 we find
r � 0:27 for the binomial potential [8] (the trinomial po-
tential introduces very small changes).

Therefore, although the value for ns [Eq. (1.6)] is com-
patible both with chaotic and new inflation, the WMAP
bounds on r clearly disfavor chaotic inflation. New infla-
tion easily fulfils the three years WMAP bounds on r and
prepares the way for the expected data on the ratio of
tensor/scalar fluctuations r & 0:1.

In the inflationary models of hybrid type, the inflaton is
coupled to another scalar field�0 with mass term��2

0 < 0
through a potential of the type [12]
 

Vhyb��;�0� �
m2

2
�2 �

g2
0

2
�2�2

0 �
�4

0

16�0

�
�2

0 �
4�0

�2
0

�
2

�
m2

2
�2 ��0 �

1

2
�g2

0�
2 ��2

0��
2
0

�
�4

0

16�0
�4

0; (1.8)

where m2 > 0, �0 > 0 plays the role of a cosmological
constant and g2

0 couples �0 with �.
The initial conditions are chosen such that �0 and _�0 are

very small (but not identically zero) and therefore inflation
is driven by the cosmological constant �0 plus the initial
value of the inflaton��0�. The inflaton field��t� decreases
with time while the scale factor a�t� grows exponentially
with time. The field �0 has an effective classical mass
square

 m2
� � g2

0�
2 ��2

0: (1.9)

Since the inflaton field� decreases with time,m2
� becomes

negative at some moment during inflation. At such mo-
ment, spinodal (tachyonic) instabilities appear and the field
�0 starts to grow exponentially. Inflation stops when both

fields� and �0 are comparable with _� and _�0 and close to
their vacuum values.

We find that the time when the effective mass of the field
�0 Eq. (1.9) becomes negative depends on the values of�2

0
and g2

0�
2�0�. For low values of �2

0 the field �0 starts to
grow close to the end of inflation. On the contrary, for
higher values of �2

0 the field �0 starts to grow well before
the end of inflation. This is explained by the fact that the
scale of time variation of �0 goes as ��1

0 . �0 evolves
slowly for small �0 and fastly for large �0 [see Figs. 7–
11].

Only at � � 0 hybrid inflation becomes chaotic inflation
with the monomial potential �m2=2��2. For any value of
�> 0 even very small, the features of hybrid inflation
remain.

We compute ns, r and dns=d lnk for hybrid inflation as
functions of the parameters in the potential Eq. (1.8) and
the initial value of the inflaton field [see Figs. 12–23].

The results of our extended numerical investigation of
hybrid inflation can be better expressed in terms of the
dimensionless variables

 � �
2�0

M4Ne folds

;

�̂ �
�������������������

Ne folds�
p

MPl

and �̂2 �
�2

0M
2
PlNe folds

2�0
:

We depict in Figs. 12–23 the observables ns; r and the
running index dns=d lnk as functions of � and ns. We
present a complete picture for hybrid inflation covering
two different, blue tilted and red tilted, regimes. We find
that for all the observables, the shape of the curves depends
crucially on the mass parameter �̂2 of the � field and the
(rescaled) initial amplitude �̂�0� of the inflaton field.

We find a blue tilted spectrum (ns > 1) for �̂2 < �̂2
crit ’

0:13 while for �̂2 > �̂2
crit we can have either ns > 1 or

ns < 1 depending on the initial conditions: for �̂�0�>
�̂�0�crit we have ns > 1, and for �̂�0�< �̂�0�crit we have
ns < 1. The value of �̂�0�crit grows with �̂2: for �̂2 � 0:5,
we find �̂�0�crit � 2:7 and for �̂2 � 1:7, we find �̂�0�crit �
5:8.

We see that ns > 1 happens when the cosmological
constant �0 is large enough compared with
�2

0M
2
PlNe folds. More precisely, �̂2 < �̂2

crit for �0 >
192�2

0M
2
Pl using Ne folds � 50. That is, for �0 <

192�2
0M

2
Pl we have either red or blue tilted spectrum as

explained above.
For large �, ns � 1, r and dns=d lnk always tend asymp-

totically to zero whatever be �̂2 and �̂�0�.
We see from our calculations that all blue tilted values of

�ns; r� in the domain 1< ns < 1:15, 0< r< 0:2 can be
realized by the hybrid inflation model Eq. (1.8). However,
at the light of the three years WMAP data Ref. [5] the blue
tilted regime in hybrid inflation �2 <�2

crit is strongly
disfavored.
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The situation is totally different in the red tilted regime
�̂2 > �̂2

crit ’ 0:13 in hybrid inflation. The possible values
of �ns; r� for such regime of hybrid inflation are in the
upper-right quadrant as shown in Fig. 24.

Hybrid inflation in the red tilted regime �2 >�2
crit and

�̂�0�< �̂�0�crit fulfills the three years WMAP value for ns
[see Eq. (4.2)] as well as the bound on the ratio r
[Eq. (4.3)]. We can read from Fig. 20 and 22 that

 �2 >�2
crit hybrid inflation: 0:2> r > 0:14 and

� 0:001< dns=d lnk < 0 for 0:952< ns < 0:97:

Notice that hybrid inflation in the red tilted regime yields a
too large ratio r > 0:2 for ns < 0:95.

At the central value ns � 0:95 both new and hybrid
inflation are allowed. However, for ns < 0:95 hybrid in-
flation is in trouble (r > 0:2) while for ns > 0:962 new
inflation is excluded.

The potential which best agree with the red tilted spec-
trum and which best prepares the way to the expected data
(a small r & 0:1) is the trinomial potential Eqs. (1.3) and
(1.4) with negative mass term, that is small field (new)
inflation. Hybrid inflation with a trinomial potential can
also reproduce the present data in the red tilted regime
�2 >�2

crit and �̂�0�< �̂�0�crit.
All calculations presented in this paper stem from the

inflaton potential in the slow-roll approximation (dominant
order in 1=N ’ 1=50). They do not use observational data
as input. The analytical formulas and plots provided in the
paper allow to read directly the predicted values of r and
dns=d lnk as functions of ns. In order to make illustrative
predictions, we take the value ns � 0:95	 0:02, as a judi-
cious choice. The reader can see directly from the plots
presented here our predictions for r and dns=d lnk for
future observational values of ns.

II. THE INFLATON POTENTIAL AND THE
1=Ne folds SLOW-ROLL EXPANSION

The description of cosmological inflation is based on an
isotropic and homogeneous geometry, which assuming flat
spatial sections is determined by the invariant distance

 ds2 � dt2 � a2�t�d~x2: (2.1)

The scale factor obeys the Friedman equation

 

�
1

a�t�
da
dt

�
2
�
��t�

3M2
Pl

; (2.2)

where MPl � 1=
����������
8�G
p

� 2:4� 1018 GeV.
In single-field inflation the energy density is dominated

by a homogeneous scalar condensate, the inflaton, whose
dynamics is described by an effective Lagrangian

 L � a3�t�
� _�2

2
�
�r��2

2a2�t�
� V���

�
: (2.3)

The inflaton potential V��� is a slowly varying function of
� in order to permit a slow-roll solution for the inflaton
field ��t�.

We showed in Ref. [6] that combining the WMAP data
with the slow-roll expansion yields an inflaton potential of
the form

 V��� � NM4w���; (2.4)

where � is a dimensionless, slowly varying field

 � �
�����
N
p

MPl

; (2.5)

w��� �O�1�, N � 50 is the number of efolds since the
cosmologically relevant modes exited the horizon until the
end of inflation and M is the energy scale of inflation

The dynamics of the rescaled field � exhibits the slow
time evolution in terms of the stretched dimensionless time
variable,

 � �
tM2

MPl

����
N
p : (2.6)

The rescaled variables � and � change slowly with time. A
large change in the field amplitude � results in a small
change in the � amplitude, a change in��MPl results in a
� change �1=

����
N
p

. The form of the potential, Eq. (2.4) and
the rescaled dimensionless inflaton field Eq. (2.5) and time
variable � make manifest the slow-roll expansion as a
consistent systematic expansion in powers of 1=N [6].

The inflaton mass around the minimum is given by a see-
saw formula

 m �
M2

MPl
� 2:45� 1013 GeV:

The Hubble parameter when the cosmologically relevant
modes exit the horizon is given by

 H �
����
N
p

mH � 1:0� 1014 GeV � 4:1m;

where we used that H � 1. As a result, m� M and H�
MPl. A Ginsburg-Landau realization of the inflationary
potential that fits the amplitude of the scalar fluctuations
remarkably well, reveals that the Hubble parameter, the
inflaton mass and nonlinear couplings are see-saw-like,
namely, powers of the ratio M=MPl multiplied by further
powers of 1=N. Therefore, the smallness of the couplings is
not a result of fine tuning but a natural consequence of the
form of the potential and the validity of the effective field
theory description and slow roll. The quantum expansion in
loops is therefore a double expansion on �H=MPl�

2 and
1=N. Notice that graviton corrections are also at least of
order �H=MPl�

2 because the amplitude of tensor modes is
of order H=MPl. We showed that the form of the potential
which fits the WMAP data and is consistent with slow roll
Eqs. (2.4) and (2.5) implies the small values for the inflaton
self-couplings [6].
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The equations of motion in terms of the dimensionless
rescaled field � and the slow time variable � take the form,
 

H 2��� �
1

3

�
1

2N

�
d�
d�

�
2
� w���

�
;

1

N
d2�

d�2 � 3H
d�
d�
� w0��� � 0:

(2.7)

The slow-roll approximation follows by neglecting the 1
N

terms in Eqs. (2.7). Both w��� and h��� are of order N0 for
large N. Both equations make manifest the slow-roll ex-
pansion as an expansion in 1=N.

The number of e-folds N�� since the field � exits the
horizon until the end of inflation (where � takes the value
�end) can be computed in close form from Eqs. (2.7) in the
slow-roll approximation (neglecting 1=N corrections)

 

N��
N
� �

Z �end

�

w���
w0���

d� � 1: (2.8)

The amplitude of adiabatic scalar perturbations is ex-
pressed as [3,4,6,13,14]

 j��S�k adj
2 �

N2

12�2

�
M
MPl

�
4 w3���

w02���
: (2.9)

The spectral index ns, its running and the ratio of tensor to
scalar fluctuations are expressed as
 

ns � 1 � �
3

N

�
w0���
w���

�
2
�

2

N
w00���
w���

;

dns
d lnk

� �
2

N2

w0���w000���

w2���
�

6

N2

�w0���4

w4���

�
8

N2

�w0���2w00���

w3���
;

r �
8

N

�
w0���
w���

�
2
:

(2.10)

In Eqs. (2.8), (2.9), and (2.10) the field � is computed at
horizon exiting. We choose N�� � N � 50.

Since, w��� and w0��� are of order one, we find from
Eq. (2.9)

 

�
M
MPl

�
2
�

2
���
3
p
�

N
j��S�k adj ’ 1:02� 10�5: (2.11)

where we used N ’ 50 and the WMAP value for j��S�k adj �
�4:67	 0:27� � 10�5 [4]. This fixes the scale of inflation
to be

 M ’ 3:19� 10�3MPL ’ 0:77� 1016 GeV:

This value pinpoints the scale of the potential during
inflation to be at the GUT scale suggesting a deep connec-
tion between inflation and the physics at the GUT scale in
cosmological space-time.

We see that jns � 1j as well as the ratio r turn out to be
of order 1=Ne folds. This nearly scale invariance is a natural

property of inflation which is described by a quasi-de Sitter
space-time geometry. This can be understood intuitively as
follows: the geometry of the universe is scale invariant
during de Sitter stage since the metric takes in conformal
time the form

 ds2 �
1

�H	�2
��d	�2 � �d~x�2:

Therefore, the primordial power generated is scale invari-
ant except for the fact that inflation is not eternal and lasts
for Ne folds. Hence, the primordial spectrum is scale invari-
ant up to 1=Ne folds corrections. The values ns � 1, r � 0
and dns=d lnk � 0 correspond to a critical point as dis-
cussed in Ref. [6]. This a Gaussian fixed point around
which the inflation model hovers in the renormalization
group sense with an almost scale invariant spectrum of
scalar fluctuations during the slow-roll stage.

The WMAP results favored single inflaton models and
among them new and hybrid inflation emerge to be pref-
erable than chaotic inflation [8].

We analyze in the subsequent sections new inflation and
hybrid inflation in its simple physical realizations within
the Ginzburg-Landau approach (the trinomial potential)
[8].

III. SPECTRAL INDEX ns, RATIO r AND RUNNING
INDEX dns

d lnk FOR NEW INFLATION WITH THE
TRINOMIAL POTENTIAL

We consider here the trinomial potential investigated in
Ref. [8]

 V��� � V0 �
m2

2
�2 �

mg
3
�3 �

�
4
�4: (3.1)

where m2 > 0 and g and � are dimensionless couplings.
The corresponding dimensionless potential w��� takes

the form

 w��� � �
1

2
�2 �

h
3

���
y
2

r
�3 �

y
32
�4 �

2

y
F�h�; (3.2)

where the quartic coupling y is dimensionless as well as the
asymmetry parameter h. The couplings in Eq. (3.1) and
(3.2) are related by

 g � h
�������
y

2N

r �
M
MPl

�
2
; � �

y
8N

�
M
MPl

�
4
; (3.3)

and the constant F�h� is related to V0 by

 

2

y
F�h� �

V0

NM4 :

The constant F�h� ensures that w���� � w0���� � 0 at
the absolute minimum � � �� � �8=y�1=2��� jhj� of the
potential w���. Thus, inflation does not run eternally. F�h�
is given by
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 F�h� �
8

3
h4 � 4h2 � 1�

8

3
jhj�3; � �

��������������
h2 � 1

p
:

The parameter h reflects how asymmetric is the potential.
Notice that w��� is invariant under the changes �! ��,
h! �h. Hence, we can restrict ourselves to a given sign
for h. Without loss of generality, we choose h < 0 and shall
work with positive fields �.

Notice that y�O�1� � h guarantee that g�O�10�6�
and ��O�10�12� without any fine tuning as stressed in
Ref. [6].

New inflation is obtained by choosing the initial field �
in the interval �0; ���. The inflaton � slowly rolls down the
slope of the potential from its initial value until the abso-
lute minimum of the potential ��.

Computing the number of e-folds from Eq. (2.8), we find
the field � at horizon crossing related to the parameters y
and h. It is convenient to define the field variable z:

 z �
y
8
�2:

We obtain by inserting Eq. (3.2) for w��� into Eq. (2.8) and
setting N�� � N,
 

y � z� 2h2 � 1� 2jhj��
4

3
jhj�jhj � ��

���
z
p
�

�
16

3
jhj��� jhj��2 log

�
1

2

�
1�

���
z
p
� jhj
�

��
� 2F�h� log�

���
z
p
��� jhj�: (3.4)

z turns to be a monotonically decreasing function of y: z
decreases from z � z� � ��� jhj�2 until z � 0 when y
increases from y � 0 until y � 1. When

���
z
p
!

������
z�
p

, y
vanishes quadratically,

 y �
z!z�

2�
���
z
p
�

������
z�
p
�2 �O��

���
z
p
�

������
z�
p
3�:

We obtain in analogous way from Eqs. (2.9) and (2.10) the
spectral index, its running, the ratio r and the amplitude of
adiabatic perturbations,
 

ns � 1� 6
y
N

z�z� 2h
���
z
p
� 1�2

�F�h� � 2z� 8
3hz

3=2 � z22

�
y
N

3z� 4h
���
z
p
� 1

F�h� � 2z� 8
3hz

3=2 � z2
; (3.5)

 

dns
d lnk

� �
2

N2

���
z
p
y2
�z� 2h

���
z
p
� 1��h� 3

2

���
z
p
�

�F�h� � 2z� 8
3hz

3=2 � z22

�
24

N2 y
2z2 �z� 2h

���
z
p
� 1�4

�F�h� � 2z� 8
3hz

3=2 � z24

�
8

N2 y
2z
�3z� 4h

���
z
p
� 1��z� 2h

���
z
p
� 1�2

�F�h� � 2z� 8
3 hz

3=2 � z23
;

(3.6)

 r � 16
y
N

z�z� 2h
���
z
p
� 1�2

�F�h� � 2z� 8
3 hz

3=2 � z22
; (3.7)

 j��S�k adj
2 �

N2

12�2

�
M
MPl

�
4 �F�h� � 2z� 8

3hz
3=2 � z23

y2z�z� 2h
���
z
p
� 1�2

:

(3.8)

IV. PREDICTIONS FOR NEW INFLATION WITH
THE TRINOMIAL POTENTIAL

We plot ns, its running and r in Figs. 1–3 as functions of
logy for various values of the asymmetry of the potential h,
y being the dimensionless quartic coupling. Figures 4 and 5
depict r and the running dns=d lnk as functions of ns for
various values of the asymmetry h.

We see that generically ns < 1 and dns=d lnk < 0 for
new inflation for all values of the couplings.

In new inflation we have the absolute upper bound

 new inflation : r � rabs max �
8

N
� 0:16; (4.1)

which is attained by the quadratic monomial potential
obtained from Eq. (3.2) at y � 0. On the contrary, in
chaotic inflation r is bounded as

 chaotic inflation 0:16 �
8

N
< r <

16

N
� 0:32:

This bound holds for all values the asymmetry parameter h.
The lower and upper bounds for r are saturated by the
quadratic and quartic monomials, respectively.

We see from Fig. 1 that ns exhibits a single maximum
ns maximum�h� as a function of the quartic coupling y for

 0.95

 0.952

 0.954

 0.956

 0.958

 0.96

 0.962

-15 -10 -5  0  5  10

h = 0
|h| = 1
|h| = 3
|h| = 7

|h| = 16

n s vs. log y

FIG. 1. New Inflation. ns as a function of logy for the asym-
metry of the potential jhj � 0, 1, 3, 7 and 16, y being the
dimensionless quartic coupling. The y! 0 limiting value ns �
1� 2

N � 0:96 is h-independent and corresponds to the monomial
potential 1

2m
2�2.
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fixed asymmetry h. In Fig. 6 we plot ns maximum�h� as a
function of h. ns maximum�h� monotonically increases with
jhj and rapidly reaches its limiting value ns maximum �
0:961528 . . . . The corresponding value for r is r �
0:114769 . . . . Values ns > ns maximum � 0:961528 . . . can-
not be described by new inflation with the trinomial po-
tential Eqs. (3.1) and (3.2).

We see from Fig. 4 and 5 that both r and the running
dns=d lnk are two-valued functions of ns in the interval
0:96< ns < 0:961528 . . . . That is, for each ns in this range
there are two possible values for r and for the running
dns=d lnk. Therefore, we can cover the whole range of
values 0:96< ns < 0:961 528 . . . choosing the lower

branch for r. We find for this branch

 r < rmax � 0:114 769 . . . :

This maximum value rmax is well below the absolute

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

-15 -10 -5  0  5  10  15

r  vs.  log y

h = 0
|h| = 1
|h| = 3
|h| = 7

|h| = 16

FIG. 3. New Inflation. r as a function of logy for the asymme-
try of the potential jhj � 0, 1, 3, 7 and 16 y being the dimen-
sionless quartic coupling. The absolute maximum value
r � 8

N � 0:16 is reached for y � 0 and all h and corresponds
to the monomial potential Eq. (5.2).

-0.0018

-0.0016

-0.0014

-0.0012

-0.001

-0.0008

-0.0006

-0.0004

-0.0002

 0

-15 -10 -5  0  5  10  15  20

running  vs.  log y

h = 0
|h| = 1
|h| = 3
|h| = 7

|h| = 16

FIG. 2. New Inflation. The running dns=d lnk as a function of
logy for the asymmetry of the potential jhj � 0, 1, 3, 7 and 16, y
being the dimensionless quartic coupling. The y! 0 limiting
value � 2

N2 � �0:0008 is h-independent and corresponds to the
monomial potential 1

2m
2�2.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.93  0.935  0.94  0.945  0.95  0.955  0.96  0.965

r  vs.  ns

h = 0
|h | = 0.15
|h | = 0.4
|h | = 0.7
|h | = 20

FIG. 4. New Inflation. r as a function of ns for the asymmetry
of the potential jhj � 0, 0.15, 0.4, 0.7 and 20. For a given ns, r
monotonically and slowly decreases with increasing jhj. r �
r�ns� is not too sensitive to h. The maximum value of ns is
nmaximum
s � 0:961 528 . . . and the corresponding r is rmax �

0:114 769 . . . . The maximum value of r is rabs max � 0:16 and
corresponds to the quadratic potential setting y � 0 in Eq. (3.2).
For ns � 0:95 we find 0:03< r < 0:04.

-0.0011

-0.001
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-0.0006
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-0.0004

-0.0003
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|h | = 0.15
|h | = 0.4
|h | = 0.7
|h | = 20

FIG. 5. New Inflation. The running dns=d lnk as a function of
ns for the asymmetry of the potential jhj � 0, 0.15, 0.4, 0.7 and
20. The running turns out to be always negative in new inflation.
For ns < 0:96, the running dns=d lnk decreases with increasing
jhj. The opposite happens for ns > 0:96. In the last case the
dependence on h is weak. We find dns=d lnk � �0:000 77 . . . at
the branch point ns � 0:961 . . . for all values of jhj. The point
ns � 1� 2

N � 0:96, dns
d lnk � �

2
N2 � �0:0008 is reached for all

values of h and corresponds to the monomial potential Eq. (5.2).
For ns � 0:95, we find �0:00070< dns=d lnk <�0:00055.
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maximum in new inflation rabs max � 0:16 [Eq. (4.1)]
which belongs to the second branch.

The plots of the ratio r and the running dns=d lnk as a
function of ns show that these quantities are not very
sensitive to the asymmetry h for a given value of ns.

The three years WMAP [5] data as well as ref. [9] yield
for ns the value (see also refs. [10,11])

 ns � 0:95	 0:02: (4.2)

This value is for the LCDM model and it is obtained with
the priors r � 0 and dns=d lnk � 0.

For ns � 0:95 and any value of the asymmetry h [see
Fig. 4], new inflation with the trinomial potential Eqs. (3.1)
and (3.2) yields

 new inflation : 0:03< r< 0:04 and

� 0:000 70< dns=d lnk <�0:000 55:

New inflation with the trinomial potential always yield ns
below the maximum value ns maximum � 0:961 528 . . . . For
ns � 0:961 528 . . . we have in this model r �
0:114 769 . . . . These values of the ratio r fullfil the three
years WMAP bound including SDSS galaxy survey [5]

 r < 0:28�95% CL�: (4.3)

Moreover, one can see from fig. 14 in ref. [5] that r <
0:1�68% CL� from WMAP� SDSS.

Chaotic inflation with the trinomial potential Eq. (3.1)
and (3.2) yields larger values of r than new inflation for a
given value of ns [8]. More precisely, we find r � 0:27 for
ns � 0:95 for the binomial potential in chaotic inflation [8]
(the trinomial potential introduces very small changes).

Therefore, although the value for ns [Eq. (4.2)] is com-
patible both with chaotic and new inflation, the WMAP
bounds on r clearly disfavor chaotic inflation. New infla-
tion easily fulfils the three years WMAP bounds on r.

The present data do not permit to find the precise values
neither of the ratio r nor of the running index dns=d lnk;
only upper bounds are obtained [4,5]. We therefore think
that the value of ns [Eq. (4.2)] obtained through a fit of the
data assuming r � 0 is more precise than the values of ns
obtained through fits allowing both r and dns=d lnk to vary.
Notice that ns � 0:95 was independently found from the
2dF data under similar assumptions [9].

Ref. [5] reports fits yielding negative values for
dns=d lnk of the order �� 0:05. Notice that the order of
magnitude of the running dns=d lnk is just fixed by the fact
that it is a second order quantity in slow-roll: � 1

N2 �

0:0004. Still, the negative sign of the running reported by
Ref. [5] agrees with the sign prediction of new inflation
with the trinomial potential [see Fig. 2 and 5].

In summary, new inflation with the trinomial potential
Eq. (3.1) and (3.2) predicts 0:03< r< 0:04 and
�0:000 70< dns=d lnk <�0:000 55 for ns � 0:95. For
0:93< ns < 0:962 it predicts 0:01< r< 0:115 and
�0:001< dns=d lnk <�0:0003 [see Figs. 4 and 5].

V. LIMITING CASES OF THE TRINOMIAL
POTENTIAL IN NEW INFLATION

Let us now consider the limiting cases: the shallow limit
(y! 0), the steep limit y!1 and the extremely asym-
metric limit jhj ! 1 of the trinomial potential for new
inflation Eqs. (3.1) and (3.2).

A. The shallow limit y! 0 of the Trinomial Potential

In the shallow limit y! 0, z tends to z � z� � ���
jhj�2, which is the minimum of y in Eq. (3.4). We find from
Eqs. (3.4), (3.5), (3.6), (3.7), and (3.8),

 ns �
y!0

1�
2

N
’ 0:96;

dns
d lnk

�
y!0
�

2

N2 ’ �0:0008;

r �
y!0 8

N
’ 0:16; j��S�k adj

2 �
y!0 N2

3�2

�
M
MPl

�
4
���� jhj�;

(5.1)

which coincide with ns,
dns
d lnk and r for the monomial

quadratic potential. That is, the y! 0 limit is
h-independent except for j��S�k adj. For fixed h and y! 0
the inflaton potential Eq. (3.2) becomes purely quadratic:

 w��� �
y!0

���� jhj���� ���2 �O�
���
y
p
�; (5.2)

where �� � �
8
y�

1=2��� jhj�. Notice that the amplitude of
scalar adiabatic fluctuations Eq. (5.1) turns out to be pro-
portional to the square mass of the inflaton in this regime
which we read from Eq. (5.2): 2���� jhj�. The shift of
the inflaton field by �� has no observable consequences.

The numerical values in Eq. (5.1) are in agreement with
Figs. 1–3 in the y! 0 limit. For h � 0 we recover the
results of the monomial potential.
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maxima of n s vs. |h |

FIG. 6. New Inflation. Maxima of ns plotted vs the asymmetry
of the potential jhj. The limiting value for large jhj is nmaximum

s �
0:961528 . . . .
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B. The steep limit y! 1 of the trinomial potential

In the steep limit y! 1, z tends to zero for new
inflation. We find from Eq. (3.4)

 y �
z!0
�F�h� logz� q�h� � 1�O�

���
z
p
�; (5.3)

where
 

q�h� � 2F�h� log��� jhj

�
2

3
�h2 � jhj��

�
8�2 log

�
1

2

�
1�
jhj
�

��
� 1

�
;

q�h� is a monotonically increasing function of the asym-
metry jhj: 0 � q�h�<1 for 0< jhj<1.

Then, Eqs. (3.6) and (3.7) yield,
 

ns �
y�1

1�
y

NF�h�
; r �

y�1 16y

NF2�h�
e��y�1�q�h�=F�h��;

dns
d lnk

�
y�1
�

2y2jhj

N2F2�h�
e��y�1�q�h�=2F�h��;

j��S�k adj
2 �
y�1 N2

12�2

�
M
MPl

�
4 F3�h�

y2 e�y�1�q�h�=F�h��:

(5.4)

In the h! 0 limit we recover from Eqs. (5.3) and (5.4) the
results for new inflation with a purely quartic potential: we
have F�0� � 1 and q�0� � 0 and Eq. (5.4) becomes,
 

ns �
y�1;h!0

1�
y
N
; r �

y�1;h!0 16y
N
e�y�1;

dns
d lnk

�
y�1;h!0

�
2y2jhj

N2 e�y�1;

j��S�k adj
2 �
y�1;h!0 N2

12�2

�
M
MPl

�
4 ey�1

y2 :

(5.5)

The behavior in Eqs. (5.4) is in agreement with Figs. 1–3 in
the y! �1 limit.

C. The extremely asymmetric limit jhj ! 1 of the
trinomial potential

Equations (3.4), (3.5), (3.6), (3.7), and (3.8) have a finite
limit for jhj ! 1 with y and z scaling as h2. Define,

 Z �
z

h2 ; Y �
y

h2 :

Then, we find for jhj ! 1 from Eqs. (3.4), (3.5), (3.6),
(3.7), and (3.8) keeping Z and Y fixed,

 Y � Z�
4

3

����
Z
p
� 4�

4

3
log
Z
4
�

16

3
����
Z
p ;

ns � 1� 6
Y
N

Z2�
����
Z
p
� 2�2

�16
3 �

8
3Z

3=2 � Z22
�
Y
N

3Z� 4
����
Z
p

16
3 �

8
3Z

3=2 � Z2
;

(5.6)

 

dns
d lnk

� �
2

N2 Y
2Z
�
����
Z
p
� 2��32

����
Z
p
� 1�

�16
3 �

8
3Z

3=2 � Z22

�
24

N2 Y
2Z4 �

����
Z
p
� 2�4

�16
3 �

8
3Z

3=2 � Z24

�
8

N2 Y
2Z5=2 �3

����
Z
p
� 4��

����
Z
p
� 2�2

�16
3 �

8
3Z

3=2 � Z23
; (5.7)

 

r � 16
Y
N

Z2�
����
Z
p
� 2�2

�16
3 �

8
3Z

3=2 � Z22
;

j��S�k adj
2 �

N2h2

12�2

�
M
MPl

�
4 �16

3 �
8
3Z

3=2 � Z22

Y2Z2�
����
Z
p
� 2�2

:

(5.8)

We have 0 � Z � 4 for �1 
 Y 
 0. In the jhj ! 1
limit the inflaton potential takes the form

 W��� � lim
jhj!1

w���

h2 �
32

3Y
�

1

3

����
Y
2

s
�3 �

Y
32
�4: (5.9)

This is a broken symmetric potential without quadratic
term. Notice that the cubic coupling has dimension of a
mass in Eq. (3.1) and hence this is not a massless potential
contrary to the quartic monomial �4. In addition, Eq. (5.8)
shows that for large jhj one must keep the product jhjM2

fixed since it is determined by the amplitude of the adia-
batic perturbations. We see from Eq. (5.8) that ~M �

������
jhj

p
M

becomes the energy scale of inflation in the jhj ! 1 limit.
~M� 1016 GeV according to the observed value of
j��S�k adj=N displayed in Eq. (2.11), while M � ~M=

������
jhj

p
vanishes as jhj ! 1.

We have from Eq. (5.9) near the minimum � � �0 ������������
32=Y

p
of W���,

 W��� �
�!�0

2��� �0�
2:

Therefore, the inflaton mass
����������������
V 00��0�

p
around the minimum

� � �0 �
����
N
p

MPl�0 takes the finite value,

 

����������������
V 00��0�

q
�
jhj!1

2
~M2

MPl
;

in the jhj ! 1 limit.
The curves in Figs. 1–6 for high values of jhj are well

described by Eq. (5.6).

VI. HYBRID INFLATION

In the inflationary models of hybrid type, the inflaton is
coupled to another scalar field�0 with mass term��2

0 < 0
through a potential of the type [12]
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Vhyb��;�0� �
m2

2
�2 �

g2
0

2
�2�2

0 �
�4

0

16�0

�
�2

0 �
4�0

�2
0

�
2

�
m2

2
�2 ��0 �

1

2
�g2

0�
2 ��2

0��
2
0

�
�4

0

16�0
�4

0; (6.1)

where m2 > 0, �0 > 0 plays the role of a cosmological
constant and g2

0 couples �0 with �.
The initial conditions are chosen such that �0 and _�0 are

very small (but not identically zero) and therefore one can
consider initially,

 Vhyb��; 0� �
m2

2
�2 ��0: (6.2)

One has then inflation driven by the cosmological constant
�0 plus the initial value of the inflaton ��0�. The inflaton
field ��t� decreases with time while the scale factor a�t�
grows exponentially with time. We see from Eq. (6.1) that

 m2
� � g2

0�
2 ��2

0; (6.3)

plays the role of a effective classical mass square for the
field �0. The initial value of m2

� depends on the initial
conditions but is typically positive. In any case, since the
inflaton field� decreases with time,m2

� will be necessarily
negative at some moment during inflation. At such mo-
ment, spinodal (tachyonic) instabilities appear and the field
�0 starts to grow exponentially. Inflation stops when both
fields � and �0 reach their vacuum values. A matter
dominated regime follows.

Normally, the field �0 is negligible when the relevant
cosmological scales cross out the horizon. Hence, �0 does
not affect the spectrum of density and tensor fluctuations
except through the number of e-folds. Hence, hybrid in-
flation is a single-field inflationary model as long as �
solely contributes to the spectrum of density and tensor
fluctuations. However, we find specific regions of parame-
ters �g0; �0;�0� and initial conditions where both fields �
and �0 contribute to the cosmologically relevant fluctua-
tions making hybrid inflation a two-field inflationary
model. We do not consider such regions of parameters
here which are outside the scope of this paper.

In terms of the dimensionless fields and couplings, the
potential Vhyb��;�0� Eq. (6.1) reads

 w��;�� �
1

2
�2 �

�4

8�

�
�2 �

2�

�2

�
2
�

1

2
g2�2�2

�
1

2
�2 �

1

2
�g2�2 ��2��2 �

1

2
��

�4

8�
�4;

(6.4)

where

 ���� �
�0�t�����
N
p

MPl

; g2 � g2
0

NM2
Pl

m2 ;

�2 �
�2

0

m2 and � �
2�0

M4N
:

The evolution equations for this potential in dimensionless
variables take the form
 

H 2��� �
1

6

�
1

N
_�2 � �2 �

�4

4�

�
�2 �

2�

�2

�
2
� g2�2�2

�
;

�
1

N
d2

d�2 � 3H
d
d�
� 1� g2�2

�
� � 0;

�
1

N
d2

d�2 � 3H
d
d�
��2 � g2�2 �

�4

2�
�2

�
���� � 0:

(6.5)

Since the field � is chosen initially very small, it can be
neglected and we can approximate the evolution equa-
tions (6.5) as

 3H _�� � � 0; H 2��� �
1

6
��2 ��: (6.6)

The number of e-folds from the time � until the end of
inflation is then given by Eq. (2.8),

 N��� � N
Z �end

�
H ���d� � �

Z �end

����

w���
w0���

d�

�
N
4
��2��� � �2

end �
N
2

� log
����
�end

; (6.7)

�end is the inflaton field at the end of inflation.
We see that the inflaton field and its dynamics only

appear in N��� Eq. (6.7) through the value of �end where
inflation stops. The value of �end follows by solving
Eqs. (6.5) and depends on the initial conditions as well as
on the parameters g, � and �.

The spectral indices are given by Eqs. (2.10) and the
amplitude of adiabatic perturbations by Eq. (2.9). By using
the potential equation (6.2) in dimensionless variables we
find,
 

w��; 0� �
1

2
��2 ���;

j��S�k adj
2 �

N2

96�2

�
M
MPl

�
4 ��2 ���3

�2 ;

r �
32

N
�2

��2 ���2
;

(6.8)

 ns � 1�
4

N
�� 2�2

��2 ���2
;

dns
d lnk

�
32

N2

�2�2�� �2�

��2 ���4
;

(6.9)

where � is the inflaton at the moment of the first horizon
crossing.

H. J. DE VEGA AND N. G. SANCHEZ PHYSICAL REVIEW D 74, 063519 (2006)

063519-10



VII. INFLATON DYNAMICS IN HYBRID
INFLATION

In Figs. 7–11 we display the numerical solution of the
equations of motion (6.5) as functions of time for � �
4N � 200, �2 � 1:7�, ��0� � 2:3

����
�
p

. We see first a
stage of slow-roll quasi-de Sitter inflation until � ’ 39 in
this example. Namely, j _�j � j�j and h are practically
constant during this lapse. In this slow-roll stage the equa-
tions of motion (6.6) can be integrated in close form with
the solution

 

�������
2

3�

s
��� �0� � arg tanh

1�������������
1� �2

�

q �

���������������
1�

�2

�

s
; (7.1)

which defines � � ���� and where �0 is an integration
constant. Notice that ���� is a monotonically decreasing
function of time since _� � ��=�3h< 0 [Eq. (6.6)].

When �� �, Eq. (7.1) approximates by

 ���� ’ �0e�
���������
2=3�
p

�; �� �;

while in the opposite limit �� � from Eq. (7.1) we have,

 ���� ’ �1 �

���
2

3

s
�; �� �:

Here, �0 and �1 are integration constants.
We have verified that Eq. (7.1) as well as Eq. (6.7)

provide an excellent approximation to the numerical solu-
tion of Eqs. (6.5).

The number of e-folds during inflation is about 280 in
the example depicted in Figs. 7–11, larger than the re-
quired minimum of about 60 e-folds. This stage is followed
by a matter dominated era. We choose a very small initial

amplitude for the sigma field and its time derivative. The
sigma field stays very small until its effective mass square
[Eq. (6.3)] becomes negative and spinodal instabilities
show up. At this moment, (� ’ 4 in this example) the sigma
field as well as its time derivative start to increase expo-
nentially fast until the growth of the nonlinear term�
�4

2��
2 in the last equation in Eq. (6.5) shuts off the

instabilities.
Inflation stops at the moment when both � and � are

comparable with _� and _� (� ’ 39 in this example). At this
time, both � and � are very close to their vacuum values
�vac � 0 and �vac �

�����
2�
p

� . That is, when the kinetic terms
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FIG. 7. Hybrid inflation. The logarithm of the scale factor (the
number of efolds) as a function of time. The chosen parameters
in Eq. (6.5) are � � 4N � 200, �2 � 1:7�, ��0� � 2:3

����
�
p

. A
stage of slow-roll quasi-de Sitter inflation takes place (until � ’
39 in this example) followed by a matter dominated era.
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FIG. 8. Hybrid inflation. The Hubble parameter h and its
inverse 1=h as a function of time. Same parameters as in
Fig. 7. h slowly decreases with time in the slow-roll quasi-de
Sitter stage (until � ’ 39 in this example) followed by h ’
2=�3� in the matter dominated era.
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FIG. 9. Hybrid inflation. The inflaton field � and its time
derivative as a function of time. Same parameters as in Fig. 7.
j _�j � j�j during the slow-roll inflationary stage. Inflation stops
when �� _�� 0 (at � ’ 39 in this example).

PREDICTIONS OF SINGLE FIELD INFLATION FOR . . . PHYSICAL REVIEW D 74, 063519 (2006)

063519-11



become relevant, the energy is no more dominated by the
vacuum energy. At the same time, the slow-roll approxi-
mation ceases to be valid.

The time when the effective mass of the field � [see
Eq. (6.3)]

 m2
� � m2�g2�2 ��2� (7.2)

becomes negative and � starts to grow depends on the
values of �2 and g2�2�0�. For low values of �2: (typically
for �2 < 0:08� when �2�0�<�, and �2 < 0:2� when
�2�0�< 2:�), the field � starts to grow close to the end of
inflation. On the contrary, for higher values of �2 (typi-

cally for �2 > 0:08� when �2�0�<�, and �2 > 0:23�
when �2�0�< 2:�), the field � starts to grow well before
the end of inflation. This is explained by the fact that the
scale of time variation of � goes as ��1; � evolves slowly
for small � and quickly for large �.

_� exhibits a peak around the point where m2
� changes

sign and then returns to a very small value while � slowly
approaches its vacuum value. This evolution is depicted in
Fig. 10.

In the example depicted in Figs. 7–11 the effective mass
square [Eq. (7.2)] of the � field changes sign at �� 4 well
before � reaches its vacuum value (zero) and inflation
ends. This follows from the choice of a large value for
�2 in Figs. 7–11. For smaller values of �2, m2

� [Eq. (7.2)]
flips its sign later when the inflaton � is much smaller.

In order to compute the observables ns, r and dns=d lnk
from Eq. (6.8) we need the value of the inflation field � at
50 e-folds before the end of inflation. We thus integrated
numerically Eqs. (6.5) until the end of inflation and then
extracted the value of � at 50 e-folds before. We define the
end of inflation as the point where the ratio pressure over
energy reaches 10%. This gives � � �end ’ 34 for the
example in Fig. 11.

At � � 0 hybrid inflation becomes chaotic inflation
with the monomial potential 1

2�
2. We want to stress that

only at � � 0 hybrid inflation becomes chaotic inflation.
For any value of �> 0 (even very small) the features of
hybrid inflation remain. The time �end gets longer and
longer for �! 0�.

VIII. SPECTRAL INDEX ns, RATIO r AND
RUNNING INDEX dns

d lnk IN HYBRID INFLATION

We see from Eqs. (6.9) that the field � naturally scales as����
�
p

. It is then convenient to introduce the rescaled field and
the rescaled mass

 �̂ �
�����
�
p ; �̂2 �

�2

�
: (8.1)

Then, Eqs. (6.9) take the form
 

w��; 0� �
�

2
��̂2 � 1�;

j��S�k adj
2 �

N2�2

96�2

�
M
MPl

�
4 ��̂2 � 1�3

�̂2 ;

r �
32

N�

�̂2

��̂2 � 1�2
;

(8.2)

 ns � 1�
4

N�

1� 2�̂2

��̂2 � 1�2
;

dns
d lnk

�
32

N2�2

�̂2�2� �̂2�

��̂2 � 1�4
:

(8.3)

Notice that (ns � 1) may have either sign according to
Eq. (8.3). Hybrid inflation is usually associated with red
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FIG. 10. Hybrid inflation. The field sigma � and its time
derivative as a function of time for hybrid inflation. Same
parameters as in Fig. 7. The fields � and _� start with small
values and grow exponentially fast when m2

� < 0 [Eq. (7.2)] (at
� ’ 4 in this example).
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FIG. 11. Hybrid inflation. The equation of state pressure/en-
ergy density as a function of time. Same parameters as in Fig. 7.
The equation of state clearly shows the two stages:
pressure=energy � �1 during inflation followed by oscillations
with zero average pressure in the matter dominated era.
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tilted spectrum (ns > 1). However, both regimes, ns > 1
and ns < 1 are realized by hybrid inflation.

Whether ns > 1 or ns < 1 for a given set of parameters
�, �2, g and the initial conditions is a dynamical question
that can only be answered after evolving the fields until the
end of inflation according to Eqs. (6.5). As we see in
Eq. (6.9) the question is whether twice �2 at horizon exit
is larger or smaller than �. Recall that horizon exit happens
about 50 e-folds before the end of inflation and that �2

monotonically decreases during inflation. Even if initially
2�2 >�, it can be very well that 2�2 <� at horizon exit.
This depends on how many total e-foldsNT 
 60 we have;
since horizon exit happens �NT � 50� 
 10 e-folds after
the beginning of inflation, the larger is (NT � 50) the
smaller can be �2 at horizon exit.

We vary the parameters �, �2 and the initial conditions
always keeping the total number of e-folds NT during
inflation larger or equal to 60. We keep g2 � 1

4 since this
parameter is less relevant than the others. We explored the
parameters region where r < 0:2 and 0:95< ns < 1:15.

A. Red tilted and blue tilted regimes in hybrid inflation

Extended numerical investigation showed that there ex-
ists a critical value of �2, �2

crit ’ 0:13� such that ns > 1
provided �2 <�2

crit.
For �2 >�2

crit we find both regimes, ns > 1 and ns < 1.
This property is valid for all initial values of the inflaton
compatible with the restrictions NT 
 60 and one-inflaton
fluctuations. Otherwise, if the field � is relevant at horizon
exit we should also include its contribution to the density
fluctuations. Such calculation is beyond the scope of the
present work where we concentrate on single inflaton
fluctuations.

The larger is �2, the earlier inflation ends, the earlier
horizon exit happens and the large is � at horizon exit. That
is, increasing �2 decreases ns. This explains why we
necessarily find ns < 1 for �2 >�2

crit.
For �2 >�2

crit we find that ns > 1 for ��0�>��0�crit.
That is, increasing ��0�, increases ns. This is so because
the larger is ��0�, the larger is NT since NT � ��0�2 [see
Eqs. (6.6) and (6.7)]. Then, the larger is (NT � 50) the
smaller is � at horizon exit and the larger is ns.

In all cases, (both�2 >�2
crit and�2 <�2

crit) for �! 1
we always find ns ! 1, r! 0 and dns

d lnk! 0.
Figures 12–23 show the observables ns, r and the run-

ning index dns=d lnk as functions of � and ns for �2 �
0:05�, �2 � 0:13� and �2 � 1:7�. A complete picture
for hybrid inflation emerges covering two different, blue
tilted and red tilted, regimes. We find that for all the
observables, the shape of the curves depends crucially on
the mass parameter �̂2 of the � field and the (rescaled)
initial amplitude �̂�0� of the inflaton field.

We find three regimes according to the value of �̂2:
(i) �̂2 < 0:075. Here we always have ns > 1 and r has

one maximum as a function of ns (or �). ns mono-

tonically decreases with �. Figures 12 and 13 show
r vs ns for �2 � 0:05� and various values of �̂�0�.
r displays a maximum as a function of ns. In
addition, r grows with �̂�0� for �̂�0�< 0:5 while
it decreases with �̂�0� for �̂�0�> 0:5. The running
dns
d lnk behavior is qualitatively similar to the behavior
of r above described. The running dns

d lnk is here
positive and grows when ns grows.

(ii) 0:075< �̂2 < �̂2
crit ’ 0:13. Here we always have

ns > 1 and r monotonically grows with �. ns
monotonically decreases with � for �̂2 < 0:1
while it exhibits a maximum as a function of �
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FIG. 13. Hybrid inflation. The ratio r vs ns for �2 � 0:05�<
�2

crit, g
2 � 1

4 and 0:5
����
�
p
� ��0� � 2:4

����
�
p

. Notice that here r has
a maximum as a function of ns. In addition, ns > 1 for all values
of � and ��0� since �2 <�2

crit ’ 0:13�. r decreases with �̂�0�
for this range of �̂�0�.
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FIG. 12. Hybrid inflation. The ratio r vs ns for �2 � 0:05�<
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. Notice that here r has a
maximum as a function of ns. In addition, ns > 1 for all values of
� and �̂�0� since �2 <�2

crit ’ 0:13�. r increases with �̂�0� for
this range of �̂�0�.
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for �̂2 > 0:1. Figures 14 and 15 depict r and the
running dns

d lnk vs ns, respectively, for �̂2 � 0:13 ’
�̂2

crit. We see that the running dns
d lnk behavior is

qualitatively similar to the one of r.
(iii) �̂2 > 0:13 ’ �̂2

crit. Here ns > 1 for �̂�0�> �̂�0�crit

and ns < 1 for �̂�0�< �̂�0�crit.
The value of �̂�0�crit grows with �̂2: for �̂2 � 0:5,
we find �̂�0�crit � 2:7 and for �̂2 � 1:7, we find
�̂�0�crit � 5:8.
For �̂�0�< �̂�0�crit, ns monotonically increases
with � with values ns < 1. For �̂�0�> �̂�0�crit, ns
shows an absolute maximum, which is always
ns max > 1. The highest ns values concentrate and
narrow in the small � region. It must be noticed
that for each curve, [each �̂�0�], ns can take values

ns > 1 and ns < 1: even if ns max > 1, ns can be
below unit in the two sides of the curve, [see
Figs. 16 and 17].
The value ns � 1, is reached asymptotically for
large � from ns < 1 for both �̂�0�< �̂�0�crit and
�̂�0�> �̂�0�crit. In addition, the value ns � 1 with
0:2> r> 0:04 is found for a variety of values of �
and �̂�0�> �̂�0�crit as we see from Figs. 17, 19, and
21.

B. The ratio r in hybrid inflation

The ratio r in Figs. 18 and 19 exhibits an oscillatory
pattern and two different regimes:
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FIG. 17. Hybrid inflation. The index ns vs � for �2 � 1:7�>
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. Notice
that here we have both ns > 1 and ns < 1 depending on the
values of � and �̂�0�. All curves reach asymptotically ns � 1 for
�! 1.
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Notice that here dns=d lnk > 0 for all values of � and ��0�. It
exhibits a shape similar to r vs ns [see Fig. 13].
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For �̂�0�< �̂�0�crit, (Fig. 18) r decreases monotonically
reaching very small values for large �. For �̂�0�< �̂�0�crit,
r does not feature any oscillation.

For �̂�0�> �̂�0�crit, r decreases with �, (Fig. 19) r has
an absolute minimum rmin and then grows until a maximum,
rmax. The oscillations show up and concentrate with grow-
ing amplitude for small � for high �̂�0�, rmin and rmax shift
towards the smaller � with increasing �̂�0�; rmin decreases,
and rmax increases, for increasing �̂�0�. The convexity of
the curve for small � increases for decreasing �̂�0�.

For �̂�0�> �̂�0�crit, each curve [each �̂�0�] shows for r a
oscillatory behavior with three clear parts: (1) the asymp-
totic part of monotonically decreasing r for large � at the
right of rmax; (2) the increasing part at the left of rmax;
(3) the sharp decreasing part for small � at the left of rmin.
In the minima, rmin can be extremely small for small �,
which is a new feature in hybrid inflation.

In the asymptotic regime of large �, r does not feature
any oscillation. All curves [for all �̂�0�] coalesce into r �
0 for �! 1.

There are three distinct regimes: small �, intermediate
� and large �. The new oscillatory behavior for high and
intermediate �̂�0�> �̂�0�crit is in the region of small and
intermediate �. The monotonically decreasing behavior
for low �̂�0�< �̂�0�crit is in the asymptotic region of large
�.

The highest values of r appear for small � whatever be
the hybrid regime; for such high values of r both regimes
�̂�0�< �̂�0�crit and �̂�0�> �̂�0�crit superpose. From such
high values, r decreases sharply until its minimum rmin in
the small � region for �̂�0�> �̂�0�crit; or r decreases
monotonically reaching asymptotically the large � regime
for �̂�0�< �̂�0�crit. The low values of r for low � are a
totally new feature in hybrid inflation.

C. The running index dns=d lnk in hybrid inflation

The curves of the running index dns=d lnk Figs. 15, 22,
and 23 show new features in two different regimes.

For �̂�0�> �̂�0�crit, the running index dns=d lnk shows a
similar shape as r and is essentially positive. It oscillates
with at least one maximum and one or two minima and
three different components: (1) the asymptotic part of
monotonically decreasing running with increasing �, at
the right of the maximum, going to zero in this regime;
(2) the increasing running with �, which is a new feature in
hybrid inflation, and (3) the sharp decreasing of the running
until its minimum value for small �. The highest running
appears for small � as in the known hybrid regime. The
lower running values for small �, as well as the oscilla-
tions for small and intermediate �, are totally new.

For low �̂�0�< �̂�0�crit the running index does not ex-
hibit any oscillation. Both for �̂�0�< �̂�0�crit and �̂�0�>
�̂�0�crit dns=d lnk grows with � until it reaches its maxi-
mum and then decreases monotonically with �. dns=d lnk
vanishes asymptotically for large � without any oscilla-
tion. This is a totally new feature for hybrid inflation.

Thus, hybrid inflation describes both dns=d lnk > 0 and
dns=d lnk < 0. It must be noticed that dns=d lnk < 0 can
reach very low values for small � which is a totally new
feature in hybrid inflation.

In summary, the new features for the running index in
hybrid inflation are: both positive and negative running,
increasing of the running with �, transition from positive
to negative running passing through zero running when �
grows.
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FIG. 18. Hybrid inflation. The ratio r vs � for �2 � 1:7�>
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monotonically with � in this regime ��0�<��0�crit and asymp-
totically vanishes for �! 1.
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totically vanishes for �! 1 with no oscillations. The oscilla-
tions show up and concentrate with increasing amplitude for
small �.
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D. r vs ns. confrontation of hybrid inflation to the three
years WMAP data

r vs ns in Figs. 20 and 21 depicts a oscillatory behavior
clearly showing the two regimes: �̂�0�> �̂�0�crit corre-
sponding mainly to ns > 1, although it also covers a small
portion of ns < 1, and �̂�0�< �̂�0�crit for which ns is
entirely red tilted.

All curves end [�̂�0�< �̂�0�crit], or start [�̂�0�>
�̂�0�crit], at ns � 1, which is the fixed point for all �̂�0�,
with three different behaviors:

(1) the sharp decreasing of r in the range ns < 1, ap-
proaching ns � 1 as the end point, this is for �̂�0�<

�̂�0�crit, in which r can take high values for small ns,
(ns near 0.95).

(2) the monotonically decreasing of r with ns at the
right of rmax, for �̂�0�> �̂�0�crit, in which r vanishes
asymptotically for ‘‘high‘‘ ns, (ns > 1:07).

(3) The new hybrid behavior for high �̂�0�> �̂�0�crit in
between the above two regimes, in which r shows a
maximum and a minimum between two sharp de-
creasing and increasing ‘‘arms‘‘, lying at ns < 1 and
ns > 1 respectively. rmin decreases and rmax in-
creases as increasing �̂�0�. All rmax lie in the red
tilted regime ns < 1. All rmin lie in the blue tilted
regime ns > 1.
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FIG. 20. Hybrid inflation. The ratio r vs ns for �2 � 1:7�>
�2

crit, g
2 � 1

4 and 2:7
����
�
p
� ��0� � 5:7

����
�
p
’ ��0�crit. Notice that

here ns < 1 for all values of � and this range of �̂�0�. We see
that 0:2> r > 0:14 for the interval 0:952< ns < 0:97.
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FIG. 21. Hybrid inflation. The ratio r vs ns for �2 � 1:7�>
�2

crit, g
2 � 1

4 and ��0�crit ’ 5:7
����
�
p
� ��0� � 13:7

����
�
p

. Notice
that we have here both ns > 1 and ns < 1 depending on the
values of � and �̂�0�. All curves end [�̂�0�< �̂�0�crit] or start
[�̂�0�> �̂�0�crit] at ns � 1 which is the fixed point for all values
of �̂�0�.

-0.0012

-0.001

-0.0008

-0.0006

-0.0004

-0.0002

 0

 0.0002

 0.0004

 0.95  0.955  0.96  0.965  0.97  0.975  0.98  0.985  0.99  0.995  1

(0) = 2.7

(0) = 3.3

(0) = 3.7

(0) = 4.1

(0) = 4.5

(0) = 4.7

(0) = 5.1

(0) = 5.3

(0) = 5.7

FIG. 22. Hybrid inflation. The running dns=d lnk vs ns for
�2 � 1:7�>�2

crit, g2 � 1
4 and 1:9

����
�
p
� ��0� � 5:7

����
�
p
’

��0�crit. Notice that we have here both positive and negative
running dns=d lnk depending on the values of � and �̂�0�. Most
values of the running are negative in this regime. For 0:952<
ns < 0:97, we have �0:001< dns=d lnk < 0.
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FIG. 23. Hybrid inflation. The running dns=d lnk vs ns for
�2 � 1:7�>�2

crit, g2 � 1
4 and ��0�crit ’ 5:7
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�
p
� ��0� �

13:7
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p

. Notice that we have here both positive and negative
running dns=d lnk depending on the values of � and �̂�0�.
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For �̂�0�> �̂�0�crit, all curves go towards ns � 1, r � 0.
Most of each curve lies in the ns > 1 region, r monotoni-
cally decreases with ns in the range ns < 1 from the
maximum rmax going towards r � 0 for ns ! 1. For
�̂�0�< �̂�0�crit the curves pill up in the ns < 1 region
with almost the same slope, r sharply decreases in this
region.

The curves for �̂�0�< �̂�0�crit pill up in the ns < 1
region with almost the same slope, r sharply decreases in
this region.

All the blue tilted values of �ns; r� in the domain 1<
ns < 1:15; 0< r< 0:2 are realized by hybrid inflation.

The red tilted regime in hybrid inflation can only be
realized for �2 >�2

crit ’ 0:13�. Moreover, the possible

values of �ns; r� are in the upper-right quadrant as shown
in Fig. 24.

We see that hybrid inflation in the blue tilted regime
ns > 1 is strongly disfavored [Eq. (4.2)] [5]. That is, hybrid
inflation in the regime �̂2 < �̂2

crit is strongly disfavored as
well as hybrid inflation in the regime �̂2 > �̂2

crit with
�̂�0�> �̂�0�crit.

Hybrid inflation in the red tilted regime �̂2 > �̂2
crit and

�̂�0�< �̂�0�crit fulfills the value for ns Eq. (4.2), as well as
the bound on the ratio r Eq. (4.3). We can read from Fig. 20
that

 0:2> r < 0:14 for 0:952< ns < 0:97:

In addition, we find in Fig. 22 negative values for the
running in this range, that is:

 � 0:001< dns=d lnk < 0 for 0:952< ns < 0:97:

There are clearly two regions which are not covered by
hybrid inflation with only one inflaton field, neither by new
inflation as shown in Fig. 24.

Simple single-field inflation models have been recently
studied within a numerical approach [15]. In ref. [16]
cosmological data are fitted with the help of a Markov
Chain Monte Carlo analysis.

There is an interplay between the bounds of neutrino
masses and the sign of (ns � 1). A nonzero neutrino mass
decreases the power in the small scales (large wavenum-
bers k). The same happens if ns becomes smaller than unit.
Therefore, if ns < 1, the power spectrum permits more
stringent tests of the neutrino masses [17]. The effect of
neutrino masses for small scales ns > 1 can be cancelled
by a spectral index ns > 1.
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