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Abstract
In this note we consider Dirichlet boundary value problem on a half line. Using critical point
theory and Mountain Pass Theorem, we prove the existence of two nontrivials solutions.
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I INTRODUCTION

In this work is concerned with the following boundary value problem (BVP for short) on the
half-line{

− (p(t)u′(t))′ = λf(t, u(t)), a.e. t > 0,
u(0) = u(+∞) = 0,

(1)

where λ > 0 be a numerical parameter and f : [0,+∞)×R −→ R is a Carathéodory function.

The coefficient p : [0,+∞) −→ (0,+∞) satisfies
1

p
∈ L1(0,+∞), and

∫ +∞

0

(∫ +∞

t

1

p(s)
ds

)
dt < +∞.

This paper is devted to the generalization of problem in [9], when we consider the problem in
the half-line.
Define the space

H1
0,p(0,+∞) =

{
u ∈ AC([0,+∞), R) | u(0) = u(+∞) = 0,

√
pu′ ∈ L2(0,+∞)

}
.

Take v ∈ H1
0,p(0,+∞), multiply the equation in problem (1) by v, and then integrate over

(0,+∞), we get ∫ +∞

0

p(t)u′(t)v′(t)dt = λ

∫ +∞

0

f(t, u(t))v(t)dt.

This leads to the natural concept of weak solution for problem (1).

Definition 1: We say that a function u ∈ H1
0,p(0,+∞) is a weak solution of problem (1) if∫ +∞

0

p(t)u′(t)v′(t)dt− λ

∫ +∞

0

f(t, u(t))v(t)dt = 0,

1

mailto:


for all v ∈ H1
0,p(0,+∞).

In order to study problem (1), we consider the functional J : H1
0,p(0,+∞) −→ R defined by

J(u) =
1

2

+∞∫
0

p(t)u′2(t)dt− λ

∫ +∞

0

F (t, u(t))dt, (2)

where
F (t, u) =

∫ u

0

f(t, s)ds.

Lemma 1. H1
0,p(0,+∞) embeds in L2(0,+∞).

Proof. For u ∈ H1
0,p(0,+∞), we have

|u(t)| =
∣∣∣∣∫ +∞

t

u′(s)ds

∣∣∣∣ =
∣∣∣∣∣
∫ +∞

t

√
p(s)u′(s)

1√
p(s)

ds

∣∣∣∣∣ .
Then, by the Cauchy-Schwartz inequality

|u(t)|2 ≤
(∫ +∞

t

p(s)u′2(s)ds

)(∫ +∞

t

1

p(s)
ds

)

≤
(∫ +∞

0

p(s)u′2(s)ds

)(∫ +∞

t

1

p(s)
ds

)
.

Hence ∫ +∞

0

|u(t)|2dt ≤
(∫ +∞

0

(

∫ +∞

t

1

p(s)
ds)dt

)(∫ +∞

0

p(s)|u′(s)|2ds
)
,

that is
∥u∥L2 ≤

√
M∥√pu′∥L2 .

Theorem 1. (a) The operator

T : H1
0,p(0,+∞) −→ T (H1

0,p(0,+∞)) ⊂ L2(0,+∞)× L2(0,+∞) : = L2
2(0,+∞)

u −→ T (u) = (u,
√
pu′)

is an isometric isomorphism.
(b) H1

0,p(0,+∞) is a reflexive space.

Proof. (a) It is clear that T is a linear operator and that T conserves norms, i.e.,

∀u ∈ H1
0,p(0,+∞), ∥Tu∥L2

2
= ∥u∥p.

Indeed

∥Tu∥L2
2

= ∥(u,√pu′)∥L2
2

= ∥u∥L2 + ∥√pu′∥L2

= ∥u∥p.
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(b) Since L2(0,+∞)) is a reflexive Banach space, the cartesian product L2
2(0,+∞)) is also a

reflexive Banach space with respect to the norm

∥u∥L2
2
= ∥u1∥L2 + ∥u2∥L2 , where u = (u1, u2) ∈ L2

2(0,+∞).

From part (a), T (H1
0,p(0,+∞)) is a closed subspace of L2

2(0,+∞), the space T (H1
0,p(0,+∞))

is reflexive. Consequently H1
0,p(0,+∞) is also reflexive.

Notice that H1
0,p(0,+∞) is a Banach space equipped with the norm

∥u∥0,p =

√∫ +∞

0

p(t)u′2(t)dt+

∫ +∞

0

u2(t)dt,

or the equivalent norm
∥u∥p = ∥u∥L2 + ∥√pu′∥L2 .

Moreover the space H1
0,p(0,+∞) is reflexive.

Theorem 2. [8] On H1
0,p(0,+∞), the quantity ∥u∥ =

√∫ +∞
0

p(t)u′2(t)dt is a norm which is
equivalent to the H1

0,p(0,+∞)-norm.

Lemma 2. (H1
0,p(0,+∞), ∥ · ∥) embeds in (C0[0,+∞), ∥u∥∞), where C0[0,+∞) = {u ∈

C([0,+∞), R) | limt→+∞ u(t) = 0} and ∥u∥∞ = supt∈[0,+∞) |u(t)|, and we have

∥u∥∞ ≤ M∥u∥ where M =

√∥∥∥∥1p
∥∥∥∥
L1

. (3)

Theorem 3. The embedding

H1
0,p(0,+∞) ↪→ C0[0,+∞) (4)

is compact.

Let E be a real reflexive Banach space, and write Bρ for the closed ball centered at 0 with radius
ρ in E and ∂Bρ = {u ∈ E| ∥u∥ = ρ} for the boundary of Bρ.
We will employ the following conditions.
(H1) Φ : E −→ R is a convex, continuously Fréchet differentiable functional

with derivative φ : E −→ E∗ ;
(H2) H : E −→ R is a continuously Fréchet differentiable functional with

derivative h : E −→ E∗;
(H3) the operator h : E −→ E∗ is compact;
(H4) there exist constants α, α1 > 1 , γ > 0 such that

γ∥v∥αE ≤ ⟨φ(v), v⟩ for all v ∈ E

and

lim
∥u∥E→+∞

sup
Φ(u)

∥u∥α1
E

= +∞;

(H5) H is a convex functional.
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⟨., .⟩ denotes the action of a derivative on a suitable element or else a duality pairing.
We will determine such a value λ∗ > 0 that for each λ ∈ (0, λ∗] the corresponding Euler action
functional J : E −→ R

J(u) = Φ(u)− λH(u),

has a critical point on Bρ. This implies the solvability of

φ(u) = λh(u), u ∈ E. (5)

Theorem 4. [9] Assume that H1,H2,H5 are satisfied. Fix some λ∗ > 0 and let u0, v ∈ E be
such that

J(u0) ≤ J(v) and φ(v) = λ∗h(u0). (6)

Then u0 is a critical point to J , and thus it solves (5).

Theorem 5. [9] Let E be an infinite dimensional reflexive Banach space and let Bρ be fixed.
Assume that H1 −H5 are satisfied. Then there exists λ∗ > 0 such that for each λ ∈ (0, λ∗]
there exists u0 ∈ Bρ with

J(u0) = inf
u∈Bρ

J(u) (7)

and such that u0 is a critical point to J , and thus it solves (5).

Theorem 6. [9] Let E be an infinite dimensional reflexive Banach space. Assume that H1−H5

are satisfied. Take some ρ > 0. Then there exists λ∗ > 0 such that for each λ ∈ (0, λ∗] there
exists u0 ∈ Bρ with

J(u0) = inf
u∈Bρ

J(u) (8)

and such that u0 is a critical point of J , and thus it solves (5). If for some v ∈ Bρ it holds that
J(v) < 0 and J(0) = 0 or else h(0) ̸= 0 and J(0) = 0, then u0 is non-trivial.
Assume additionally that there exists λ∗

1 ≤ λ∗ such that for all λ ∈ (0, λ∗
1)

(a) J satisfies the PS-condition,

(b) J(0) < infu∈∂Bρ1
J(u) for some ρ1 > ∥u0∥E ,

(c) there exists w ∈ E \Bρ1 with J(w) ≤ 0.
Then for all λ ∈ (0, λ∗

1) the functional J has two nontrivial critical points, namely u0 and
another non-zero critical point z0 different from u0.

II APPLICATIONS

We will employ the following hypotheses.
(A1) There exist positive functions a, b with a, b ∈ L1(0,+∞) and σ > 1 such that

|f(t, u)| ≤ a(t)|u|σ + b(t), for a.e. t ∈ [0,+∞) and all u ∈ R,

(A2) there exists functions c1, c2 : [0,+∞) −→ (0,+∞) with c1, c2 ∈ L1(0,+∞), and θ > 2
such that

(a) θF (t, u) ≤ uf(t, u), for a.e. t ∈ [0,+∞) and all u ∈ R\{0},

(b) F (t, u) ≥ c1(t)|u|θ − c2(t), for a.e. t ≥ 0 and all u ∈ R,
(A3) the function u 7−→ F (t, u) is convex on R for a.e. t ∈ [0, +∞).
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Theorem 7. Let λ > 0 be fixed. The functional J is well-defined and continuously differentiable
on H1

0,p(0,+∞). The derivative of J at any u ∈ H1
0,p(0,+∞) has the following form

⟨J ′(u), v⟩ =
+∞∫
0

p(t)u′(t)v′(t)dt− λ

+∞∫
0

f(t, u(t))v(t)dt, ∀v ∈ H1
0,p(0,+∞).

In particular, u ∈ H1
0,p(0,+∞) is a solution of problem (1) if and only if u is a critical point of

J.

2.1 Existence of solution by the mountain pass lemma

Lemma 3. Suppose that (A1), (A2(a)) hold. Then for any λ > 0, the functional J given by (2)
satisfies the PS-condition.

proof. Let us take a sequence {uk}∞k=1 ⊂ H1
0,p(0,+∞) such that{J(uk)}∞k=1 is bounded and

J ′(uk) → 0, as k → ∞. We shall show that {uk}k=∞
k=1 has a convergent subsequence.

Since J ′(uk) −→ 0, we see that for some ϵ > 0, there exists k0 with ∥J ′(uk)∥ ≤ ϵ for k ≥ k0.
Note that for k ≥ k0

|⟨J ′(uk), uk⟩| ≤ ϵ∥uk∥

and because we have

⟨J ′(uk), uk⟩ =
+∞∫
0

p(t) (u′
k(t))

2
dt− λ

+∞∫
0

f(t, uk(t))uk(t)dt,

then

−λ

+∞∫
0

F (t, uk(t))dt ≥ −ϵ

θ
∥uk∥ −

1

θ
∥uk∥2.

Since {J(uk)}∞k=1 is bounded, there exists a constant C such that |J(uk)| ≤ C, ∀k ∈ N. Using
the above estimates, we obtain

C ≥
(
θ − 2

2θ

)
∥uk∥2 −

ϵ

2
∥uk∥.

Since θ > 2, then the sequence (uk) is bounded in H1
0,p(0,+∞) i.e., ∃M2 > 0 such that

∥uk∥ ≤ M2, ∀k ∈ N. Next, we prove that (uk) converges strongly to some u in H1
0,p(0,+∞).

Since (uk) is bounded in the reflexive Banach space H1
0,p(0,+∞), there exists a subsequence

of (uk) still denoted (uk) such that (uk) converges weakly to some u in H1
0,p(0,+∞), and

∥u∥ ≤ M2. Then (uk) converges to u in C0[0,+∞) by Lemma 2.
Since lim

k−→+∞
J ′ (uk) = 0 and (uk) converges weakly to some u, we get

lim
k−→+∞

⟨J ′(uk)− J ′(u), uk − u⟩ −→ 0 (9)

and

⟨J ′(uk)− J ′(u), uk − u⟩ = ∥uk − u∥2 − λ

+∞∫
0

(f(t, uk(t))− f(t, u(t))) (uk(t)− u(t)) dt.
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Since uk → u in C0[0,+∞), ∀t ∈ [0,+∞), then uk(t) → u(t) for t ∈ [0,+∞), and since f is
Carathéodory, we have
f (t, uk(t)) → f (t, u(t)) as k → +∞ p.p. t ∈ [0,+∞),
and using (A1) we have

|f(t, uk(t))| ≤ Mσ
2 M

σa(t) + b(t).
. (10)

Since: a ∈ L1(0,+∞), b ∈ L1(0,+∞), then

Mσ
2 M

σa+ b ∈ L1(0,+∞). (11)

By the Lebesgue dominated convergence theorem, we obtain

lim
k−→+∞

+∞∫
0

f(t, uk(t))dt =

+∞∫
0

f(t, u(t))dt. (12)

Then (9) and (12) imply that {uk}∞n=1 is strongly convergent.

Lemma 4. Suppose that (A1), (A2(b)) hold. There exists λ∗
1 > 0 such that for any λ ≤ λ∗

1

there exist numbers ρ1, α > 0 such that
(1) there are positive constants ρ1, α such that J(u) ≥ α for all u ∈ H1

0,p(0,+∞) with ∥u∥ =
ρ1.
(2) There exists an element w ∈ H1

0,p(0,+∞) with ∥w∥ > ρ1

and such that J(w) < 0.

proof. Thus in (2)

J(u) =
1

2
∥u∥2 − λ

+∞∫
0

F (t, u(t))dt.

We first verify that J satisfies assumption (1) in Lemma 4.

Define β1 :=
1

σ + 1
Mσρσ1∥a∥L1 + ∥b∥L1 . Then we see that for any u ∈ ∂B(0, ρ1) with ∥u∥ =

ρ1 = 2M, (2) and (A1) give ∣∣∣∣∫ +∞

0

F (t, u(t))dt

∣∣∣∣ ≤ Mρ1β1.

Put λ∗
1 =

1

β1

and fix λ ∈ (0, λ∗
1) .

Moreover,

J(u) ≥ 2M2(1− λβ1),

this implies that assumption (1) holds if we take ρ1 = 2M and α = 2M2(1− λβ1).
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Now (A2) guarantees that for some w0 ∈ H1
0,p(0,+∞) with w0 ̸= 0 and s ∈ R+, we have the

following estimation

J(sw0) ≤ 1

2
s2∥w0∥2 − λsθ

+∞∫
0

c1(t)|w0(t)|θdt+ λ

+∞∫
0

c2(t)dt.

Since θ > 2 we see that J(sw0) → −∞ as s −→ +∞. Thus there is some s0 such that
w = s0w0 we have J(w) < 0.
Therefore assumption (2) in Lemma 4 is also satisfied.

Now the mountain pass lemma allows us to formulate the following existence result.

Theorem 8. Suppose also that (A1), (A2) hold. Then there existe λ∗
1 > 0 such that for all

λ ∈ (0, λ∗
1), problem (1) has at least one nontrivial solution.

Example 1

Consider the boundary value problem
− (etu′(t))

′
= λ

(
3u3 + 2u

(20 + t2)
√
u2 + 1

)
,

u(0) = u(+∞) = 0.

(13)

It can be easily checked that all conditions of Theorem 8 are satisfied with

f(t, u) =
3u3 + 2u

(20 + t2)
√
u2 + 1

, σ = 3, θ = 2.1,

a(t) =
1

1 + t2
, b(t) =

5

t2 + 1
, p(t) = et,

c1(t) =
1

20 + t2
, c2(t) =

4

10
e−t,

and

F (t, u) =
u2
√
u2 + 1

20 + t2
− 1

10
e−t

Then there is some λ∗
1 > 0 such that for all λ ∈ (0, λ∗

1) , problem (13) has at least one nontrivial
solutions.

2.2 Existence of solution by the critical point theorem on a closed ball

Theorem 9. Let B(0, ρ), fixed. Assume that A1,A3 are satisfied and that f(t, 0) ̸= 0, Then
there exist λ∗ > 0 such that for all λ ∈ (0, λ∗), there existe u0 ∈ B(0, ρ) with

J(u0) = inf
u∈Bρ

J(u) (14)

and such that u0 is a critical point, and thus it solves (1) .
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2.3 Existence of two solutions

Concerning the multiple solutions, we have the main result of this section where we need only
that F is convex in addition to assumptions leading to a mountain pass solution.

Theorem 10. Assume that A1 −A3 are satisfied and that f(t, 0) ̸= 0 . Then there exist 0 <
λ∗
1 ≤ λ∗ such that for all 0 < λ ≤ λ∗

1, problem (1) has at least two nontrivial solutions.
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