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In this note we consider Dirichlet boundary value problem on a half line. Using critical point theory and Mountain Pass Theorem, we prove the existence of two nontrivials solutions.

I INTRODUCTION

In this work is concerned with the following boundary value problem (BVP for short) on the half-line -(p(t)u ′ (t)) ′ = λf (t, u(t)), a.e. t > 0, u(0) = u(+∞) = 0,

where λ > 0 be a numerical parameter and f : [0, +∞) × R -→ R is a Carathéodory function.

The coefficient p : [0, +∞) -→ (0, +∞) satisfies 1 p ∈ L 1 (0, +∞), and

+∞ 0 +∞ t 1 p(s) ds dt < +∞.
This paper is devted to the generalization of problem in [START_REF] Galewski | Multiple Solutions to a Dirichlet Problem on the Sierpinski Gasket[END_REF], when we consider the problem in the half-line. Define the space

H 1 0,p (0, +∞) = u ∈ AC([0, +∞), R) | u(0) = u(+∞) = 0, √ pu ′ ∈ L 2 (0, +∞) .
Take v ∈ H 1 0,p (0, +∞), multiply the equation in problem (1) by v, and then integrate over (0, +∞), we get

+∞ 0 p(t)u ′ (t)v ′ (t)dt = λ +∞ 0 f (t, u(t))v(t)dt.
This leads to the natural concept of weak solution for problem [START_REF] Arthurs | Complementary Variational Principles[END_REF].

Definition 1: We say that a function u ∈ H 1 0,p (0, +∞) is a weak solution of problem (1) if +∞ 0 p(t)u ′ (t)v ′ (t)dt -λ +∞ 0 f (t, u(t))v(t)dt = 0,
for all v ∈ H 1 0,p (0, +∞).

In order to study problem (1), we consider the functional J : H 1 0,p (0, +∞) -→ R defined by

J(u) = 1 2 +∞ 0 p(t)u ′2 (t)dt -λ +∞ 0 F (t, u(t))dt, (2) 
where

F (t, u) = u 0 f (t, s)ds. Lemma 1. H 1 0,p (0, +∞) embeds in L 2 (0, +∞). Proof. For u ∈ H 1 0,p (0, +∞), we have |u(t)| = +∞ t u ′ (s)ds = +∞ t p(s)u ′ (s) 1 p(s) ds .
Then, by the Cauchy-Schwartz inequality

|u(t)| 2 ≤ +∞ t p(s)u ′2 (s)ds +∞ t 1 p(s) ds ≤ +∞ 0 p(s)u ′2 (s)ds +∞ t 1 p(s)
ds .

Hence +∞ 0 |u(t)| 2 dt ≤ +∞ 0 ( +∞ t 1 p(s) ds)dt +∞ 0 p(s)|u ′ (s)| 2 ds , that is ∥u∥ L 2 ≤ √ M ∥ √ pu ′ ∥ L 2 .
Theorem 1. (a) The operator

T : H 1 0,p (0, +∞) -→ T (H 1 0,p (0, +∞)) ⊂ L 2 (0, +∞) × L 2 (0, +∞) : = L 2 2 (0, +∞) u -→ T (u) = (u, √ pu ′ )
is an isometric isomorphism.

(b) H 1 0,p (0, +∞) is a reflexive space. Proof. (a) It is clear that T is a linear operator and that T conserves norms, i.e.,

∀ u ∈ H 1 0,p (0, +∞), ∥T u∥ L 2 2 = ∥u∥ p . Indeed ∥T u∥ L 2 2 = ∥(u, √ pu ′ )∥ L 2 2 = ∥u∥ L 2 + ∥ √ pu ′ ∥ L 2 = ∥u∥ p .
(b) Since L 2 (0, +∞)) is a reflexive Banach space, the cartesian product L 2 2 (0, +∞)) is also a reflexive Banach space with respect to the norm

∥u∥ L 2 2 = ∥u 1 ∥ L 2 + ∥u 2 ∥ L 2 , where u = (u 1 , u 2 ) ∈ L 2 2 (0, +∞).
From part (a), T (H 1 0,p (0, +∞)) is a closed subspace of L 2 2 (0, +∞), the space T (H 1 0,p (0, +∞)) is reflexive. Consequently H 1 0,p (0, +∞) is also reflexive. Notice that H 1 0,p (0, +∞) is a Banach space equipped with the norm

∥u∥ 0,p = +∞ 0 p(t)u ′2 (t)dt + +∞ 0 u 2 (t)dt,
or the equivalent norm

∥u∥ p = ∥u∥ L 2 + ∥ √ pu ′ ∥ L 2 .
Moreover the space H 1 0,p (0, +∞) is reflexive.

Theorem 2. [8] On H 1 0,p (0, +∞), the quantity ∥u∥ = +∞ 0 p(t)u ′2 (t)dt is a norm which is equivalent to the H 1 0,p (0, +∞)-norm. Lemma 2. (H 1 0,p (0, +∞), ∥ • ∥) embeds in (C 0 [0, +∞), ∥u∥ ∞ ), where C 0 [0, +∞) = {u ∈ C([0, +∞), R) | lim t→+∞ u(t) = 0} and ∥u∥ ∞ = sup t∈[0,+∞) |u(t)|, and we have ∥u∥ ∞ ≤ M ∥u∥ where M = 1 p L 1 . (3) 
Theorem 3. The embedding

H 1 0,p (0, +∞) → C 0 [0, +∞) (4) 
is compact.

Let E be a real reflexive Banach space, and write B ρ for the closed ball centered at 0 with radius ρ in E and ∂B ρ = {u ∈ E| ∥u∥ = ρ} for the boundary of B ρ . We will employ the following conditions.

(H 1 ) Φ : E -→ R is a convex, continuously Fréchet differentiable functional with derivative φ : E -→ E * ; (H 2 ) H : E -→ R is a continuously Fréchet differentiable functional with derivative h : E -→ E * ; (H 3 ) the operator h : E -→ E * is compact; (H 4 ) there exist constants α, α 1 > 1 , γ > 0 such that γ∥v∥ α E ≤ ⟨φ(v), v⟩ for all v ∈ E and lim ∥u∥ E →+∞ sup Φ(u) ∥u∥ α 1 E = +∞; (H 5 ) H is a convex functional.
Theorem 7. Let λ > 0 be fixed. The functional J is well-defined and continuously differentiable on H 1 0,p (0, +∞). The derivative of J at any u ∈ H 1 0,p (0, +∞) has the following form

⟨J ′ (u), v⟩ = +∞ 0 p(t)u ′ (t)v ′ (t)dt -λ +∞ 0 f (t, u(t))v(t)dt, ∀v ∈ H 1 0,p (0, +∞).
In particular, u ∈ H 1 0,p (0, +∞) is a solution of problem (1) if and only if u is a critical point of J.

Existence of solution by the mountain pass lemma

Lemma 3. Suppose that (A 1 ), (A 2 (a)) hold. Then for any λ > 0, the functional J given by ( 2) satisfies the PS-condition.

proof. Let us take a sequence {u k } ∞ k=1 ⊂ H 1 0,p (0, +∞) such that{J(u k )} ∞ k=1 is bounded and J ′ (u k ) → 0, as k → ∞. We shall show that {u k } k=∞ k=1 has a convergent subsequence. Since J ′ (u k ) -→ 0, we see that for some ϵ > 0, there exists

k 0 with ∥J ′ (u k )∥ ≤ ϵ for k ≥ k 0 . Note that for k ≥ k 0 |⟨J ′ (u k ), u k ⟩| ≤ ϵ∥u k ∥
and because we have

⟨J ′ (u k ), u k ⟩ = +∞ 0 p(t) (u ′ k (t)) 2 dt -λ +∞ 0 f (t, u k (t))u k (t)dt, then -λ +∞ 0 F (t, u k (t))dt ≥ -ϵ θ ∥u k ∥ - 1 θ ∥u k ∥ 2 .
Since {J(u k )} ∞ k=1 is bounded, there exists a constant C such that |J(u k )| ≤ C, ∀k ∈ N. Using the above estimates, we obtain

C ≥ θ -2 2θ ∥u k ∥ 2 - ϵ 2 ∥u k ∥.
Since θ > 2, then the sequence (u k ) is bounded in H 1 0,p (0, +∞) i.e., ∃M 2 > 0 such that ∥u k ∥ ≤ M 2 , ∀k ∈ N. Next, we prove that (u k ) converges strongly to some u in H 1 0,p (0, +∞). Since (u k ) is bounded in the reflexive Banach space H 1 0,p (0, +∞), there exists a subsequence of (u k ) still denoted (u k ) such that (u k ) converges weakly to some u in H 1 0,p (0, +∞), and ∥u∥ ≤ M 2 . Then (u k ) converges to u in C 0 [0, +∞) by Lemma 2. Since lim k-→+∞ J ′ (u k ) = 0 and (u k ) converges weakly to some u, we get

lim k-→+∞ ⟨J ′ (u k ) -J ′ (u), u k -u⟩ -→ 0 (9) 
and 

⟨J ′ (u k ) -J ′ (u), u k -u⟩ = ∥u k -u∥ 2 -λ +∞ 0 (f (t, u k (t)) -f (t, u(t))) (u k (t) -u(t)) dt. Since u k → u in C 0 [0, +∞), ∀t ∈ [0, +∞), then u k (t) → u(t) for t ∈ [0, +∞),
|f (t, u k (t))| ≤ M σ 2 M σ a(t) + b(t). . (10) 
Since: a ∈ L 1 (0, +∞), b ∈ L 1 (0, +∞), then

M σ 2 M σ a + b ∈ L 1 (0, +∞). (11) 
By the Lebesgue dominated convergence theorem, we obtain

lim k-→+∞ +∞ 0 f (t, u k (t))dt = +∞ 0 f (t, u(t))dt. (12) 
Then ( 9) and ( 12) imply that {u k } ∞ n=1 is strongly convergent. Lemma 4. Suppose that (A 1 ), (A 2 (b)) hold. There exists λ * 1 > 0 such that for any λ ≤ λ * 1 there exist numbers ρ 1 , α > 0 such that (1) there are positive constants ρ 1 , α such that J(u) ≥ α for all u ∈ H 1 0,p (0, +∞) with ∥u∥ = ρ 1 .

(2) There exists an element w ∈ H 1 0,p (0, +∞) with ∥w∥ > ρ 1 and such that J(w) < 0.

proof. Thus in (2)

J(u) = 1 2 ∥u∥ 2 -λ +∞ 0 F (t, u(t))dt.
We first verify that J satisfies assumption (1) in Lemma 4.

Define

β 1 := 1 σ + 1 M σ ρ σ 1 ∥a∥ L 1 + ∥b∥ L 1 .
Then we see that for any u ∈ ∂B(0, ρ 1 ) with ∥u∥ = ρ 1 = 2M, (2) and (A 1 ) give +∞ 0

F (t, u(t))dt ≤ M ρ 1 β 1 . Put λ * 1 = 1 β 1 and fix λ ∈ (0, λ * 1 ) . Moreover, J(u) ≥ 2M 2 (1 -λβ 1 ),
this implies that assumption (1) holds if we take ρ 1 = 2M and α = 2M 2 (1 -λβ 1 ). Now (A2) guarantees that for some w 0 ∈ H 1 0,p (0, +∞) with w 0 ̸ = 0 and s ∈ R + , we have the following estimation

J(sw 0 ) ≤ 1 2 s 2 ∥w 0 ∥ 2 -λs θ +∞ 0 c 1 (t)|w 0 (t)| θ dt + λ +∞ 0 c 2 (t)dt.
Since θ > 2 we see that J(sw 0 ) → -∞ as s -→ +∞. Thus there is some s 0 such that w = s 0 w 0 we have J(w) < 0.

Therefore assumption (2) in Lemma 4 is also satisfied. Now the mountain pass lemma allows us to formulate the following existence result.

Theorem 8. Suppose also that (A 1 ), (A 2 ) hold. Then there existe λ * 1 > 0 such that for all λ ∈ (0, λ * 1 ), problem (1) has at least one nontrivial solution.

Example 1

Consider the boundary value problem

       -(e t u ′ (t)) ′ = λ 3u 3 + 2u (20 + t 2 ) √ u 2 + 1 , u(0) = u(+∞) = 0. (13) 
It can be easily checked that all conditions of Theorem 8 are satisfied with

f (t, u) = 3u 3 + 2u (20 + t 2 ) √ u 2 + 1 , σ = 3, θ = 2.1, a(t) = 1 1 + t 2 , b(t) = 5 t 2 + 1 , p(t) = e t , c 1 (t) = 1 20 + t 2 , c 2 (t) = 4 10 e -t , and 
F (t, u) = u 2 √ u 2 + 1 20 + t 2 - 1 10 e -t
Then there is some λ * 1 > 0 such that for all λ ∈ (0, λ * 1 ) , problem (13) has at least one nontrivial solutions.

2.2 Existence of solution by the critical point theorem on a closed ball Theorem 9. Let B(0, ρ), fixed. Assume that A 1 , A 3 are satisfied and that f (t, 0) ̸ = 0, Then there exist λ * > 0 such that for all λ ∈ (0, λ * ), there existe u 0 ∈ B(0, ρ) with

J(u 0 ) = inf u∈Bρ J(u) (14) 
and such that u 0 is a critical point, and thus it solves (1) .

Existence of two solutions

Concerning the multiple solutions, we have the main result of this section where we need only that F is convex in addition to assumptions leading to a mountain pass solution.

Theorem 10. Assume that A 1 -A 3 are satisfied and that f (t, 0) ̸ = 0 . Then there exist 0 < λ * 1 ≤ λ * such that for all 0 < λ ≤ λ * 1 , problem (1) has at least two nontrivial solutions.

  and since f is Carathéodory, we have f (t, u k (t)) → f (t, u(t)) as k → +∞ p.p. t ∈ [0, +∞), and using (A 1 ) we have

⟨., .⟩ denotes the action of a derivative on a suitable element or else a duality pairing. We will determine such a value λ * > 0 that for each λ ∈ (0, λ * ] the corresponding Euler action functional J :

has a critical point on B ρ . This implies the solvability of

Theorem 4. [START_REF] Galewski | Multiple Solutions to a Dirichlet Problem on the Sierpinski Gasket[END_REF] Assume that H 1 , H 2 , H 5 are satisfied. Fix some λ * > 0 and let u 0 , v ∈ E be such that

Then u 0 is a critical point to J, and thus it solves (5).

Theorem 5. [START_REF] Galewski | Multiple Solutions to a Dirichlet Problem on the Sierpinski Gasket[END_REF] Let E be an infinite dimensional reflexive Banach space and let B ρ be fixed.

Assume that H 1 -H 5 are satisfied. Then there exists λ * > 0 such that for each λ ∈ (0, λ * ] there exists u 0 ∈ B ρ with

and such that u 0 is a critical point to J, and thus it solves (5).

Theorem 6. [START_REF] Galewski | Multiple Solutions to a Dirichlet Problem on the Sierpinski Gasket[END_REF] Let E be an infinite dimensional reflexive Banach space. Assume that H 1 -H 5 are satisfied. Take some ρ > 0. Then there exists λ * > 0 such that for each λ ∈ (0, λ * ] there exists u 0 ∈ B ρ with

and such that u 0 is a critical point of J, and thus it solves [START_REF] Brézis | Analyse Fonctionnelle, Théorie et Applications[END_REF]. If for some v ∈ B ρ it holds that J(v) < 0 and J(0) = 0 or else h(0) ̸ = 0 and J(0) = 0, then u 0 is non-trivial. Assume additionally that there exists λ * 1 ≤ λ * such that for all λ ∈ (0, λ * 1 ) (a) J satisfies the PS-condition, (b) J(0) < inf u∈∂Bρ 1 J(u) for some ρ 1 > ∥u 0 ∥ E , (c) there exists w ∈ E \ B ρ 1 with J(w) ≤ 0. Then for all λ ∈ (0, λ * 1 ) the functional J has two nontrivial critical points, namely u 0 and another non-zero critical point z 0 different from u 0 .

II APPLICATIONS

We will employ the following hypotheses.