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Abstract

We introduce and study the new combinatorial class of Dyck paths with air pockets.
We exhibit a bijection with the peakless Motzkin paths which transports several pattern
statistics and give bivariate generating functions for the distribution of patterns as peaks,
returns and pyramids. Then, we deduce the popularities and asymptotic expectations
of these patterns and point out a link between the popularity of pyramids and a special
kind of closed smooth self-overlapping curves, a subset of Fibonacci meanders. A similar
study is conducted for non-decreasing Dyck paths with air pockets.

Keywords: Dyck path, pattern distribution/popularity, Fibonacci meander

1 Introduction and notations

In combinatorics, lattice paths are widely studied. They have many applications in various
domains such as computer science, biology and physics [23], and they have very tight links
with other combinatorial objects such as directed animals, pattern avoiding permutations,
bargraphs, RNA structures and so on [4, 11, 23]. A classical problem in combinatorics is the
enumeration of these paths with respect to their length and other statistics [1, 2, 3, 7, 15, 16,
18, 20, 21]. In the literature, Dyck and Motzkin paths are the most often considered. They are
counted by the famous Catalan and Motzkin numbers (see A000108 and A001006 in Sloane’s
On-line Encyclopedia of Integer Sequences [22]). In 2005, Dyck paths with catastrophes have
been introduced by Krinik et al. in [13] in the context of queuing theory. They correspond to
the evolution of a queue by allowing some resets. The push (resp. pop) operation corresponds
to a step U “ p1, 1q (resp. D “ p1,´1q), and the reset operations are modeled by catastrophe
steps Dk “ p1,´kq ending on x-axis, k ě 2. Banderier and Wallner [1] study these paths by
providing enumerative results and limit laws.

In this paper, we introduce and study the paths with air pockets corresponding to a queue
evolution with partial reset operations that cannot be consecutive. These paths can also be
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viewed as airplane flights, sometimes showcasing turbulences that are known as air pockets,
where consecutive turbulences are considered to be one. More formally, a Dyck path with air
pockets is a nonempty lattice path in the first quadrant of Z2 starting at the origin, ending on
the x-axis, and consisting of up-steps U “ p1, 1q and down-steps Dk “ p1,´kq, k ě 1, where
two down steps cannot be consecutive. For short, we set D “ D1. The length of a Dyck path
with air pockets is the number of its steps. Let An be the set of n-length Dyck paths with
air pockets. By definition A0 “ A1 “ ∅ and we set A “

Ť

ně2An.

Figure 1: The Dyck path with air pockets UUDUD2UUUD2UD2UUD2.

A Dyck path with air pockets is called prime whenever it ends with Dk, k ě 2, and
returns to the x-axis only once. The set of all prime Dyck paths with air pockets of length n is
denoted Pn. Notice that UD is not prime so we set P “

Ť

ně3Pn. If α “ UβUDk P Pn, then
2 ď k ă n, β is a (possibly empty) prefix of a path in A, and we define the Dyck path with
air pockets α5 “ βUDk´1, called the ‘lowering’ of α. For example, the path α “ UUDUUD3

is prime, and α5 “ UDUUD2. The map α ÞÑ α5 is clearly a bijection from Pn to An´1 for all
n ě 3, and we denote by γ7 the inverse image of γ P An´1 (α7 is a kind of ‘elevation’ of α,
drawing inspiration for the term from Deutsch’s definition of elevated Dyck paths [7]). Any
Dyck path with air pockets α P A can be decomposed depending on its second-to-last return
to the x-axis : either (i) α “ UD, or (ii) α “ βUD with β P A, or (iii) α P P , or pivq α “ βγ
where β P A and γ P P. So, if Apxq “

ř

ně2 anx
n where an is the cardinality of An, and

P pxq “
ř

ně3 pnx
n where pn is the cardinality of Pn, then we have P pxq “ xApxq and the

previous decompositions imply the functional equation Apxq “ x2 `x2Apxq`xApxq`xApxq2,
and

Apxq “
1 ´ x ´ x2 ´

?
x4 ´ 2x3 ´ x2 ´ 2x ` 1

2x
(1)

which generates the generalized Catalan numbers (see A004148 in [22]), which among other
things, counts the peakless Motzkin paths. The first values of an for 2 ď n ď 10 are
1, 1, 2, 4, 8, 17, 37, 82, 185. An asymptotic approximation for the coefficient of xn in the series
expansion of Apxq is

a

14
?

5 ´ 30

2n
?
πnp3 ´

?
5q

ˆ

?
5 ` 3

2

˙n

.

If a Dyck path with air pockets α P An has k ě 1 peaks (a peak is an occurrence UDi

for some i ě 1), then it contains n ´ k up-steps. If we ‘unfurl’ all of its down-steps Di,
i ě 1, into runs Di of i consecutive D-steps, then we obtain a Dyck path of length 2pn ´ kq

having k peaks. This gives rise to a bijection between Dyck paths of semilength n ´ k
with k peaks and n-length Dyck paths with air pockets with k peaks. Hence, the number
of n-length Dyck paths with air pockets with k peaks is equal to the Narayana number
Npn ´ k, kq “ 1

n´k

`

n´k
k

˘`

n´k
k´1

˘

(see [7]).
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In the following, a pattern consists of consecutive steps in a path, and a statistic s is an
integer-valued function from a set S of paths. To a given pattern p, we associate the pattern
statistic p : S Ñ N where ppaq is the number of occurrences of the pattern p in a P S (we use
the boldface to denote statistics). For example, the statistic giving the number of occurrences
of the consecutive pattern UU in a path is denoted by UU. For n ě 1, we denote by n̂
the constant statistic returning the value n. The popularity of a pattern p in S is the total
number of occurrences of p over all objects of S, that is ppSq “

ř

aPS ppaq ([6, 9, 10]). Let S 1

be another set of combinatorial objects, we say that two statistics, s on S and t on S 1, have
the same distribution if there exists a bijection f : S Ñ S 1 satisfying spaq “ tpfpaqq for any
a P S. In this case, with a slight abuse of the notation already used in [5], we write fpsq “ t
or s “ t whenever f is the identity.

The remainder of this paper is organized as follows. In Section 2, we present a constructive
bijection between n-length Dyck paths with air pockets and peakless Motzkin paths of length
n´ 1, and we show how this bijection transports some statistics. In Section 3, we provide
bivariate generating functions Apx, yq “

ř

n,kě0 an,kx
nyk for the distributions of some statistics

s, i.e. the coefficient an,k of xnyk is the number of paths α P An satisfying spαq “ k. Then,
we deduce the popularities of some patterns (U , D, peak, return, catastrophe, pyramid, . . . )
by calculating BypApx, yqq|y“1, and we provide asymptotic approximations for them using
classical methods (see [8, 17]). We refer to Table 1 for an overview of the results. As a
byproduct, we point out a link between the popularity of pyramids and a special kind of
closed smooth self overlapping curves in the plane (a subset of Fibonacci meanders defined
in [14, 24]). In Section 4, we make a similar study for non-decreasing Dyck paths with air
pockets.

Pattern Pattern popularity in An OEIS
U 1, 2, 5, 13, 32, 80, 201, 505, 1273, 3217 A110320
D 1, 0, 2, 3, 7, 17, 40, 97, 238, 587 A051291
Peak 1, 1, 3, 7, 16, 39, 95, 233, 577, 1436 A203611
Ret 1, 1, 3, 6, 13, 29, 65, 148, 341, 793 A093128
Cat 0, 1, 1, 4, 8, 19, 44, 102, 239, 563
∆k 0, . . . , 0

loomoon

k´1 zeroes

, 1, 0, 2, 3, 7, 17, 40, 97, 238, 587 A051291

∆ěk 0, . . . , 0
loomoon

k´1 zeroes

, 1, 1, 3, 6, 13, 30, 70, 167, 405 A201631(“ un)

∆ďk ∆ď1 1, 0, 2, 3, 7, 17, 40, 97, 238, 587 un ´ un´k

∆ď2 1, 1, 2, 5, 10, 24, 47, 137, 335, 825, . . .
∆ď3 1, 1, 3, 5, 12, 27, 64, 154, 375, 922, . . .
...

Table 1: Pattern popularity in An, for 2 ď n ď 11.
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2 Bijection with peakless Motzkin paths

In this section we exhibit a constructive bijection between n-length Dyck paths with air pockets
and pn´ 1q-length peakless Motzkin paths, i.e. lattice paths in the first quarter plane starting
at the origin, ending at pn ´ 1, 0q, made of U , D and F “ p1, 0q and having no occurrence
of UD. Moreover, we show how our bijection transports some pattern based statistics. We
denote by Mn the set of peakless Motzkin paths of length n, and M “

Ť

ně1Mn.

Definition 1. We recursively define the map ψ from A to M as follows. For α P A, we set:

ψpαq “

$

’

’

&

’

’

%

F if α “ UD, piq
UψpβqD if α “ βUD with β P A, piiq
ψpα5qF if α P P , piiiq
ψpγ5qUψpβqD if α “ βγ with β P A and γ P P . pivq

Notice that each factor in the above decomposition is nonempty, and that ψ maps
nonempty objects to nonempty ones. Due to the recursive definition, the image by ψ of a
n-length Dyck path with air pockets is a peakless Motzkin path of length n´ 1. For instance,
the images of UD, UUD2, UUUD2UD2UD are respectively F , FF , and UUFFDFD. We
refer to Figure 2 for an illustration of this mapping.

β

ψpβq

α

ψpα5q

β γ

ψpγ5q
ψpβq

Figure 2: Illustration of the map ψ according to Definition 1.

Theorem 2. For all n ě 2, the map ψ induces a bijection between An and Mn´1.

Proof. It is well known that the cardinality of Mn is given by the n-th term of generalized
Catalan number (see A004148 in [22]). So it suffices (see observation after relation (1))
to prove the injectivity of ψ. We proceed by induction on n. The case n “ 2 is obvious
since A2 “ tUDu and M1 “ tF u. For all k ď n, we assume that ψ is an injection from
Ak to Mk´1, and we prove the result for k “ n ` 1. According to Definition 1, if α and
β in An`1 satisfy ψpαq “ ψpβq, then α and β necessarily come from the same case among
(i) – (iv). Using the induction hypothesis, we conclude directly that α “ β, which completes
the induction. Thus ψ is injective and so bijective.

Proposition 3. For all n ě 2 and k ě 1, and ψ : An Ñ Mn´1, the following holds:

‚ ψpUq “ F ` U “ F ` D

4
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‚ ψpDq “ ψpUDq “ 1F ` UFD ` 1UMD ` U2MD2

‚ ψpDUq “ UFD ` U2MD2

‚ ψpUUq “ F ´ 1̂

‚ ψp∆kq “ 1Fk ` UFkD ` 1Fk´1UMD ` UFk´1UMD2

‚ ψpPeakq “ U ` 1̂

‚ ψpRetq “ n̂ ´ LastF

‚ ψpSLastq “ Ret,

where 1βpαq “ 1 if α “ β and 0 otherwise; 1UMDpαq is equal to 1 if there exists β P M such
that α “ UβD and 0 otherwise; U2MD2pαq is the number of occurrences U2βD2 in α for
β P M; ∆kpαq is the number of occurrences UkDk in α; Peakpαq “

ř

kě1UDkpαq; Retpαq

is the number of returns to the x-axis of α; LastFpαq is the position of the rightmost flat-step
in α, and SLastpαq is the size of the the last step of α (i.e. k if the last step is Dk).

Proof. We provide the proof for ψpUq and ψp∆kq since those for the other relations can be
obtained mutatis mutandis.

We proceed by induction on n. Since A2 “ tUDu and M1 “ tF u the statements trivially
hold for n “ 2. Now, assume the statements are true for all k ď n and let us prove them for
n ` 1.

If α P An`1 with n ě 2, then we have either (i) α “ βUD, (ii) α “ γ7 or (iii)
α “ βγ7 where β, γ P A. In the case (i), UpβUDq “ 1 ` Upβq and with the induction
hypothesis, UpβUDq “ 1 ` pU ` Fqpψpβqq “ pU ` FqpUψpβqDq “ pU ` FqpψpβUDqq as
expected. In the case (ii), Upγ7q “ 1 ` Upγq and with the induction hypothesis, Upγ7q “

1 ` pU ` Fqpψpγqq “ pU ` FqpψpγqF q “ pU ` Fqpψpγ7qq. Case (iii) is handled in the same
way.

So, we have ψpUq “ U ` F. Using a similar reasoning, we can easily prove ψpDq “

1F ` UFD ` 1UMD ` U2MD2.
Now, let us give details for the slightly less straightforward case of ψp∆kq for k ě 1. The

case k “ 1 is already handled since we have ψpUDq “ ψpDq. So, we assume k ě 2. We
consider the following case analysis: any given Dyck path with air pockets is either of the
form (i) βUD, (ii) β∆7

k´1, (iii) β∆7

k, (iv) βpα∆kq7 with α P A, or (v) βα7 with α P A being
neither ∆k´1, nor ∆k, nor α1∆k (α1 P A), and β P A Y tεu. Reasoning by induction, case (ii)
unfolds as follows: if β “ ε, then we get

p1Fk ` UFkD ` 1Fk´1UMD ` UFk´1UMD2
qpF k

q “ 1,

5



which is the same as ∆kp∆7

k´1q. Otherwise, we have

p1Fk ` UFkD ` 1Fk´1UMD ` UFk´1UMD2
qpψpβ∆7

k´1qq “

“ p1Fk ` UFkD ` 1Fk´1UMD ` UFk´1UMD2
qpF k´1UψpβqDq “

“ 1Fkpψpβqq ` UFkDpψpβqq ` 1 ` 1Fk´1UMDpψpβqq`

` UFk´1UMD2
pψpβqq “

“ 1 ` ∆kpβq “ ∆kpβ∆7

k´1q.

The four remaining cases are obtained in the same way.

Notice that the mirror of a Dyck path with air pockets is a  Lukasiewicz path avoiding
flat steps and two consecutive up-steps. Since there is a bijection between  Lukasiewicz paths
and plane trees (see [12] for instance), we easily deduce that Dyck paths with air pockets are
in one-to-one correspondence with plane trees without unary nodes, and such that the first
child of any node is always a leaf. We leave open the question of knowing how this bijection
transports some pattern-based statistics.

3 Distribution and popularity of patterns

3.1 The numbers of U and D

Theorem 4. Let Apx, y, zq “
ř

n,k,ℓě0 an,k,ℓx
nykzℓ be the generating function (g.f.) where

an,k,ℓ is the number of paths in An having k up-steps U and ℓ down-steps D “ D1. Then the
following holds:

Apx, y, zq “
1 ´ xy ´ x2yz ´ 2x3y2 ` 2x3y2z ´

?
R

2xy p1 ` x2y ´ x2yzq
,

with
R “ x4y2z2 ` 2x3y2z ´ 4x3y2 ` x2y2 ´ 2x2yz ´ 2xy ` 1.

Proof. Due to the first return decomposition, any Dyck path with air pockets has one of the
following forms: piq UDγ, piiq U2D2γ, piiiq pαUDq7γ with α P A, pivq α7γ with α P A not
being UD nor βUD (β P A), where γ P A Y tεu. These four cases are disjoint and cover A
entirely. Then, we deduce the functional equation by taking into account the length, and the
numbers of U and D with respect to x, y and z:

A “

¨

˚

˝

x2yz
loomoon

piq

` x3y2
loomoon

piiq

` x3y2A
loomoon

piiiq

`xy
`

A ´ x2yzp1 ` Aq
˘

loooooooooooomoooooooooooon

pivq

˛

‹

‚

p1 ` Aq,

where A stands for Apx, y, zq. Solving for A, we get the result.

Corollary 5. For all n ě 1, the number of Dyck paths with air pockets (of any length) having
n up-steps U is the n-th Catalan number 1

n`1

`

2n
n

˘

(see A000108 in [22]).
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Proof. We check that 1 ` Ap1, y, 1q is the g.f. of the Catalan numbers.

Corollary 6. For all n ě 1, the number of Dyck paths with air pockets having n up-steps
U and no down-steps D is the n-th Riordan number

řn
k“0p´1qn´k

`

n
k

˘

ck, where ck “ 1
k`1

`

2k
k

˘

(see A005043 in [22]).

Proof. We check that 1 ` Ap1, y, 0q is the g.f. of the Riordan numbers.

Corollary 7. The g.f. for the popularity of up-steps U in An is

1 ´ x ´ x2 ´
?
x4 ´ 2x3 ´ x2 ´ 2x ` 1

2x
?
x4 ´ 2x3 ´ x2 ´ 2x ` 1

,

which generates a shift of the sequence A110320 in [22]. An asymptotic approximation of the
n-th term is ?

5 ´ 1

2
?
πn

a

14
?

5 ´ 30

ˆ

3 `
?

5

2

˙n

,

and an asymptotic for the expectation of the up-step number is
?

5 ` 5

10
n „ 0.723606799 ¨ n.

Proof. The g.f. is given by BypApx, y, 1qq|y“1. The asymptotic approximation is obtained
using classical methods (see [8, 17])

Corollary 8. The g.f. for the popularity of down-steps D “ D1 in An is

x2
`

1 ` 2x2 ´ x3 ` p1 ´ xq
?
x4 ´ 2x3 ´ x2 ´ 2x ` 1

˘

2
?
x4 ´ 2x3 ´ x2 ´ 2x ` 1

,

which generates a shift of the sequence A051291 in [22]. An asymptotic approximation of the
n-th term is

5
?

5 ´ 11

2
?
πn

a

14
?

5 ´ 30

ˆ

3 `
?

5

2

˙n

,

and an asymptotic for the expectation of the D-step number is

5 ´ 2
?

5

5
n „ 0.105572797 ¨ n.

Proof. The g.f. is given by BzpApx, 1, zqq|z“1.

3.2 The number of peaks

In this part, we study the distribution of peaks, i.e. patterns UDm for m ě 1.

Theorem 9. Let P px, yq “
ř

n,kě0 pn,kx
nyk be the g.f. where pn,k is the number of n-length

Dyck paths with air pockets having k peaks. Then we have:

P px, yq “
1 ´ x ´ x2y ´

a

p1 ´ x ´ x2yq2 ´ 4x3y

2x
,

which generates a shift of the sequence A089732 in [22].
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Proof. If a Dyck path with air pockets equals αUD with α P A Y tεu, then its contribution
to P px, yq is p1 ` P px, yqqx2y; if it has the form αβ7 with β P A, then its contribution is
p1 ` P px, yqqxP px, yq. Hence, the second-to-last return decomposition yields:

P px, yq “ p1 ` P px, yqqpx2y ` xP px, yqq,

which gives the result after solving for P px, yq.

Corollary 10. The g.f. for the popularity of peaks in An is

x
`

1 ` x ´ x2 ´
?
x4 ´ 2x3 ´ x2 ´ 2x ` 1

˘

2
?
x4 ´ 2x3 ´ x2 ´ 2x ` 1

,

which generates a shift of the sequence A203611 in [22]. An asymptotic approximation of the
n-th term is ?

5 ´ 2
?
πn

a

14
?

5 ´ 30

ˆ

3 `
?

5

2

˙n

,

and an asymptotic for the expectation of the peak number is

5 ´
?

5

10
n „ 0.276393191 ¨ n.

Remark 11. Another way of finding the total number of peaks in all Dyck paths with air
pockets of length n is the following: since the number of n-length Dyck paths with air pockets
with k peaks is Npn ´ k, kq, we have:

PeakpAnq “

tn
2

u
ÿ

k“1

kNpn ´ k, kq “

tn
2

u
ÿ

k“1

k

n ´ k

ˆ

n ´ k

k

˙ˆ

n ´ k

k ´ 1

˙

.

Using the formula for the sequence A203611 in [22], we get the following identity:

tn
2

u
ÿ

k“1

ˆ

n ´ k ´ 1

k ´ 1

˙ˆ

n ´ k

k ´ 1

˙

“

n´1
ÿ

k“0

ˆ

k ´ 1

2k ´ n

˙ˆ

k

2k ´ n ` 1

˙

.

3.3 The number of returns to the x-axis

A return to the x-axis is a step Dm, m ě 1, ending on the x-axis.

Theorem 12. Let Rpx, yq “
ř

n,kě0 rn,kx
nyk be the g.f. where rn,k is the number of n-length

Dyck paths with air pockets with k returns, then:

Rpx, yq “
2

2 ´ y
`

1 ´ x ` x2 ´
?
x4 ´ 2x3 ´ x2 ´ 2x ` 1

˘ ´ 1,

which generates the triangle A098086 in [22] where the row n and column k gives the number
of peakless Motzkin paths having its leftmost F -step on the k-th step (see also Proposition 1).
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Proof. If a Dyck path with air pockets equals αUD with α P A Y tεu, then its contribution
to Rpx, yq is p1 ` Rpx, yqqx2y; if it has the form αβ7 with β P A, then its contribution is
p1 ` Rpx, yqqxyApxq. So we deduce,

Rpx, yq “ p1 ` Rpx, yqqpx2y ` xyApxqq,

which gives the result using relation (1).

Corollary 13. The g.f. for the popularity of returns to the x-axis in An is

2
1 ´ x ` x2 ´

?
x4 ´ 2x3 ´ x2 ´ 2x ` 1

`

1 ` x ´ x2 `
?
x4 ´ 2x3 ´ x2 ´ 2x ` 1

˘2 ,

which corresponds to the sequence A093128 in [22], where the n-th term counts all possible
dissections of a regular pn`2q-gon using zero or more strictly disjoint diagonals. An asymptotic
approximation of the n-th term is

a

14
?

5 ´ 30
?

5

4n
?
πn

ˆ

3 `
?

5

2

˙n`1

,

and an asymptotic for the expectation of the return number is
?

5.

3.4 The number of catastrophes

A catastrophe is a step Dm, m ě 2, ending on the x-axis.

Theorem 14. Let Cpx, yq “
ř

n,kě0 cn,kx
nyk be the g.f. where cn,k is the number of n-length

Dyck paths with air pockets with k catastrophes. Then we have:

Cpx, yq “
2

2 ´ 2x2 ´ y
`

1 ´ x ´ x2 ´
?
x4 ´ 2x3 ´ x2 ´ 2x ` 1

˘ ´ 1.

Proof. If a Dyck path with air pockets equals αUD with α P A Y tεu, then its contribution
to Cpx, yq is p1 ` Cpx, yqqx2; if it has the form αβ7 with β P A, then its contribution is
p1 ` Cpx, yqqxyApxq. So, we deduce Cpx, yq “ p1 ` Cpx, yqqpx2 ` xyApxqq.

Corollary 15. The g.f. for the popularity of catastrophes in An equals

2
1 ´ x ´ x2 ´

?
x4 ´ 2x3 ´ x2 ´ 2x ` 1

`

1 ` x ´ x2 `
?
x4 ´ 2x3 ´ x2 ´ 2x ` 1

˘2 .

An asymptotic approximation of the n-th term is
a

14
?

5 ´ 30
`

4 ´
?

5
˘

4n
?
πn

ˆ

3 `
?

5

2

˙n`1

,

and an asymptotic for the expectation of the catastrophe number is 4 ´
?

5.

Remark 16. As a byproduct of Corollaries 13 and 15, the ratio of the popularity of catastrophes
in An to the popularity of returns in An tends to 4´

?
5?

5
“ 0.788854 . . . when n tends toward

8.
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3.5 The number of pyramids UkDk

A k-pyramid ∆k in a path is an occurrence of the pattern UkDk, k ě 1.

Theorem 17. For all k ě 1, the g.f. Pkpx, yq “
ř

n,mě0 p
k
n,mx

nym where pkn,m is the number
of n-length Dyck paths with air pockets having m k-pyramids is given by:

Pkpx, yq “
xk`1py ´ 1q ´ 2xk`2py ´ 1q ` x2 ` x ´ 1 `

?
Q

2pxk`2py ´ 1q ´ xq
,

where

Q “ xk`1
py ´ 1q pxk`1

py ´ 1q ` 4x ` 2px2 ´ x ´ 1qq ` x4 ´ 2x3 ´ x2 ´ 2x ` 1.

Proof. We refine the first return decomposition so that any Dyck path with air pockets
falls into one of the following cases: piq ∆mγ with 1 ď m ď k ´ 1, piiq ∆kγ, piiiq ∆k`1γ,
pivq pα∆kq7γ with α P A, pvq β7γ with β P A not being ∆m with 1 ď m ď k, nor α∆k with
α P A, where γ P A Y tεu. These five cases are disjoint and cover all Dyck paths with air
pockets. So, we deduce:

Pk “

¨

˚

˚

˝

k
ÿ

i“2

xi

loomoon

piq

` xk`1y

loomoon

piiq

` xk`2

loomoon

piiiq

` xk`2Pk

looomooon

pivq

` x ¨

˜

Pk ´

k
ÿ

i“2

xi ´ xk`1yp1 ` Pkq

¸

loooooooooooooooooooooooomoooooooooooooooooooooooon

pvq

˛

‹

‹

‚

p1 ` Pkq,

where Pk stands for Pkpx, yq. Solving for Pk, we get the result.

Corollary 18. For k ě 1, the g.f. for the popularity ∆kpAnq of k-pyramids in An equals:

Ykpxq “
xk`1

`

1 ` 2x2 ´ x3 ` p1 ´ xq
?
x4 ´ 2x3 ´ x2 ´ 2x ` 1

˘

2
?
x4 ´ 2x3 ´ x2 ´ 2x ` 1

,

which generates the pn´ k ´ 2q-th term of the sequence A051291 in [22]. In particular, we
have ∆1pAnq “ ∆kpAn`k´1q for all k ě 1 and n ě 2, which means that there are as many
1-pyramids in An as there are k-pyramids in An`k´1. An asymptotic approximation of the
n-th term of this sequence is

?
5 ´ 1

2
?
πn

a

14
?

5 ´ 30

ˆ

3 `
?

5

2

˙n´k´1

,

and for the expected number of k-pyramids we have

5 ´
?

5

10

ˆ

3 ´
?

5

2

˙k

¨ n.
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Notice that Y1pxq corresponds to the generating function for the popularity of down-steps
D (see Corollary 4), since each D is necessarily preceded by an up-step. Moreover, we have
Ykpxq “ xk´1Y1pxq since each pyramid ∆k in a path of length n comes from a pyramid ∆1

in a path of length n ´ k ` 1 by adding k ´ 1 up-steps and by increasing the length of the
down-step. An immediate consequence of Corollary 18 is the following.

Corollary 19. For k ě 1, the g.f. for the popularities ∆ěkpAnq and ∆ďkpAnq are respectively
given by

Yěkpxq “
xk´1

1 ´ x
Y1pxq and Yďkpxq “

1 ´ xk

1 ´ x
Y1pxq,

which means that ∆ďkpAn´k`1q “ ∆ěkpAnq ´ ∆ěkpAn´kq.

For any k ě 1, the popularity of pyramids of size at least k in An (see Corollary 19)
seems to correspond to a shift of the sequence A203611 in [22], which enumerates Fibonacci
meanders with central angle 180 degrees (see Luschny’s [14] and Wienand’s [24] posts in OEIS
Wiki about meanders). In order to prove this fact, we give the formal definition of such
meanders, and provide their g.f. that does not exist in the literature (to our knowledge).

A Fibonacci meander with central angle 180 degrees is a closed smooth self-overlapping
curve in the plane, consisting of an even length sequence of two types of arcs of angle 180
degrees, namely L “ and R “ , starting at the origin with an L-arc toward the
north, having no consecutive L-arcs except at the beginning where a run (of any length)
of consecutive L-arcs is authorized. Each arc starts at the end of the previous arc and it

preserves the direction of its arrow, i.e. LLR corresponds to . Let F2n be the set of such
meanders of length 2n. For instance, the left part of Figure 3 illustrates a meander in F20.

L L  L L  R R  L R   R L     R L      R L     R R      L R     L R
1 2  3 4   5 6  7 8   9 10  11 12  13 14  15 16  17 18  19 20

1

2

3

4

6

5

7

8

9

10

11

12

13

14

LL LL RR

LR RL

RL

RL

RR

LR

16

1517

18

19

20

LR

Figure 3: A Fibonacci meander in F20 where the sequence of arcs is given by
LLLLRRLRRLRLRLRRLRLR, and its associated lattice path.

Now, we define a function τ , mapping a two-letter word over the alphabet tL,Ru into the

set tU,D, F, rF u:

τpaq “

$

’

’

’

&

’

’

’

%

U, if a “ RL,

D, if a “ LR,

F, if a “ RR,
rF , if a “ LL,
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and a function µ, mapping a meander w “ w1w2 . . . w2n P F2n into an n-length word over the
alphabet tU,D, F, rF u:

µpwq “ τpw1w2q τpw3w4q . . . τpw2n´1w2nq.

Grand Motzkin paths are lattice paths of length n in N ˆ Z, consisting of steps U “

p1, 1q, D “ p1,´1q, and F “ p1, 0q, starting at p0, 0q, ending at pn, 0q (contrarily to classical
Motzkin paths, they can go below the x-axis). For instance DUUDDFDUUUD is a grand
Motzkin path of length 11. Let Gn be the set of peakless (i.e. with no occurrence of UD)
grand Motzkin paths of length n and Nn be the subset of paths starting with a D-step in
Gn. Denote by Sn the set of peakless grand Motzkin paths of length n starting with a down
step or prefixed by a nonempty sequence of special flats, called wavy flats, rF “ p1, 0q. For

instance, rF rFDUUDDFDUUUD P S13.

Proposition 20. The function µ induces a bijection from F2n to Sn.

Proof. Every meander a P F2n avoids the pattern LL except if the occurrence of LL is only
preceeded by letters L, which means that µpaq avoids the pattern UD. If the meander a
starts with a maximal prefix of the form pLLqk, k ě 1, then µpaq starts, with a maximal

sequence of k wavy flats, rF k. If the meander a starts with LR, then µpaq starts with D.
Moreover, the image by µ of a factor RR is F “ τpRRq in µpaq, the image of LR is D and
the image of RL is U . Thus, the fact that a is a closed curve, implies that µpaq starts and
ends on x-axis. Due to all these observations, µ is necessarily a bijection from F2n to Sn.

Notice that the bijection µ is very close to the bijection of Roitner (see [19]) between
2-watermelons with arbitrary deviation and weighted Motzkin paths, which suggests that
there are tight links between 2-watermelons and Wienand-Luschny meanders. It would be
interesting to explore this correspondence in future works.

Theorem 21. The g.f. Spxq “
ř

ně0 snx
n, where the coefficient sn is the number of 2n-length

Fibonacci meanders with a central angle 180 degrees, is

Spxq “
x2 ´ x ` 1 ´

?
R

px ´ 1q
`

R ` px2 ´ x ´ 1q
?
R

˘ ,

with R “ x4 ´ 2x3 ´ x2 ´ 2x ` 1. Using Corollary 19, we have

Spxq “
Y1pxq

x2p1 ´ xq
´ 1,

which establishes the expected link between Fibonacci meanders and the popularity ∆ěkpAnq.

Proof. Considering Proposition 20, it suffices to enumerate Sn. We set G “
Ť

ně0 Gn,
N “

Ť

ně0Nn, and S “
Ť

ně0 Sn. Recall that M is the set of nonempty peakless Motzkin
paths. Denote by V the set of Motzkin paths without valleys DU and by sV the set of
paths obtained by symmetry about the x-axis (U Ø D) of valleyless Motzkin paths, e.g.
DUFDU P sV since it is symmetric to UDFUD P V. Let W be the set of nonempty

12



sequences of wavy flat steps. We use Mpxq, V pxq “ sV pxq, Gpxq, Npxq, W pxq to denote the
corresponding generating functions with respect to the length.

Obviously, we have W pxq “ x
1´x

. From relation (1) and Theorem 2 we obtain Mpxq “

Apxq{x. Also, there is a one-to-one correspondence ν between Mn and Vn´1 that can be
defined recursively by νpF q “ ε, νpFQq “ FνpQq, νpUQDq “ UνpQqD, and νpUQDRq “

UνpQqDFνpRq if R is non-empty. So, we have V pxq “ Mpxq{x “ Apxq{x2. Finally, we
decompose G, N and S as illustrated below:

G “ ε
ě

G
ě

M

G
ě

N ,

N “

sV

ě

sV

M

G ě

sV

G ,

S “
W

G
ě

N ,

which induces the following system of functional equations

$

’

&

’

%

Gpxq “ 1 ` xGpxq ` x2MpxqGpxq ` Npxq,

Npxq “ x2V pxq ` x4V pxqMpxqGpxq ` x3V pxqGpxq,

Spxq “ W pxqGpxq ` Npxq.

Solving this system, we obtain Spxq.

4 Non-decreasing Dyck paths with air pockets

A Dyck path with air pockets is non-decreasing if the sequence of heights of its valleys is
non-decreasing, i.e. the sequence of the minimal ordinates of the occurrences DkU , k ě 1, is
non-decreasing from left to right. See [2] for a reference about non-decreasing Dyck paths.
For example, the Dyck path with air pockets UUDUDUD2 is non-decreasing, since its two
valleys both lie at height 1, while the path UUDUD2UD is not, since its two valleys lie at
heights 1 and 0 from left to right. Let An, n ě 2, be the set of n-length non-decreasing Dyck
paths with air pockets and A “

Ť

ně2An. The subset of n-length prime non-decreasing Dyck
paths with air pockets is defined as the intersection Pn :“ An XP , and we set P :“

Ť

ně2Pn.

Analogous to generic Dyck paths with air pockets, the map α ÞÑ α5 induces a bijection
between Pn and An´1, whose inverse is the map α ÞÑ α7.

Theorem 22. For n ě 2, if an is the number of n-length non-decreasing Dyck paths with air
pockets, then a2 “ 1 and an “ 2n´3 for n ě 3.

13



Proof. Any non-decreasing Dyck path with air pockets α has one of the following two forms:
(i) α P P Y tUDu, or (ii) α “ ∆kβ where k ě 1 and β P A . So, if A pxq “

ř

ně2 anx
n

where an is the cardinality of An, then the previous decomposition implies the functional
equation

A pxq “ xpA pxq ` xq `
x2

1 ´ x
A pxq.

Thus we have A pxq “
x2p1´xq

1´2x
which completes the proof.

4.1 The numbers of U and D

Theorem 23. Let A px, y, zq “
ř

n,k,ℓě0 an,k,ℓx
nykzℓ be the trivariate g.f. where an,k,ℓ is the

number of n-length non-decreasing Dyck paths with air pockets having k up-steps U and ℓ
down-steps D. Then, A px, y, zq equals

x2yp1 ´ xyqpxyz ´ xy ´ zqpx2yz ` xy ´ 1q

px3y2pz ´ 1q ` x2ypy ´ zq ´ 2xy ` 1qpx3y2pz ´ 1q ´ x2yz ´ xy ` 1q
.

Proof. Let Zpx, y, zq “
ř

n,k,ℓě0 zn,k,ℓx
nykzℓ, where zn,k,ℓ is the number of n-length non-

decreasing Dyck paths with air pockets having only valleys at height 0, k up-steps U and ℓ
down-steps D. Such a path has the form UDα or ∆kα with k ě 2, where α has all its valleys
at height 0. Then, we have

Zpx, y, zq “ p1 ` Zpx, y, zqq

ˆ

x2yz `
x3y2

1 ´ xy

˙

.

Solving for Zpx, y, zq, we get:

Zpx, y, zq “
x2ypxyp1 ´ zq ` zq

x3y2pz ´ 1q ´ x2yz ´ xy ` 1
.

Now, any non-decreasing Dyck path with air pockets belongs to one of the following cases: (i)
βUD, (ii) βpUDq7, (iii) βpαUDq7 (α having all its valleys at height 0), (iv) βα7 (α having
all its valleys at height 0, and not ending with UD), where β is either empty or has all its
valleys at height 0. Thus, we have (for short, we use A and Z instead of A px, y, zq and
Zpx, y, zq):

A “ p1 ` Zqpx2yz ` x3y2 ` x3y2Z ` xypA ´ x2yzp1 ` Zqqq.

Solving for A , we get the result.

Porism 24. For all n ě 1, the number of n-length non-decreasing Dyck paths with air
pockets which have all valleys at height 0 is equal to Fn´1, where Fk is the k-th Fibonacci
number.

Proof. Plugging y “ z “ 1 into the trivariate g.f. Z in the proof of the previous theorem we
obtain Zpx, 1, 1q “ x2

1´x´x2 , which is the g.f. for the right shift of the sequence of Fibonacci
numbers.

14



As we have made in Section 3.1, we deduce the following.

Corollary 25. For all k ě 1, the number of non-decreasing Dyck paths with air pockets:
‚ having n up-steps U is the k-th term of the sequence A001519;
‚ having k up-steps U and no down-steps D is the pk´1q-th term of the sequence A099036.

Proof. We calculate Zp1, y, 1q and Zp1, y, 0q, respectively.

Corollary 26. The popularity of up-steps U in An is equal to the pn ´ 2q-th term of the
sequence A098156 in [22]. An asymptotic for the expectation of the up-step number is
p3n ´ 2q{4.

Proof. We calculate BypZpx, y, 1qq|y“1.

Corollary 27. The g.f. for the popularity of down-steps D in An equals:

x2p1 ´ xqp1 ´ 4x ` 5x2 ´ 2x3 ` x5q

p1 ´ 2xq2p1 ´ x ´ x2q
.

An asymptotic approximation of the n-th term is n ¨ 2n´6. An asymptotic for the expectation
of the down-step number is n{8.

Proof. We calculate BzpZpx, 1, zqq|z“1.

4.2 The number of peaks

Theorem 28. For all n ě 2 and k ě 1, the number of n-length non-decreasing Dyck paths
with air pockets having k peaks is equal to

`

n´2
2pk´1q

˘

.

Proof. Let Bpx, yq be the g.f. where the coefficient of xnyk is the number of n-length paths
in A having k peaks. Any non-decreasing Dyck path with air pockets is either of the form
∆1 “ UD, or α7, or ∆kβ with k ě 1, with α, β P A . This yields the following functional
equation:

Bpx, yq “ x2y ` xBpx, yq `
x2

1 ´ x
yBpx, yq

with the solution Bpx, yq “
p1´xqx2y

p1´xq2´x2y
, which generates the sequence A034839 in [22].

Corollary 29. The popularity of peaks in An is the pn´ 2q-th term of the sequence A045891
in [22], which is equal to pn ` 2q ¨ 2n´5 for n ě 4. Then, the expectation of the peak number
is pn ` 2q{4.

4.3 The number of returns to the x-axis

Theorem 30. The bivariate g.f. where the coefficient of xnyk is the number of n-length
non-decreasing Dyck paths with air pockets having k returns is

Rpx, yq “
x2yp1 ´ xqp1 ´ x ´ x2q

p1 ´ 2xqp1 ´ x ´ x2yq
.
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Proof. Using the second-to-last return decomposition of A , we easily get the following
functional equation:

Rpx, yq “ x2y ` x2yRpx, yq ` xyA pxq `
x3

1 ´ x
yRpx, yq,

which gives the result.

Corollary 31. The g.f. for the popularity of returns in An is

x2p1 ´ xq2

p1 ´ 2xqp1 ´ x ´ x2q
,

and for n ě 2 the coefficient of xn is 2n´2 ´Fn´2, where Fn is the n-th Fibonacci number (see
A099036 in [22]). Then, the expectation of the return number is 2 ´ Fn´2{2n´3 that tends to
2.

4.4 The number of catastrophes

Theorem 32. The bivariate g.f. where the coefficient of xnyk is the number of n-length
non-decreasing Dyck paths with air pockets having k catastrophes is

Cpx, yq “
x2p1 ´ xqp1 ` xpy ´ 2q ´ x2yq

p1 ´ 2xqp1 ´ x ´ x2 ´ x3py ´ 1qq
.

Proof. First, let us determine the bivariate g.f. Upx, yq with respect to the length and number
of catastrophes for non-decreasing Dyck paths with air pockets having all their valleys at
height 0. It is easy to see that

Upx, yq “ p1 ` Upx, yqq

ˆ

x2 `
x3y

1 ´ x

˙

,

which yields:

Upx, yq “
x2p1 ´ x ` xyq

1 ´ x ´ x2 ´ x3py ´ 1q
.

Then, any non-decreasing Dyck path with air pockets has one of the following forms: (i)
βUD, or (ii) βU2D2, or (iii) βα7 with α not belonging to forms (i) or (ii), and where β is
either empty or a non-decreasing Dyck path with air pockets which only has valleys that lie
at height 0. Hence, the bivariate generating function Cpx, yq satisfies the following equation:

Cpx, yq “ p1 ` Upx, yqq
`

x2 ` x3yp1 ` Upx, 1qq ` xy
`

Cpx, 1q ´ x2p1 ` Upx, 1qq
˘˘

,

which gives the result.

16

https://oeis.org/A099036


Corollary 33. The g.f. for the popularity of catastrophes in An equals

x3p1 ´ xqp1 ´ x ` x2q

p1 ´ 2xqp1 ´ x ´ x2q
,

and for n ě 4 the coefficient of xn is 3 ¨ 2n´4 ` 2Fn´3, where Fn is the n-th Fibonacci number
(see the sequence A175657 in [22]). Then, the expectation of the catastrophe number is
3{2 ´ Fn´3{2n´4 that tends to 3{2.

Remark 34. As a byproduct of Corollary 31 and Corollary 33, the ratio of the popularity of
catastrophes in An to the popularity of returns in An tends to 3

4
when n tends toward 8.

4.5 The number of pyramids

Theorem 35. For k ě 1, let Pkpx, yq “
ř

n,mě0 p
k
n,mx

nym be the g.f. where pkn,m is the number
of n-length non-decreasing Dyck paths with air pockets with m occurrences of the pattern
∆k “ UkDk. Then the following holds:

Pkpx, yq “

x2
´

1 ´ x2

1´x
` xk´1

´

1 ´ x ´
x2p2´xq

1´x

¯

py ´ 1q ´ x2kpy ´ 1q2
¯

`

1 ´ x ´ x2

1´x
´ xk`1py ´ 1q

˘ `

1 ´ x2

1´x
´ xk`1py ´ 1q

˘ .

Proof. First, let us determine the expression of the bivariate g.f. Zkpx, yq with respect to the
length and the number of patterns ∆k for non-decreasing Dyck paths with air pockets having
all their valleys at height 0. The second-to-last return decomposition of A yields:

Zkpx, yq “ p1 ` Zkpx, yqq

ˆ

xk`1y `

ˆ

x2

1 ´ x
´ xk`1

˙˙

.

Hence, we get Zkpx, yq “ 1

1´ x2

1´x
´xk`1py´1q

´ 1.

Now, assuming k ‰ 1, any Dyck path has one of the following forms: (i) βUD, (ii) β∆7

k´1,

(iii) β∆7

k, (iv) βpα∆kq7 with α having all of its valleys at height 0, (v) βα7 with α P A ,
α ‰ ∆k´1,∆k, γ∆k (γ having all of its valleys at height 0), and where β is either empty or
has all its valleys at height 0. This yields (for short we use Pk and Zk instead of Pkpx, yq and
Zkpx, yq):

Pk “ p1 ` Zkq
`

x2 ` xk`1y ` xk`2
p1 ` Zkq ` x

`

Pk ´ xk ´ xk`1yp1 ` Zkq
˘˘

.

Solving for Pk, we get the result for k ě 2.
If k “ 1, the expression of P1px, yq is the same as that of the bivariate g.f. associated to the

pattern D in A (given in Theorem 30), because D occurs exactly as often as UD “ ∆1.

Corollary 36. For k ě 1, the g.f. for the popularity ∆kpAnq of k-pyramids in An is

Wkpxq “
xk`1p1 ´ xqp1 ´ 4x ` 5x2 ´ 2x3 ` x5q

p1 ´ 2xq2p1 ´ x ´ x2q
.

In particular, we can see that ∆1pAnq “ ∆kpAn`k´1q, which means that there are as many
1-pyramids in An as there are k-pyramids in An`k´1. An asymptotic approximation of the
n-th term is n ¨ 2n´5´k, and an asymptotic for the expectation of the k-pyramid number is
n{2k`2.
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An immediate consequence of the previous corollary is the following one, which is the
An-counterpart of Corollary 19.

Corollary 37. For k ě 1, the g.f. for the popularities ∆ěkpAnq and ∆ďkpAnq are respectively
given by

Wěkpxq “
xk´1

1 ´ x
W1pxq and Wďkpxq “

1 ´ xk

1 ´ x
W1pxq,

which means that ∆ďkpAn´k`1q “ ∆ěkpAnq ´ ∆ěkpAn´kq.

Pattern Pattern popularity in An OEIS
U 1, 2, 5, 13, 32, 76, 176, 400, 896, 1984 A098156
D 1, 0, 2, 3, 7, 15, 33, 72, 157, 341
Peak 1, 1, 3, 7, 16, 36, 80, 176, 384, 832 A045891
Ret 1, 1, 3, 6, 13, 27, 56, 115, 235, 478 A099036
Cat 0, 1, 1, 4, 8, 18, 38, 80, 166, 342 A175657
∆k 0, . . . , 0

loomoon

k´1 zeroes

, 1, 0, 2, 3, 7, 15, 33, 72, 157, 341

∆ěk 0, . . . , 0
loomoon

k´1 zeroes

, 1, 1, 3, 6, 13, 28, 61, 133, 290, 631 New (“ vn)

∆ďk ∆ď1 1, 0, 2, 3, 7, 15, 33, 72, 157, 341 vn ´ vn´k

∆ď2 1, 1, 2, 5, 10, 22, 48, 105, 229, 498
∆ď3 1, 1, 3, 5, 12, 25, 55, 120, 262, 570
...

Table 2: Pattern popularity in An for 2 ď n ď 11.

Going further. It should be interesting to give natural bijections whenever our enumerative
results suggest such bijections. Also, asymptotic investigations of expectations could be
extended to a study of the limit distributions. It will also be of interest to investigate the
‘Grand’ counterpart of Dyck paths with air pockets, that are paths where negative ordinates
are allowed, or ‘Motzkin’ counterpart where flat steps p1, 0q are allowed.
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