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 

Abstract— Data clustering is a method for classifying similar 

data that used in various sciences for many years and many 

algorithms designed in this field. Recent clustering research has 

led to hybrid methods that are more robust and accurate. 

Combined clustering first tries to produce primary clustering 

that is as scattered as possible and then combines the results by 

applying an agreement function. In this research, a 

combination of fuzzy clustering and support vector machine 

used for classification. The hybrid network (FS-FCSVM) is an 

efficient fuzzy clustering operation performed on the input 

data. The network parameters trained with SVM, achieves a 

network with high generalizability. The number of rules in 

such systems is smaller than fuzzy systems and cussed a lower 

computation time.  

Data clustering is a technique for identifying related data 

that has been utilized for many years in a variety of fields. 

Numerous algorithms have been developed in this area. 

Recent advances in clustering research have produced 

hybrid techniques that are more reliable and precise. 

In order to combine the findings, combined clustering first 

attempts to create primary clustering that is as dispersed as 

feasible. 

In this study, categorization was done using a hybrid of 

fuzzy clustering and support vector machines. 

The input data are effectively fuzzy clustered using the 

hybrid network (FS-FCSVM). 

With SVM-trained network parameters, a highly 

generalizable network is produced. 

These systems have fewer rules than fuzzy systems and need 

less computing time. 

 In this study, the reduction clustering method used before 

fuzzy clustering. The main idea of reduction clustering is to 

search for high-density regions in the data space characteristic. 

Each point that has the largest number of neighbors selected as 

the center of the cluster. In other words, the reduction 

clustering technique used to select feature points that are more 

different and less similar to other points.  In this paper, the idea 

is to use differential clustering to find the exact center points of 
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clusters and the number of clusters, which reduces the number 

of repetitions of fuzzy clustering and use these central points as 

part of the training data and the second part of the work.  

Prior to using fuzzy clustering in this investigation, 

reduction clustering was employed. 

Searching for high-density areas in the data space is the main 

goal of reduction clustering. 

The center of the cluster is chosen for each point with the 

most neighbors. 

To choose feature points that are more distinct from one 

another and less similar to one another, in other words, is the 

goal of the reduction clustering method. 

In this study, the goal is to utilize differential clustering to 

determine the precise cluster centers and the number of 

clusters, hence reducing the number of fuzzy clustering 

repeats. These central points will then be used in the training 

data and the second stage of the study. 

 

Another part of the training data selected. To select them, we 

have used the belonging matrix obtained from fuzzy clustering. 

By determining a numerical range of data far from the center 

of each data, we also selected it as another part of the data. 

Reduce the amount of training data significantly. The results of 

experiments performed on the large data set of the UCI 

database show that in addition to reducing training time with 

proper data selection. 

 

a different portion of the training data was chosen. 

We utilized the belonging matrix discovered using fuzzy 

clustering to choose them. 

We also chose it as another portion of the data by identifying 

a numerical range of data that was distant from the center of 

each data. 

Significantly reduce the volume of training data. 

The outcomes of tests conducted on the substantial UCI 

database data set demonstrate that smart data selection may 

also shorten training times. 

 
Index Terms—Fuzzy clustering, Support vector machine, 

data mining, big data. 

 

I. INTRODUCTION 

ata clustering is one of the most common data mining 

techniques. Clustering is one of the most widely used 

methods in data analysis. Clustering is an automated process 

in which samples divided into groups whose members are 
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similar, which called clusters. In other words, a cluster is a 

set of objects in which objects are similar to each other and 

are not similar to objects in other clusters. 

  Clustering used in many fields, including pattern 

recognition, machine learning, data mining, information 

retrieval, and bioinformatics. The purpose of clustering is to 

provide the end user with a good view of what is happening 

in the database. Another application of clustering can used to 

determine data that differs significantly from other data. 

 

One of the most popular data mining approaches is data 

clustering. One of the most used techniques in data analysis 

is clustering. Clustering is an automated method that divides 

samples into groups with similar constituents, or clusters. 

In other terms, a cluster is a collection of items that are 

related to one another but not to objects in other clusters. 

Clustering is utilized in a wide range of disciplines, such 

as bioinformatics, pattern recognition, machine learning, 

data mining, and information retrieval. To give the end user 

a clear picture of what is occurring in the database, 

clustering is used. Finding data that varies considerably from 

other data is a further use of clustering. 

 

  In clustering, an attempt is made to divide a set of data 

without observers into clusters that maximize the similarity 

of the data within each cluster and minimize the similarity 

between the data within the different clusters [1,2]. 

  Clustering algorithms [3,4] separate data objects 

(designs, entities, samples, observations, units) into a certain 

number of clusters (groups, subcategories or articles). In the 

case of clustering, Orrit (2001) states that clustering is a set 

of similar entities, but the entities of different clusters are not 

the same. 

  Different criteria can be considered for similarity, for 

example, the distance criterion can be used for clustering 

and objects that are closer to each other can be considered as 

a cluster, which is also called distance-based clustering. 

 

In clustering, an effort is made to partition a set of 

unobserved data into groups that maximize similarity within 

each cluster while minimizing similarity between clusters 

[1,2]. Data objects (designs, entities, samples, observations, 

units) are divided into a predetermined number of clusters 

using clustering algorithms [3,4]. (groups, subcategories or 

articles). According to Orrit (2001), clustering refers to a 

collection of items that are related but not identical across 

various clusters. Different criteria for similarity may be 

taken into consideration. For instance, the distance criterion 

may be used for clustering, and objects that are closer to one 

another may be taken into consideration as a cluster (this is 

known as distance-based clustering). 

 

In fact, clustering algorithms are often such that a series of 

initial representatives considered for the input samples and 

then from the degree of similarity of the samples with these 

representatives, it is determined which cluster the sample 

belongs to and after this step, new representatives calculated 

for each cluster. Against the samples compared with these 

representatives to determine which cluster they belong to, 

and this repeated until the representatives of the clusters do 

not change. 

Fuzzy clustering can considered as a part of fuzzy data 

analysis, which has two parts: one is fuzzy data analysis and 

the other is definite data analysis using fuzzy techniques. 

Fuzzy clustering explores fuzzy models of data. 

 

In reality, clustering algorithms frequently work by first 

considering a number of initial representatives for the input 

samples, determining the cluster to which the sample 

belongs based on how similar the sample is to these 

representatives, and then calculating new representatives for 

each cluster. Once the representatives of the clusters have 

remained the same, samples were compared with these 

representatives to identify which cluster they belong to. 

Fuzzy data analysis comprises two components: fuzzy 

data analysis and definite data analysis using fuzzy 

techniques. Fuzzy clustering is one of these components. 

Fuzzy clustering investigates data with fuzzy models. 

 

 The basic idea in fuzzy clustering is to assume that each 

cluster is a set of elements. Then, by changing the definition 

of element membership in this set, from the state where an 

element can only be a member of a cluster to the state that 

each element can be included in several clusters with 

different membership degrees, we present the categories that 

are more relevant to reality. 

  In classical clustering, each input instance belongs to one 

and only one cluster and cannot be a member of two or more 

clusters, and in other words clusters do not overlap. Now 

consider a case where the similarity of a sample with two or 

more clusters is the same.  

Assuming that each cluster consists of a set of items is the 

fundamental tenet of fuzzy clustering. 

Then, we offer the categories that are more applicable to 

reality by modifying the definition of element membership in 

this set from the condition where an element may only be a 

member of a cluster to the state where each element can be 

included in several clusters with varying membership 

degrees. In classical clustering, clusters do not overlap since 

each input instance may only be a member of one cluster and 

cannot be a member of more than one cluster. 

Consider the situation where a sample with two or more 

clusters is comparable in all respects. 

 

In classical clustering, it must be decided which cluster 

this sample belongs to. The main difference between 

classical clustering and fuzzy clustering is that a sample can 

belong to more than one cluster [5] 

  Numerous applications of fuzzy clustering in data 

analysis and pattern recognition as well as existing research 

areas in this field, including its use in solving routing 

problems, allocation and scheduling, highlight the need to 

study existing algorithms and improve and modify them [6]. 

In the reference [7], FS-FCSVM is a fuzzy system that is 

built with if_then rules and the result of such systems is a 

single value. Parameters in FS_FCSVM are generated via an 

SVM support  vector device, which has fewer rules and less 

computational time than fuzzy systems. 

 

Which cluster this sample belongs to in a traditional 



 

cluster analysis must be determined. A sample can belong to 

more than one cluster with fuzzy clustering, which is the 

major distinction between the two methods [5]. 

Numerous uses of fuzzy clustering in pattern recognition 

and data analysis, as well as active research topics in this 

area, such as its application to scheduling, allocation, and 

routing issues, highlight the need to examine current 

methods and enhance and alter them [6]. 

According to the reference [7], the FS-FCSVM is an if 

then rule-based fuzzy system that produces a single value. 

SVM support vector devices, which have fewer rules and 

need less processing than fuzzy systems, are used in FS 

FCSVM to create parameters. 

 

  Fuzzy neural network and support vector machine are 

two types of computational methods with high efficiency and 

capacity. In FNN the only training parameter is minimizing 

the amount of error so generalization performance may be 

poor. SVM is a new and powerful network whose formula 

for learning is based on minimizing the amount of error. The 

fuzzy rules here are equal to the number of support vectors 

(SV), which is usually very large. The test results with 

FS_FCSVM are much better than FNN, but the disadvantage 

of FS_FCSVM is that it has so many rules that this problem 

can be solved with fuzzy clustering. 

 In [7] as fuzzy clustering with support  vector machine 

have been used to segment human skin cancer. 

 

Support vector machines and fuzzy neural networks are 

two examples of computing techniques with great capacity 

and efficiency. The performance of generalization may be 

subpar in FNN as the primary training parameter is 

minimizing the amount of error. SVM is a brand-new, potent 

network whose learning algorithm is centered on reducing 

the amount of error. Here, the number of support vectors 

(SV), which is typically quite big, is equal to the fuzzy rules. 

The test results with FS FCSVM are significantly better than 

those with FNN, however the drawback of FS FCSVM is 

that it has so many rules that fuzzy clustering can be used to 

fix this issue. 

In [7], support vector machine and fuzzy clustering were 

used to segment human skin cancer. 

 

[8] is a method based on proposing fuzzy weights using 

interpolation reasoning, which provides a scattered fuzzy 

weighted interpolation method that allows the previous 

variables to appear in fuzzy laws of different weights. 

  In [9] the FCM fuzzy mapping method is based on fuzzy 

logic and aspects of the neural network it inherits. The main 

advantage of FCM is fuzzy network modeling and decision 

making and improves their performance. 

FCM is used to gather recent advances in algorithmic 

learning. Can be represented by a numerical matrix 

operation. Because FCM is a set of interconnected concepts, 

the propagation of a response from the primary node is very 

similar to a set of neural network nodes. 

 

[8] is a method that uses interpolation reasoning to 

propose fuzzy weights and offers a dispersed fuzzy weighted 

interpolation approach that enables the prior variables to 

show up in fuzzy laws with various weights. 

Fuzzy logic and elements of the neural network it inherits 

form the foundation of the FCM fuzzy mapping method in 

[9]. Fuzzy network modeling and decision-making are the 

key benefits of FCM, which boosts their effectiveness. 

The most current developments in algorithmic learning 

are gathered using FCM. is anything that a numerical matrix 

operation can represent. The propagation of a response from 

the primary node is quite similar to a set of neural network 

nodes since FCM is a collection of interrelated ideas. 

 

  In [9,10,11] researches on some data, clustering by fuzzy 

SVM method was performed by support vector machine and 

fuzzy neural network and FS_FCSVM and compared with 

each other and it was concluded that FS_FCSVM is better 

than others but has more rules. Therefore, if we want to 

compare our proposed method with other methods, the best 

benchmark is to use the tested data set. In [12], a data 

volume reduction method based on the selection of 

triangular data within fuzzy clustering (FCM) is proposed. 

 

Support vector machine, fuzzy neural network, and FS 

FCSVM were used to conduct clustering by fuzzy SVM 

technique on certain data in [9,10,11] studies. These 

methods were evaluated, and it was determined that FS 

FCSVM was superior than the others despite having more 

rules. Therefore, the examined data set serves as the greatest 

standard for comparing our suggested strategy to other 

methodologies. The selection of triangular data inside fuzzy 

clustering (FCM) is the foundation of the data volume 

reduction technique introduced in [12]. 

 

 

  Initially, training data is clustered using fuzzy clustering 

method. In each cluster, the three training data that are 

farthest from the center of the cluster and each other are 

selected. Triangular data and cluster centers are used as 

reduced training data for SVM training. The results of 

experiments performed on the large data set of the UCI 

database show that the proposed method, in addition to 

reducing the training time by selecting the appropriate data, 

strengthens the SVM's resistance to noise and noise data and 

also reduces the number of selected support vectors by SVM 

in the database. grows. 

In this article, after presenting the introduction, the basics of 

the proposed method are evaluated and then the proposed 

method is presented. 

In the third part, the simulation is reviewed and finally the 

results are presented. The final section also presents the final 

results. 

The fuzzy clustering approach is initially used to cluster 

the training data. The three training data that are separated 

from each other and the cluster's center by the greatest 

distance are chosen for each cluster. Reduced training data 

for SVM training are cluster centers and triangular data. The 

results of experiments conducted on the extensive dataset of 

the UCI database demonstrate that the proposed method not 

only shortens training time by choosing the right data, but 

also improves the SVM's resistance to noise and noisy data, 

as well as lowering the number of support vectors selected 



 

by the SVM in the database. increases. 

In this article, the introduction is followed by an analysis of 

the suggested technique's fundamentals before the proposed 

method itself is described. 

The simulation is examined and the findings are then 

reported in the third section. 

The final results are also shown in the part after that. 

 

  

II. BASICS 

One of the first fuzzy clustering methods based on the 

objective function and the use of Euclidean distance 

proposed by Don in 1974 and then generalized by Bozdak. 

The algorithm detects spherical clouds of points in a 

dimensional P space. These clusters assumed to 

approximately the same size. Each cluster represented by its 

center. This way of representing clusters called a model or 

sample, because it often thought of as representing all the 

data assigned to the cluster. In selecting the center of the 

cluster, the average value is used. 

 

 

One of the earliest approaches to fuzzy clustering, 

developed by Bozdak after Don introduced it in 1974 using 

the objective function and Euclidean distance. In dimensions 

P space, the technique finds spherical clouds of points. 

These clusters were thought to be about the same size. 

By its center, each cluster is represented. Because it is 

frequently believed to reflect all the data attributed to the 

cluster, this method of describing clusters is known as a 

model or sample. 

The average value is used to determine the cluster's 

center. 

 

 

 To calculate the center of the cluster, the sum of the 

membership degrees of each element divided by the power 

m in itself multiplied by the power m of the degrees of 

membership. The problem with this algorithm is that the 

algorithm cannot identify clusters of different shapes, sizes, 

and densities. Instead of the same matrix, other matrices, 

such as the diagonal matrix, can used to identify elliptical 

clusters to identify other shapes. One of the advantages of 

this algorithm is its ease, which leads to a reduction in 

computational time. In practice, with a few repetitions, an 

almost final solution can reached. Yang then conducted an 

overview of fuzzy clustering methods. 

 

The total of the membership degrees for each element is 

multiplied by the power m of the degrees of membership to 

determine the cluster's center. The issue with this approach 

is that it is unable to distinguish between clusters of various 

sizes, densities, and forms. Other matrices, such as the 

diagonal matrix, can be used in place of the same matrix to 

detect elliptical clusters and other forms. 

This algorithm's simplicity, which reduces calculation 

time, is one of its benefits. In practice, after a few iterations, 

a nearly perfect answer can be found. 

Yang then performed a summary of fuzzy clustering 

techniques. 

 

 

 

  By replacing the Euclidean distance with another meter 

(created by a symmetric and definite matrix), elliptic clusters 

can identified. 

  In this method, each cluster in addition to the center of 

the cluster is determined by a symmetric, definite and 

positive matrix. This matrix creates a soft for each cluster. It 

should also be borne in mind that by arbitrarily selecting 

matrices, the distances can arbitrarily reduced. To avoid 

minimizing the objective function with matrices with almost 

zero inputs, we need a constant value for clusters with 

matrices with determinants one. So now only the shape of 

the clusters is changing, not their size.  

 

Elliptic clusters can be located by substituting another 

meter (produced by a symmetric and definite matrix) for the 

Euclidean distance. This approach uses a symmetric, 

definite, and positive matrix to identify each cluster as well 

as its center. Each cluster is given a soft by this matrix. 

Additionally, keep in mind that the distances may be 

arbitrarily decreased by choosing matrices. 

We require a constant value for clusters with matrices 

with determinants one in order to prevent minimization of 

the objective function with matrices with virtually zero 

inputs. Therefore, at this point, just the clusters' form, not 

their size, is altering. 

 

Gustafson and Kessel also made possible different shapes 

for clusters by introducing a constant value of e for each 

matrix A, and in general det (A) = e. Although the choice of 

constants also requires prior knowledge of clusters has it. 

The quality of the result obtained from this method is highly 

dependent on the available data. It also remains a problem 

with GK. If the data clustered with the feasibility approach, 

development factors for the clusters can used to detect 

defects in the images. Position and direction can obtained 

from the center of the cluster and the matrix. Compared to 

FCM, GK Effective in reducing repetition steps and 

increasing convergence speed is the start of the GK 

algorithm with the results of one FCM. 

 

 

Gustafson and Kessel introduced a constant value of e for 

each matrix A, and in general det (A) = e, making it feasible 

for clusters to take on diverse forms. Although previous 

knowledge of clusters is also necessary for the selection of 

constants. The quality of the results produced by this 

approach is strongly influenced by the data at hand. 

GK is still having issues with it. 

When using the feasible strategy to cluster the data, 

development factors for the clusters may be utilized to 

identify image flaws. 

The cluster's and the matrix's center may be used to 

determine position and direction. 

In contrast to FCM, GK 

The start of the GK algorithm using the output of one 



 

FCM is efficient in decreasing repeat steps and enhancing 

convergence speed. 

 

 

 

The possibility of fuzzy cloning at the first combined by 

Kim and Krishnapuram in 1993. This method based on the 

weight criterion η, in which the modification of the fit 

function and the addition of input weights are used to reduce 

the effect of remote data on the centers of the clusters. 

 

the potential for fuzzy cloning at the first 1993 

combination by Kim and Krishnapuram. This approach, 

which is based on the weight criteria, uses the addition of 

input weights and the modification of the fit function to 

lessen the impact of remote data on the cluster centers. 
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In relation (1), µ is the membership function of each data 

sample, d is the Euclidean distance, n is the number of data 

samples, m is a real number greater than one. The fit 

function of this algorithm is considered as Equation (1-2). 

 

In relation (1), n is the number of data samples, d is the 

Euclidean distance, and m is a real integer higher than one. 

is the membership function of each data sample. Equation is 

used to represent this algorithm's fit function (1-2). 
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  In the above relation, c is the number of final clusters, η 

is the weight of each cluster according to Equation (1-2), J is 

the fitness function (target). 

In the above relation, c is the number of final clusters, η is 

the weight of each cluster according to Equation (1-2), J is 

the fitness function (target). 

  In Algorithm C, the average probability, taking into 

account η weight and using the relation (1-3) belonging 

(membership function) for each data, minimizes the effect of 

remote data to the centers of the clusters and the sum of the 

components of each data is a number between 0 and 1, if in 

algorithm C the fuzzy mean of the sum of the components of 

each data is one. 

 

In Algorithm C, the average probability minimizes the 

impact of distant data on the centers of clusters while using 

the relation (1-3) belonging (membership function) for each 

data and the sum of each data's components is a number 

between 0 and 1, if in Algorithm C the fuzzy mean of the 

sum of each data's components is one. 
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  Using Equation (3), the membership function is 

calculated for each data and Equation (4) of the cluster 

centers. The fit function of the C-mean algorithm gives a 

higher probability value than the fuzzy mean C algorithm. 

But in algorithm C, the average number of possible steps to 

find the final cluster increases. If in this algorithm, the initial 

random cluster is not considered and the centers of the 

clusters, the final clusters of the fuzzy mean algorithm are 

considered, the greater the value of the fit function of the 

mean algorithm C is clearly seen. 

Since then, many modifications and improvements have 

been made to the proposed algorithms. 

The membership function for each piece of data is 

obtained using Equation (3), and the cluster centers are 

calculated using Equation (4). In comparison to the fuzzy 

mean C method, the fit function of the C-mean algorithm 

provides a greater probability value. The average number of 

steps needed to discover the final cluster rises in method C, 

though. If the end clusters of the fuzzy mean algorithm are 

taken into account rather than the initial random cluster in 

this algorithm, the fit function of the mean algorithm C 

obviously has a higher value. 

Since then, the suggested algorithms have undergone 

several changes and enhancements. 

 

 

 According to the classification made in this paper, the 

basic fuzzy clustering algorithms have been limited to Fuzzy 

C-Means and Possibilistic C-Means. Introduced as the K-

Means algorithm have been extracted [1]. 

The Possibilistic C-Means algorithm characterizes the 

relative degree of probability of membership. 

  The relative nature of the potential membership, despite 

being appropriate in most cases, can sometimes cause 

problems [3]. As an example of this category of problems 

can be mentioned as follows. Point X_1 is a distance from 

both clusters, so its degree of membership to both clusters is 

5. This is logical, but the problem occurs when the same 

degree of belonging to X_2 is also given while the distance 

between these two points of the clusters is not the same.  

The fundamental fuzzy clustering methods have been 

restricted to Fuzzy C-Means and Possibilistic C-Means in 

accordance with the categorization proposed in this study. 

K-Means method was first introduced and extracted [1]. 

The relative level of membership probability is described 

by the probabilistic C-Means method. 

Although it is usually suitable, the relative nature of the 

possible membership can occasionally lead to issues [3]. The 

following is a list of difficulties that fall under this category. 

Point X_1's degree of membership to both clusters is 5, as it 

is separated from both clusters. Although this makes sense, 

there is an issue when the same degree of membership to 

X_2 is also supplied and the distance between these two 

cluster locations is not the same. 

The reason for this is normalization and the need for the 



 

sum of the membership points of a point in different clusters 

to be equal. Normalizing membership rates can lead to 

adverse effects on out-of-center data presentation. If we 

release the normalization condition in the FCM algorithm, 

these adverse effects will be less. This approach is called 

possibility. The objective function, which previously 

minimized only squares of distances, does not seem to agree 

with the possibility approach. By removing the 

normalization condition by obtaining zero membership 

degrees for all points in each cluster, at least the objective 

function is obtained, and of course it is not reasonable that 

all clusters are empty. Therefore, a fine should be considered 

to keep membership rates below zero. [13] 

This is due to normalization and the requirement that the 

total of a point's membership points in several clusters be 

equal. Normalizing membership rates may have a negative 

impact on the way out-of-center data is presented. These 

negative impacts will be reduced if the normalization 

criterion in the FCM method is removed. This strategy is 

known as possibility. The possibility method does not 

appear to be supported by the goal function, which 

previously exclusively reduced squares of distances. At least 

the goal function is attained by eliminating the normalization 

constraint by achieving 0 membership degrees for all points 

in each cluster, even though it is obviously illogical for all 

clusters to be empty. Thus, it should be thought about 

imposing a fine to maintain membership rates below zero. 

[13] 

 

  The k-means algorithm, proposed by McQueen, is a 

basic method for many other clustering methods (such as 

fuzzy clustering) despite its simplicity. This method is 

usually the fastest clustering method for large data sets. 

Different forms have been expressed for this algorithm. But 

they all have iterative routines that try to estimate the 

following for a fixed number of clusters: 

Obtaining points as centers of clusters, these points are 

actually the average points belonging to each cluster. 

Attribute each data sample to a cluster that has the 

shortest distance to the center of that cluster. 

Despite its simplicity, the McQueen-proposed k-means 

algorithm forms the foundation for many different clustering 

techniques (including fuzzy clustering). For big data sets, 

this technique often yields the quickest clustering results. 

This algorithm has been expressed in a variety of formats. 

But given a fixed number of clusters, they all feature 

iterative processes that attempt to estimate the following: 

When points are obtained as cluster centers, they are 

really the average points for each cluster. 

Each data sample should be assigned to the cluster with 

the least distance to the cluster's center. 

 

  The K algorithm is an average as unsupervised learning 

in which the number of clusters is not predetermined and the 

clusters do not have a common chapter with each other. 

Different initial values for the mean K algorithm can lead to 

different clustering. Because this algorithm is based on the 

Euclidean distance, it can converge to the local minimum. 

This is usually true for clusters that do not separate very 

well. It is shown that there is no guarantee for the 

convergence of an iterative algorithm to a global 

optimization [14].  

In unsupervised learning, the K method uses an average 

when the number of clusters is not preset and the clusters do 

not have a common chapter. The mean K technique might 

provide different clusters based on various beginning values. 

This approach can reach the local minimum since it is based 

on the Euclidean distance. This is typically true for clusters 

that are difficult to disentangle. It is demonstrated that there 

is no assurance that an iterative method would converge to a 

global optimization [14]. 

 

High convergence speed is one of the most important 

advantages of this algorithm, but there is no specific 

procedure for the initial calculation of cluster centers and if 

in the iteration of the algorithm, the number of data 

belonging to clusters becomes zero, there is no way to 

change and improve the continuation of the method. 

One of the most significant benefits of this algorithm is its 

high convergence speed, but there is no specific method for 

calculating the cluster centers at the beginning of the 

algorithm, and if the number of data in a cluster falls to zero 

during an algorithm iteration, there is no way to alter or 

improve the method moving forward. 

 

A.  Differential clustering 

This algorithm is a quick way to find the number of 

clusters as well as their centers when there is no clear view 

of the number of clusters to be specified for the data set. 

  The centers estimated by this method are sometimes 

used as starting points for other clustering algorithms. This 

technique is used to extract key points or distinct samples 

from a set of data set records, each record containing the 

characteristics of a key point. 

When it is unclear how many clusters should be defined 

for the data set, this approach provides a rapid way to 

determine both the number of clusters and their centers. 

Other clustering methods occasionally employ the centers 

computed by this approach as their starting locations. This 

method is used to extract important information or distinct 

samples from a collection of data set records, where each 

record includes information that defines a key point. 

 

  Differential clustering is essentially a modified form of 

the Mountain method. In the algorithm, each point 

considered as a potential for the cluster center. The potential 

measurement is obtained according to Equation (5). This 

method can be used both as an independent method for 

clustering and can be used as a precondition for other 

clustering algorithms. (In this case we can decide in the 

process) 

The steps of the algorithm are as follows: 

Consider a set of n data {x_1, x_2,…, x_n} in the next M 

space. Each point in this set, as a candidate for the cluster 

centers, the density measure at the x_i data points is 

calculated as follows: 

The Mountain technique has largely been changed by 

differential clustering. Each location is taken into account as 

a potential cluster center by the algorithm. Equation is used 



 

to acquire the potential measurement (5). Both 

independently and as a prerequisite for other clustering 

techniques, this technique can be utilized for clustering. (In 

this instance, we have a decision-making process.) 

The algorithm's stages are as follows: 

Consider a collection of n data in the following M space: 

x_1, x_2,..., x_n. The density measure at the x_i data points 

is determined for each point in this collection as a potential 

candidate for the cluster centers as follows: 

                                          (5)  

 

r_a is a positive fixed number that denotes the 

neighborhood radius. Hence a point in the data will have a 

high density value if it has a large number of points in the 

neighborhood. 

The first center of the cluster (x_c1) is selected as the 

point with the highest density (D_c1). Then, the density 

value of each point x_i is re-evaluated as follows: 

 

The radius of the immediate area is indicated by the 

positive fixed integer r_a. A point in the data will thus have 

a high density value if there are many other points in the 

area. The location with the highest density (D_c1) is chosen 

to be the cluster's first center (x_c1). 

The density value is then recalculated as follows for each 

location x_i: 

 

                                  (6)    

  After recalculating the density for each data point, the 

next x_c2 center is selected and all calculations for the data 

point density are corrected again. This process continues 

until a sufficient number of points in the centers of the 

clusters are produced. Decreasing clustering output is a 

Sugno fuzzy inference system. 

 

The next x_c2 center is chosen, and all corrections are 

made to the data point density computations once each data 

point's density has been recalculated. This procedure is 

repeated until enough points are created in the cluster 

centers. A Sugno fuzzy inference system is the decreasing 

clustering output. 

 

B. Support  machine vector 

One of the most popular methods that is currently widely 

used for the classification problem is the support vector 

machine (SVM) method. The first algorithm for 

classification various patterns proposed by Fisher in 1936, 

and its criterion for optimization was to reduce the 

classification error of educational patterns. Many of the 

algorithms and methods proposed so far, for designing 

pattern classifiers follow the same strategy.  

  In 1965, a Russian researcher named Vladimir Vapnilk 

took a very important step in designing classifiers and 

solidified the statistical theory of learning and based on it 

used support vector machines. 

The support vector machine (SVM) approach is one of the 

most well-liked approaches that is now commonly employed 

for the classification challenge. 

Fisher introduced the first classification method for 

different patterns in 1936, and one of its optimization 

criteria was to lower the classification error of instructional 

patterns. 

The same approach is used by many of the algorithms and 

techniques for developing pattern classifiers that have been 

developed so far. 

 

Vladimir Vapnilk, a Russian researcher, made a crucial 

advancement in classifier design in 1965 by establishing the 

statistical theory of learning and developing support vector 

machines on its basis. 

 

1) Support vector machine in integral mode 

For the inseparable state of a set of ∈_i variables called 

definition deficiency variables 

We do so that the following condition is met: 

 

1. Integral mode support vector machine 

For a set of I variables known as definition deficit 

variables that are in an irreducible condition. 

The following criterion is ensured by what we do: 

 

                                                 (7) 

                                                                                     

  It is clear that the higher summation of ∈_i, cussed the 

greater the error, so we define the problem of constrained 

optimization as follows: 

Since it is obvious that the error increases with the 

summing of I we formulate the restricted optimization 

problem as follows: 

                                  (8) 

                                                             

  For this problem, we form the KKT conditions at the 

answer point and reach the following two: 

At the answer point, we create the KKT conditions for 

this issue and arrive at the following two: 

               (9) 

  As can be seen, solving the SVM problem in the integral 

state is similar to solving it in the separable state. After 

obtaining the Lagrangian coefficients, the patterns whose 

Lagrangian coefficients apply in the following relation are 

supported vectors: 

The SVM issue can be solved in the integral state 

similarly to how it can be solved in the separable state, as 

can be demonstrated. The patterns whose Lagrangian 

coefficients apply in the following relation after being 

determined are supported vectors: 

                                                                     (10) 

  The value of W and the shape of the differentiation 

function will be similar to the separable case. The 

supernatant obtained in an inseparable state is called the 

supernatant with a soft border area. 

  Nonlinear support vector machine 



 

The support vector machines mentioned in previous 

sections use linear delimiters and a hyperplane to classify the 

patterns of a two-class problem, and are in fact the product 

of the internal product of the input vector with each of the 

support vectors in space. The next d input is calculated. 

The differentiation function's form and W's value will 

resemble those in the separable situation. The supernatant 

with a soft border region is the supernatant obtained in an 

inseparable state. 

Support-vector nonlinear machine 

The support vector machines described in earlier sections, 

which are really the internal product of the input vector with 

each of the support vectors in space, employ linear 

delimiters and a hyperplane to categorize the patterns of a 

two-class issue. The following d input is computed. 

 

 Using the concept of internal multiplication in Hilbert 

spaces and the Hilbert Schmidt theorem, Vapnik showed that 

we can first transfer the input vector x by a nonlinear 

transformation to a space with a large dimension, in which 

we perform the internal multiplication space and prove that 

if a If the symmetric kernel meets the conditions of the 

Mercer theorem, applying this kernel to a low-dimensional 

input space can be considered as the product of the internal 

multiplication of a high-dimensional Hilbert space, greatly 

reducing computations[15]. For example, the kernel function 

can be in the following forms: 

Vapnik demonstrated how we may first move the input 

vector x via a nonlinear transformation to a space with a big 

dimension, in which we do the internal multiplication, and 

demonstrate that if a Hilbert space has internal 

multiplication, then a Hilbert Schmidt theorem must hold. 

The internal multiplication of a high-dimensional Hilbert 

space may be used to apply the symmetric kernel to a low-

dimensional input space if it satisfies the Mercer theorem's 

requirements, considerably lowering computations[15]. The 

kernel function, for instance, can have the following forms: 

K(x,y)=       

K(x,y)=exp , K(x,y)=tanh(xy+θ)                (11)      

  These nuclei are polynomial nuclei, Gaussian nuclei, and 

hyperbolic tangent nuclei, respectively. The problem of dual 

optimization in the integral and nonlinear state will be as 

follows: 

These three types of nucleus are polynomial, Gaussian, 

and hyperbolic tangent, respectively. The dual optimization 

problem in the integral and nonlinear state will look like 

this: 

        (12)   

  Support vectors are patterns whose corresponding 

Lagrangian coefficients apply to the relation 0≤α_i≤C. A 

number of support vectors whose content Lagrangian 

coefficients are equal to 0 <α_i <C and whose number is 

N_b are used to calculate b: 

 

Support vectors are patterns whose corresponding 

Lagrangian coefficients apply to the relation 0≤α_i≤C. A 

number of support vectors whose content Lagrangian 

coefficients are equal to 0 <α_i <C and whose number is 

N_b are used to calculate b: 

  , b=                 (13) 

                                     

  The decision function will be as follows: 

F(x)=sign                         (14)   

Perhaps the current popularity of the support vector 

machine method can be compared to the popularity of neural 

networks over the past decade. The reason for this is the 

ability to use this method to solve various problems, while 

methods such as the decision tree can not be easily used in 

various problems. 

  In none of these methods is the generalization property 

of the classifier directly involved in the cost function of the 

method, and the designed classifier has little generalizing 

property. 

Perhaps the rise in popularity of neural networks over the 

previous ten years can be paralleled to the present success of 

the support vector machine approach. The rationale for this 

is that, unlike approaches like the decision tree, this method 

can be utilized to address a variety of issues, whereas others 

cannot. 

The constructed classifier has minimal generalizing 

property, and none of these approaches directly link the 

classifier's generalization property to the cost function. 

 

 

  If we consider pattern classifier design as an 

optimization problem, many of these methods face the 

problem of local optimization in the cost function and fall 

into the trap of local optimization. 

  There is another problem, and that is to determine the 

structure and topology of the classifier before design, for 

example, to determine the optimal number of hidden layer 

nodes in MLP neural networks, the number of Gaussian 

functions in RBF neural networks or the optimal number of 

snake modes and functions in the snake model. is. All these 

factors make it impossible to reach an optimal classifier in 

practice with the previously proposed methods. 

Here the learning process is done in two parts: 

 

Many of these techniques encounter the issue of local 

optimization in the cost function and fall victim to local 

optimization if pattern classifier creation is viewed as an 

optimization problem. 

The structure and topology of the classifier must be 

determined prior to design; for instance, the ideal number of 

hidden layer nodes in MLP neural networks, the ideal 

number of Gaussian functions in RBF neural networks, or 

the ideal number of snake modes and functions in the snake 

model. With the previously suggested approaches, it is hard 

to achieve an ideal classifier in practice because of all these 

issues. 

The learning process is divided into two steps here: 

 

1- Structure training: which aims to learn the partitioning 

structure that affects the number of fuzzy rules. 

2_Learning: Here the structure of the support  vector 

machine is taught through fuzzy clustering. 

  Support vector machines have the following properties : 



 

1- Classifier design with maximum generalization 

2- Achieving the global optimal cost function 

3- Automatic determination of the optimal structure and 

topology for the classifier 

4. Modeling nonlinear differentiation functions using 

nonlinear nuclei and the concept of internal product in 

Hilbert spaces (a complete vector space whose norm is 

defined as absolute value by multiplication of fences. In 

quantum mechanics, Hilbert space is complex and basically 

infinite next, but In certain circumstances, its dimensions can 

be finite.) 

 

To learn the partitioning structure that impacts the number 

of fuzzy rules, there is a first step called structure training. 

2 Learning: In this case, fuzzy clustering is used to teach 

the structure of the support vector machine. 

The characteristics of support vector machines are as 

follows: 

1- A classifier designed with the most generalization 

possible 

Realizing the global optimum cost function is step two. 

3- Automatic selection of the best topology and structure 

for the classifier 

4. Using nonlinear nuclei and the idea of internal product 

in Hilbert spaces (a full vector space whose norm is 

determined as absolute value by multiplication of fences), 

nonlinear differentiation functions are modeled. Hilbert 

space is complicated and essentially infinite in quantum 

physics, but its dimensions can occasionally be limited.) 

 

III. PROPOSED METHOD 

Full In the previous section, a review of the work done in 

the field of FS-FCSVM was done. In most of the work done, 

the optimization criterion on the number of fuzzy clusters 

and the number of SVs used to evaluate the quality. In this 

chapter, a new hybrid clustering method based on two 

algorithms of fuzzy clustering and differential clustering as 

well as determining SVM parameters using GRID SEARCH 

algorithm presented. 

The goal is to reduce the number of support vectors and 

thus the number of rules in SVM by selecting the right 

clusters. Consider a set of n data {x_1, x_2,…, x_n} in the 

next M space. 

Step 1: In the proposed method, we calculate the density 

value for each data according to Equation 15. 

 

Full A review of the FS-FCSVM research was done in the 

section before this one. The majority of the work was 

evaluated for quality using an optimization criterion based 

on the quantity of SVs and fuzzy clusters. This chapter 

introduces a novel hybrid clustering approach based on 

fuzzy clustering and differential clustering, as well as GRID 

SEARCH algorithm for SVM parameter estimation. 

By choosing the appropriate clusters, it is possible to 

decrease the number of support vectors and, consequently, 

the number of rules in SVM. Consider a collection of n data 

in the following M space: x_1, x_2,..., x_n. 

Step 1: In the proposed method, we calculate the density 

value for each data according to Equation 15. 

 

                                          (15) 

 

  Step 2: Select the data with the highest density as the 

centers of the clusters. For this step of the numerical 

constant 〖r〗 _a, which is a positive constant, determine 

the radius of the neighborhood. Hence a point in the data 

will have a high density value if it has a large number of 

points in the neighborhood. 

  The first center of the cluster (x_c1) is selected as the 

point with the highest density (D_c1). Then, the density 

value of each point x_i is re-evaluated as follows: 

 

Choose the data with the highest density to serve as the 

clusters' centres in step 2. 

Find the radius of the neighbourhood for this application 

of the positive numerical constant 〖r〗 _a. 

A point in the data will thus have a high density value if 

there are many other points in the area The location with the 

highest density (D_c1) is chosen to be the cluster's first 

centre (x_c1). 

The density value is then recalculated as follows for each 

location x_i:. 

 

                                          (16) 

  

  Step 3: After recalculating the density for each data 

point, the next x_c2 center is selected and all calculations for 

the data point density are corrected again. This process 

continues until a sufficient number of points in the centers of 

the clusters are produced. 

  Step 4 and 5: The most critical part of the algorithm is 

fuzzy clustering and the performance of this clustering is 

highly dependent on the conjecture of the initial parameters. 

(To optimize this process, differential clustering algorithm is 

used to determine the number of centers. This algorithm 

itself has parameters such as neighborhood radius that is 

applied as input to the algorithm. The choice of this 

parameter is determined by the sensitivity of the work and 

data structure) . 

Step 3: The new x c2 centre is chosen, and all 

computations for the data point density are rectified once 

again. This is done after recalculating the density for each 

data point. This procedure is repeated until enough points 

are created in the cluster centres. 

Steps 4 and 5: The fuzzy clustering, which is the most 

important component of the process, is extremely sensitive 

to assumptions made about the starting values. 

(The differential clustering method is utilised to calculate 

the number of centres in order to improve this procedure. 

Neighborhood radius is one of the parameters that this 

method itself accepts as input. 

The sensitivity of the job and data structure dictate the 

choice of this value. 

 

  As mentioned, the output of this algorithm will be the 



 

number of cluster centers which will be applied as the input 

of the phase clustering algorithm. The fuzzy clustering 

algorithm is presented below. 

Initialization of c, m and u primary clusters 

Calculation of cluster centers 

Calculation of the belonging matrix from the clusters 

calculated in step 2. 

If the termination condition is met (u does not change 

much in different iterations) the algorithm terminates. 

Otherwise the algorithm continues from phase 2. 

 

The number of cluster centres that will be used as the 

input for the phase clustering method will be the outcome of 

this algorithm, as was previously described. 

The algorithm for fuzzy clustering is shown below. 

Initialization of the fundamental clusters c, m, and u 

 

Cluster centre calculation. the belonging matrix is 

generated using the clusters from step 2 as a starting point. 

The method finishes if the termination condition is 

satisfied (u does not vary significantly between iterations). 

Otherwise, step 2 of the algorithm is carried out. 

 

  In this algorithm, C represents the number of centers of 

the clusters, m represents the fuzzyness parameter, and in 

fact the scattering of the centers. In this work, m = 1.2 is 

used to increase the scattering, and U is the belonging 

matrix. The U-matrix shows the degree to which each data 

belongs to the cluster. In this work, we use this matrix to 

select the data by specifying a specific attribution value 

called K and comparing it to the degree to which each 

cluster actually belongs. Each row of the U matrix selects a 

data as a candidate for the training data. Of course, more 

points can be selected, but in the proposed algorithm, only 

one point is selected. So we will have training data for the 

number of clusters. 

The fuzzyness parameter, m, and the dispersion of the 

cluster centres are all represented in this approach by the 

letters C and m, respectively. 

In this study, the scattering is increased using m = 1.2, and 

U is the belonging matrix. 

The U-matrix demonstrates how closely each piece of 

data is related to the cluster. In this study, we utilise this 

matrix to choose the data by defining an attribution value K 

and evaluating it against the degree to which each cluster 

genuinely belongs. 

A data is chosen as a candidate for the training data in 

each row of the U matrix. Of course, additional points might 

be chosen, but the suggested method only chooses one. So 

we will have training data for the number of clusters. 

  Step 6: After selecting the training data, it is time for the 

SVM training. First, the GRID SEARCH algorithm used to 

select the kernel parameters (the proposed kernel is the RBF 

kernel) and SVM, thus obtaining two penalty parameters C 

and σ kernel width. 

Grid search algorithm is a search method that examines all 

possible scenarios and is usually for tasks in which logic can 

not be found. This method involves systematically counting 

all possible candidates to resolve and check which candidate 

is able to fulfill the problem condition. For example, try all 

four-digit scenarios to find the ATM password. Now, if the 

result obtained from the Grid search algorithm is not 

acceptable, the algorithm can be re-evaluated with 

appropriate parameters and the desired result can be 

achieved. 

Step 6: It's time to start the SVM training after choosing 

the training data. First, the SVM and GRID SEARCH 

algorithms were used to choose the kernel parameters (the 

RBF kernel was offered), resulting in the two penalty 

parameters C and kernel width. 

Grid search algorithms are used to search across all 

situations and are typically used for problems where logic 

cannot be discovered. To answer the problem and determine 

which candidate may meet the criterion, this approach 

requires methodically counting all potential candidates. For 

instance, to get the ATM password, try each of the four-digit 

possibilities. Now, if the outcome of the Grid search method 

is unsatisfactory, the process may be reevaluated with the 

proper parameters to get the desired outcome. 

 

  This design is in fact an improved example of algorithms 

that have used only fuzzy clustering and in fact in this design 

the whole process including the number of clusters and the 

number of training data can be controlled and with these 

options the training process of support  vector machine can 

be completely controlled Optimized construction. In this 

research, the problem of high SVM, which leads to an 

increase in the number of SVM rules, is solved by 

performing these steps. 

This architecture is actually an improvement over 

methods that have just employed fuzzy clustering, and with 

these choices, support vector machine training may be fully 

controlled throughout the whole process, including the 

amount of clusters and training data used. optimised 

building. These procedures are used in this study to address 

the issue of high SVM, which results in a rise in the number 

of SVM rules. 

 

IV. SIMULATION 

In this section, experimental results reported to evaluate 

the proposed method on different data sets and parameters 

used. The data set used selected from UCEA data sets[16]. 

Also, the test results, which show the relatively high 

efficiency of the proposed method, are presented in this 

chapter. 

 

The database specifications are used and the simulation 

parameters presented: 

 

This section includes experimental findings that were used 

to assess the suggested approach using various data sets and 

input settings. The UCEA data sets were utilised to select the 

data set[16]. This chapter also includes the test findings, 

which demonstrate the relatively high efficacy of the 

suggested approach. 

The simulation settings are supplied and the database 

requirements are used: 
Table 1: Specifications of the data used 

 Four class Svm Votes.84 



 

Records 862 4000 435 

Features 2 4 16 

class 2 2 2 

Table 2: Kernel parameters 

 Rbf 

kernel 

Four class Svm Votes.84 

gamma 1 2.6 2.4 

C 500 500 650 

In this section, the proposed algorithm and ordinary 

support  vector machine and fuzzy support  vector machine 

are compared in terms of runtime and clustering accuracy 

and number of support  vectors: 

In this part, the runtime, clustering precision, and number 

of support vectors of the proposed approach, as well as those 

of the conventional and fuzzy support vector machines, are 

compared: 

 
Table 3: Comparison of the proposed algorithm and SVM in terms of 

time 

 Four class Svmguide1 Votes.84 

Normal svm 0.276299 3.058864 0.024883 

Proposed 

method 

0.376222 1.336557 0.102236 

Fs-fcsvm 0.371568 2.554789 0.065897 

Table 4: Comparison of the proposed algorithm and SVM in terms of 

accuracy 

  
 Four class Svmguide1 Votes.84 

Normal svm 100% 97.31% 100% 

Proposed 

method 

99.30% 96.24% 98.62 

Fs-fcsvm 99.65% 96.25% 98.20 

 
Table 5: Comparison of the proposed algorithm and SVM in terms of 

the number of support  vectors 

 Four class Svmguide1 Votes.84 

Normal svm 22 256 72 

Proposed 

method 

16 36 65 

Fs-fcsvm 20 55 62 

As can be seen, the results of the proposed algorithm in 

most cases are significantly different from the existing 

results of other algorithms. This result indicates the 

relatively high efficiency of the proposed method in 

optimization. 

As can be observed, the results of the suggested method 

are typically very different from the results of other 

algorithms that are already in use. This outcome 

demonstrates the relatively high optimization efficiency of 

the suggested approach. 

 

  The large number of support vectors, which was one of 

the biggest problems of the support vector machine, was 

greatly reduced by the proposed method, which indicates the 

relatively high performance of this algorithm compared to 

the conventional support vector machine. 

  As stated in Chapter 3, after selecting the training data, it 

is time to train the SVM. First, the GRID SEARCH 

algorithm used to select the kernel parameters (the kernel 

suggested by the RBF kernel) and the SVM, thus obtaining 

two penalty parameters C and σ kernel width. Coming. 

  Here is an example of a GRID SEARCH algorithm for 

determining kernel parameters in SVM GUIDE1 data: 

 

The suggested approach significantly decreased the vast 

number of support vectors, which was one of the main issues 

with the support vector machine. This shows that the 

algorithm performs rather well when compared to the 

traditional support vector machine. 

It is now time to train the SVM, as was mentioned in 

Chapter 3, after choosing the training data. The first step was 

using the GRID SEARCH method to choose the kernel 

parameters (the kernel recommended by the RBF kernel) 

and the SVM, resulting in the acquisition of the two penalty 

parameters C and kernel width. Coming. 

An illustration of a GRID SEARCH technique for 

locating kernel parameters in SVM GUIDE1 data is shown 

below: 

 
Figure 1: Execution of GRID SEARCH algorithm to determine kernel 

parameters in SVM 

  With the implementation of GRID SEARCH, the 

algorithm has changed a bit and the data related to the 

central points found from the differential search added to the 

points with a low percentage of belonging to the cluster, and 

the parameter related to the farthest value belongs to two 

parameters, ie the range. 

  And the parameters related to the neighborhood radius in 

all simulations are considered 0.1. 

 

  The following figure shows the four class data clustering 

diagram using the proposed algorithm in which 16 SVMs are 

used for SVM training. 

The algorithm has changed slightly with the 

implementation of GRID SEARCH, and the information 

pertaining to the central points discovered through 

differential search has been added to the points with a low 

percentage of cluster membership, and the parameter 

pertaining to the farthest value now belongs to two 

parameters, i.e. the range. 

Additionally, in every simulation, the neighbourhood 

radius-related parameters are taken to be 0.1. 

 

The four-class data clustering diagram utilising the 

suggested approach, which employs 16 SVMs for SVM 

training, is shown in the accompanying picture. 

 



 

 
Figure 2: Clustering of Four class data using the proposed algorithm 

In the last section conclusion of this paper presented. 

 

V. CONCLUSION  

In this paper, clustering based on fuzzy logic with the help 

of support vector machine was investigated. And SVs were 

getting too big, so it was not economical in terms of time 

and memory. Differential clustering algorithm for fuzzy 

clustering optimization introduced, which is both as an 

independent clustering method and as a preprocessing for 

other clustering algorithms. Fuzzy clustering algorithm that 

was sensitive to out-of-noise data and increased the number 

of SVs with the help of differential algorithm and GRID 

SEARCH reduces the number of out-of-date and ineffective 

training data and improves the quality of SVM. Thus, the 

number of SVs is greatly reduced Found and the category 

improved dramatically in terms of accuracy and timing. 

  This method has a relatively good performance for large 

databases and the results of experiments on different 

standard datasets show the high efficiency of the proposed 

method. 

 

This study looked on fuzzy logic-based clustering with the 

use of support vector machines. Additionally, SVs were 

growing too large, making it less efficient in terms of time 

and memory. Introduced is a differential clustering 

algorithm, which may be used both as a standalone 

clustering approach and as a preprocessor for other 

clustering methods. Reduce the amount of outdated and 

inefficient training data and enhance the performance of 

SVM using a fuzzy clustering method that was sensitive to 

out-of-noise data and improved the number of SVs with the 

aid of differential algorithm and GRID SEARCH. As a 

result, there are a lot less SVs found, and the category has 

significantly increased in accuracy and timeliness. 

This approach performs rather well for huge databases, 

and the outcomes of testing on various standard datasets 

demonstrate the suggested method's high efficiency. 
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