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We present a complete set of the equations and matching conditions required for the description of
physically meaningful charged, dissipative, spherically symmetric gravitational collapse with shear.
Dissipation is described with both free-streaming and diffusion approximations. The effects of viscosity
are also taken into account. The roles of different terms in the dynamical equation are analyzed in detail.
The dynamical equation is coupled to a causal transport equation in the context of Israel-Stewart theory.
The decrease of the inertial mass density of the fluid, by a factor which depends on its internal
thermodynamic state, is reobtained, with the viscosity terms included. In accordance with the equivalence
principle, the same decrease factor is obtained for the gravitational force term. The effect of the electric
charge on the relation between the Weyl tensor and the inhomogeneity of the energy density is discussed.
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I. INTRODUCTION

The study of self-gravitating spherically symmetric
charged fluid distributions has a long and a venerable
history, starting with Rosseland and Eddington’s contribu-
tions [1,2]. Since then a large number of works have been
dedicated to making manifest the influence of electric
charge on the structure and evolution of self-gravitating
systems (see [1–42] and references therein).

Although some of these works refer to static situations
([3–5,9,19,23,24,29,30,32–34,36,37,39,41]) there have
been important efforts in describing dynamical situations
too ([6–8,10–14,16,17,21,22,26,40,42]). Particularly rele-
vant for the present paper are Refs. [14,22,40].

A renewed interest in this subject emerges from the
appearance of new mechanisms allowing for the presence
of huge electric charge in self-gravitating systems. From
simple classical considerations, it can be shown that physi-
cal objects with large amounts of charge (much larger than
100 C per solar mass) cannot exist [1,2,31]. Furthermore,
as shown by Bekenstein [14] the electric charge is bounded
by the fact that the resulting electric field should not exceed
the critical field for pair creation, 1016 V cm�1. However,
these restrictions have been questioned by several authors
[15,18,20,37]. Particularly appealing is the possibility of
very high electric fields in strange stars with quark matter
(see [38,39] and references therein).

All this having been said, it should be clear that the
restrictions mentioned above refer to equilibrium (stable)
configurations. They do not apply to phases of intense

dynamical activity with time scales of the order of (or
even smaller than) the hydrostatic time scale, and for which
the quasistatic approximation is clearly not reliable (e.g.
the collapse of very massive stars [43] or the quick collapse
phase preceding neutron star formation; see for example
[44] and references therein). The description of this very
dynamic regime is the main purpose of this manuscript.

Besides electric charge, which will be assumed to co-
move with the fluid, we shall also consider dissipative
phenomena. It is already an established fact that gravita-
tional collapse is a highly dissipative process (see [45–47]
and references therein), so the relevance of dissipation in
its study cannot be over-emphasized. Dissipation due to the
emission of massless particles, photons, and/or neutrinos is
a characteristic process in the evolution of massive stars. In
fact, it seems that the only plausible mechanism for carry-
ing away the bulk of the binding energy of a star collapsing
to a neutron star or black hole is neutrino emission [48].

In the diffusion approximation, it is assumed that the
energy flux of radiation, like that of thermal conduction, is
proportional to the gradient of temperature. This assump-
tion is in general very sensible, since the mean free path of
particles responsible for the propagation of energy in stel-
lar interiors is normally very small compared with the
typical length of the object. Thus, for a main sequence
star such as the sun, the mean free path of photons at the
center is of the order of 2 cm. Also, the mean free path of
trapped neutrinos in compact cores of densities above
about 1012 g cm�3 becomes smaller than the size of the
stellar core [49,50].

Furthermore, the observational data collected from su-
pernova 1987A indicates that the regime of radiation trans-
port prevailing during the emission process is closer to the
diffusion approximation than to the free-streaming limit
[51].
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However, in many other circumstances the mean free
path of particles transporting energy may be large enough
to justify the free-streaming approximation. Therefore it is
advisable to include simultaneously both limiting cases of
radiative transport, diffusion, and free streaming, allowing
us, by taking both in combination, to describe a wide range
of situations.

The effects of dissipation, in both limiting cases of
radiative transport, within the context of the quasistatic
approximation, have been studied in [52]. Using this ap-
proximation is very sensible because the hydrostatic time
scale is very small, compared with stellar lifetimes, for
many phases of the life of a star. It is of the order of 27 min
for the sun, 4.5 sec for a white dwarf, and 10�4 sec for a
neutron star of one solar mass and 10 km radius [53].
However, such an approximation does not apply to the
very dynamic phases mentioned before. In those cases it
is mandatory to take into account terms which describe
departure from equilibrium, i.e. a full dynamic description
has to be used.

For the sake of generality, we have considered a locally
anisotropic fluid. In fact, the assumption of local anisot-
ropy of pressure, which seems to be very reasonable for
describing the matter distribution under a variety of cir-
cumstances, has been proved to be very useful in the study
of relativistic compact objects (see [46,54] and references
therein).

Finally we have also included viscous effects in our
study. In fact, though they are generally excluded in gen-
eral relativistic models of stars, they are known to play a
very important role in the structure and evolution of neu-
tron stars. Indeed, depending on the dominant process, the
coefficient of shear viscosity may be as large as � �
1020 g cm�1 s�1 (see [55] for a review on shear viscosity
in neutron stars). Also, a theorem by Raychaudhuri and De
[56], which states that in the evolution of nondissipative
charged dust the shear cannot vanish, emphasizes the
relevance of the shear in the evolution of charged fluids.

On the other hand the coefficient of bulk viscosity may
be as large as 1030 g cm�1 s�1 due to Urca processes in
strange quark matter [57] (see also [58] for a review on
bulk viscosity in nuclear and quark matter).

II. THE ENERGY-MOMENTUM TENSOR AND THE
FIELD EQUATIONS

In this section we provide a full description of the matter
distribution, the line element, both inside and outside the
fluid boundary, and the field equations this line element
must satisfy.

A. Interior spacetime

We consider a spherically symmetric distribution of
collapsing charged fluid, bounded by a spherical surface
�: we assume the fluid to be locally anisotropic and under-
going dissipation in the form of heat flow, free-streaming

radiation, and shearing viscosity. For short we call this
‘‘matter.’’ Choosing comoving coordinates inside �, the
general interior metric can be written

 ds2
� � �A2dt2 � B2dr2 � �Cr�2�d�2 � sin2�d�2�; (1)

where A, B, and C are functions of t and r and are assumed
positive. We number the coordinates x0 � t, x1 � r, x2 �
�, and x3 � �.

The assumed matter energy-momentum T��� inside �

has the form
 

T��� � ��� P?�V�V� � P?g�� � �Pr � P?�����

� q�V� � V�q� � �l�l� � 2�	��; (2)

where � is the energy density, Pr the radial pressure, P?
the tangential pressure, q� the heat flux, � the radiation
density, � the coefficient of shear viscosity, V� the four
velocity of the fluid, �� a unit four vector along the radial
direction, and l� a radial null four vector. These quantities
satisfy

 V�V� � �1; V�q� � 0; ���� � 1;

��V� � 0; l�V� � �1; l�l� � 0;
(3)

and the shear 	�� is given by

 	�� � V��;�� � a��V�� �
1

3
��g�� � V�V��; (4)

where the acceleration a� and the expansion � are given
by

 a� � V�;�V
�; � � V�;�: (5)

We do not explicitly add bulk viscosity to the system
because it can be absorbed into the radial and tangential
pressures, Pr and P?, of the collapsing fluid [59].

It should be noted that for a physically meaningful
specific model we would need constitutive equations which
would relate and determine the quantities �, Pr, P?, q�, �,
and �. Without such relations we still have so many free
functions that nothing useful can be said about the behavior
of an individual case. However, we will show that some
important general physical results follow just from assum-
ing, for example, that dissipation carries energy radially
outwards.

Since we assumed the metric (1) comoving then

 V� � A�1
�0 ; q� � qB�1
�1 ;

l� � A�1
�0 � B
�1
�1 ; �� � B�1
�1 ;

(6)

where q is a function of t and r. With (6) we obtain for (4)
its non-null components

 	11 �
2

3
B2	; 	22 �

	33

sin2�
� �

1

3
�Cr�2	; (7)

where
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 	 �
1

A

� _B
B
�

_C
C

�
; (8)

and the dot stands for differentiation with respect to t,
which gives the scalar quantity

 	��	�� �
2

3
	2: (9)

For (5) with (6) we have

 a1 �
A0

A
; � �

1

A

� _B
B
� 2

_C
C

�
; (10)

where the prime stands for r differentiation.

B. The electromagnetic energy tensor and the Maxwell
equations

The electromagnetic energy tensor E��� is given by

 E��� �
1

4�

�
F��F�� �

1

4
F�
F�
g��

�
; (11)

where F�� is the electromagnetic field tensor. Maxwell’s
equations can be written

 F�� � ��;� ���;�; (12)

 F��;� � 4�J�; (13)

where �� is the four potential and J� is the four current.
Since the charge is assumed to be at rest with respect to the
coordinate system used in (1), there is no magnetic field
present in this local coordinate system, and therefore we
can write

 �� � �
0
�; J� � &V�; (14)

where &, the charge density, and � are both functions of t
and r. Charge conservation implies that

 s�r� � 4�
Z r

0
&B�Cr�2dr; (15)

which is the electric charge interior to radius r, is time
independent.

With (1) and (6) we obtain for the Maxwell Eqs. (12) and
(13)

 �00 �
�
A0

A
�
B0

B
� 2

C0

C
�

2

r

�
�0 � 4�&AB2; (16)

 

_� 0 �

� _A
A
�

_B
B
� 2

_C
C

�
�0 � 0: (17)

Integrating (16) and (17) produces

 �0 �
sAB

�Cr�2
: (18)

C. The Einstein equations

Einstein’s field equations for the interior spacetime (1)
are given by

 G��� � 8��T��� � E
�
���: (19)

The non-null components of (19) with (1), (2), (6), (11),
and (18) become
 

8��T�00 � E
�
00� � 8���� ��A2 �

�sA�2

�Cr�4

�

�
2

_B
B
�

_C
C

� _C
C
�

�
A
B

�
2
�
�2

C00

C

�

�
2
B0

B
�
C0

C

�
C0

C
�

2

r

�
B0

B
� 3

C0

C

�

�

�
1�

�
B
C

�
2
�

1

r2

�
; (20)

 8��T�01 � E
�
01� � �8��q� ��AB

� �2
� _C0

C
�

_B
B
C0

C
�

_C
C
A0

A

�
�

2

r

� _B
B
�

_C
C

�
;

(21)

 

8��T�11 � E
�
11� � 8�

�
Pr � ��

4

3
�	

�
B2 �

�sB�2

�Cr�4

� �

�
B
A

�
2
�

2
�C
C
�

� _C
C

�
2
� 2

_A
A

_C
C

�

�

�
C0

C

�
2
� 2

A0

A
C0

C
�

2

r

�
A0

A
�
C0

C

�

�

�
1�

�
B
C

�
2
�

1

r2 ; (22)

 

8��T�22 � E
�
22� �

8�

sin2�
�T�33 � E

�
33�

� 8�
�
P? �

2

3
�	

�
�Cr�2 �

�
s
Cr

�
2

� �

�
Cr
A

�
2
� �B
B
�

�C
C
�

_A
A

� _B
B
�

_C
C

�
�

_B
B

_C
C

�

�

�
Cr
B

�
2
�
A00

A
�
C00

C
�
A0

A

�
B0

B
�
C0

C

�

�
B0

B
C0

C
�

1

r

�
A0

A
�
B0

B
� 2

C0

C

��
: (23)

The component (21) can be rewritten with (8) and (10)
as

 4��q� ��B �
1

3
��� 	�0 � 	

�Cr�0

Cr
: (24)

Next, the mass function m�t; r� introduced by Misner
and Sharp [60] (see also [61]) can be generalized to include
the electromagnetic contribution by
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 m �
�Cr�3

2
R23

23 �
s2

2Cr

�
Cr
2

��
r _C
A

�
2
�

�
�Cr�0

B

�
2
� 1

�
�

s2

2Cr
; (25)

which is the same mass function used in [14,22].

D. The exterior spacetime and junction conditions

Outside � we assume we have the Reissner-Nordström-
Vaidya spacetime (i.e. we assume all outgoing radiation is
massless), described by

 

ds2 � �

�
1�

2M�v�
r
�
Q2

r2

�
dv2 � 2drdv

� r2�d�2 � r2 sin�2d�2�; (26)

where M�v� and Q denote the total mass and charge,
respectively, and v is the retarded time.

The junction conditions for the smooth matching of an
adiabatic charged sphere to the Reissner-Nordström space-
time were discussed in detail in [22,40], whereas the
matching of the full nonadiabatic sphere (including vis-
cosity) to the Vaidya spacetime was discussed in [62]. The
result is that the matching of (1) and (26) on � implies

 Pr � 4�	�
�
q; m�t; r��

�
M�v�; s�

�
Q; (27)

where �
�

means that both sides of the equation are eval-
uated on �.

III. DYNAMICAL EQUATIONS

The nontrivial components of the Bianchi identities,
�T��� � E����;� � 0, from (2) and (11) yield

 

�T����E����;�V���
1

A
� _�� _��

�

�
��Pr� 2��

4

3
�	

� _B
AB

� 2
�
��P?���

2

3
�	

� _C
AC

�
1

B
�q� ��0 � 2�q���

�ACr�0

ABCr
� 0;

(28)

 

�T��� � E����;��� �
1

A
� _q� _�� �

1

B

�
Pr � ��

4

3
�	

�
0

� 2�q� ��
_B

AB
� 2�q� ��

_C
AC

�

�
�� Pr � 2��

4

3
�	

�
A0

AB

� 2�Pr � P? � �� 2�	�
�Cr�0

BCr

�
ss0

4�B�Cr�4
� 0; (29)

where we used (15) and (18).
To study the dynamical properties of the system, let us

introduce, following Misner and Sharp [60], the proper
time derivative DT given by

 DT �
1

A
@
@t
; (30)

and the proper radial derivative DR,

 DR �
1

R0
@
@r
; (31)

where

 R � Cr (32)

defines the proper radius of a spherical surface inside �, as
measured from its area.

Using (30) we can define the velocityU of the collapsing
fluid as the variation of the proper radius with respect to
proper time, i.e.

 U � rDTC < 0 �in the case of collapse�: (33)

Then (25) can be rewritten as

 E �
�Cr�0

B
�

�
1�U2 �

2m�t; r�
Cr

�

�
s
Cr

�
2
�

1=2
: (34)

With (31) and (32) we can express (24) as

 4��q� �� � E
�

1

3
DR��� 	� �

	
R

�
: (35)

Using (20)–(23) and (30)–(32) we obtain from (25)

 DTm � �4�
��
Pr � ��

4

3
�	

�
U� �q� ��E

�
R2; (36)

and

 DRm � 4�
�
�� �� �q� ��

U
E

�
R2 �

s
R
DRs: (37)

Expression (36) describes the rate of variation of the total
energy inside a surface of radius Cr. On the right-hand side
of (36), �Pr � �� 4�	=3�U (in the case of collapse U <
0) increases the energy inside Cr through the rate of work
being done by the ‘‘effective’’ radial pressure Pr � 4�	=3
and the radiation pressure �. Clearly here the heat flux q

A. DI PRISCO et al. PHYSICAL REVIEW D 76, 064017 (2007)

064017-4



does not appear since there is no pressure associated with
the diffusion process. The second term ��q� ��E is the
matter energy leaving the spherical surface.

Equation (37) shows how the total energy enclosed
varies between neighboring spherical surfaces inside the
fluid distribution. The first term on the right hand side of
(37), �� �, is due to the energy density of the fluid
element plus the energy density of the null fluid describing
dissipation in the free-streaming approximation. The sec-
ond term, �q� ��U=E, is negative (in the case of collapse)
and measures the outflow of heat and radiation. Finally the
last term is the electrostatic contribution.

Equation (37) may be integrated to obtain
 

m �
Z R

0
4�R2

�
�� �� �q� ��

U
E

�
dR�

s2

2R

�
1

2

Z R

0

s2

R2 dR (38)

(assuming a regular center to the distribution, som�0��0).
The acceleration DTU of an infalling particle inside �

can be obtained by using (22), (25), (30), and (34), pro-
ducing

 DTU � �
m

R2 � 4�
�
Pr � ��

4

3
�	

�
R�

s2

R3 �
EA0

AB
;

(39)

and then, substituting A0=A from (29) and (39), we obtain

 

�
�� Pr � 2��

4

3
�	

�
DTU

� �

�
�� Pr � 2��

4

3
�	

��
m

R2 � 4�
�
Pr � �

�
4

3
�	

�
R�

s2

R3

�
� E2

�
DR

�
Pr � ��

4

3
�	

�

� 2�Pr � P? � �� 2�	�
1

R
�

s

4�R4 DRs
�

� E
�
DTq�DT�� 4�q� ��

U
R
� 2�q� ��	

�
;

(40)

which in the nondissipative locally isotropic case coincides
with Eq. (43) in [14]. Let us now analyze in some detail the
three terms on the right of (40).

The first term on the right-hand side of (40) represents
the gravitational force. The factor within the round bracket
[the same factor as on the left of (40)] defines the inertial
mass density (‘‘passive’’ gravitational mass density) and
shows how it is affected by dissipative terms. Observe that
it is not affected by the electric charge.

The factor within the first square bracket shows how
dissipation and the electric charge affect the ‘‘active’’
gravitational mass term. Using (38) in (40) we see that
the charge will increase the ‘‘active gravitational mass’’
only if

 

Z R

0

s2

R2 dR >
s2

R
(41)

or, equivalently

 

s
R
> DRs; (42)

otherwise it will decrease it. This strange effect was al-
ready noticed by Bekenstein [14], and enhances the possi-
bility that Coulomb repulsion might prevent the
gravitational collapse of the sphere.

There are three different contributions in the second
square bracket. The first one is just the gradient of the total
effective radial pressure (which includes the radiation
pressure and the influence of shear viscosity on Pr). The
second contribution comes from the local anisotropy of
pressure, including the contributions from the radiation
pressure and shear viscosity. Finally the last term describes
Coulomb repulsion, which is always positive (always op-
posing gravitation).

The last square bracket contains different contributions
due to dissipative processes. The third term within this
bracket is positive (U < 0) showing that the outflow of q >
0 and � > 0 diminish the total energy inside the collapsing
sphere, thereby reducing the rate of collapse. The last term
describes an effect resulting from the coupling of the
dissipative flux with the shear of the fluid. The effects of
DT� have been discussed in detail in [63]. Thus it only
remains to analyze the effects of DTq; this depends on the
transport equation adopted, and we will proceed to study
one case in the next section.

However before doing that it is instructive to recover a
known result for the static case.

Static charged dust

In the limit of hydrostatic equilibrium when U � 	 �
q � � � 0, we have from (29)

 P0r � ��� Pr�
A0

A
� 2�Pr � P?�

�Cr�0

Cr
�

ss0

4��Cr�4
� 0;

(43)

which is just the generalization of the Tolman-
Oppenheimer-Volkov equation for anisotropic charged flu-
ids obtained in [64] while studying dynamical instability
for radiating anisotropic collapse.

When the static fluid reduces to charged dust, with Pr �
P? � 0, then, by using (15), (43)becomes

 �
A0

A
�

s&B

�Cr�2
� 0: (44)

Since B and C depend only on r, we can transform r so that
B � C. Eliminating s from the field equations (22) and
(23), we can solve for AB, and imposing regularity con-
ditions and rescaling t we have
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 C � B; AB � 1; s2 � r4B02: (45)

Substituting (45) into (44) we obtain

 �2 � &2; (46)

which is the well-known result originally obtained by
Bonnor [5] for arbitrary symmetry.

IV. THE TRANSPORT EQUATION

We shall use a transport equation derived from the
Müller-Israel-Stewart second order phenomenological the-
ory for dissipative fluids [65,66].

Indeed, it is well known that the Maxwell-Fourier law
for radiation flux leads to a parabolic equation (diffusion
equation) which predicts propagation of perturbations with
infinite speed (see [67–70] and references therein). This
simple fact is at the origin of the pathologies [71] found in
the approaches of Eckart [72] and Landau [73] for relativ-
istic dissipative processes. To overcome such difficulties,
various relativistic theories with nonvanishing relaxation
times have been proposed in the past [65,66,74,75]. The
important point is that all these theories provide a heat
transport equation which is not of Maxwell-Fourier type
but of Cattaneo type [76], leading thereby to a hyperbolic
equation for the propagation of thermal perturbations.

The corresponding transport equation for the heat flux
reads

 
h��V�q�;� � q
� � ��h���T;� � Ta��

�
1

2
�T2

�

V�

�T2

�
;�
q�; (47)

where h�� is the projector onto the three space orthogonal
to V�, � denotes the thermal conductivity, and T and 

denote temperature and relaxation time, respectively.
Observe that, due to the symmetry of the problem,
Eq. (47) only has one independent component, which
may be written after using (1), (6), and (10) as

 
 _q � �
1

2
�qT2

�



�T2

�
�
� 
q

� _B
2B
�

_C
C

�
�
�
B
�TA�0 � qA:

(48)

Now using (30)–(34) we can rewrite (48) as
 

DTq � �
�T2q

2

DT

�



�T2

�
� q

�
3

2

U
R
�

1

2
	�

1




�

�
�E


DRT �

�T

E

DTU

�
�T

E

�
m� 4�

�
Pr � ��

4

3
�	

�
R3 �

s2

R

�
1

R2 :

(49)

We can couple the transport equation in the form above,
(49), to the dynamical Eq. (40), in order to bring out the
effects of dissipation on the dynamics of the collapsing

sphere. For that purpose, let us substitute (49) into (40):
then we obtain, after some rearrangements,
 �

�� Pr � 2��
4

3
	�

�
�1� ��DTU

� �1� ��Fgrav � Fhyd �
�E2



DRT

� E
�
�T2q

2

DT

�



�T2

�
�DT�

�

� Eq
�
5

2

U
R
�

3

2
	�

1




�
� 2E�

�
2
U
R
� 	

�
; (50)

where Fgrav and Fhyd are defined by
 

Fgrav � �

�
�� Pr � 2��

4

3
�	

�

	

�
m� 4�

�
Pr � ��

4

3
�	

�
R3 �

s2

R

�
1

R2 ; (51)

 

Fhyd � �E
2

�
DR

�
Pr � ��

4

3
�	

�

� 2�Pr � P? � �� 2�	�
1

R
�

s

4�R4 DRs
�
; (52)

and � is given by

 � �
�T



�
�� Pr � 2��

4

3
	�

�
�1
: (53)

Some comments are in order at this point:
(i) Once the transport equation has been taken into

account, then the inertial energy density and the
‘‘passive gravitational mass density,’’ i.e. the factor
multiplying DTU and the first factor at the right of
(40) respectively (which of course are the same, as
expected from the equivalence principle), appear
diminished by the factor 1� �, a result already
obtained in [45], but here generalized by the inclu-
sion of the viscosity and radiative phenomena.

(ii) Observe that the charge does not enter into the
definition of �. However it does affect the ‘‘active
gravitational mass’’ [the factor within the square
bracket in (51)].

(iii) The repulsive Coulomb term [the last term in (52)]
depends on DRs and always opposes gravitation. Its
effect is reinforced if DRs is large enough to violate
(42), in which case the charge will decrease the
‘‘active gravitational mass’’ term in (51).

V. THE WEYL TENSOR

In this section we shall find some interesting relation-
ships linking the Weyl tensor with matter variables, from
which we shall extract some conclusions about the arrow of
time.

From the Weyl tensor we may construct the Weyl scalar
C2 � C���
C���
 which can be given in terms of the
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Kretchman scalar R � R���
R���
, the Ricci tensorR��,
and the curvature scalar R by

 C 2 �R� 2R��R�� �
1

3
R2: (54)

Substituting (A13) from the Appendix with the field equa-
tions (20)–(23) into (54) we obtain

 E � m�
4�
3
��� Pr � P? � 2�	�R3 �

s2

R
; (55)

where E is given by

 E �
C

481=2
R3: (56)

From (55) with (36) and (37) we have
 

DTE � �4�
�

1

3
R3DT��� Pr � P? � 2�	�

�

�
�� P? � ��

2

3
�	

�
R2U� �q� ��ER2

�

�
s2U

R2 ; (57)

and
 

DRE� 4�
�
�q� ��

R2U
E
�

1

3
R3DR���Pr�P?� 2�	�

� ���Pr�P?� 2�	�R2

�
�
sDRs
R
�

�
s
R

�
2
: (58)

From (58) we obtain at once for the noncharged, non-
dissipative, perfect fluid case

 DRE �
4�
3
R3DR� � 0; (59)

implying that DR� � 0 produces C � 0 (using the regular
axis condition), and conversely the conformally flat con-
dition implies homogeneity in the energy density.

This particularly simple relation between the Weyl ten-
sor and density inhomogeneity, for perfect fluids, is at the
origin of Penrose’s proposal to provide a gravitational
arrow of time in terms of the Weyl tensor [77]. The ration-
ale behind this idea is that tidal forces tend to make the
gravitating fluid more inhomogeneous as the evolution
proceeds, thereby indicating the sense of time.

However the fact that such a relationship is no longer
valid in the presence of local anisotropy of the pressure
and/or dissipative processes, already discussed in [46],
explains its failure in scenarios where the above-mentioned
factors are present. Here we see how the electric charge
distribution affects the link between the Weyl tensor and
density inhomogeneity, suggesting that electric charge
(whenever present) should enter into any definition of a
gravitational arrow of time.

VI. CONCLUSIONS

We have provided a full set of the equations required for
a description of physically meaningful models of collaps-
ing charged spheres. We have included dissipative phe-
nomena as well as anisotropic pressure; the justification for
doing so was given in the Introduction.

The role of charge distribution in the dynamics of such
configurations is clearly exhibited in Eqs. (36), (37), (40),
and (50). In particular it is worth stressing the fact that
electric charge, unlike pressure, does not always produce a
‘‘regeneration effect’’ (does not always increase the ‘‘ac-
tive gravitational mass’’). This fact together with the pres-
ence of the Coulomb term in (40) [or (50)] indicates the
relevance of the electric charge in the process of collapse.

Finally we have obtained a relation (58) exhibiting the
way in which electric charge affects the link between the
Weyl tensor and density inhomogeneity. The consequences
of this for a definition of a gravitational arrow of time have
been discussed.

ACKNOWLEDGMENTS

L. H. and A. D. P. acknowledge financial support from
the CDCH at Universidad Central de Venezuela under
Grant No. PI 03.11.4180.1998. N. O. S. acknowledges sup-
port from EPSRC Grant No. EP/E063896/1.

APPENDIX

The spacetime (1) has the following non-null Riemann
tensor components:

 R0101 � �B �B�
B
A

_A _B�AA00 �
A
B
A0B0; (A1)

 R0202 � �Cr�2
�
�

�C
C
�

_A
A

_C
C
�

�
A
B

�
2 A0

A

�
C0

C
�

1

r

��
; (A2)

 R0212 � �Cr�2
�
�

_C0

C
�

_B
B
C0

C
�

_C
C
A0

A
�

1

r

� _B
B
�

_C
C

��
;

(A3)

 

R1212 � �Cr�2
��
B
A

�
2 _B
B

_C
C
�
C00

C
�
B0

B
C0

C

�
1

r

�
B0

B
� 2

C0

C

��
; (A4)

 

R2323 � �Cr�2sin2�
��
r _C
C

�
2
�

�
rC0

B

�
2
� 2

CrC0

B2

�

�
C
B

�
2
� 1

�
; (A5)

and
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 R0303 � R0202sin2�; R0313 � R0212sin2�;

R1313 � R1212sin2�;
(A6)

hence it has 5 independent components and the Kretchman
scalar becomes
 

R � 4
�

1

�AB�4
�R0101�

2 �
2

�ACr�4
�R0202�

2

�
4

�AB�2�Cr�4
�R0212�

2 �
2

�BCr�4
�R1212�

2

�
1

�Cr�8sin4�
�R2323�

2

�
: (A7)

The components (A1)–(A5) can be written in terms of the
Einstein tensor G�� � R�� � g��R=2 and the mass func-
tion (25) producing
 

R0101 � �AB�
2

�
1

2A2 G00 �
1

2B2 G11 �
1

�Cr�2
G22

�
2

�Cr�3

�
m�

s2

2Cr

��
; (A8)

 R0202 � �ACr�
2

�
1

2B2 G11 �
1

�Cr�3

�
m�

s2

2Cr

��
; (A9)

 R0212 �
�Cr�2

2
G01; (A10)

 R1212 � �BCr�
2

�
1

2A2 G00 �
1

�Cr�3

�
m�

s2

2Cr

��
; (A11)

 R2323 � 2Crsin2�
�
m�

s2

2Cr

�
: (A12)

Substituting (A8)–(A12) into (A7) we obtain

 R �
48

�Cr�6

�
m�

s2

2Cr

�
2
�

16

�Cr�3

�
m�

s2

2Cr

��
G00

A2 �
G11

B2

�
G22

�Cr�2

�
� 4

�
G01

AB

�
2
� 3

��
G00

A2

�
2
�

�
G11

B2

�
2
�

� 4
�
G22

�Cr�2

�
2
� 2

G00

A2

G11

B2 � 4
�
G00

A2 �
G11

B2

�
G22

�Cr�2
:

(A13)
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