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We clarify inflaton models by considering them as effective field theories in the Ginzburg-Landau spirit.
In this new approach, the precise form of the inflationary potential is constructed from the present WMAP
data, and a useful scheme is prepared to confront with the forthcoming data. In this approach, the WMAP
statement excluding the pure �4 potential implies the presence of an inflaton mass term at the scale
m� 1013 GeV. Chaotic, new and hybrid inflation models are studied in an unified way. In all cases the
inflaton potential takes the form V��� � m2M2

Plv��=MPl�, where all coefficients in the polynomial v�’�
are of order one. If such potential corresponds to supersymmetry breaking, the corresponding susy
breaking scale is

������������
mMPl

p
� 1016 GeV which turns to coincide with the grand unification (GUT) scale. The

inflaton mass is therefore given by a seesaw formula m�M2
GUT=MPl. The observables turn to be two-

valued functions: one branch corresponds to new inflation and the other to chaotic inflation, the branch
point being the pure quadratic potential. For red tilted spectrum, the potential which fits the best the
present data (j1� nsj & 0:1; r & 0:1) and which best prepares the way for the forthcoming data is a
trinomial polynomial with negative quadratic term (new inflation). For blue tilted spectrum, hybrid
inflation turns to be the best choice. In both cases we find an analytic formula relating the inflaton mass
with the ratio r of tensor to scalar perturbations and the spectral index ns of scalar perturbations:
106�m=MPl� � 127

�������������������
rj1� nsj

p
where the numerical coefficient is fixed by the WMAP amplitude of

adiabatic perturbations. Implications for string theory are discussed.

DOI: 10.1103/PhysRevD.71.103518 PACS numbers: 98.80.Cq, 11.10.2z, 98.70.Vc
I. INTRODUCTION

Inflation was originally proposed to solve several out-
standing problems of the standard big bang model [1–5]
thus becoming an important paradigm in cosmology. At the
same time, inflation provides a natural mechanism for the
generation of scalar density fluctuations that seed large
scale structure, thus explaining the origin of the tempera-
ture anisotropies in the cosmic microwave background
(CMB) [6], as well as the tensor perturbations (primordial
gravitational waves). Recently, the Wilkinson Microwave
Anisotropy Probe (WMAP) collaboration has provided a
full-sky map of the temperature fluctuations of the cosmic
microwave background (CMB) with unprecedented accu-
racy and an exhaustive analysis of the data confirming the
basic and robust predictions of inflation [7].

During inflation quantum vacuum fluctuations are gen-
erated with physical wavelengths that grow faster than the
Hubble radius, when the wavelengths of these perturba-
tions cross the horizon they freeze out and decouple
[2,4,5]. Wavelengths that are of cosmological relevance
today re-enter the horizon during the matter dominated era
when the scalar (curvature) perturbations induce tempera-
ture anisotropies imprinted on the CMB at the last scatter-
ing surface [8,9]. Generic inflationary models predict that
address: devega@lpthe.jussieu.fr
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these are mainly Gaussian and adiabatic perturbations with
an almost scale invariant spectrum. These generic predic-
tions are in spectacular agreement with the CMB observa-
tions as well as with a variety of large scale structure data
[7]. The WMAP data [7] clearly display an anticorrelation
peak in the temperature-polarization (TE) angular power
spectra at l� 150, providing one of the most striking
confirmations of adiabatic fluctuations as predicted by
inflation [7].

The classical dynamics of the inflaton (a massive scalar
field) coupled to a cosmological background clearly
shows that inflationary behavior is an attractor [10]. This
is a generic and robust feature of inflation. The robust
predictions of inflation (value of the entropy of the uni-
verse, solution of the flatness problem, small adiabatic
Gaussian density fluctuations explaining the CMB anisot-
ropies, . . .) which are common to many available infla-
tionary scenarios, show the predictive power of the
inflationary paradigm. Whatever the microscopic model
for the early universe (GUT theory) would be, it should
include inflation with the generic features we know today.

Inflationary dynamics is typically studied by treating the
inflaton as a homogeneous classical scalar field [2–4]
whose evolution is determined by a classical equation of
motion, while the inflaton quantum fluctuations (around
the classical value and in the Gaussian approximation)
provide the seeds for the scalar density perturbations of
the metric. In quantum field theory, this classical inflaton
-1  2005 The American Physical Society
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corresponds to the expectation value of a quantum field
operator in a translational invariant state. Important aspects
of the inflationary dynamics, as resonant particle produc-
tion and the nonlinear back-reaction that it generates,
require a full quantum treatment of the inflaton for their
consistent description. The quantum dynamics of the in-
flaton in a nonperturbative framework and its consequen-
ces on the CMB anisotropy spectrum were treated in
Refs. [11,12]. Particle decay in de Sitter background
and during slow-roll inflation is studied in Ref. [13] to-
gether with its implication for the decay of the density
fluctuations.

Inflation as known today should be considered as an
effective theory, that is, it is not a fundamental theory but
a theory of a condensate (the inflaton field) which follows
from a more fundamental one (the GUT model). The
inflaton field � may not correspond to any real particle
(even unstable) but is just an effective description while the
microscopic description should come from the GUT
model. At present, there is no derivation of the inflaton
model from the microscopic GUT theory. However, the
relation of inflation to the GUT theory is like the relation of
the effective Ginzburg-Landau theory of superconductivity
with the microscopic BCS theory. Or like the relation of the
O�4� sigma model, an effective particle theory for low
energy, with the microscopic quantum chromodynamics
(QCD).

The aim of this paper is to provide a clear understanding
of inflation and the inflaton potential from effective field
theory and the WMAP data. This clearly places inflation
within the perspective and understanding of effective theo-
ries in particle physics. In addition, it sets up a clean way to
directly confront the inflationary predictions with the forth-
coming CMB data and select a definitive model.

The following inflaton potential or alternatively the
hybrid inflation model are rich enough to describe the
physics of inflation and accurately reproduce the available
data [7]:

V��� � jm2jM2
Pl

�
v0 �

1

2
’2 	

2

3
�’3 	

1

32
�’4

�
: (1.1)

Here ’ 
 �=MPl; jmj � 1013 GeV, the dimensionless pa-
rameters � and � are of order one, and v0 is such that V���
and V 0��� vanish at the absolute minimum of V���. This
ensures that inflation ends after a finite time with a finite
number of efolds. � must be positive to ensure stability
while � and the mass term ’2 can have either sign. �
describes how asymmetric is the potential while � deter-
mines how steep it is. Notice that there is no fine-tuning
here once the mass scale jmj is fixed.

The potential Eq. (1.1) cover a wide class of inflationary
scenarios: small field scenarios (new inflation) for sponta-
neously broken symmetric potentials (negative mass
square), as well as large field scenarios (chaotic inflation)
for unbroken symmetric potentials (positive mass square).
103518
Coupling the inflaton to another scalar field yields the
hybrid type scenarios.

In the context of an effective theory or Ginzburg-Landau
model it is highly unnatural to drop the quadratic term ’2.
This is to exactly choose the critical point of the model
m2 � 0. In fact, the recent WMAP [7] statement unfavor-
ing the monomial ’4 potential just supports a generic
polynomial inflaton potential as in Eq. (1.1). Excluding
the quadratic mass term in the potential V��� implies to
fine-tune to zero the mass term which is only justified at
isolated (critical) points. Therefore, from a physical point
of view, the pure quartic potential ’4 is a weird choice
implying to fine-tune to zero the coefficient of ’2.

We obtain analytic and unifying expressions for chaotic
and new inflation for the relevant observables: the ampli-
tude for scalar fluctuations j��S�

kadj
2, spectral index ns and

ratio r of tensor to scalar perturbations as well as for hybrid
inflation and plot them for the three scenarios. Particularly
interesting are the plots of ns vs.r (Figs. 7 and 18–21).

We express the ratio of the inflaton mass and the Planck
mass x 
 106�m=MPl� in terms of the amplitude of adia-
batic perturbations and the parameters in the potential.
Furthermore, we can express x in terms of observable
quantities as r and ns. We find for new inflation when
both r and jns � 1j are small,

x � 5�
���
3

p
105j��S�

kadj
��������������������
r�1� ns�

q
� 127

��������������������
r�1� ns�

q
� 6%:

(1.2)

where the �6% correspond to the error bars in the ampli-
tude of adiabatic perturbations[7]. From Figs. 9, 12, and 15
we can understand how the mass ratio m=MPl varies with
ns and r. We find a limiting value x0 
 106�m0=MPl� ’ 0:1
for the inflaton mass such that m0 ’ 10�7MPl is a minimal
inflaton mass in order to keep ns and r within the WMAP
data.

New inflation arises for broken symmetric potentials
(the minus sign in front of the ’2 term) while chaotic
inflation appears both for unbroken and broken symmetric
potentials. For broken symmetry, we find that analytic
continuation connects the observables for chaotic and
new inflation: the observables are two-valued functions
of y 
 �N. (N being the number of efolds from the first
horizon crossing to the end of inflation). One branch cor-
responds to new inflation and the other branch to chaotic
inflation. As shown in Figs. 4–7, 9, 12, and 15, ns; r and
j��S�

kadj
2 for chaotic inflation are connected by analytic

continuation to the same quantities for new inflation. The
branch point where the two scenarios connect corresponds
to the monomial 	 1

2’
2 potential (� � � � 0).

The potential which best fits the present data for a red
tilted spectrum (ns < 1) and which best prepares the way to
the expected data (a small r & 0:1) is given by the trino-
mial potential Eq. (1.1) with a negative ’2 term, that is new
inflation.
-2
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In new inflation we have the upper bound

r 

8

N
’ 0:16:

This upper bound is attained by the quadratic monomial.
On the contrary, in chaotic inflation for both signs of the ’2

term, r is bounded as

0:16 ’
8

N
< r <

16

N
’ 0:32;

This bound holds for all values of the cubic coupling �
which describes the asymmetry of the potential. The lower
and upper bounds for r are saturated by the quadratic and
quartic monomials, respectively.

For chaotic and new inflation, we find the following
properties:
(i) n
s is bounded as

ns 
 1�
2

N
’ 0:96 chaotic inflation,

ns 
 1�
1:558005 . . .

N
’ 0:9688 new inflation.

The value at the bound for chaotic inflation corre-
sponds to the quadratic monomial.
(ii) n
s decreases with the steepness � for fixed asym-
metry h 
 �

���������
8=�

p
< 0 and grows with the asym-

metry jhj for fixed steepness �.
For chaotic inflation r grows with the steepness � for
fixed asymmetry h < 0 and decreases with the asymmetry
jhj for fixed steepness �. Also, in chaotic inflation r
decreases with ns.

For new inflation r does the opposite: it decreases with
the steepness � for fixed asymmetry h < 0 while it grows
with the asymmetry jhj for fixed steepness �. Also, in new
inflation r grows with ns.

All this is valid for the general trinomial potential
Eq. (1.1) and can be seen in Figs. 7, 18, 20, and 21. In
addition, r decreases for increasing asymmetry jhj at a
fixed ns in new inflation (with h < 0). As a consequence,
the trinomial potential Eq. (1.1) can yield very small r for
red tilt with ns < 1 and near unit for new inflation.

Hybrid inflation always gives a blue tilted spectrum
ns > 1 in the �-dominated regime, allowing ns � 1 and
r to be small. Interestingly enough, we obtain for hybrid
inflation a formula for the mass ratio x with a similar
structure to Eq. (1.2) for new inflation:

x � 106
m
MPl

� 127

���������������������������������
r
�
ns � 1	

3

8
r
�s
:

This is plotted in Figs. 22 and 23 showing that m=MPl

decreases when r and ns � 1 both approach zero. We relate
the cosmological constant in the hybrid inflation
Lagrangian with the ratio r as
103518
�0
M4
Pl

� 0:329� 10�7r;

and we find that �ns � 1� gives an upper bound on the
cosmological constant:

�0
m2M2

Pl

<
2

ns � 1
:

In order to reproduce the CMB data, the inflationary
potentials in the slow-roll scenarios considered in this
article must have the structure

V��� � M4v
�
�
MPl

�
;

where v�0� � v0�0� � 0 and all higher derivatives at the
origin are of the order one. The inflaton mass is therefore
given by a seesaw-like formula

m ’
M2

MPl
: (1.3)

As stated above, the WMAP data imply m� 1013 GeV,
Eq. (1.3) implies that M is precisely at the grand unification
scale M� 1016 GeV [2–4]. Three strong independent in-
dications of this scale are available nowadays: 1) the con-
vergence of the running electromagnetic, weak and strong
couplings, 2) the large mass scale to explain the neutrino
masses via the seesaw mechanism and 3) the scale M in the
above inflaton potential. Also, notice that Eq. (1.3) has the
structure of the moduli potential coming from supersym-
metry breaking. Therefore, the supersymmetry breaking
scale would be at the GUT scale too.

In order to generate inflation in string theory, one needs
first to generate a mass scale like m and MGUT related by
Eq. (1.3). Without such mass scales there is no hope to
generate a realistic cosmology reproducing the observed
CMB fluctuations. However, an effective description of
inflation in string theory could be at reach [14]

In summary, for small r & 0:1 and ns near unit, new
inflation from the trinomial potential Eq. (1.1) and hybrid
inflation emerge as the best candidates. Whether ns turns to
be above or below unit will choose hybrid or new inflation,
respectively. In any case jns � 1j turns to be of order 1=N
(N being the number of efolds from the first horizon cross-
ing to the end of inflation). This can be understood intui-
tively as follows: the geometry of the universe is scale
invariant during de Sitter stage since the metric takes in
conformal time the form

ds2 �
1

�H��2
��d��2 � �d~x�2�:

Therefore, the primordial power generated is scale invari-
ant except for the fact that inflation is not eternal and lasts
for N efolds. Hence, the primordial spectrum is scale
invariant up to 1=N corrections. Also, the ratio r turns to
-3
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be of order 1=N (chaotic and new inflation) or 1=N2

(hybrid inflation).
II. INFLATION AND THE INFLATON FIELD: AN
EFFECTIVE FIELD THEORY

Inflation is part of the standard cosmology since several
years. Inflation emerged in the 80s as the only way to
explain the ‘‘bigness‘‘ of the universe, that is, the value
of the entropy of the universe today �1090 � �e69�3.
Closely related to this, inflation solves the horizon and
flatness problem, thus explaining the quasi-isotropy of
the CMB. For a recent outlook see [15].

The inflationary era corresponds to the scale of energies
of grand unification. It is not yet known which field model
appropriately describes the matter at such scales.
Fortunately, one does not need a detailed description in
order to investigate inflationary cosmology, one needs the
expectation value of the quantum energy density (T00)
which enters in the r.h.s. of the Einstein-Friedman equation�

1

a�t�
da
dt

�
2
�

1

3M2
Pl

#�t�; (2.1)

This is dominated by field condensates. Since fermion
fields have zero expectation values, only the bosonic fields
are relevant. Bosonic fields do not need to be fundamental
fields, they can describe fermion-antifermion pairs h ���i
in a grand unified theory (GUT). In order to describe the
cosmological evolution is enough to consider the effective
dynamics of such condensates. In fact, one condensate field
is enough to obtain inflation. This condensate field is
usually called ‘‘inflaton‘‘ and its dynamics can be de-
scribed by a Ginzburg-Landau Lagrangian in the cosmo-
logical background

ds2 � dt2 � a2�t�d~x2 (2.2)

That is, an effective local Lagrangian containing terms of
dimension less or equal than four in order to be renorma-
lizable,

L � a3�t�
� _�2
2

�
�r��2

2a2�t�
� V���

�
: (2.3)

Here, the inflaton potential V��� is often taken as a quartic
polynomial: V��� � �m2=2��2 	 �$=4��4.

The Einstein-Friedman Eq. (2.1) for homogeneous fields
take the form

H2�t� �
1

3M2
Pl

� _�2
2

	 V���

�
; H�t� 


1

a�t�
da
dt

(2.4)

where we used Eq. (2.3), and H�t� stands for the Hubble
parameter.

The inflaton field � may not correspond to any real
particle (even unstable) but is just an effective description
of the dynamics. The detailed microscopical description
should be given by the GUT. Somehow, the inflaton is to
103518
the microscopic GUT theory what the Ginzburg-Landau
effective theory of superconductivity is to the microscopic
BCS theory. Another relevant example of effective field
theory in particle physics is the O�4� sigma model which
describes quantum chromodynamics (QCD) at low ener-
gies [16]. The inflaton model can be thus considered as an
effective theory. That is, it is not a fundamental theory but a
theory on the condensate (the inflaton field) which follows
from a more fundamental theory (the GUT model), by
integrating over the basic fields in the latter. In principle,
it should be possible to derive the inflaton Lagrangian from
a GUT model including GUT fermions and gauge fields.
Although, such derivation is not yet available, one can
write down, as in the case of the sigma model describing
the low energy behavior of QCD, the effective Lagrangian
for the particles of interest (the pions, the sigma and
photons) without explicit calculation in the fundamental
theory. The guiding principle being the symmetries to be
respected by the effective model [16]. Contrary to the
sigma model where the chiral symmetry strongly con-
straints the model[16], only Lorentz invariance can be
imposed to the inflaton model. Besides that, one can al-
ways eliminate linear terms in the Lagrangian by a con-
stant shift of the inflaton field.

Restricting ourselves to renormalizable theories we can
choose a general quartic Lagrangian with

V��� � V0 	
m2

2
�2 	

jmjg
3

�3 	
$
4
�4: (2.5)

where $ and g are dimensionless parameters and V0 is
chosen such that V��� vanishes at its absolute minimum.
This ensures that inflation ends after a finite time with a
finite number of efolds. We choose $ > 0 as a stability
condition in order to have a potential bounded from below
while m2 and g may have any sign. An inflaton potential of
this type was considered in Ref. [17].

As it is known, in order to reproduce the CMB anisot-
ropies, one has to choose m around the GUT scale m�
10�6MPl � 1013 GeV, and the coupling $ very small ($�
10�12) [2–4] while g may be just omitted.

Let us see that the choice $� 10�12 is not independent
from the value of m=MPl � 10�6. Let us define a dimen-
sionless field ’ 
 �=MPl, the potential V for m2 > 0 takes
now the form,

V��� � m2M2
Pl

�
1

2
’2 	

1

3
g
MPl

m
’3 	

1

4
$
M2
Pl

m2
’4

�
	 V0;

’ �
�
MPl

or

V�’� � m2M2
Pl

�
v0 	

1

2
’2 	

2

3
�’3 	

1

32
�’4

�
: (2.6)

Here,
-4



CLARIFYING INFLATION MODELS: THE PRECISE . . . PHYSICAL REVIEW D 71, 103518 (2005)
� 
 g
MPl

2m
; � 
 8$

M2
Pl

m2
; v0 


V0
m2M2

Pl

; (2.7)

are all three of order one in order to reproduce the CMB
anisotropies. Hence, once the mass m is chosen to be in the
scale �1013 GeV, the remaining parameters �; �; . . . turn
out to be of order one. In other words, there is no fine
tuning in the choice of the inflaton self-couplings. � de-
scribes how asymmetric is the potential while � determines
how steep it is.

In typical inflationary scenarios one initially has V �
H2M2

Pl and H � 5m. This makes the parametrization V�’�
as in Eq. (2.6) very natural with ’ less than (or of the order)
one at the beginning of inflation.

In the context of an effective theory or Ginzburg-Landau
model it is highly unnatural to set m � 0. This corresponds
to be exactly at the critical point of the model where the
mass vanishes, that is, the correlation length is infinite in
the statistical mechanical context. In fact, the recent
WMAP [7] statement unfavoring the m � 0 choice (purely
�4 potential) just supports a generic polynomial inflaton
potential possessing a �2 mass term plus �4 (plus even-
tually other terms).

We want to stress that excluding the quadratic mass term
in the potential V��� implies to fine-tune to zero the mass
term which is only justified at isolated points (a critical
point in statistical mechanics). Therefore, from a physical
point of view, the pure quartic potential is a weird choice
implying to fine-tune to zero the coefficient of the mass
term. In other words, one would be considering a field with
self-interaction but lacking of the mass term.

Choosing g � 0 implies that ’ ! �’ is a symmetry of
the inflaton potential. We do not see reasons based on
fundamental physics to choose a zero or a nonzero g.
Only the phenomenology, that is the fit to CMB data, can
decide for the moment on the value of g.

A model with only one field is clearly unrealistic since
the inflaton would then describe a stable and ultraheavy
(GUT scale) particle. It is necessary to couple the inflaton
with lighter particles, then, the inflaton can decay into
them. There are many available scenarios for inflation.
Most of them add other fields coupled to the inflaton.
This variety of inflationary scenarios may seem confusing
since several of them are compatible with the observational
data [7]. Indeed, future observations should constraint the
models more tightly excluding some families of them.
Anyway, the variety of acceptable inflationary models
shows the power of the inflationary paradigm. Whatever
the correct microscopic model for the early universe would
be, it should include inflation with the generic features we
know today. In addition, many inflatons can be considered
(multifield inflation). Such family of models introduce
extra features as nonadiabatic (isocurvature) density fluc-
tuations, which in turn become strongly constrained by the
WMAP data [7].
103518
The scenarios where the inflaton is treated classically are
usually characterized into small and large fields scenarios.
In small fields scenarios the initial classical amplitude of
the inflaton is assumed small compared with MPl, while in
large field scenarios the inflaton is initially of the order
�MPl [4]. The first type of scenarios is usually realized
with spontaneously broken symmetric potentials (m2 < 0,
’new inflation’, also called ‘‘small field inflation‘‘), while
for the second type scenarios one can just use unbroken
potentials (m2 > 0, ‘‘chaotic inflation‘‘ also called ‘‘large
field inflation‘‘).

We will restrict in this paper to inflationary potentials of
degree four as in Eq. (2.6). This ensures that the corre-
sponding quantum theory is renormalizable. Notice that
being the inflaton model an effective theory nothing for-
bids to consider inflationary potentials of arbitrary high
order. In general, the potential V��� will have the form:

V��� � m2M2
Plv

�
�
MPl

�
; (2.8)

where v�0� � v0�0� � 0 and all higher derivatives at the
origin are of the order one. The arbitrary function v�’�
allows detailed fits. However, already a quartic potential is
rich enough to describe the full physics and to reproduce
accurately the data. In such case we have from Eqs. (2.6)
and (2.8) for m2 > 0,

v�’� � v0 	
1

2
’2 	

2

3
�’3 	

1

32
�’4:

In dimensionless variables the Einstein-Friedman Eq. (2.4)
takes the form,

h2�&� �
1

3

�
_’2

2
	 v�’�

�
; (2.9)

where we introduced the dimensionless time variable & 

mt; _’ 
 d’=d& and h�&� 
 H�t�=m.

The evolution equation for the field ’�&� then reads

�’	 3h _’	 v0�’� � 0: (2.10)

In the case of the quartic potential Eqs. (2.9) and (2.10)
become,

h2�&� �
1

6

�
_’2 	 ’2 	

2

3
�’3 	

1

16
�’4 	 2v0

�
;

�’	 3h _’	 ’	 2�’2 	 �’3 � 0:
(2.11)

We similarly treat the spontaneous symmetry breaking
case m2 < 0 by setting

V��� � jmj2M2
Plv�’� where

v�’� � �
1

2
’2 	

2

3
�’3 	

1

32
�’4 	 v0:

(2.12)

and
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� 
 g
MPl

2jmj
; � 
 8$

M2
Pl

jm2j
; v0 


V0
jm2jM2

Pl

;

(2.13)

instead of Eqs. (2.6) and (2.7). In the case m2 < 0 the
minimum of the potential is not at the origin but the second
derivative of v�’� at its absolute minimum is always
positive. That is, the physical mass square of the inflaton
field is positive whatever the sign of m2.

We restrict ourselves to potentials V��� which are poly-
nomials of degree four in �. Higher order polynomials
describe nonrenormalizable interactions, although being
acceptable as effective field theories [16]. As we show
below, already quartic polynomials for V��� are rich
enough to describe the full physics and fit the present
data. One could use higher order polynomials to refine
the fits.
FIG. 1. The binomial potential Eqs. (3.1) and (3.2) for both
unbroken and broken cases: �vub�’��m

2 > 0� and �vb�’��m
2 <

0� vs.
����
8

p
’.
III. DENSITY FLUCTUATIONS: CHAOTIC
INFLATION AND NEW INFLATION

We present here the density fluctuations for a general
inflationary potential as in Eq. (2.6). Scalar and tensor
perturbations in inflation have been the subject of intense
activity[4,5,8,9] in particular, their contrast with the
WMAP data [7,18]

A. The binomial inflaton potential

Let us start with the case where the potential is just a
binomial in ’2. We have for the unbroken symmetry case
m2 > 0,

vub�’� �
1

2
’2 	

1

32
�’4: (3.1)

and for the symmetry breaking case m2 < 0,

vb�’� �
�
32

�
’2 �

8

�

�
2
� �

1

2
’2 	

1

32
�’4 	

2

�
: (3.2)

where � is defined by Eq. (2.13). The value of v0 is chosen
such that v � 0 at its absolute minimum (v0 � 0 for vub
and v0 � 2=� for vb). This ensures that inflation ends after
a finite time with a finite number of efolds.

The chaotic scenario is realized for m2 > 0 with the
inflaton starting at some value ’ of the order one, (0<
’<	1). By the end of inflation ’ is near the minimum
of the potential at ’ � ’0 � 0 (see Fig. 1).

The new inflationary scenario is realized for m2 < 0
with the symmetry breaking potential Eq. (3.2) and the
initial condition ’ very close to the origin ’ � 0; �0<
’<’0 �

���������
8=�

p
�, where ’0 is the minimum of the poten-

tial. By the end of inflation, ’ is near ’0 (see Fig. 1).
In addition, one obtains chaotic inflation in the case

m2 < 0 choosing the initial ’ larger than ’0; �’0 <’<
	1�.
103518
We display in Fig. 1 the binomial potentials �vub�’� and
�vb�’� as functions of

����
8

p
’.

In the slow-roll approximation valid for _’ � ’ we can
approximate the number of efolds from the time & until the
end of inflation as

N�&� �
Z &0

&
h�&�d& � �3

Z ’0

’�&�

h2

v0�’�
d’

� �
Z ’0

’�&�

v�’�
v0�’�

d’: (3.3)

where ’0 is the inflaton field by the end of inflation. That
is, modes with comoving wavenumber k � mh�&�a�&�
cross the horizon for the first time at the time &; N�&� efolds
before the end of inflation.

The spectral indices and r can be expressed in terms of
the slow-roll parameters as [9],

ns � 1� 6)	 2�; r � 16) (3.4)

where to dominant order in slow roll,

) �
1

2
M2
Pl

�
V 0

V

�
2
�
1

2

�
v0�’�
v�’�

�
2
;

� � M2
Pl

V00

V
�

v00�’�
v�’�

:

(3.5)

The amplitude of adiabatic perturbations is expressed as

j��S�
kadj

2 �
1

12�2M6
Pl

V3

V 02 �
1

12�2
jm2j

M2
Pl

v3�’�

v02�’�
: (3.6)
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FIG. 2. Upper and lower bounds for the mass ratio 106m=MPl

as functions of y � �N for m2 > 0 (chaotic inflation) for N �
60 with the binomial potential Eq. (3.1).
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As explained above, we can take ’0 � 0 for chaotic
inflation while for new inflation ’0 � 1=

����
�

p
. We obtain in

this way inserting Eqs. (3.1) and (3.2) into Eq. (3.3),

�N�’� �
�
8
’2 	 log

�
1	

�
8
’2

�
m2 > 0 (3.7)

and

�N�’� �
�
8
’2 � 1� log

�
�
8
’2

�
m2 < 0: (3.8)

Equations (3.7) and (3.8) can be written in an unified form
by introducing the new variables zub and zb

zub 
 1	
�
8
’2; zb 


�
8
’2; � � 8$

M2
Pl

jm2j
:

(3.9)

That is,

�N�’� � zub � 1	 logzub m2 > 0;

�N�’� � zb � 1� logzb m2 < 0;
(3.10)

and we have

1< zub <1; chaotic inflation m2 > 0;

0< zb < 1; new inflation m2 < 0;

1< zb <1; chaotic inflation m2 < 0:

Using Eqs. (3.5) ns and r can be expressed in terms of zub
and zb

m2 > 0 : ns � 1� �
3z2ub � zub 	 2

�zub � 1��zub 	 1�2
;

r � 16�
z2ub

�zub � 1��zub 	 1�
2 ; (3.11)

m2 < 0 : ns � 1� �
3zb 	 1

�zb � 1�2
;

r � 16�
zb

�zb � 1�
2 ; (3.12)

and the amplitudes of adiabatic perturbations Eq. (3.6) read

j��S�
kadj

2 �
1

12�2
m2

M2
Pl

�zub � 1�2�zub 	 1�3

�2z2ub
m2 > 0;

(3.13)

j��S�
kadj

2 �
1

12�2
jm2j

M2
Pl

�zb � 1�4

�2zb
m2 < 0: (3.14)

The variables zub and zb are functions of � times the
number of efolds N defined by Eqs. (3.7) and (3.8).
Hence, Eqs. (3.10), (3.11), and (3.12) provide the spectral
indices as functions of �N in a parametric way.
103518
Equations (3.13) and (3.14) permit to express the mass
ratio jm2j=M2

Pl in terms of the amplitude of adiabatic
perturbations, and hence determine jm2j=M2

Pl using the
WMAP values  � [7] for j��S�

kadj
2,

 � 
 0:194< 108j��S�
kadj

2 <  	 
 0:244: (3.15)

In terms of the variable,

x 
 106
m
MPl

; (3.16)

the observational bounds Eq. (3.15) imply

200
���
3

p
�

N
g�z�

�������
 �

p
< x<

200
���
3

p
�

N
g�z�

�������
 	

p
; (3.17)

where

m2 > 0 : gub�zub� �
�Nzub

�zub � 1��zub 	 1�3=2
;

m2 < 0 : gb�zb� �
�

�����
zb

p
N

�zb � 1�
2 :

(3.18)

Recall that �N is a function of zub or zb, respectively,
according to Eq. (3.10). Notice that the upper and lower
bounds

�������
 �

p
are quite close[7]:

10 4j��S�
kadj �

�������
 �

p
� 0:467� 0:027; (3.19)

which corresponds to �6%.
For m2 > 0 (chaotic inflation) we plot in Fig. 2 the upper

and lower bounds for x � 106�m=MPl� given in Eqs. (3.17)
-7



FIG. 3. The scalar index ns and the ratio r as functions of y �
�N for m2 > 0 and N � 60 (chaotic inflation), with the binomial
potential Eq. (3.1). Both ns and r monotonically interpolate
between their limiting values corresponding to the pure mono-
mials ’2 and ’4.

FIG. 5. ns as a function of y � �N for m2 < 0 and N � 60,
chaotic and new inflation, with the binomial potential Eq. (3.2).
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as functions of �N, and in Fig. 3 we plot ns and r as
functions of �N. We see that both ns and r for 0< �N <
1 monotonically interpolate between their limiting values
given by Eqs. (3.20) and (3.21) corresponding to the purely
quadratic and quartic potentials, respectively. We used
N � 60 in the plots. Very similar results are obtained for
N � 50.
FIG. 4. Upper and lower bounds for 106�m=MPl� for N � 60 as
a function of y � �N with the binomial potential Eq. (3.2) for
m2 < 0. Lower branches describe chaotic inflation and upper
branches correspond to new inflation.

103518
In Fig. 4 we plot the upper and lower bounds for x �
106�m=MPl� given in Eqs. (3.17) as functions of �N
for m2 < 0. Both inflationary scenarios are displayed:
new inflation for 0< zb < 1 and chaotic inflation for 1<
zb <1.

In Figs. 5 and 6 we plot ns and r as functions of �N for
m2 < 0, respectively. We see that ns and r are two-valued
functions of �N. One branch corresponds to new inflation
and the other branch to chaotic inflation. �N � 0 is a
branch point where we recover the results for the purely
(monomial) quadratic potential Eq. (3.20). The result for
FIG. 6. r as a function of y � �N for m2 < 0 and N � 60,
chaotic and new inflation, with the binomial potential Eq. (3.2).
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FIG. 7. ns vs. r for m2 < 0, new and chaotic inflation, with the
binomial potential Eq. (3.2).

CLARIFYING INFLATION MODELS: THE PRECISE . . . PHYSICAL REVIEW D 71, 103518 (2005)
the purely quartic potential Eq. (3.21) is obtained from the
chaotic inflation branch of ns and r in the �N ! 1 limit.

We depict in Fig. 7 ns vs. r for m2 < 0 both for new and
chaotic inflation.
103518
1. Limiting cases

Let us now consider limiting cases, first for unbroken
symmetry (m2 > 0) and then for broken symmetry (m2 <
0).

The limiting case � ! 0 corresponds to a vanishing
quartic coupling [see Eq. (2.7)]. That is, the inflaton po-
tential reduces in this case to the quadratic piece v�’� !
1
2’

2 for m2 > 0.
For chaotic inflation in the � ! 0 limit we obtain from

Eqs. (3.9), (3.10), and (3.11),
zub� ! 0; ns �
�!0

1�
2

N
’ 0:96; r �

�!0 8

N
’ 0:16;

chaotic inflation, v�’� �
1

2
’2;

j��S�
kadj

2 �
�!0 1

6�2
N2m2

M2
Pl

; gub�1� �
1���
2

p : (3.20)
The opposite limit � ! 1 corresponds to a vanishing
mass m2 [see Eq. (2.7)]. That is, the inflaton potential
becomes in this case purely quartic V��� ! $

4�
4.

For chaotic inflation in the � ! 1 limit we obtain from
Eqs. (3.9), (3.10), and (3.11)
zub �
�!	1

	1; ns �
�!	1

1�
3

N
’ 0:94;

r �
�!	1 16

N
’ 0:32; chaotic inflation, purely quartic V��� j��S�

kadj
2 �
�!	1 2

3�2
N3m2

M2
Pl

; gub�z� �
��1 1�������

�N
p : (3.21)

For m2 < 0 (i. e. broken symmetry) and � ! 0 we find from Eq. (3.8) that zb ! 1 and then ns; r and j��S�
kadj

2 in Eqs. (3.12)
and (3.14) tend to the same values than for the unbroken symmetry case Eq. (3.20).

The limiting case � ! 1 for broken symmetry and chaotic inflation leads from Eq. (3.10) to zb ! 	1 and we recover
the same values as in Eq. (3.21) after using Eqs. (3.12) and (3.14).

When � ! 1 for broken symmetry and new inflation we have from Eq. (3.10),

zb �
��1

e��N�1:

This leads using Eqs .(3.12) and (3.14) to

ns �
��1

1� �; r �
��1

16�e��N�1; new inflation, V��� �
��1$

4
�4 in the limit;

j��S�
kadj

2 �
��1 1

768�2
m4

$M4
Pl

e�N	1; gb�z� �
��1

�Ne�1=2�N�1=2 ! 0:
(3.22)
In this limit, new inflation yields a very small ratio r
together with an index ns well below unit, while the bound
on the inflaton mass Eq. (3.17) becomes very small as
compared with MPl since gb�z� decreases exponentially
with �.

We see from Fig. 3 that for chaotic inflation and both
signs of m2,
ns 
 1�
2

N
’ 0:96 chaotic inflation,

Figure 5 shows that ns for new inflation has a maximum at
y � �N � 0:2386517 . . . and then

ns 
 1�
1:558005 . . .

N
’ 0:9688 new inflation:
-9



FIG. 8. The inflaton trinomial potential �v�’� Eq. (3.23) vs.
t �

���
z

p
� ’

����
8

p
for several values of h < 0. The absolute mini-

mum moves to the right for growing jhj and the potential

becomes more and more asymmetric. h 
 �
���
8
�

q
� g

2
���
$

p .
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Figures 3 and 6 show that for chaotic inflation and both
signs of m2,

0:16 ’
8

N
< r <

16

N
’ 0:32 chaotic inflation;

while for new inflation (m2 < 0),

0< r<
8

N
’ 0:16 new inflation.

Notice that new inflation can give small values for r with a
ns significantly below unit and a low value for jmj2=M2

Pl
while r in chaotic inflation is bounded from below by 8

N ’

0:15. We come back to this point when analyzing the
trinomial inflaton potential in sec. III B below.

B. The trinomial inflaton potential

We consider in this section inflation arising from the
trinomial inflaton potential with negative squared mass

V��� � jmj2M2
Plv�’� where

v�’� � �
1

2
’2 	

2

3
�’3 	

1

32
�’4 	 v0: (3.23)

This potential has three extremes: a local maximum at ’ �
0 and two local minima at ’ � ’� where

’	 �
8

�

� ���������������
�2 	

�
8

r
� �

�
;

’� � �
8

�

� ���������������
�2 	

�
8

r
	 �

�
:

(3.24)

The absolute minimum of v�’� is at ’ � ’� for � > 0 and
at ’ � ’	 for � < 0. We choose v0 such that v�’� van-
ishes at its absolute minimum. Such condition gives,

v0 �
2

�
w�h� where

w�h� 

8

3
h4 	 4h2 	 1	

8

3
jhj 3;

h 
 �

����
8

�

s
and  


��������������
h2 	 1

p
:

(3.25)

The parameter h reflects how asymmetric is the potential.
Notice that v�’� is invariant under the changes ’ !
�’;� ! ��. We can hence restrict ourselves to a given
sign for �. Without loss of generality, we choose � < 0 and
shall work with positive fields ’.

We plot in Fig. 8 the potential v�’� times � as a function
of t �

�����
zb

p
� ’

����
8

p
for several values of h < 0. For grow-

ing jhj the potential becomes more asymmetric and its
absolute minimum at

������
z	

p
�

����
8

p
’	 �  	 jhj moves to

the right.
As for the binomial inflaton potential with m2 < 0 we

can have here new or chaotic inflation depending on
whether the initial field ’ is in the interval �0; ’	� or in
the interval �’	;	1�, respectively. In both cases the
103518
number of efolds follows from Eqs. (3.3) and (3.23) where
the field by the end of inflation is ’0 ’ ’	. We thus find
for the number of efolds between the time & and the end of
inflation,

�N�zb� � zb � 2h2 � 1� 2jhj 	
4

3
jhj�jhj 	  �

�����
zb

p
�

	
16

3
jhj� 	 jhj� 2 log

�
1

2

�
1	

�����
zb

p
� jhj

 

��
� 2w�h� log�

�����
zb

p
� � jhj��; (3.26)
where zb �
�
8’

2 is defined by Eq. (3.9) and w�h� is given
by Eq. (3.25). In the variable z we have new inflation for
0< z< z	 and chaotic inflation for z	 < z <	1.

�N�zb� in Eq. (3.26) as a function of zb has its minimum
at zb � z	 
 �

8’
2
	 � 2h2 	 1	 2jhj . This corresponds

to
������
z	

p
�  	 jhj. When

�����
zb

p
!

������
z	

p
; �N�zb� vanishes

quadratically,

�N�zb� �
zb!z	

2�
�����
zb

p
�

������
z	

p
�2 	O��

�����
zb

p
�

������
z	

p
�3�:
In the symmetric potential limit h ! 0, Eq. (3.26) reduces
to Eq. (3.10) as it must be.

We obtain in analogous way from Eqs. (3.5) and (3.6) the
spectral indices, r and the amplitude of adiabatic perturba-
tions,
-10



CLARIFYING INFLATION MODELS: THE PRECISE . . . PHYSICAL REVIEW D 71, 103518 (2005)
ns � 1� 6�
zb�zb 	 2h

�����
zb

p
� 1�2

�w�h� � 2zb 	
8
3hz

3=2
b 	 z2b�

2

	 �
3zb 	 4h

�����
zb

p
� 1

w�h� � 2zb 	
8
3hz

3=2
b 	 z2b

; (3.27)

r � 16�
zb�zb 	 2h

�����
zb

p
� 1�2

�w�h� � 2zb 	
8
3hz

3=2
b 	 z2b�

2
; (3.28)

j��S�
kadj

2 �
1

12�2
jm2j

M2
Pl�

2

�w�h� � 2zb 	
8
3 hz

3=2
b 	 z2b�

3

zb�zb 	 2h
�����
zb

p
� 1�2

:

(3.29)

The variable zb is a function of � times the number of
efolds N as defined by Eq. (3.26). Hence, Eqs. (3.27),
(3.28), and (3.29) provide the spectral indices as functions
of �N. In the h ! 0 limit these equations reduce to
Eqs. (3.12) and (3.14) for the binomial potential as it
must be.

The upper and lower bounds on the inflaton mass ratio
x � 106�m=MPl� derived from Eq. (3.29) take the same
form as Eq. (3.17)
FIG. 9. The central value for x � 106�m=MPl� as a function of y �
potential Eq. (3.23) as given by Eq. (3.30). The upper branches corr
chaotic inflation (compare with Fig. 12). Notice that the upper and

103518
200
���
3

p
�

N
gb�zb�

�������
 �

p
< x<

200
���
3

p
�

N
gb�zb�

�������
 	

p
; (3.30)

with the function,

gb�zb� �
�N

�����
zb

p
j1� 2h

�����
zb

p
� zbj

�w�h� � 2zb 	
8
3hz

3=2
b 	 z2b�

3=2
: (3.31)

Figures 9, 12, and 15, depict, respectively, the central value
for x Eq. (3.30), ns Eqs. (3.26) and (3.27) and r Eqs. (3.26)
and (3.28) as functions of y � �N for different values of
h < 0 for the trinomial potential Eq. (3.23). In all cases the
spectrum turns to be red tilted (ns < 1).

The three-dimensional plots (10, 13, and 16) and (11, 14,
and 17), display x; ns and r as functions of y � �N and
h < 0, for chaotic and new inflation, respectively.

Figure 18 depicts r as a function of ns for new inflation
with the trinomial potential Eq. (3.23) for different values
of h < 0 as given by Eqs. (3.26) and (3.28). We see that r
decreases when ns goes below unit, as in the binomial case.
In addition, r decreases for increasing asymmetry jhj at a
fixed ns (with h < 0). Therefore, the trinomial potential
Eq. (3.23) can yield very small r with ns < 1 and near unit
for new inflation [see Eq. (3.34)]. In this case we have the
upper bound r 
 8

N ’ 0:16 [see Fig. 15 and Eq. (3.32)].
�N for different values of h < 0 and N � 60 with the trinomial
espond to new inflation while the lower branches correspond to
lower bounds for x differ from the central value in only �6%.
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FIG. 10. The central value for x � 106�m=MPl� as a function
of y � �N for h < 0 and N � 60 with the trinomial potential
Eq. (3.23) as given by Eq. (3.30) for chaotic inflation. Notice that
the upper and lower bounds for x differ from the central value in
only �6%.

FIG. 12. ns as a function of y � �N for N � 60 and different
values of h < 0 with the trinomial potential Eq. (3.23) as given
by Eqs. (3.26) and (3.27). The upper branches correspond to
new inflation while the lower branches correspond to chaotic
inflation.
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The three-dimensional plot of Fig. 19 depicts ns as a
function of r and h with the trinomial potential Eq. (3.23)
as given by Eqs. (3.26), (3.27), and (3.28) for new inflation.

In Figs. 20 and 21 we plot r as function of ns and h for
chaotic inflation for the trinomial potential Eq. (3.23). We
see that r increases when ns goes below unit, as in the
binomial case. For chaotic inflation with the trinomial
potential Eq. (3.23) we have the lower bound r � 8

N [see
Fig. 15 and Eq. (3.32)]. Notice that Fig. 20 displays a very
small range of variation for ns and r, actually, r as a
FIG. 11. The central value for x � 106�m=MPl� as a function
of y � �N for N � 60 and h < 0 with the trinomial potential
Eq. (3.23) as given by Eq. (3.30) for new inflation.

103518
function of ns has a very weak dependence on the asym-
metry h < 0 for chaotic inflation.

1. Limiting cases

Let us now consider the limiting cases: the shallow limit
(� ! 0) and the steep limit � ! 1.
FIG. 13 (color online). ns as a function of y � �N for N � 60
and h < 0 with the trinomial potential Eq. (3.23) as given by
Eqs. (3.26) and (3.27) for chaotic inflation.
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FIG. 14 (color online). ns as a function of y � �N for N � 60
and h < 0 with the trinomial potential Eq. (3.23) as given by
Eqs. (3.26) and (3.27) for new inflation.

FIG. 16 (color online). r as a function of y � �N for N � 60
and h < 0 with the trinomial potential Eq. (3.23) as given by
Eqs. (3.26) and (3.28) for chaotic inflation.
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In the shallow limit � ! 0; �N�zb� tends to its minimum
zb � z	. We find from Eqs. (3.27) and (3.28)

ns �
�!0

1�
2

N
’ 0:96; r �

�!0 8

N
’ 0:16 (3.32)

which coincide with ns and r Eq. (3.20) for the monomial
FIG. 15. r as a function of y � �N for N � 60 and different
values of h < 0 with the trinomial potential Eq. (3.23) as given
by Eqs. (3.26), (3.27), and (3.28). The upper branches correspond
to chaotic inflation while the lower branches correspond to new
inflation. Notice that r > 8

N ’ 0:16 for chaotic inflation while r <
8
N for new inflation.

103518
quadratic potential. That is, the � ! 0 limit is

h-independent as expected since for fixed h; � �
�!0

O�
����
�

p
�

and the inflaton potential Eq. (3.23) becomes purely
quadratic.

In the steep limit � ! 1 we have two possibilities: for
new inflation zb tends to zero while for chaotic inflation zb
tends to infinity.
FIG. 17 (color online). r as a function of y � �N for N � 60
and h < 0 with the trinomial potential Eq. (3.23) as given by
Eqs. (3.26) and (3.28) for new inflation.
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FIG. 18. r as a function of ns for different values of h < 0 with
the trinomial potential Eq. (3.23) as given by Eqs. (3.26), (3.27),
and (3.28) for new inflation.

FIG. 20. r as a function of ns for different values of h < 0 with
the trinomial potential Eq. (3.23) as given by Eq. (3.26) and
(3.28) for chaotic inflation.
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For new inflation we find from Eq. (3.26)

�N�zb� �
zb!0

�w�h� logzb � q�h� � 1	O�
�����
zb

p
�

new inflation,
(3.33)
where
FIG. 19 (color online). ns as a function of r and h < 0 with the
trinomial potential Eq. (3.23) as given by Eq. (3.26) and (3.28)
for new inflation.
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q�h� 
 2w�h� log� � jhj� �
2

3
�h2 	 jhj �

�

�
8 2 log

�
1

2

�
1�

jhj
 

��
� 1

�
;

is a monotonically increasing function of the asymmetry
jhj:0 
 q�h�<1 for 0< jhj<1.
FIG. 21 (color online). ns as a function of r and h < 0 with the
trinomial potential Eq. (3.23) as given by Eq. (3.27) and (3.28)
for chaotic inflation.
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Then, Eqs. (3.27) and (3.28) yield,

ns �
��1

1�
�

w�h�
;

r �
��1

16
�

w2�h�
e���N	1	q�h��=w�h� new inflation (3.34)

In the h ! 0 limit we recover from Eqs. (3.33) and (3.34)
the results for new inflation with a purely quartic potential
Eq. (3.22) since w�0� � 1 and q�0� � 0.

We find for the function gb�zb� governing the inflaton
mass ratio Eq. (3.31)

gb�zb� �
��1 �N

w3=2�h�
e���N	1	q�h��=2w�h�; new inflation

(3.35)

or using Eq. (3.34),

gb�zb� �
��1N

4

��������������������
r�1� ns�

q
: (3.36)

This implies for the mass ratio bounds in Eq. (3.30)

50
���
3

p
�

��������������������
r�1� ns�

q �������
 �

p
< x< 50

���
3

p
�

��������������������
r�1� ns�

q �������
 	

p
:

or

x � 127
��������������������
r�1� ns�

q
� 6%: (3.37)

We find in this limiting case that the mass ratio is directly
related to the observable quantities ns and r. For example,
if 1� ns � r� 10�n, then x� 102�n.

Notice that in all cases the values of ns � 1 and r are of
the order 1

N .
We read from Figs. 12 and 15 the behavior of ns and r in

chaotic and new inflation (h < 0):

(i) B
oth for chaotic and new inflation ns decreases with

the steepness � for fixed asymmetry h < 0 and
grows with the asymmetry jhj for fixed steepness �.
(ii) F
or chaotic inflation r grows with the steepness �
for fixed asymmetry h < 0 and decreases with the
asymmetry jhj for fixed steepness �. For new in-
flation r does the opposite: it decreases with the
steepness � for fixed asymmetry h < 0 while it
grows with the asymmetry jhj for fixed steepness �.
From Figs. 9, 12, and 15 we can understand how the
mass ratio m=MPl varies with ns and r. For chaotic inflation
we have r � 8

N and 105�m=MPl� stays larger than unit in
order to keep ns in the observed WMAP range. For new
inflation, we have r 
 8

N and m=MPl decreases for decreas-
ing r. However, if we consider 105�m=MPl�< 1 say,
Eq. (3.37) and Figs. 9, 12, and 15 show that �1� ns�r
must be �10�6 which is probably a too small value. That
is, there is a limiting value for the inflaton mass x0 

106m0=MPl ’ 0:1 such that m0 ’ 10�7MPl is a minimal
inflaton mass in order to keep ns and r within the
WMAP data.
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This concludes our discussion of the trinomial inflaton
potential with m2 < 0. The case m2 > 0 can be treated
analogously and yields results conceptually similar to the
binomial potential: one finds chaotic inflation modulated
by the asymmetry parameter h. We shall not consider such
case here since it yields, as always in chaotic inflation, a
ratio r > 8

N .
IV. HYBRID INFLATION

In the inflationary models of hybrid type, the inflaton is
coupled to another scalar field -0 through a potential of the
type [19]

Vhyb��;-0� �
m2

2
�2 	

g20
2
�2-20 	

.40
16�0

�
-20 �

4�0
.20

�
2

�
m2

2
�2 	�0 	

1

2
�g20�

2 �.20�-
2
0

	
.40
16�0

-40: (4.1)

where .20 > 0 is of the order m2 > 0;�0 > 0 plays the role
of a cosmological constant and g20 couples -0 with �.

The initial conditions are chosen such that -0 and _-0 are
very small and one can therefore consider,

Vhyb��; 0� �
m2

2
�2 	�0: (4.2)

One has then inflation driven by the cosmological constant
�0 in the regime ��0� �

����
�

p
0. The inflaton field ��t�

decreases with time while the scale factor a�t� grows
exponentially. We see from Eq. (4.1) that

m2- � g20�
2 �.20

plays the role of a effective classical mass square for the
field -0. The initial value of m2- depends on the initial
conditions but is typically positive. Anyway, since in cha-
otic inflation the inflaton field � decreases with time, m2-
will be necessarily negative at some moment during in-
flation. At such moment, spinodal (tachyonic) unstabilities
appear and the field - starts to grow exponentially until it
dominates the energy of the universe. Inflation stops at
such time and then after, a matter dominated regime
follows.

Hybrid inflation can also be obtained with other cou-
plings like

~Vhyb��;-0� �
m2

2
�2 	�0 	

1

2
�2mg0��.20�-

2
0 	

~g
4
-40:

(4.3)

where g0 couples -0 with �, and the quartic coupling ~g >
2g20 ensures the stability of the model. Here, the effective
classical mass square for -0 reads,

m2- � 2mg0��.20:
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Again m2- becomes negative at some moment of inflation
due to the fact that the inflaton field � decreases with time.
Spinodal instabilities are then triggered and inflation even-
tually stops followed by a matter dominated regime. As for
the potential Vhyb��;-0�, in the regime ��0� �

����
�

p
0,

inflation is driven by the cosmological constant �0[20].
In hybrid inflation the role of the field -0 is to stop

inflation. This field is negligible when the relevant cosmo-
logical scales cross out the horizon. Hence, -0 does not
affect the spectrum of density and tensor fluctuations ex-
cept through the number of efolds.

The evolution equations in dimensionless variables for
the model Vhyb��;-0� Eq. (4.1) take the form

h2�&� �
2

3

�
_’2 	 ’2 	

.4

4�

�
-2 �

2�

.2

�
2
	 g2-2’2

�
;

�’	 3h _’	 ’	 g2-2’ � 0;

�-	 3h _-�.2-	 g2-’2 	
r2

2�
-3 � 0:

(4.4)

where

-�&� 

-0�t�
MPl

; g2 
 g20
M2
Pl

m2
; .2 


.20
m2

and � 

2�0

m2M2
Pl

:

In the slow-roll and �-dominated regime:

_��0� � m��0� �
����
�

p
;

we can neglect the field - and approximate the evolution
Eqs. (4.4) by

3h _’	 ’ � 0; h2�&� �
2

3
�’2 	��: (4.5)

The number of efolds from the time & until the end of
inflation is then given by Eq. (3.3),

N�&� �
Z &

0
h�&�d& � �

Z ’0

’�&�

v�’�
v0�’�

d’

�
1

4
�’2�&� � ’20� 	 2� log

’�&�
’0

(4.6)

where ’0 is the inflaton field by the end of inflation. We
have verified this approximation by integrating numeri-
cally Eqs. (4.4).

We see that the field and its dynamics only appears in
Eq. (4.6) through the value of ’0 where inflation stops. The
value of ’0 follows by solving Eqs. (4.4) and depends on
the initial conditions as well as on the parameters g;.
and �.

For �! 0 hybrid inflation becomes chaotic inflation
with the monomial potential 12’

2. In that limit Eq. (4.6)
becomes Eq. (3.7) with � ! 0 as it should be.
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The spectral indices are given by Eqs. (3.4) and (3.5) and
the amplitude of adiabatic perturbations by Eq. (3.6). By
using the potential Eq. (4.2) in dimensionless variables we
find,

v�’; 0� �
1

2
�’2 	��; � �

2

’2 	�
;

) �
2’2

�’2 	��2
;

(4.7)

j��S�
kadj

2 �
1

96�2

�
m
MPl

�
2 �’2 	��3

’2
;

ns � 1	 4
�� 2’2

�’2 	��2
; r � 32

’2

�’2 	��2
:

(4.8)

where ’ is the inflaton at the moment of the first horizon
crossing.

Since ’ �
����
�

p
Eq. (4.7) and (4.8) simplify as,

� �
2

�
; ) � 2

�
’
�

�
2
;

j��S�
kadj

2 �
1

96�2

�
m
MPl

�
2
�
�

’

�
2
�;

ns � 1	
4

�
� 12

’2

�2
; r � 32

’2

�2
:

(4.9)

In terms of the variable x � 106�m=MPl� [Eq. (3.16)] we
get

’2

�2
�

1

96�2
x2

j��S�
kadj

2
10�12� � 0:478� 10�6x2�;

r
�

�
1

3�2
x2

j��S�
kadj

2
10�12 � 1:5210�5x2; (4.10)

where we used the WMAP data for the amplitude of scalar
perturbations Eq. (3.19). Since,

ns � 1	
4

�
�
3

8
r; (4.11)

we find from Eqs. (4.10) and (4.11) ,

x � 106
m
MPl

� 5�
���
3

p
105j��S�

kadj
��������������������
r�1� ns�

q

� 127

��������������������������������
r�ns � 1	

3

8
r�

s
;

�1=40
MPl

� 0:0135r1=4;

�0
M4
Pl

� 0:329� 10�7r:

(4.12)

Notice that the expression for the mass ratio has a similar
structure than for new inflation (in the limiting case)
Eq. (3.37). In Figs. 22 and 23 we plot x � 106�m=MPl� as
a function of ns and r according to Eq. (4.12). We see that
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FIG. 24. ns and r as functions of � for a fixed x according to
Eqs. (4.10) and (4.11). Here, x � 0:0411.

FIG. 22. x � 106�m=MPl� as a function of ns for different
values of r in hybrid inflation according to Eq. (4.12).
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m=MPl decreases when r and ns � 1 both approach zero.
Figure 24 displays ns and r as functions of � for a fixed x
according to Eqs. (4.10) and (4.11).

From Eq. (4.8) we obtain ’2 as a function of ns and �,

’2� � ��	
4

ns � 1

�
�1�

����������������������������������
1	

3

4
��ns � 1�

s �
: (4.13)

We see that ’2	 is positive and hence physical for ns > 1
and �< 4=�ns � 1� while ’2� is positive and hence physi-
cal for ns < 1 and �< 4=�3jns � 1j�. Hence, the value of
ns � 1 gives an upper bound on the cosmological constant
FIG. 23. x � 106�m=MPl� as a function of ns and r in hybrid
inflation according to Eq. (4.12)
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�. In addition, one sees from Eq. (4.8) that we have for
hybrid inflation

ns � 1�
4

�
< 0 for all ’2 > 0:

Moreover, when �� ’2 (�-dominated regime), we see
from Eq. (4.8) that the spectrum exhibits a blue tilt (ns >
1). [Both chaotic and new inflation yield red tilted spectra
(ns < 1) as discussed in sec. III].

We see from Eqs. (4.6) and (4.9) that �� N and hence

ns � 1 � O

�
1

N

�
; r � O

�
1

N2

�
:

V. CONCLUSIONS AND IMPLICATIONS FOR
SUPERSYMMETRY AND STRING THEORY

Setting the inflaton mass m � 0 in polynomial potentials
like Eq. (2.5) implies a highly particular nongeneric
choice. WMAP [7] unfavors such a choice and supports a
generic polynomial potential. Actually, we find that the
fact that the pure �4 potential is disfavored implies a lower
bound on m. As discussed in secs. III and IVone gets m *

1013 GeV.
The potential which best fits the present data for red

tilted spectrum (ns < 1) and which best prepares the way to
the expected data (a small r & 0:1) is given by the trino-
mial potential Eq. (1.1) with a negative ’2 term, that is new
inflation. In new inflation we have the upper bound r 

8
N ’ 0:16.

The data on the spectral indices should be able to make
soon a clear selection between inflationary models: we see
that a measured upper bound r & 0:16 excludes chaotic
inflation. If this happens to be the case, then whether ns
turns to be above or below unit will exclude either new or
hybrid inflation, respectively.
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The grand unification idea consists in that at some
energy scale all three couplings (electromagnetic, weak
and strong) should become of the same strength. In this
case, such grand unified scale turns out to be E�
1016 GeV [21,22]. The running of the couplings with the
energy (or the length) is governed by the renormalization
group. For the standard model of electromagnetic, weak
and strong interactions, the renormalization group yields
that the three couplings get unified approximately at
�1016 GeV. A better convergence is obtained in super-
symmetric extensions of the standard model [21,22].

Neutrino oscillations and neutrino masses are currently
explained in the seesaw mechanism as follows [23],

 m0 �
M2
Fermi

M

where MFermi � 250 GeV is the Fermi mass scale, M �
MFermi is a large energy scale and  m0 is the difference
between the neutrino masses for different flavors. The
observed values for  m0 � 0:009� 0:05 eV naturally
call for a mass scale M� 1015�16 GeV close to the GUT
scale [23].

Equation (2.8) for the inflaton potential resembles the
moduli potential coming from supersymmetry breaking,

Vsusy��� � m4susyv
�
�
MPl

�
; (5.1)

where msusy stands for the supersymmetry breaking scale.
Potentials with such form were used in the inflationary
context in refs.[24]. In our context, Eq. (5.1) implies that
msusy � 10

16GeV. That is, the susy breaking scale msusy
turns out to be at the GUT scale msusy �MGUT.

We see that the mass scale of the inflaton m� 1013 GeV
can be related with MGUT by a seesaw style relation,
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m�
M2
GUT

MPl
: (5.2)
As discussed in secs. I and II the inflaton describes a
condensate in a GUT theory in which it may describe
fermion-antifermion pairs. Current identifications in the
literature of such condensate field with a given fundamen-
tal field in a SUSY or SUGRA model have so far no solid
basis. Moreover, the number of supersymmetric models is
so large that there is practically no way to predict which is
the correct model [25].

In order to generate inflation in string theory one needs
first to generate a mass scale like the inflaton mass m�
1013 GeV. Such scale is not present in the string action,
neither in the action of the effective background fields
(dilaton, graviton, antisymmetric tensor) which are mass-
less. Without the presence of the mass scales m and MGUT

[related through Eq. (5.2)], there is no hope in string theory
to get a correct inflationary cosmology describing the
observed CMB fluctuations [14]. Such scale should be
generated dynamically perhaps from the string vacuum(ua)
but this is still an open problem far from being solved [14].
Actually, the very same problem hinders the derivation of a
GUT theory and the generation of the GUT scale from
string theory.

Since no microscopic derivation of an inflationary model
from a GUT is available so far, it would seem too ambitious
at this stage to look for a microscopic derivation of infla-
tion from string theory. The derivation of an inflationary
cosmology reproducing the observed CMB fluctuations is
at present too far away in string theory. However, an
effective description of inflation in string theory (string
matter plus massless backgrounds) could be at reach [14].
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