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ABSTRACT

Aims. The critical surface of a rapidly rotating star is determined, assuming that the rotation is either uniform or shellular (angular
velocity constant on level surfaces, but increasing with depth).
Methods. A step beyond the classical Roche model, where the entire mass is assumed to be gathered at the center of the star, here the
quadrupolar moment of the mass distribution is taken into account through a linear perturbation method.
Results. The flattening (defined here as the ratio between the equatorial and the polar radius) can somewhat exceed the 3/2 value of
the Roche model, depending on the strength of the interior rotation. The result is applied to a star of 7 solar masses, which is the mass
of Achernar, the star with the largest flattening detected so far through optical interferometry.
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1. Introduction

The recent development of long baseline optical interferome-
try makes it now possible to directly evaluate the flattening of
stars (i.e. van Belle et al. 2001; Domiciano de Souza et al. 2003,
2004). Because that flattening is due to the centrifugal force, one
may then ask whether its measure can constrain the interior rota-
tion, and specifically the type and amount of differential rotation.

The question was raised in particular when Domiciano
de Souza et al. (2003) announced that the Be star Achernar (α
Eri) had an oblate shape: projected to the sky, the ratio between
the major and the minor axes of the stellar disk amounted to 1.56.
This meant that the ratio between the equatorial and the polar ra-
dius was even higher, thus substantially exceeding the value of
3/2 predicted for an ideal star whose entire mass is gathered at
the center and which rotates uniformly at break-up speed. But
these high flattening ratios are easily achieved when the star is
rotating differentially, with the angular velocity decreasing out-
ward, as it was demonstrated by Jackson et al. (2004).

Afterwards Achernar was found to emit a jet, and the ra-
tio between the major and minor axes of the projected star was
reduced to 1.41 (Kervella & Domiciano de Souza 2006). This
value – the highest measured so far in any star – is compatible
with a uniformly rotating star, even considering that the rotation
axis is inclined with respect to the line of sight. One may thus be
tempted to conclude that the question is settled. However other
stars will be analyzed in the future, and we should be prepared to
confront their flattening values with those predicted by models.

For this reason we wish to determine here which is the high-
est flattening allowed for a realistic star that is in uniform ro-
tation or, more generally, in shellular rotation (where the angu-
lar velocity is constant on level surfaces, but varies with depth).
By “realistic” we mean that we take into account the mass

distribution distorted by the centrifugal force, which contributes
a quadrupolar moment to the gravitational field exerted by the
star.

2. Generalities

Let us first recall some well-known properties of rotating stars.
Neglecting convective motions, these stars are in hydrostatic
equilibrium between the pressure gradient, gravity and the cen-
trifugal force:

1
ρ
∇P = geff ≡ −∇Φ + Ω2s. (1)

Here ρ designates the density, Φ the gravitational potential, Ω
the angular velocity, and s the (vector) distance from the rotation
axis; the effective gravity geff is the sum of the gravity and of the
centrifugal force. The isobars coincide with the level surfaces,
which by definition are orthogonal to the effective gravity.

If the angular velocity depends only on s (i.e. ifΩ is constant
on cylinders), the centrifugal force derives from a potential, and
the total potential (gravitational + centrifugal) is given by

Ψ = Φ −
∫
Ω2(s) s ds. (2)

Then the isobars coincide with the equipotentials of the total
field Ψ, as do the surfaces of constant density; therefore the pres-
sure is a function of density only: P = P(ρ) – the star has a
barotropic structure. In the particular case of uniform rotation,
we retrieve the familiar expression

Ψ = Φ − 1
2
Ω2 s2. (3)
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In the general case, Ω is a function also of the coordinate z along
the rotation axis; then the density is no longer constant on iso-
bars, but varies with latitude, as can be seen by taking the curl of
Eq. (1):

∇
(

1
ρ

)
× ∇P ≡ −∇ρ

ρ
× geff = ∇Ω2 × s; (4)

the star is said to be in a baroclinic state.
Here we are mainly interested in the “surface” of the rotating

star. In all rigor, it should be defined as the surface on which the
optical thickness (for a given wavelength or some average of it)
is unity (or 2/3, or

√
3, depending on the treatment of radiative

transfer). For most purposes, however, one may simply assume
that this “surface” coincides with a level surface of suitably cho-
sen (low) pressure.

The outermost level surface a rotating star can fill is that on
which the effective gravity vanishes in the equatorial plane; there
the centrifugal force is thus in exact balance with the gravity.

3. Shellular rotation

A particular rotation regime we shall examine here is that where
the angular velocity is constant on level surfaces: i.e. Ω =
Ω(P). This “shellular” rotation was introduced partly to sim-
plify the treatment of rotational mixing (Zahn 1992), but also
on more physical grounds, because differential rotation tends to
be smoothed out in latitude through shear turbulence.

One can then still define a generating function inspired
by Eq. (3)

F = Φ − 1
2
Ω2(P) s2; (5)

here F is no longer a potential, but because

∇F = ∇Φ − Ω2s −Ωs2 dΩ
dP
∇P, (6)

the surfaces of constant F coincide with the isobars, as we can
check by comparing with Eq. (1):

∇F = −
(

1
ρ
+ Ωs2 dΩ

dP

)
∇P. (7)

The level surfaces of shellular rotation thus have the same shape
as for uniform rotation, and this is true in particular for the “sur-
face”. That property was first pointed out by Meynet & Maeder
(1997)1.

The expression in factor of ∇P is constant on an isobar, and
we can thus write

1
ρ
+ Ωs2 dΩ

dP
=

1
ρ(RP)

at constant P or F , (8)

where z = RP is the coordinate of that isobar on the polar axis;
note that this expression is just another form of the baroclinic
relation (4).

1 In a subsequent paper, Maeder (1999) took a different definition for
the shellular rotation, namely that the angular velocity is constant on
spheres: Ω = Ω(r), and then this property no longer holds.

4. First approximation: the Roche model

To first approximation, the surface of a star rotating at critical
speed can be described by assuming that all the mass is con-
centrated at the origin r = 0: it is the so-called Roche model.
This greatly simplifies the expression of the gravitational force,
because the effective gravity is then just

geff = −GM
r3

r + Ω2s; (9)

here r2 = s2 + z2, M is the mass of the star, and G is the gravita-
tional constant.

The generating function (5) is then

F = −GM
r
− 1

2
Ω2s2, (10)

and it allows us to calculate the flattening of the critical surface.
At the equator of that surface, where r = RE and geff = 0, it takes
the value

F (RE) = −GM
RE
− 1

2
Ω2R2

E = −
3
2

GM
RE
, (11)

and at its poles

F (RP) = −GM
RP

; (12)

hence, because F is constant on an isobar,

RE

RP
=

3
2

for the Roche model, (13)

a value that applies both to uniform and to shellular rotation.
From the generating function (10) we can deduce the equa-

tion of the critical surface: scaling the coordinates by the equa-
torial radius, i.e. s̃ = s/RE, z̃ = z/RE and r̃ = r/RE, we get

z̃2 =

(
2

3 − s̃2

)2

− s̃2. (14)

Finally, we may define the mean critical radius R0 as the average
of r over the solid angle seen from the center:

4πR0 = RE

∫∫
r̃ dΩ. (15)

Replacing the integrant in terms of s̃ and z̃, we obtain

R0

RE
=

∫ 1

0

[
z̃ − s̃

dz̃
ds̃

]
s̃ ds̃

(z̃2 + s̃2)
= 3 (2 − √3), (16)

and thus R0/RP = 9 (2 − √3)/2.

5. The quadrupolar correction

We now take into account that the mass distribution is actually
oblate, due to the centrifugal force; this generates a gravitational
potential outside the star which may be expanded in a succession
of multipoles as

Φ(r, θ) = −GM
r

⎡⎢⎢⎢⎢⎢⎣1 −
∞∑
�=2

(R0

r

)�
J� P�(cos θ)

⎤⎥⎥⎥⎥⎥⎦ . (17)

Here θ is the colatitude, P� the Legendre polynomial of order
� (an even number for obvious symmetry reason), and J� is a
non-dimensional constant which measures the strength of that
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multipole. R0 designates the radius of the spherically symmetric
reference model, in which the horizontal average 2Ω2r/3 of the
vertical component of the centrifugal force has been subtracted
from the radial gravity force (cf. Kippenhahn et al. 1970); as is
well known, this has the effect of increasing the radius.

To lowest order, we keep only the quadrupolar term (� = 2),
and the generating function is then

F = −GM
r

[
1 − J2

(R0

r

)2

P2(cos θ)

]
− 1

2
Ω2s2. (18)

As before, we evaluate it at the equator

F (RE) = −GM
RE

⎡⎢⎢⎢⎢⎢⎣1 + 1
2

J2

(
R0

RE

)2⎤⎥⎥⎥⎥⎥⎦ − 1
2
Ω2R2

E (19)

and at the poles

F (RP) = −GM
RP

⎡⎢⎢⎢⎢⎢⎣1 − J2

(
R0

RP

)2⎤⎥⎥⎥⎥⎥⎦ ; (20)

therefore

RE

RP

⎡⎢⎢⎢⎢⎢⎣1 − J2

(
R0

RP

)2⎤⎥⎥⎥⎥⎥⎦ = 1 +
1
2

J2

(
R0

RE

)2

+
1
2

Ω2R3
E

GM
· (21)

Next we replace the last term above by its expression drawn from
the hydrostatic balance at the equator

GM

R2
E

⎡⎢⎢⎢⎢⎢⎣1 + 3
2

J2

(
R0

RE

)2⎤⎥⎥⎥⎥⎥⎦ = Ω2 RE, (22)

to obtain the flattening ratio to lowest order in J2:

RE

RP
=

3
2
+

⎡⎢⎢⎢⎢⎢⎣3
2

(
R0

RP

)2

+
5
4

(
R0

RE

)2⎤⎥⎥⎥⎥⎥⎦ J2 =
3
2
+ 3.150 J2, (23)

where we have approximated R0/RP and R0/RE by their values
given in Eq. (16) for the critical Roche surface. Again, this result
applies to stars that are either in uniform or in shellular rotation.
As expected, the value of the critical flattening is increased be-
yond 3/2 when the quadrupolar moment is taken into account.

6. The quadrupolar moment for shellular rotation

Provided they are small enough compared to unity, which is the
case for massive MS stars, the multipolar moments J� of a ro-
tating star may be calculated by the linear perturbation method
that was described by Sweet (1950). We expand the centrifugal
acceleration in spherical functions

fr = Ω
2r sin2 θ =

∑
a�(r)P�(cos θ),

fθ = Ω
2r sin θ cos θ = −

∑
b�(r)

dP�(cos θ)
dθ

, (24)

and proceed likewise for the perturbations of the pressure p′, of
the density ρ′ and of the gravitational potential Φ′, so that

Φ′(r, θ) =
∑
Φ�(r)Pl(cos θ). (25)

Next we introduce these expressions in the hydrostatic equation
Eq. (1) and expand it in �:

dp�
dr
= −ρ0

dΦ�
dr
− g0ρ� + ρ0a�,

p� = −ρ0Φ� − r ρ0b�, (26)

where ρ0(r) and g0(r) are the local density and gravity of the
unperturbed star. Through the elimination of p� we obtain an
expression for the density perturbation ρ�, which is introduced
in the Poisson equation ∇Φ� = 4πGρ� to yield

1
r

d2

dr2
(rΦ�) − �(� + 1)

Φ�

r2
− 4πG
g0

dρ0

dr
Φ� =

4πG
g0

[
d
dr

(rρ0b�) + ρ0a�

]
. (27)

Here we are interested in the special case of shellular rotation,
where Ω depends only on r, to first approximation. Then, for
� = 2,

a2 = −2
3

rΩ2, b2 =
1
3

rΩ2. (28)

Rescaling the radial coordinate by the radius, x = r/R0, the an-
gular velocity profile by its surface value, h(x) = Ω2(x)/Ω2

s , and
the potential perturbation as φ2 = Φ2/Ω

2
s R2

0, we obtain the fol-
lowing Poisson equation (cf. Mathis & Zahn 2004):

1
x

d2(xφ2)
dx2

− 6 φ2

x2
− 4πGR0

g0

dρ0

dx
φ2 =

4πGR0

3g0
x2 d

dx
(ρ0h). (29)

To ensure regularity at x = 0 and ∞, the solution of this second
order o.d.e. must satisfy the boundary values

φ2 = 0 at x = 0, and φ2 + 3
dφ2

dx
= 0 at x = 1. (30)

The quadrupolar moment is given by the surface value of φ2:

J2 =

⎡⎢⎢⎢⎢⎣Ω
2
SR3

0

GM

⎤⎥⎥⎥⎥⎦ φ2(1); (31)

thus J2 = (R0/RE)3φ2(1) when the star rotates at critical speed.
Note that this quadrupolar moment is closely related to the

apsidal motion constant k2, when the star is in uniform rotation.
The reason is that the centrifugal potential then has the same
functional behavior as the tidal potential in a binary star com-
ponent: both scale as r2Pm

2 (cos θ) cos(mϕ) (cf. Zahn 1966). One
easily finds that in this case J2 = 2k2/3.

7. Application to Achernar

To illustrate the impact of including the quadrupolar moment, we
numerically solved this o.d.e. (29) for a 7 M� star, which accord-
ing to its spectral type should be about the mass of Achernar, the
star with the highest flattening detected so far. We adopted the
following interior rotation profile:

h(x) =
Ω2(x)
Ω2

s
=

1 + a
1 + a x2

, (32)

x = r/R0 being the radial coordinate scaled by the mean ra-
dius. For the present purpose, this bell-shaped profile sufficiently
resembles those predicted by models including the transport of
angular momentum through rotational mixing (cf. Talon et al.
1997; Meynet & Maeder 2000); it imposes a contrast of

√
1 + a

between the central and surface values of Ω.
The spherical reference models were built with the stellar

evolution code CESAM (Morel 1997) for a standard initial com-
position (X = 0.70, Z = 0.02). These models define the mean ra-
dius R0 and provide the density and mass distribution that enter
in the perturbed Poisson Eq. (29). The hydrostatic equation was

Page 3 of 4



A&A 517, A7 (2010)

Table 1. Characteristics of a 7 M� star rotating at critical speed.

Parameter ZAMS Xc = 0.30 Xc = 0.02
No rotation

radius (R�) 4.348 4.953 5.857
quadrupolar moment J2 3.370 × 10−3 2.766 × 10−3 2.013 × 10−3

Uniform rotation
quadrupolar moment J2 8.411 × 10−3 7.136 × 10−3 5.171 × 10−3

mean radius R0 5.125 5.803 6.852
equatorial radius RE 5.821 6.591 7.783

polar radius RP 3.814 4.329 5.133
flattening RE/RP 1.526 1.522 1.516

Differ. rotation Ωc/Ωs = 4
quadrupolar moment J2 1.900 × 10−2 1.550 × 10−2 1.123 × 10−2

mean radius R0 5.773 6.671 7.902
equatorial radius RE 6.557 7.577 8.846

polar radius RP 4.204 4.889 5.846
flattening RE/RP 1.560 1.550 1.535

Notes. J2 is the quadrupolar moment defined in Eq. (17). RE, RP and
R0 are respectively the equatorial, polar and mean radius. Taking the
quadrupolar moment into account increases the flattening RE/RP of the
stellar surface beyond the value 1.50 of the Roche model, and even more
so when the rotation is non-uniform (with the profile of Eq. (32)); this
is illustrated here with a center-to-surface contrast of 4. In the “no rota-
tion” case, the non rotating model was used as reference, while uniform
rotation (h(x) = 1) was assumed when solving the Poisson Eq. (29).

modified to include the horizontal average 2Ω2r/3 of the vertical
component of the centrifugal force, as was done by Kippenhahn
et al. (1970). We used two rotation profiles (32): one uniform
(a = 0), and the other with a center-to-surface ratio of 4 in an-
gular velocity (a = 15). Three stages of evolution were con-
sidered: one at the ZAMS (defined as the location in the HR
diagram where half of the luminosity originates from nuclear re-
actions and half from the star’s contraction), the other at mid-MS
(where the central hydrogen concentration has been reduced to
Xc = 0.30), and the third at the end of the MS (Xc = 0.02).

The results are given in Table 1, which shows how the
quadrupolar moment J2 increases with the interior rotation at
given age, when the surface rotates at critical speed. For uni-
form rotation, our values agree with the apsidal motion constants
calculated by Claret (1995). From Eq. (23) we then deduce the
maximum flattening that such a star can achieve and, combin-
ing this with the value of R0/RE given in Eq. (16), we derive the
equatorial and polar radii.

For simplicity, one could be tempted to take as reference
model that of the non-rotating star, but at critical speed the
swelling and mass redistribution due to the centrifugal force can-
not be treated as a mere perturbation. This can be seen in Table 1
by comparing the radius of the non-rotating models with that of
the models including the effect of rotation. The discrepancy is
even more pronounced for the quadrupolar moments J2, which
would be underestimated by a factor ≈2.5 when using the non-
rotating model.

8. Discussion and conclusion

The main goal of this paper was to investigate how much the
flattening of a star rotating at critical speed can exceed the clas-
sical value of 3/2 that characterizes the Roche model. Our results

were obtained by a linear perturbation method treating the
quadrupolar moment as a small quantity, which is justified for
massive MS stars, because these are sufficiently centrally con-
densed. Nevertheless, it would be worthwhile to refine our re-
sults through genuine two-dimensional calculations, like those
described by Clement (1978) or by Rieutord (2006).

Although their analysis applies strictly only to conservative
laws of rotation, Jackson et al. (2004) have convincingly shown
that the flattening may assume rather high values when the star is
rotating differentially, with the angular velocity decreasing out-
ward. Here we instead considered a star rotating uniformly at
critical speed, but we improved upon the Roche model by tak-
ing into account the quadrupolar moment of the mass distribu-
tion, due the centrifugal force. We found that the flattening of
the critical surface is then slightly increased from 1.50 to about
1.52, for a 7 M� star which was chosen to represent Achernar.
This increase would be more pronounced for lesser central con-
densation, i.e. for MS stars of lower mass.

Then we examined the so-called shellular rotation regime,
where the angular velocity is constant on level surfaces, but in-
creases with depth. Due to this “hidden” rotation, the flattening
of the star can increase to substantially higher values: for exam-
ple to 1.54 or 1.56, depending on the state of evolution, for a con-
trast of 4 between its angular velocity at center and surface. This
differential shellular rotation was first invoked by Zorec et al.
(2005) in their analysis of Achernar; they concluded that the ob-
servations were compatible with a center-to-surface ratio for the
angular velocity of 2.7, and an inclination of 52◦ of the rotation
axis with respect to the line of sight. Thus, provided the intero-
ferometric determinations become sufficiently precise, the shape
of stars may provide a valuable constraint on their internal rota-
tion, complementary to the powerful asteroseismic diagnostic.
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