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Abstract. The purpose of this paper is to improve the modeling of the mixing of chemical elements that occurs in stellar
radiation zones. In addition to the classical rotational mixing considered in our previous paper, which results of the combined
action of the thermally-driven meridional circulation and of the turbulence generated by the shear of differential rotation, we
include here the effect of an axisymmetric magnetic field in a self-consistent way. We treat the advection of the field by the
meridional circulation, its Ohmic diffusion, and the production of its toroidal component through the shear of differential
rotation. The Lorentz force is assumed not to exceed the centrifugal force; it acts on the baroclinic balance and therefore on the
meridional flow, and it has a strong impact on the transport of angular momentum. All variables and governing equations are
expanded in spherical or spherical vectorial functions, to arbitrary order: this yields a system of partial differential equations in
time and in the radial coordinate, which is ready to be implemented in a stellar structure code.
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1. Motivation

The need for improved stellar structure models, which go beyond the so-called standard model, is now well recognized. The
radiation zones can no longer be treated as motionless regions, where no mixing occurs, but one has to include physical processes
which lead to the transport of matter and angular momentum. So far the focus has been on the effect of rotation, which generates
a thermally driven meridional circulation; by advecting angular momentum, that circulation renders the rotation non-uniform and
prone to shear turbulence. This rotational mixing has been formulated by Zahn (1992) and Maeder & Zahn (1998), assuming that
the angular velocity varies much less in the horizontal than in the vertical direction (shellular rotation). For rapidly rotating stars,
models built along these lines are in much better agreement than standard models; this was first shown by Talon et al. (1997), and
confirmed by Maeder & Meynet (2000, 2001), who in addition refined the description for the mass loss by taking into account
the latitudinal variation of the wind.

However, these models fail to correctly reproduce the flat rotation profile observed in the solar radiative interior (Matias &
Zahn 1997). In solar-type stars, at least once they have been spun down through their magnetized wind, other physical processes
are therefore responsible for the transport of angular momentum, and the most plausible candidates are now being investigated.
One is the transport by internal gravity waves emitted at the base of the convection zones, associated with turbulence which
smoothes the differential rotation; this mechanism was described by Kumar et al. (1999), Talon et al. (2002) and applied by Talon
& Charbonnel (2003, 2004) to stars of various types. The other possibility is magnetic torquing, as advocated already by Mestel
(1953): he showed that even a very modest field could enforce rigid rotation. In the present paper we shall address the latter
effect, and examine how rotational mixing is affected by an axisymmetric field.

Moss (1974) was the first to map the thermally-driven meridional circulation in a star containing an axisymmetric poloidal
field; when rotation was added, it was assumed constant and uniform. Various generalizations of this work followed, by Mestel
& Moss (1977) and by Moss (1977, 1984, 1985, 1987). The a priori assumption of rigid rotation was relaxed by Tassoul &
Tassoul (1986), who claimed that no magnetic field could render the rotation nearly uniform in presence of meridional circula-
tion; however their treatment failed to correctly represent the generation of toroidal field through the shearing of poloidal field,
which provides the major feed-back in this problem. This was pointed out by Mestel et al. (1988), who carried out numerical
simulations that illustrated how a weak magnetic field could enforce nearly uniform rotation within a few Alfvén times; for sake
of simplification, both the poloidal field and the meridional circulation were taken as given, and constant in time.
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Recently Garaud (2002) treated the problem in a fully consistent way, and she applied it to the description of the solar
tachocline: she let the field adjust through Ohmic diffusion and be advected by the meridional circulation. However, due to
numerical limitations, her circulation was driven mainly through Ekman pumping, rather than through thermal diffusion; also,
only stationary solutions were constructed.

The purpose of the present paper is to model the time-dependent rotational mixing in presence of an axisymmetric magnetic
field, thus extending the results obtained by Mathis & Zahn (2004; from now on referred to as Paper I) in the purely hydrody-
namical case. To achieve this goal:

– we allow for a general axisymmetric magnetic field, including all its effects;
– we expand all variables in spherical harmonics, formally to unlimited order;
– we treat explicitely the departures from shellular rotation, in the linear approximation, in order to capture the tachocline(s);
– we filter out the short times, and keep only the time derivative in the heat equation and in that describing the transport of

angular momentum1.

In a forthcoming paper, we shall generalize the present work to a non-axisymmetric magnetic field.

2. Assumptions and expansions

We focus here our attention to magnetic fields of moderate strength, whose Alfvén speed VA does not exceed the rotation
velocity RΩ, but is larger than the meridional circulation velocity VM. Thus the field will not affect much the hydrostatic balance
in the meridional plane, but it may play a major role in the transport of angular momentum, by tending to render the angular
velocity Ω constant along the field lines of the poloidal field (Ferraro 1937). We also assume that the field does not vary on a
timescale which is shorter than the Alfvén time R/VA; thus we shall deal with fields of primordial origin, and exclude possible
dynamo fields produced in the adjacent convection zones, whose penetration would be damped anyway by skin effect (Garaud
1999).

Our treatment is not able to address the question whether the field is stable or not, because it is axisymmetric, and because
we do not resolve the Alfvén waves. We will have to rely on our intuition, guided by 3D simulations such as recently performed
by Braithwaite & Spruit (2004), to choose the magnetic configurations we implement in our code. As for instabilities which may
lead to a turbulent state, for instance the magneto-rotational instability when the equator rotates slower than the poles (Balbus &
Hawley 1994), their transport properties will have to be accounted for by a suitable parametrization, as was done previously in
the hydrodynamical case.

As in Paper I, we assume that the rotating star is only weakly two-dimensional, and this for two reasons. The first is that
the rotation rate and the magnetic field, which is taken axisymmetric, are sufficiently moderate to allow the centrifugal and the
Lorentz forces to be considered as perturbations compared to gravity. The second reason rests on the less justified hypothesis that
the shear instabilities due to the differential rotation give rise to turbulent motions which are strongly anisotropic due to the stable
stratification, with much stronger transport in the horizontal directions than in the vertical. In the radiation zones, we expect it to
smooth out the horizontal variations of angular velocity and of chemical composition, a property we shall use to discard certain
non-linear terms. Let us emphasize also that the influence of the magnetic field on such turbulence is not taken into account, as
seems to be allowed by the condition VA < RΩ.

Hence, we consider an axisymmetric star, and assume that the horizontal variations of all quantities are small and smooth
enough to allow their linearization and their expansion in a modest number of spherical harmonics. As reference surface, we
choose either the sphere or the isobar, and write all scalar quantities either as:

X(r, θ) = X0(r) +
∑

l

X̂l(r)Pl (cos θ) (1)

or

X(P, θ) = X(P) +
∑

l>0

X̃l(P)Pl (cos θ) , (2)

where X̃l(r) and X̂l(r) are related by (cf. Paper I, Sect. 2)

X̃l(r) = X̂l(r) −
(

dX0

dP0

)
P̂l(r), (3)

with r being here the mean radius of an isobar.

1 All waves are thus filtered out (acoustic, gravity, inertial, Alfvén); the equation for the transport of angular momentum (Eq. (44), below)
still formally allows for mixed Alfvén-inertial waves, but the timestep of the evolutionary calculation (which uses an implicit scheme) will in
general exceed the typical wave travel time, and suppress these waves.
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Likewise, we expand all axisymmetric vector fields using the method outlined by Rieutord (1987):

u(r, θ) =
∞∑

l=0

{
ul

0(r)R0
l (θ) + vl0(r)S0

l (θ) + wl
0(r)T0

l (θ)
}
. (4)

The orthogonal axisymmetric vectorial spherical harmonics R0
l (θ), S0

l (θ), T0
l (θ) are defined by:

R0
l (θ) = Y0

l (θ) êr, S0
l (θ) = ∇SY0

l (θ) and T0
l (θ) = ∇S ∧ R0

l (θ) (5)

where Y0
l (θ) is the classical spherical harmonic with m = 0 (cf. Edmonds 1974) and ∇S is the horizontal gradient

∇S = êθ∂θ + êϕ
1

sin θ
∂ϕ. (6)

Their detailed properties are given in Appendix A.
Using Eqs. (A.1) and (A.6), u may be written explicitly on the usual vector basis in spherical coordinates:

u =
∞∑

l=0

N0
l

[
ul

0 (r) Pl (cos θ) êr + v
l
0 (r) ∂θPl (cos θ) êθ − wl

0 (r) ∂θPl (cos θ) êϕ
]

= N0
0 u0

0 (r) êr +

∞∑

l=1

N0
l

[
ul

0 (r) Pl (cos θ) êr − vl0 (r) P1
l (cos θ) êθ + wl

0 (r) P1
l (cos θ) êϕ

]
; (7)

êr, êθ and êϕ are the unit-vectors repectively in the r, θ and ϕ directions.
This expansion of the vector fields allows us to separate explicitly the spatial coordinates (r, θ) in the vectorial partial differ-

ential equations which govern the problem: using this decomposition, we cast the problem into partial differential equations in t
and r only. This point is very important numerically, because the existing stellar evolution codes in which we have to introduce
the transport equations are all 1-dimensional, and also because we need to achieve much higher accuracy in the radial direction
than in the horizontal.

3. Axisymmetric magnetic field

We start with expansions and equations involving the magnetic field.

3.1. Definitions

The magnetic field, being divergenceless, is conveniently split in its poloidal and toroidal parts:

B (r, θ) = BP (r, θ) + BT (r, θ) ≡ ∇ ∧∇ ∧ (
ξP (r, θ) êr

)
+ ∇ ∧ (

ξT (r, θ) êr
)
, (8)

where ξP and ξT are respectively the poloidal and the toroidal magnetic stream-functions. Using the classical method introduced
by Bullard & Gellman (1954) for the spectral treatment of the geodynamo problem (see also James 1973, 1974 and Serebrianaya
1988), we get the following expansion in radial functions and in spherical harmonics which are defined in Sect. A.1.1:

ξP (r, θ) =
∞∑

l=1

ξl0 (r) Y0
l (θ) and ξT (r, θ) =

∞∑

l=1

χl
0 (r) Y0

l (θ) . (9)

Since R0
l (θ) = Y0

l (θ) êr, as we have seen in the previous section where we have defined R0
l (θ) , S0

l (θ) ,T0
l (θ), the field may be

written as

BP =

∞∑

l=1

∇ ∧ ∇ ∧
(
ξl0 R0

l (θ)
)

and BT =

∞∑

l=1

∇ ∧
(
χl

0R0
l (θ)

)
. (10)

Next, we develop the curl operator as explained in the appendix (Eqs. (A.32) and (A.33)) to obtain the following expansions for
the magnetic field:

B (r, θ) = BP (r, θ) + BT (r, θ) =
∞∑

l=1



l(l + 1)
ξl0
r2

 R0
l (θ) +

[
1
r
∂rξ

l
0

]
S0

l (θ)

 +
∞∑

l=1




χl

0

r

 T0
l (θ)

 · (11)

We proceed likewise for the current density j, which in the framework of magnetohydrodynamics is related with B through the
Maxwell-Ampère equation, neglecting the displacement current:

j (r, θ) =
1
µ0
∇ ∧ B (r, θ) , (12)
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µ0 being the magnetic permeability of vacuum.

Therefore, using expression (8) for the field, we get:

j =
1
µ0
∇ ∧ B =

1
µ0

[∇ ∧ ∇ ∧ ∇ ∧ (
ξPêr

)
+ ∇ ∧ ∇ ∧ (

ξTêr
)]
, (13)

which, using the relations (A.33) and (A.36), we can project again on R0
l (θ), S0

l (θ) and T0
l (θ), and split into its poloidal and

toroidal parts:

jP (r, θ) =
1
µ0
∇ ∧ BT (r, θ) =

1
µ0
∇ ∧∇ ∧ (

ξTêr
)
=

1
µ0

∞∑

l=1



l(l + 1)
χl

0

r2

 R0
l (θ) +

[
1
r
∂rχ

l
0

]
S0

l (θ)

 (14)

jT (r, θ) =
1
µ0
∇ ∧ BP (r, θ) =

1
µ0
∇ ∧∇ ∧∇ ∧ (

ξPêr
)
= − 1
µ0

∞∑

l=1



∆l


ξl0
r


 T0

l (θ)

 · (15)

with ∆l being the Laplacian operator

∆l = ∂r,r +
2
r
∂r −

l(l + 1)
r2
· (16)

We are now ready to examine the aspects of transport and mixing in the radiation zones of rotating stars that are related to the
presence of an axisymmetric magnetic field. To achieve this, we shall proceed in three steps

– first, we introduce the Lorentz force;
– next, we derive the transport equation for B, which is the classical induction equation;
– finally, we take into account the energy losses due to Ohmic heating.

3.2. Lorentz force

The Lorentz force FL plays a crucial role in a rotating star, since it acts to render the angular velocity constant on the field lines
of the poloidal field BP. In this section, we establish the formal expression of FL in terms of vectorial spherical harmonics.

Starting from the definition of the Lorentz force:

FL (r, θ) = j ∧ B =
[

1
µ0

(∇ ∧ B)

]
∧ B, (17)

we replace B by its expansions (11), and use the algebra ruling the vector product of two general axisymmetric vectors in
Appendix A, whereby we obtain the following formal projection:

FL (r, θ) = XFL ;0(r)̂er +

∞∑

l=1

{
XFL;l(r)Pl(cos θ)̂er +YFL;l(r)P1

l (cos θ)̂eθ +ZFL ;l(r)P1
l (cos θ)̂eϕ

}

=


XFL;0(r)

N0
0

 R0
0(θ) +

∞∑

l=1




XFL;l(r)

N0
l

 R0
l (θ) +

−
YFL;l(r)

N0
l

 S0
l (θ) +


ZFL;l(r)

N0
l

 T0
l (θ)

 ·

(18)

In Appendix B, we give the explicit expressions for the radial functions XFL;l (r), YFL;l (r), ZFL;l (r) in terms of the magnetic
stream-functions ξl0 and χl

0, the normalization coefficientN0
l being given in (A.2).

As we have done previously for the magnetic field B and for the current j, we split the magnetic force into its poloidal and
toroidal parts:

FL,P = jT ∧ BP + jP ∧ BT = XFL;0êr +

∞∑

l=1

{
XFL ;lPl(cos θ)̂er +YFL ;lP

1
l (cos θ)̂eθ

}

=


XFL ;0

N0
0

 R0
0(θ) +

∞∑

l=1




XFL;l

N0
l

 R0
l (θ) +

−
YFL;l

N0
l

 S0
l (θ)


(19)

FL,T = jP ∧ BP =

∞∑

l=1

ZFL;lP
1
l (cos θ)̂eϕ =

∞∑

l=1




ZFL ;l

N0
l

 T0
l (θ)

 · (20)
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As it was underlined by Mestel et al. (1988) and as we shall see in Sects. 4–6, this decomposition is very useful: the poloidal
Lorentz force FL,P operates on the hydrostatic balance and thus contributes to the thermal imbalance, while the toroidal compo-
nent FL,T acts on the transport of angular momentum through its torque.

The expression of FL in the case where only the l= {1, 2, 3} terms are kept in the expansion of B can be found in Appendix E.
One should note that if the expansion of B is terminated at mode lmax = Nm in Eq. (11), then the expansion of FL involves terms
up to lmax = 2Nm, due to selection rules (see Appendix B).

3.3. Induction equation

We now turn to the evolution of the magnetic field in stellar radiation zones, which is governed by the induction equation:

∂t B = ∇ ∧ (V ∧ B) − ∇ ∧ (||η|| ⊗ ∇ ∧ B) , (21)

where we have allowed for an anisotropic eddy diffusivity ||η||. We recall (cf. Paper I) that the macroscopic velocity field V is the
sum of a zonal flowUϕ = r sin θΩ (r, θ) êϕ and of a meridional flowU (r, θ):

V (r, θ) = r sin θΩ (r, θ) êϕ +U (r, θ) . (22)

The latter can be split into a spherically symmetric part, which represents the contractions and dilatations of the star during its
evolution, plus the thermally-driven circulation

U (r, θ) = ṙ êr +UM (r, θ) , (23)

the meridional flow being expanded in spherical functions:

UM =
∑

l>0

[
Ul(r)Pl (cos θ) êr + Vl(r)

dPl(cos θ)
dθ

êθ

]
· (24)

The radial functions Ul(r) and Vl(r) are related by the continuity equation, i.e. ∇ · (ρUM) = 0 in the anelastic approximation:

Vl =
1

l(l + 1)ρr
d
dr

(
ρr2Ul

)
. (25)

We introduce the expanded form of the velocity field in the induction Eq. (21):

∂t B − ∇ ∧ (
ṙ êr ∧ B

)
= ∇ ∧

[(
Uϕ +UM

)
∧ B

]
− ∇ ∧ (||η|| ⊗ ∇ ∧ B) , (26)

and as before we project this equation on the vectorial spherical harmonics R0
l (θ), S0

l (θ), T0
l (θ). The time derivative on the

left-hand side of Eq. (26) is readily derived (cf. Eq. (11)):

∂t B =
∞∑

l=1



l(l + 1)
∂tξ

l
0

r2

 R0
l (θ) +

[
1
r
∂t,rξ

l
0

]
S0

l (θ) +


∂tχ

l
0

r

 T0
l (θ)

 · (27)

Then, using the algebra related to the R0
l (θ), S0

l (θ), T0
l (θ) and the identity (A.32), the following expansion of the contrac-

tions/dilatations term is obtained:

∇ ∧ (
ṙ êr ∧ B

)
= −

∞∑

l=1

{[
l(l + 1)

ṙ
r2
∂rξ

l
0

]
R0

l (θ) +

[
1
r
∂r

(
ṙ∂rξ

l
0

)]
S0

l (θ) +

[
1
r
∂r

(
ṙχl

0

)]
T0

l (θ)

}
· (28)

In the same way, we get for the dissipation term:

∇ ∧ (||η|| ⊗ ∇ ∧ B) = −
∞∑

l=1



ηh
1
r
∆l

l (l + 1)
ξl0
r


 R0

l (θ) +


1
r
∂r

rηh∆l


ξl0
r



 S0

l (θ)

+


1
r
∂r

(
ηh∂rχ

l
0

)
− ηvl (l + 1)

χl
0

r3

 T0
l (θ)

, (29)

where we recall that ∆l is the Laplacian operator: ∆l = ∂r,r + (2/r)∂r − l(l + 1)/r2.
The task is more difficult with the non-linear expressions describing the stretching and advection of the magnetic field:

∇ ∧
[
Uϕ ∧ B

]
+∇ ∧ [UM ∧ B]. The first term corresponds to the generation of toroidal field trough the shearing of the poloidal

component by the differential rotation, while the second one represents the advection of the field by the meridional circulation.
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The first step is to expand (Uϕ +UM) on the R0
l (θ), S0

l (θ) and T0
l (θ):

Uϕ +UM =

∞∑

l=0

{
ul

0 (r) R0
l (θ) + vl0 (r) S0

l (θ) + wl
0 (r) T0

l (θ)
}
. (30)

From (24), we get immediately for the meridional part:

ul
0 (r) =

Ul (r)

N0
l

and vl0 (r) =
Vl (r)

N0
l

· (31)

Next, we expand the rotation law as in Paper I:

Ω (r, θ) = Ω (r) + Ω̂ (r, θ) = Ω (r) +
∑

l>0

Ωl (r) Ql (θ) =
∞∑

l=0

Ω∗l (r) Pl (cos θ) , (32)

where Ω (r)=
∫ π

0
Ω (r, θ) sin3 θdθ/

∫ π
0

sin3 θdθ the horizontal functions are given by Ql (θ) = Pl (cos θ) − Il, with

Il =
∫ π

0
Pl (cos θ) sin3 θ dθ/

∫ π
0

sin3 θ dθ = δl,0 − 1
5δl,2. Thus, we get:

{
Ω∗0 (r) = Ω (r) −

∑
l>0Ωl (r) Il = Ω0 (r) + 1

5Ω2 (r)
Ω∗l (r) = Ωl (r) for l > 0.

(33)

Using the identity (A.9), we obtain the zonal flowUϕ = ∑
l>0 w

l
0 (r) T0

l (θ), where wl
0 (r) is given by

wl
0(r) = r


D0

l−1

N0
l−1

Ω∗l−1(r) −
C0

l+1

N0
l+1

Ω∗l+1(r)

 · (34)

The expression of the wl
0 when we keep only the two first terms of the expansion (32), Ω and Ω2 is given in (E.3).

It remains to project the vector product of the two axisymmetric vectors, (Uϕ +UM) and B, on the vector harmonics R0
l (θ),

S0
l (θ) and T0

l (θ). This task is accomplished in Sect. A.2.3; applying it to the advection term, we get:

(
Uϕ +UM

)
∧ B =

∞∑

l=1

{
XAd;l(r)Pl(cos θ)̂er +YAd;l(r)P1

l (cos θ)̂eθ +ZAd;l(r)P1
l (cos θ)̂eϕ

}

=

∞∑

l=1




XAd;l(r)

N0
l

 R0
l (θ) +

−
YAd;l(r)

N0
l

 S0
l (θ) +


ZAd;l(r)

N0
l

 T0
l (θ)

 ,

(35)

where the radial functions XAd;l (r), YAd;l (r) and ZAd;l (r), which are explicit functions of Ω, Ωl, Ul, ξl0 and χl
0, are given in

Appendix C. Finally, using once again Eq. (A.32), we obtain:

∇ ∧
[(
Uϕ +UM

)
∧ B

]
=

∞∑

l=1




l(l + 1)

N0
l

ZAd;l

r

 R0
l (θ) +


1

N0
l

1
r
∂r

(
rZAd;l

)
 S0

l (θ) +


1

N0
l

(
XAd;l

r
+

1
r
∂r

(
rYAd;l

))
 T0

l (θ)

· (36)

We are now ready to put in their final form the one-dimensional advection/diffusion equations respectively for the poloidal ξl0
and for the toroidal magnetic stream-functions χl

0, by collecting the R0
l (θ) and the T0

l (θ) components of Eqs. (27)–(29) and (36):

dξl0
dt
=

1

N0
l

rZAd;l + ηhr∆l


ξl0
r

 (37)

dχl
0

dt
+ ∂r (ṙ) χl

0 =
1

N0
l

[
XAd;l + ∂r

(
rYAd;l

)]
+

∂r

(
ηh∂rχ

l
0

)
− ηvl(l + 1)

χl
0

r2

 · (38)

Note that these equations involve the Lagrangian time-derivative, which makes them suitable for their implementation in stellar
evolution codes. They are the equivalent in our formalism of the two classical equations for BP = ∇ ∧ A, A = Âeϕ being the
potential vector, and BT=BTêϕ:

∂tA +
1
s
UM · ∇ (sA) = η

(
∇2A − A

s2

)
and ∂tBT + sUM · ∇

(BT

s

)
+ BT∇ ·UP = sBP · ∇Ω + η

(
∇2BT −

BT

s2

)
, (39)

where s = r sin θ and η is taken isotropic and uniform (Campbell 1997; Mestel 1999).
Finally, we note that in the ideal case, in the absence of shear, meridional circulation and Ohmic diffusion, Eqs. (37) and (38)

reduce to:

dξl0
dt
= 0 and

d
dt


χl

0

r2ρ

 = 0 and thus to
d
dt

(
r2Br

)
= 0 and

d
dt

(
Bϕ
rρ

)
= 0. (40)

These equations express the Lagrangian flux conservation of respectively
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– the magnetic field through the sphere of radius r, as the star expands or contracts;
– the toroidal field in a homothetic contraction or expansion where the density varies as r−3 (cf. Cowling 1957).

In Appendix E.1 we give the explicit expressions of Eqs. (37) and (38) for the dipole, the quadrupole and the octupole (l =
{1, 2, 3}), retaining the lowest order terms in the rotation law: Ω(r, θ) = Ω (r) + Ω2 (r) Q2 (θ), and the associated meridional
circulation.

3.4. Ohmic heating

The last point we shall consider for completeness is Ohmic heating, which contributes somewhat to the thermal bal-
ance/imbalance. In the case of an anisotropic eddy-magnetic diffusivity, its input rate is given by

J (r, θ) =
1
µ0

[
||η|| ⊗ (∇ ∧ B)

]
· (∇ ∧ B) , (41)

which reduces to the classical result J = j2/σ, with σ = 1/ (µ0η) being the conductivity, when the diffusivity is isotropic.
The scalar product of two axisymmetric vectors is treated in Sect. A.2.3; applying the result to J , we get:

J (r, θ) =
∑

l>0

Jl (r) Pl (cos θ) , (42)

where the radial functions Jl(r), which are functions of the magnetic stream-functions ξl0 and χl
0, are given in Appendix D, and

in Appendix E for the special case where only the l = {1, 2, 3} modes are kept. Note again here that if the expansion of B is cut
at mode lmax = Nm in (11), then the expansion of J involves terms up to lmax = 2Nm.

We are now ready to introduce the Lorentz force in the equations governing the transport of momentum and of heat.

4. Transport of angular momentum

We start from the momentum equation

ρ [∂tV + (V · ∇) V] = −∇P − ρ∇φ + ∇ · ||τ|| + FL , (43)

where ρ is the density, φ the gravitational potential, ||τ|| the turbulent stresses and FL the Lorentz force. We insert in it the
expression for the macroscopic velocity V given above in Eqs. (22), (23), and take its azimuthal component, which yields an
advection/diffusion equation for the angular momentum density:

ρ
d
dt

(
r2 sin2 θΩ

)
+ ∇ ·

(
ρr2 sin2 θΩUM

)
=

sin2 θ

r2
∂r

(
ρνvr4∂rΩ

)
+

1
sin θ
∂θ

(
ρνh sin3 θ ∂θΩ

)
+ ΓFL (r, θ) . (44)

Note that here again we have introduced the Lagrangian time derivative, making use of the anelastic continuity equation. This
equation is of course identical to that given in Paper I (Eq. (14)), except for the magnetic torque ΓFL (r, θ) = r sin θ eϕ · FL (r, θ).
As in Zahn (1992), we assume that the effect of the turbulent stresses on the large scale flow is adequately described by an
anisotropic eddy viscosity, whose components are νv and νh respectively in the vertical and horizontal directions. In the absence
of circulation, turbulence and magnetic field, we retrieve the Lagrangian conservation of angular momentum.

It remains to project this equation on spherical harmonics; the expansions of the meridional circulation and the angular
velocity were established in Paper I and they have been recalled above in Eqs. (24), (32). We proceed likewise for the magnetic
torque:

ΓFL (r, θ) = r sin θFL,ϕ = r sin θ
∞∑

l=0

ZFL;l(r)P1
l (cos θ) , (45)

where FL,ϕ is the azimuthal component of FL obtained from (18). Then, using the following property of the associated Legendre
functions:

P1
l (cos θ) = −

d
dθ

Pl (cos θ) = sin θ
d

dµ
Pl (µ) where µ = cos θ (46)

and the expression for dPl (µ)/dµ which is given in Eq. (A.45), we put ΓFL in its final form:

ΓFL (r, θ) =
∞∑

l=0

Γl (r) sin2 θ Pl (cos θ) where Γl (r) =
∞∑

k=0

rZFL;k (r)



E[ k−1
2 ]∑

j=0

(2k − 4 j − 1) δl,k−2 j−1

 , (47)

E [x] is the integer part of x, andZFL;k is defined in Eq. (18) and spelled out in explicit form in Appendix B.
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4.1. Evolution equation for the angular mean angular velocity

Taking the horizontal average of Eq. (44) over an isobar and using the assumption that Ω(r) � Ωl(r), we obtain the following
vertical advection/diffusion equation for the mean angular velocity Ω:

ρ
d
dt

(r2Ω) =
1

5r2
∂r

(
ρr4ΩU2

)
+

1
r2
∂r

(
ρνvr4∂rΩ

)
+ ΓFL (r) , (48)

where the mean Lorentz torque is ΓFL (r) =

∫ π
0
ΓFL (r, θ) sin θdθ
∫ π

0
sin3 θdθ

=

[
Γ0 (r) − 1

5
Γ2 (r)

]
· (49)

Note that only the l = 2 component of the circulation is able to advect a net amount of angular momentum; the higher order
components ofUM (for instance those induced in its tachocline by a differentially rotating convection zone) do not contribute to
the vertical transport of angular momentum, as was pointed out in Spiegel & Zahn (1992). The explicit form of Eq. (48), keeping
only the l = {1, 2, 3} terms in the expansion of B (cf. Eq. (11)) is derived in Appendix E.2.1.

4.2. Evolution equation for the differential rotation in latitude

We establish the equation governing the horizontal transport of angular momentum by multiplying Eq. (48) through sin2 θ and
subtracting it from the original form Eq. (44):

ρ
d
dt

(
r2 sin2 θ Ω̂

)
+ ∇ ·

(
ρr2 sin2 θΩUM

)
+

sin2 θ

5r2
∂r

(
ρr4ΩU2

)
=

sin2 θ

r2
∂r

(
ρνvr4∂rΩ̂

)

+
1

sin θ
∂θ

(
ρνh sin3 θ ∂θΩ̂

)
+ ΓFL − sin2 θ ΓFL . (50)

In the advection term we have again neglected the fluctuation Ω̂(r, θ) compared to the mean Ω.
The next step is to replace Ω̂(r, θ) by its expansion (32) in the horizontal functions Ql(θ). For l = 2, the equation separates

neatly into

ρ
d
dt

(
r2Ω2

)
− 2ρΩr [2V2 − α(r)U2] =

1
r2
∂r

(
ρνvr4∂rΩ2

)
− 10ρνhΩ2 + Γ2 (51)

with V2 =
1

6ρr
d
dr

(
ρr2U2

)
and α(r) =

1
2

d ln
(
r2Ω

)

d ln r
· (52)

It can be simplified by assuming that the turbulent transport is more efficient in the horizontal than in the vertical direction (i.e.
νv 	 νh):

ρ
d
dt

(
r2Ω2

)
− 2ρΩr [2V2 − αU2] = −10ρνhΩ2 + Γ2. (53)

In the asymptotic regime t � r2/νh, a stationary state is reached:

νhΩ2 =
1
5

r [2V2 − αU2]Ω +
Γ2

10ρ
, (54)

where horizontal diffusion balances horizontal advection and the torque due to the Lorentz force.
For l> 2 the situation is more intricate, because there are couplings between terms of different l, which prevent a clean

separation for each l. This is mainly due to the magnetic torque. Indeed, we recall that in the hydrodynamical case the hypothesis
of Spiegel & Zahn (1992) allows such separation (cf. Paper I, Sect. 3.2). Therefore, we choose here to stop the expansion of
the rotation law at Ω2. The explicit form of Eq. (53), keeping only the l = {1, 2, 3} terms in the expansion of B (cf. Eq. (11)) is
derived in Appendix E.2.1.

5. Structural properties of the differentially rotating magnetic star

5.1. Baroclinic relation

As in Paper I, we consider a non-uniform and a non-cylindrical rotation law, and add here a general axisymmetric magnetic
field. Then neither the centrifugal force nor the Lorentz force derive from a potential, and therefore the isobars and the surfaces
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of constant density in general do not coincide. In order to determine how the density varies on an isobar, we start from the
hydrostatic equation:

1
ρ
∇P = g = −∇φ + FC +

FL,P
ρ
, (55)

where φ is the gravitational potential and g the local effective gravity, which includes both the centrifugal force
F C =

1
2Ω

2∇
(
r2 sin2 θ

)
and the meridional magnetic force FL,P. Taking the curl of this equation, we get

−
1
ρ2
∇ρ ∧ ∇P = −

1
ρ
∇ρ ∧ g = 1

2
∇(Ω)2 ∧ ∇(r sin θ)2 + ∇ ∧

(FL,P
ρ

)
, (56)

which to first order reduces to

−∇ρ
′ ∧ g
ρ

=
[
∂r(Ω2)r cos θ sin θ − ∂θ(Ω2) sin2 θ

]
êϕ + ∇ ∧

(FL,P
ρ

)
, (57)

with ρ′(r, θ) being the variation of the density on the isobar.
We now expand all terms in spherical harmonics. For the density fluctuation this is readily done:

ρ′ (r, θ) =
∑

l>0

ρ̃l (r) Pl(cos θ). (58)

Then, differentiating the equation of state:

dρ
ρ
= α

dP
P
− δdT

T
+ ϕ

dµ
µ

(59)

we can write the modal amplitude of the density fluctuation as

ρ̃l

ρ
= Θl = ϕΛl − δΨl. (60)

For the centrifugal force, we recall that

Ω(r, θ) = Ω(r) +
∑

l>0

Ωl(r) (Pl(cos θ) − Il) , (61)

which leads us to

Ω2(r, θ) =

Ω
2
− 2Ω

∑

l>0

ΩlIl

 + 2Ω
∑

l>0

ΩlPl(cos θ) (62)

keeping only the terms linear in Ωl (beside Ω
2
). Finally, we draw the expansion of the poloidal Lorentz force from (18):

FL,P (r, θ) =
∞∑

l=1

{
XFL;l(r)Pl(cos θ)̂er +YFL;l(r)P1

l (cos θ)̂eθ
}
. (63)

It remains to insert these expansions in Eq. (57), noting that it projects itself only on the azimuthal vectorial spherical harmonics
T0

l (θ). Using the algebra related with these harmonics, we reach the following expression for the modal amplitudes of the relative
fluctuation of density on an isobar:

ρ̃l (r)
ρ
= ϕΛl − δΨl =

r
g

[
Dl(r) +

XFL;l (r)

rρ (r)
+

1
r

d
dr

(
r
YFL;l (r)

ρ (r)

)]
· (64)

g is the horizontal average of the modulus of g andDl (r) has been derived in Paper I (Eq. (47)):

Dl(r) = N0
l

r∂r

[
Ω

2
(r) − 2Ω(r)Ω2(r)I2

] 1

3N0
2

δl,2 + 2r
∑

s>0

∂r

(
Ω(r)Ωs(r)

) 1

N0
s

[
A0

s

(
−C0

s−1δl,s−2 + D0
s−1δl,s

)

+B0
s

(
−C0

s+1δl,s + D0
s+1δl,s+2

)]
− 2Ω(r)

∑

s>0

Ωs(r)

N0
s

[
G0

s

(
−C0

s+1δl,s + D0
s+1δl,s+2

)
− H0

s

(
−C0

s−1δl,s−2 + D0
s−1δl,s

)], (65)

where all the numerical coefficients (A0
l , B

0
l ,C

0
l ,D

0
l ,G

0
l ,H

0
l ) are given in Appendix A.

This baroclinic Eqs. (64)–(65) plays a key role in linking the density fluctuation on an isobar with the differential rotation and
the magnetic field. It allows us to close the system formed by the induction equation, that for the transport of angular momentum,
that for the transport of the chemical species and that for the transport of heat, which we shall establish in Sect. 6.
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5.2. Effective gravity and perturbed potential

It remains to examine how the redistribution of mass we just described modifies the local gravity. In the absence of magnetic
field, the perturbing force is just the centrifugal force FC =

1
2Ω

2∇(r2 sin2 θ), whose r and θ components are expanded as

FC,r(r, θ) =
∑

l

al(r)Pl(cos θ) FC,θ(r, θ) = −
∑

l

bl(r)∂θPl(cos θ), (66)

where al(r) and bl(r) are given by:

al(r) =
2
3

r
[
Ω

2
(r) − 2Ω(r)Ω2(r)I2

] (
δl,0 − δl,2

)

+2rΩ(r)
∑

s>0

Ωs(r)

[
1

N0
s

{
C0

s

(
G0

s−1N
0
s δl,s − H0

s−1N
0
s−2δl,s−2

)
− D0

s

(
G0

s+1N
0
s+2δl,s+2 − H0

s+1N
0
s δl,s

)}]
, (67)

bl(r) =
1
3

r
[
Ω

2
(r) − 2Ω(r)Ω2(r)I2

]
δl,2

+2rΩ(r)
∑

s>0

Ωs(r)

N0
s

{
A0

s

(
−C0

s−1N
0
s−2δl,s−2 + D0

s−1N
0
s δl,s

)
+ B0

s

(
−C0

s+1N
0
s δl,s + D0

s+1N
0
s+2δl,s+2

)}
. (68)

To this we have here to add the meridional components of the Lorentz force

FL,P;r (r, θ) =
∑

l

XFL;l (r) Pl (cos θ) FL,P;θ = −
∑

l

YFL;l (r) ∂θPl (cos θ) . (69)

In the expressions that we have derived in Paper I, it suffices then replace ρ0al by ρ0al +XFL;l and ρ0bl by ρ0bl +YFL ;l to establish
the version including the effect of the magnetic field. Thus for the gravity perturbation along an isobar we now get (cf. Paper I,
Eq. (72))

g̃l

g
= −


dg0

dr
1

g2
0

r

(
bl +
YFL;l

ρ0

)
+

1
g0

(
al +
XFL;l

ρ0

) +
d
dr


φ̂l

g0

 · (70)

The last term involves the fluctuation of the gravity field along the sphere, φ̂l, which is obtained by integrating the Poisson
equation (cf. Paper I, Eq. (60)), modified along the same rules:

1
r

d2

dr2

(
rφ̂l

)
− l(l + 1)

r2
φ̂l −

4πG
g0

dρ0

dr
φ̂l =

4πG
g0

[
ρ0al +

d
dr

(rρ0bl) + XFL;l +
d
dr

(
rYFL;l

)]
· (71)

Let us recall that Sweet (1950) was the first to establish this result for the most general perturbing force.

6. Thermal imbalance and transport of heat

It remains to implement the magnetic field in the heat equation:

ρT

[
∂S
∂t
+U · ∇S

]
= ∇ · (χ∇T ) + ρε − ∇ · Fh +J , (72)

where S is the entropy per unit mass, χ the thermal conductivity, ε the nuclear energy production rate per unit mass and Fh the
flux carried in the horizontal direction by the anisotropic turbulence. Note that in a medium of varying composition, we have
to take into account the entropy of mixing (cf. Maeder & Zahn 1998). In the simplest case, applicable to main-sequence stars,
where the stellar material can be approximated by a mixture of hydrogen and helium with a fixed abundance of metals, it can be
expressed in terms of the mean molecular weight only; then we have

dS = Cp

[
dT
T
− ∇ad

dP
P
+ Φ (P, T, µ)

dµ
µ

]
(73)

where ∇ad is the adiabatic gradient and Φ is a function of the metal mass fraction and of µ, the mean molecular weight.
The magnetic field manifests itself in the heat Eq. (72) through the Ohmic heating term J , but also in the divergence of the

thermal flux, because it involves the divergence of the perturbing force. This force includes both the centrifugal forceF C and the
Lorentz force per unit volume, FL,P/ρ0, and their divergence will again be expanded in spherical harmonics as

∇ · FC = f C +
∑

l>0

f̃C,lPl (cos θ) and ∇ ·
(FL,P
ρ0

)
= fL +

∑

l>0

f̃L,lPl (cos θ) . (74)
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In Paper I (Eq. (85)) we gave the expressions of f C and f̃C,l in terms of al and bl:

f C =
1
r2
∂r

(
r2a0

)
and f̃C,l =

1
r2
∂r

(
r2al

)
+ l (l + 1)

bl

r
· (75)

As above in Sect. 5.2, it suffices to replace al byXFL;l/ρ0 and bl byYFL;l/ρ0 to obtain the equivalent expressions for the divergence
of the Lorentz force:

fL =
1
r2
∂r

(
r2XFL;0

ρ0

)
and f̃L,l =

1
r2
∂r

(
r2XFL;l

ρ0

)
+ l (l + 1)

YFL;l

rρ0
· (76)

This leads us to the modal form of the heat equation, which can be implemented directly into a stellar structure code:

TCp

[
dΨl

dt
+ Φ

d lnµ
dt
Λl +

Ul(r)
Hp

(∇ad − ∇)

]
=

L(r)
M(r)

Tl(r) +
Jl (r)
ρ
, (77)

where Tl is given by:

Tl = 2

1 −
f C + fL
4πGρ

−

(
ε + εgrav

)

εm


g̃l

g
+

f̃C,l + f̃L,l
4πGρ

−
f C + fL
4πGρ

(−δΨl + ϕΛl)

+
ρm

ρ

[
r
3
∂r

(
HT∂rΨl − (1 − δ + χT)Ψl − (ϕ + χµ)Λl

)
− l(l + 1)HT

3r

(
1 +

Dh

K

)
Ψl

]

+

(
ε + εgrav

)

εm

{(
HT∂rΨl − (1 − δ + χT)Ψl − (ϕ + χµ)Λl

)
+ ( fεεT − fεδ + δ)Ψl + ( fεεµ + fεϕ − ϕ)Λl

}
. (78)

We recall that L is the luminosity, M the mass, T the horizontal average of the temperature, Cp the specific heat at constant pres-
sure, and ∇ the radiative gradient. We have also introduced the temperature scale-height HT =

∣∣∣dr/d ln T
∣∣∣, the thermal diffusivity

K = χ/ρCp, the horizontal eddy-diffusivity Dh and fε = ε/
(
ε + εgrav

)
, with ε and εgrav being respectively the mean nuclear and

gravitational energy release rates, whereas εµ and χµ are the logaritmic derivatives of ε and of the radiative conductivity χ with
respect to µ, their derivatives with respect to T being noted as εT and χT. Moreover, we have εm = L (r) /M (r) and ρm is the mean
density inside the considered level surface.

Three remarks before we conclude this section.

– First, we have noted previously that if the expansion of B is stopped at mode lmax = Nm in (11), then the expansions of FL
and of J must include all terms up to lmax = 2Nm, due to selection rules. Therefore, keeping Ω (r, θ) = Ω (r) + Ω2 (r) Q2 (θ),
the expansion of the meridional flow will extend to lUM;max = max {4, 2Nm}.

– Next, the relative importance of the terms contributed respectively by the magnetic force and by the centrifugal force depends
on the ratio (VA/VΩ)2 where VA = B/

√
µ0ρ0 is the Alfvén speed and VΩ = RΩ, R being the radius of the star. If the magnetic

field is weak enough, this ratio will be small except just below the surface because of the decay of the density. In this case, for
the implementation in existing stellar evolution codes of the equations related to the thermal imbalance and to the structural
properties of the star (cf. Sect. 5), we keep only the modes l = {2, 4}, which allows to describe the tachocline(s) circulation
to first order (see Appendix E). However, in the case of a strong field higher order modes of the Lorentz force must be taken
into account.

– Finally, the ratio between the term representing the Ohmic heating,Jl (r)/ρ, and the highest-order derivative term of∇·(χ∇T )
in Eqs. (77) and (78), namely (L/M)(ρm/ρ)(r/3)∂r (HT∂rΨl), is given by (η/K) (VA/VΩ)2. Therefore the Ohmic term can be
neglected since VA < RΩ and η 	 K.

In conclusion, the link between the circulation and its cause, namely the thermal imbalance due to the rotation, the magnetic
field and the chemical composition, is established through Eqs. (77) and (78) where the temperature fluctuation on an isobar is
governed by an advection/diffusion equation from which we can derive the radial component ofUM. These equations have been
established for a rotation law which depends on r and θ, and that allows us to treat simultaneously the bulk of the radiation zones
and the tachoclines in presence of a general axisymmetric magnetic field.

7. Boundary conditions

The system of equations is now complete: we have the induction equation, an advection/diffusion equation for the transport of
angular momentum (mean and fluctuating) including the action of the magnetic torque, another for the temperature (mean and
fluctuating), and the baroclinic relation which allows us to close the system. The equation for the transport of chemical species
(or alternatively for the transport of molecular weight) is unchanged. It thus remains to specify the boundaries conditions of this
system, to be applied on the limits of the radiation zone. To be specific, we consider a star with a radiation zone located between
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a convective core and an upper convection zone. We designate by rb and rt the respective radius of the base and of the top of that
radiative zone. Of course, in a solar-type main-sequence star we have rb = 0, whereas for a massive main sequence star rt = R.

The boundary conditions for the equations already present in the hydrodynamic case, which was examined in Paper I, are
unchanged, except those to be applied to the equation of angular momentum transport, since it includes the Lorentz torque. The
novelty here is the induction equation, which we have split in two equations, respectively for the poloidal and toroidal magnetic
stream-functions ξl0 (Eq. (37)) and χl

0 (Eq. (38)). These equations are of second order in r, and therefore each of them requires
two boundary conditions. In principle they can be obtained by solving the induction equation, together with the equation of
momentum, etc. in each adjacent convective zone, but this represents a formidable task which is well beyond our scope here.
Instead, we make the following – simplifying but reasonable – hypothesis, valid only in the convection zone(s):

(i) we do not take into account the meridional velocity field. The only motion we retain is the zonal flow associated with the
differential rotation:Uϕ = r sin θΩCZ (r, θ) êϕ, with ΩCZ(r, θ) being the angular velocity in the convection zone;

(ii) we put ηv = ηh = ηturb where ηturb is the magnetic eddy-diffusivity, which we assume constant inside the considered
convective region;

(iii) this eddy-diffusivity is high enough to allow for a stationary state (compared to the slow evolution in the radiation zone).

With these assumptions, the poloidal field is potential, and Eq. (37) reduces to:

d2ξl0
dr2
− l (l + 1)

r2
ξl0 = 0; (79)

it admits the general solution:

ξl0 = Arl+1 +
B
rl
· (80)

When applying it to a convective core where we must take the non-singular solution at the origin:

r
dξl0
dr
− (l + 1) ξl0 = 0 at r = rb, (81)

which becomes ξl0 = 0 if rb = 0. In the case of a convective envelope, surrounded by vacuum, we have

r
dξl0
dr
+ lξl0 = 0 at r = rt. (82)

With the same assumptions, the toroidal field obeys the simplified form of Eq. (38):

d2χl
0

dr2
− l (l + 1)

r2
χl

0 =
Sl (ΩCZ)
ηturb

where Sl (ΩCZ) = − 1

N l
0

[
XAd;l (ΩCZ) + ∂r

(
rYAd;l (ΩCZ)

)]
. (83)

XAd;l (ΩCZ) and YAd;l (ΩCZ) are derived using the previous multipolar solutions for ξl0 (cf. Eq. (80)), expandingΩCZ in spherical
functions like ΩCZ (r, θ) =

∑
lΩl (r) Pl (cos θ) where the Ωl are taken from the results of the inversion of helioseismological data

(Corbard et al. 2002), using (34) and Appendix C. Then, the solution of (83) inside a convection zone is derived using Green’s
functions:

χl
0 =

1
2l + 1

1
ηturb

[
rl+1

∫ RextCZ

r
x−lSl (ΩCZ) dx + r−l

∫ r

RintCZ

xl+1Sl (ΩCZ) dx

]
(84)

where RintCZ and RextCZ are respectively the radius at its base and at its top. Applying Eq. (84) to a convective core where
RintCZ = 0 and RextCZ = rb, we get:

χl
0 =

1
2l + 1

1
ηturb

r−l
b

∫ rb

0
xl+1Sl (ΩCZ) dx at r = rb. (85)

Finally, for a convective envelope where RintCZ = rt and RextCZ = R, we obtain:

χl
0 =

1
2l + 1

1
ηturb

rl+1
t

∫ R

rt

x−lSl (ΩCZ) dx at r = rt. (86)

In the case where Sl (ΩCZ) is negligible, the previous results leads to:

χl
0 = 0 at r = rb and r = rt, and thus to BT = 0. (87)
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Fig. 1. Rotational mixing in stellar interiors with magnetic field: a highly non-linear problem (the action of the convection through penetration
and overshoot which enhance the mixing has been added).

It remains to write down the boundary conditions to be applied on the transport of angular momentum. Since the equation for the
mean angular velocity Ω (48) is of second order in r, it requires two boundary conditions. They are obtained by evaluating the
budget of angular momentum in each adjacent convective zone:

d
dt

[∫ rb

0
r4ρΩdr

]
=

1
5

r4ρΩU2 − FB(rb) at r = rb,
d
dt

[∫ R

rt

r4ρΩdr

]
= −

1
5

r4ρΩU2 − FΩ + FB(rt) at r = rt. (88)

FΩ is the (signed) flux of angular momentum which is lost at the surface by the stellar wind, and FB(r) the flux carried by the
magnetic field through the considered surface:

FB(r) = − 1
µ0

r3
∫ π

0
Br (r, θ) Bϕ (r, θ) sin2 θ dθ =

3
2µ0

∑

l>0

l (l + 1)N0
l ξ

l
0


(l + 1) (l + 2)N0

l+1

(2l + 1) (2l + 3)
χl+1

0 −
(l − 1) lN0

l−1

(2l − 1) (2l + 1)
χl−1

0


 · (89)

Here again the perturbationΩ2 obeys an evolution equation which does not include any derivative in r, and therefore it needs no
boundary condition.

8. Conclusion

The work presented here is the continuation of Paper I (Mathis & Zahn 2004), where the star was assumed without magnetic
field. Here we allow for a magnetic field of moderate strength in the radiation zone(s), with an Alfvén speed not exceeding the
rotational velocity: (VA)2 < (RΩ)2. Such a field has little impact on the hydrostatic balance, since we also assume, as in Paper I,
that the centrifugal force is small compared to gravity: RΩ2 	 g. But it will compete with the centrifugal force in the baroclinic
balance (56), and therefore it will participate in governing the meridional flow. Moreover, such a field tends to enforce uniform
rotation along the field lines of the poloidal field (Ferraro’s law). The question then arises whether or not the poloidal field threads
into the convection zone(s), where such differential rotation is probably maintained through the turbulent motions, as observed
in the Sun. To answer that question one has to treat consistently the evolution of both angular velocity and magnetic field, with
special care for the dynamics in the tachocline(s), and for this reason we expanded them in spherical harmonics to arbitrary order.

The overall problem of rotational mixing in a magnetized star is highly non-linear, with multiple feed-backs, as illustrated by
the diagram displayed in Fig. 1. Mixing is achieved through the meridional circulation, which is due to the thermal imbalance
caused by the centrifugal force and by the Lorentz force (mainly through the baroclinic balance), and also through the turbulence
generated by the shear of differential rotation and possibly by the magnetic field. These motions modify both the rotation profile
and the magnetic field through large-scale advection and turbulent diffusion. As the star evolves, molecular gradients build up
through microscopic diffusion (including radiative levitation and gravitational settling), and through nuclear burning. Large-scale
advection turns them into horizontal gradients, which react on the meridional circulation and are smoothed by the turbulence.

The boundary conditions play a crucial role: in a non-magnetic star, the circulation is driven by the loss (or gain) of angular
momentum, as explained in Zahn (1992); in the absence of such loss, the circulation tends to vanish, as was shown by Busse
(1982). It remains to be seen whether this is still the case when angular momentum is transported mainly through magnetic
stresses, with the poloidal field anchored in the convection zone(s).

The main weakness of our modeling remains the description of the turbulence. As in Paper I, it is assumed to be anisotropic,
due to the stable stratification, and that it tends to smooth angular velocity and chemical composition on horizontal surfaces. The
action of magnetic field on such turbulence is not taken in account, which seems reasonable as long as the Alfvén speed does not
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exceed the rotational velocity. Moreover, we have deliberately ignored here the possibility of MHD instabilities generating their
own turbulence (Balbus & Hawley 1994; Spruit 1999).

From the technical point of view, we adopted here the formalism developed in Paper I and introduced the spherical vectorial
harmonics, which obey the Racah-Wigner angular momentum algebra widely used in quantum mechanics. This allowed us to
separate the colatitude θ in the vectorial partial differential equations which govern the problem, and to reduce the problem to
solve coupled partial differential equations in t and r only. It is then straightforward to introduce these equations in existing stellar
structure codes, a task we have now undertaken.

Among the first applications we plan to model a solar-type star, to check whether a fossil magnetic field, which is able to
extract angular momentum from the radiative interior as the star spins down, yields a profile of angular velocity that is compatible
with the helioseismic data. Next we will undertake the modeling of magnetized massive stars, since they are progenitors of
neutron stars which are the seat of strong magnetic fields (Maeder & Meynet 2003, 2004; Heger et al. 2004).

Most of the appendix is dedicated to the algebra involving the spherical and vectorial spherical harmonics used in this paper.
The numerical values of the coupling coefficients given in the tables have been computed with Mathematica. In Appendix E, we
state the equations in a form ready to be implemented in a stellar structure code, when the magnetic field is expanded up to the
octupole (l = 3) and only the first term Ω2 of the differential rotation is retained.
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Appendix A: Algebra related to the spherical harmonics

A.1. Scalar quantities

A.1.1. Definition and basic properties

The spherical harmonics are defined by:

Ym
l (θ, ϕ) = Nm

l P|m|l (cos θ) eimϕ, (A.1)

where P|m|l (cos θ) eimϕ is the associated Legendre function, and the normalization coefficient being

Nm
l = (−1)

(m+|m|)
2

[
2l + 1

4π
(l − |m|)!
(l + |m|)!

] 1
2

· (A.2)

They obey the orthogonality relation:

∫

Ω

(
Ym1

l1
(θ, ϕ)

)∗
Ym2

l2
(θ, ϕ) dΩ = δl1,l2δm1,m2 (A.3)

where dΩ = sin θ dθ dϕ and where the complex conjugate spherical harmonic is given by:

(
Ym

l (θ, ϕ)
)∗
= (−1)m Y−m

l (θ, ϕ) . (A.4)

Using these properties, every function f (θ, ϕ) can be expanded as:

f (θ, ϕ) =
∞∑

l=0

l∑

m=−l

f l
mYm

l (θ, ϕ) where f l
m =

∫

Ω

f (θ, ϕ)
(
Ym

l (θ, ϕ)
)∗

dΩ. (A.5)

A.1.2. Special case of axisymmetric spherical harmonics

In that case we have:

Y0
l (θ, ϕ) = N0

l Pl (cos θ) and ∂θY0
l (θ, ϕ) = N0

l ∂θPl (cos θ) =

{
0 for l = 0,
−N0

l P1
l (cos θ) for l > 0.

(A.6)

A.1.3. Linear differential and recursion relations

We recall that the spherical harmonics obey to the differential equation:

1
sin θ
∂θ

(
sin θ∂θYm

l (θ, ϕ)
)
+

1

sin2 θ
∂2
ϕY

m
l (θ, ϕ) = −l (l + 1) Ym

l (θ, ϕ) . (A.7)

In deriving the functions which are related to the centrifugal force in Sect. 5 (cf. Eqs. (65), (67), (68)) we have used the following
recursion relations for m = 0:

cos θY0
l (θ) = A0

l Y0
l−1(θ) + B0

l Y0
l+1(θ) where A0

l =
l

√
(2l + 1)(2l − 1)

and B0
l =

(l + 1)
√

(2l + 3)(2l + 1)
, (A.8)

sin θY0
l (θ) = C0

l ∂θY
0
l−1(θ) − D0

l ∂θY
0
l+1(θ) where C0

l =
1

√
(2l + 1)(2l − 1)

and D0
l =

1
√

(2l + 3)(2l + 1)
, (A.9)

cos θ∂θY0
l (θ) = E0

l ∂θY
0
l−1(θ) + F0

l ∂θY
0
l+1(θ) where E0

l =
l + 1

√
(2l + 1)(2l − 1)

and F0
l =

l
√

(2l + 3)(2l + 1)
, (A.10)

sin θ∂θY
0
l (θ) = G0

l Y0
l+1(θ) − H0

l Y0
l−1(θ) where G0

l =
l(l + 1)

√
(2l + 3)(2l + 1)

and H0
l =

l(l + 1)
√

(2l + 1)(2l − 1)
· (A.11)

The identities (A.9) and (A.10) have been deduced from the two others (A.8)–(A.11) with the help of (A.7).
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A.1.4. Expansion of products of the spherical harmonics

Using the normalization and the orthogonality of spherical harmonics (cf. Eqs. (A.3)–(A.5)) and their complex conjugate (cf.
Eq. (A.4)), we can write:

Ym1
l1

(θ, ϕ) Ym2
l2

(θ, ϕ) = (−1)(m1+m2)
l1+l2∑

l=|l1−l2 |
Im1,m2,−(m1+m2)

l1,l2,l
Ym1+m2

l (θ, ϕ) (A.12)

where we define the integral Im1,m2,m
l1,l2,l

like in Edmonds (1968) or Varshalovich et al. (1975):

Im1,m2,m
l1,l2,l

=

∫

Ω

Ym1
l1

(θ, ϕ) Ym2
l2

(θ, ϕ) Ym
l (θ, ϕ) dΩ =

√
(2l1 + 1)(2l2 + 1)(2l + 1)

4π

(
l1 l2 l
m1 m2 m

) (
l1 l2 l
0 0 0

)
(A.13)

with the 3j-Wigner coefficients which are related to the classical Clebsch-Gordan coefficients by:
(

l1 l2 l
m1 m2 m

)
=

(−1)l1−l2−m

√
2l + 1

Cl,−m
l1 ,m1,l2,m2

. (A.14)

So finally, we get the following expansion for the product of two spherical harmonics:

Ym1

l1
(θ, ϕ) Ym2

l2
(θ, ϕ) =

l1+l2∑

l=|l1−l2 |
cl

l1,m1,l2,m2
Ym1+m2

l (θ, ϕ) (A.15)

where the coefficient cl
l1,m1,l2,m2

is given by:

cl
l1,m1,l2,m2

= (−1)(m1+m2)

√
(2l1 + 1)(2l2 + 1)(2l + 1)

4π

(
l1 l2 l
m1 m2 − (m1 + m2)

) (
l1 l2 l
0 0 0

)
. (A.16)

Then, using the initial definition of spherical harmonics (cf. Eqs. (A.1) and (A.2)), we deduce the expansion for the product of
two associated Legendre functions:

Pm1
l1

(cos θ) Pm2
l2

(cos θ) =
l1+l2∑

l=|l1−l2 |
dl

l1,m1,l2,m2
Pm1+m2

l (cos θ) (A.17)

where

dl
l1,m1,l2,m2

= (−1)(m1+m2) (2l + 1)

√
(l1 + m1)! (l2 + m2)! (l − (m1 + m2))!
(l1 − m1)! (l2 − m2)! (l + (m1 + m2))!

(
l1 l2 l
m1 m2 − (m1 + m2)

) (
l1 l2 l
0 0 0

)
. (A.18)

Note that the previous expression is symmetric; therefore

dl
l1,m1,l2,m2

= dl
l2,m2,l1,m1

. (A.19)

A.2. Vector fields

A.2.1. Definitions and basic properties

Following Rieutord (1987), we expand any vector field u(r, θ, φ) in vectorial spherical harmonics as

u(r, θ, φ) =
∞∑

l=0

l∑

m=−l

{
ul

m(r)Rm
l (θ, ϕ) + vlm(r)Sm

l (θ, ϕ) + wl
m(r)Tm

l (θ, ϕ)
}
, (A.20)

where the vectorial spherical harmonics Rm
l (θ, ϕ), Sm

l (θ, ϕ), Tm
l (θ, ϕ) are defined as:

Rm
l (θ, ϕ) = Ym

l (θ, ϕ)̂er, Sm
l (θ, ϕ) = ∇SYm

l (θ, ϕ) and Tm
l (θ, ϕ) = ∇S ∧ Rm

l (θ, ϕ), (A.21)

with the horizontal gradient ∇S = êθ∂θ + êϕ
1

sin θ
∂ϕ. (A.22)

These vector functions obey the following orthogonality relations:
∫

Ω

Rm1

l1
· Sm2

l2
dΩ =

∫

Ω

Rm1

l1
· Tm2

l2
dΩ =

∫

Ω

Sm1

l1
· Tm2

l2
dΩ = 0, (A.23)
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∫

Ω

Rm1

l1
·
(
Rm2

l2

)∗
dΩ = δl1,l2δm1,m2 and

∫

Ω

Sm1

l1
·
(
Sm2

l2

)∗
dΩ =

∫

Ω

Tm1

l1
·
(
Tm2

l2

)∗
dΩ = l1(l1 + 1)δl1,l2δm1,m2 . (A.24)

The vector function u may also be projected on the classical spherical vectorial basis:

u =
∞∑

l=0

l∑

m=−l

{
ul

m(r)Ym
l (θ, ϕ)̂er +

[
vlm(r)∂θYm

l (θ, ϕ) + wl
m(r)

im
sin θ

Ym
l (θ, ϕ)

]
êθ +

[
vlm(r)

im
sin θ

Ym
l (θ, ϕ) − wl

m(r)∂θYm
l (θ, ϕ)

]
êϕ

}
, (A.25)

êr, êθ and êϕ beeing the unit-vectors respectively in the r, θ and ϕ directions. These expansions of vector fields allow us to separate
explicitly the angular variables θ and ϕ in the vectorial partial differential equations which govern the problem. We thus reduce
the problem to solve partial differential equations in t and r only, which are easy to implement in existing stellar structure codes.
Note that Rm

l (θ, ϕ) and Sm
l (θ, ϕ) represent the poloidal part, and Tm

l (θ, ϕ) the toroidal part of u.

A.2.2. Expansions of differential operators

As stated in the previous section, the expansion of the vector fields in Rm
l (θ, ϕ), Sm

l (θ, ϕ) and Tm
l (θ, ϕ) allows us to separate

the variables in the vectorial partial differential equations which govern the problem. This will prove particularly useful when
dealing with magnetic field, and with the non-linear expressions where it is involved. We start by expanding the classical linear
vectorial operators: gradient, divergence, curl and Laplacian (scalar or vectorial).

Gradient:

Taking a scalar function f (r, θ, ϕ) expanded in the Ym
l (θ, ϕ):

f (r, θ, ϕ) =
∞∑

l=0

l∑

m=−l

f l
m(r)Ym

l (θ, ϕ) , (A.26)

it is straightforward to derive its gradient:

∇ f (r, θ, ϕ) =
∞∑

l=0

l∑

m=−l

{
∂r f l

mRm
l (θ, ϕ) +

f l
m

r
Sm

l (θ, ϕ)

}
. (A.27)

Divergence:

Taking a vector field u expanded as in (A.20), its divergence is given by:

∇ · u(r, θ, ϕ) =
∞∑

l=0

l∑

m=−l

[
1
r2
∂r

(
r2ul

m

)
− l(l + 1)

vlm
r

]
Ym

l (θ, ϕ), (A.28)

where whe note that, if u is divergence-free, such as the magnetic field B or the momentum density ρUM in the anelastic
approximation, we have the following relation between ul

m and vlm:

vlm =
1

l(l + 1)
1
r
∂r

(
r2ul

m

)
. (A.29)

Laplacian of a scalar function:

With these expressions for the gradient of a scalar quantity and for the divergence of a vector field, one can easily derive the
Laplacian of a scalar function. Using the well-known property ∇2 f = ∇ · (∇ f ), we get:

∇2 f = ∇ · (∇ f ) =
∞∑

l=0

l∑

m=−l

[
1
r
∂r2

(
r f l

m

)
− l(l + 1)

f l
m

r2

]
Ym

l (θ, ϕ) =
∞∑

l=0

l∑

m=−l

∆l f l
mYm

l (θ, ϕ) (A.30)

where ∆l is the Laplacian operator:

∆l = ∂r,r +
2
r
∂r −

l (l + 1)
r2

· (A.31)

Curl:

This operator is found in the expression of the magnetic field in terms of a stream function, in that of the current density, etc.
If we take u expanded as in Eq. (A.20), we retrieve Rieutord’s (1987) result:

∇ ∧ u =
∞∑

l=0

l∑

m=−l

{[
l(l + 1)

wl
m

r

]
Rm

l (θ, ϕ) +

[
1
r
∂r(rwl

m)

]
Sm

l (θ, ϕ) +

[
ul

m

r
− 1

r
∂r

(
rvlm

)]
Tm

l (θ, ϕ)

}
. (A.32)
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Taking this result, the expansion for the Laplacian of a vector field is derived. First, we have:

∇ ∧ (∇ ∧ u) =
∞∑

l=0

l∑

m=−l

{[
l(l + 1)

r

(
ul

m

r
−

1
r
∂r

(
rvlm

))]
Rm

l (θ, ϕ) +

[
1
r
∂ru

l
m −

1
r
∂r,r(rv

l
m)

]
Sm

l (θ, ϕ) +
[
−∆lw

l
m

]
Tm

l (θ, ϕ)

}
(A.33)

and therefore

∇2u = ∇ (∇ · u) − ∇ ∧ (∇ ∧ u)

=

∞∑

l=0

l∑

m=−l

{[
∆lu

l
m −

2
r2

(
ul

m − l(l + 1)vlm
)]

Rm
l (θ, ϕ) +

[
∆lv

l
m + 2

ul
m

r2

]
Sm

l (θ, ϕ) +
[
∆lw

l
m

]
Tm

l (θ, ϕ)

}
, (A.34)

result which becomes in the case where u is divergence-free (cf. Eq. (A.29) ):

∇2u = −∇ ∧ (∇ ∧ u)

=

∞∑

l=0

l∑

m=−l

{[
1
r
∆l(rul

m)

]
Rm

l (θ, ϕ) +

[
1
r
∂r

(
r
∆l(rul

m)

l(l + 1)

)]
Sm

l (θ, ϕ) +
[
∆lw

l
m

]
Tm

l (θ, ϕ)

}
. (A.35)

Finally, using Eq. (A.32) once again, we get the “triple curl” operator:

(∇∧)3 u =
∞∑

l=0

l∑

m=−l

{[
−l(l + 1)

∆lw
l
m

r

]
Rm

l (θ, ϕ) +

[
−1

r
∂r

(
r∆lw

l
m

)]
Sm

l (θ, ϕ) +
[
∆lz

l
m

]
Tm

l (θ, ϕ)

}
(A.36)

where:

zl
m =

1
r
∂r(rvlm) −

ul
m

r
, (A.37)

which becomes in the case where u is divergence-free (cf. Eq. (A.29)):

(∇∧)3 u =
∞∑

l=0

l∑

m=−l

{[
−l(l + 1)

∆lw
l
m

r

]
Rm

l (θ, ϕ)

[
−1

r
∂r

(
r∆lw

l
m

)]
Sm

l (θ, ϕ) +

[
1

l(l + 1)
∆l∆l(rul

m)

]
Tm

l (θ, ϕ)

}
. (A.38)

A.2.3. Products of axisymmetric vectorial spherical harmonics

Before we turn to the non-linear terms involving the magnetic field: the advection term in the induction equation and the Lorentz
force, we shall first perform the projections of the scalar product of two general axisymmetric vectors and of their vector product,
and derive the associated coupling coefficients.

Scalar product:

We take two general axisymmetric vectors X1 (r, θ) and X2 (r, θ), which we expand as in Eq. (A.20):


X1(r, θ) =
∑∞

l1=0

{
Al1

0 (r)R0
l1

(θ) + Bl1
0 (r)S0

l1
(θ) + Cl1

0 (r)T0
l1

(θ)
}

X2(r, θ) =
∑∞

l2=0

{
Dl2

0 (r)R0
l2

(θ) + El2
0 (r)S0

l2
(θ) + F l2

0 (r)T0
l2

(θ)
}
,

(A.39)

and perform their scalar product. After some algebra involving the expansion of products of spherical harmonics (cf. Sect. A.1.4),
we obtain

X1 (r, θ) · X2 (r, θ) =
∞∑

l=0

P(X1·X2);l (r) Pl (cos θ) (A.40)

with the following expression for P(X1·X2);l(r):

P(X1·X2);l(r) =
∞∑

l1=0

∞∑

l2=0

N0
l1
N0

l2


[
Al1

0 (r)Dl2
0 (r)

] l1+l2∑

j=I(l1,0,l2,0)

d j
l1,0,l2,0

δl, j +
2
3

[
Bl1

0 (r)El2
0 (r) + Cl1

0 (r)F l2
0 (r)

]
Xl

l1,l2


. (A.41)

Here Xl
l1,l2

is defined in terms of the coupling coefficients dl
l1,m1,l2,m2

(A.18):

Xl
l1,l2
=

l1+l2∑

j=I(l1 ,1,l2,1)

d
j
l1,1,l2,1

E
[

j−1
2

]
∑

p=0

[
(2 j − 4p − 1) · X

]
 (A.42)
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with

X =

E
[

( j−2p−1)−1
2

]
∑

q=0


[
2 ( j − 2p − 1) − 4q − 1

]
·

δl,[( j−2p−1)−2q−1] −
[( j−2p−1)−2q−1]+2∑

r=I(2,0,[( j−2p−1)−2q−1],0)

[
dr

2,0,[( j−2p−1)−2q−1],0δl,r

]


. (A.43)

We have used the classical notation δi, j for the usual Kronecker symbol, E [x] is the integer part of x and
I(l1,m1, l2,m2) = max (|l1 − l2|,m1 + m2).

Vector product:

We operate likewise for the vector product of two general axisymmetric vectors X1 (r, θ) and X2 (r, θ), again expanded as in
Eq. (A.20). We reach the following result:

X1(r, θ) ∧ X2(r, θ) = X(X1∧X2);0(r)̂er +

∞∑

l=1

{
X(X1∧X2);l(r)Pl (cos θ) êr +Y(X1∧X2);l(r)P1

l (cos θ) êθ +Z(X1∧X2);l(r)P1
l (cos θ) êϕ

}

=

∞∑

l=0




X(X1∧X2);l(r)

N0
l

 R0
l (θ) +


−Y(X1∧X2);l(r)

N0
l

 S0
l (θ) +


Z(X1∧X2);l(r)

N0
l

 T0
l (θ)

 , (A.44)

where we have also used the following property of the Legendre function (Gradshteyn & Ryzhik 1967):

dPl(µ)
dµ

=

E( l−1
2 )∑

k=0

(2l − 4k − 1) Pl−2k−1(µ). (A.45)

The radial function X(X1∧X2);l (r) is given by:

X(X1∧X2);l(r) =
2
3

∞∑

l1=0

∞∑

l2=0

N0
l1
N0

l2

{[
Cl1

0 (r)El2
0 (r) − Bl1

0 (r)F l2
0 (r)

]
Xl

l1,l2

}
, (A.46)

with the same coefficient Xl
l1,l2

derived above in (A.42). The two other radial functionsY(X1∧X2);l (r) andZ(X1∧X2);l (r) are given by

Y(X1∧X2);l(r) =
∞∑

l1=0

∞∑

l2=0

N0
l1
N0

l2


[
Cl1

0 (r)Dl2
0 (r)

] l1+l2∑

j=I(l1 ,1,l2,0)

d j
l1,1,l2,0

δl, j −
[
Al1

0 (r)F l2
0 (r)

] l1+l2∑

j=I(l1 ,0,l2,1)

d j
l1,0,l2,1

δl, j


(A.47)

and

Z(X1∧X2);l(r) =
∞∑

l1=0

∞∑

l2=0

N0
l1
N0

l2


[
Bl1

0 (r)Dl2
0 (r)

] l1+l2∑

j=I(l1 ,1,l2,0)

d j
l1,1,l2,0

δl, j −
[
Al1

0 (r)El2
0 (r)

] l1+l2∑

j=I(l1 ,0,l2,1)

d j
l1,0,l2,1

δl, j


. (A.48)

Appendix B: Lorentz force

In this section we shall project the Lorentz force,

FL = j ∧ B =
[

1
µ0

(∇ ∧ B)

]
∧ B, (B.1)

on spherical vectorial harmonics, and write the result in terms of the poloidal and the toroidal magnetic stream-functions, respec-
tively ξl0 and χl

0. We have just seen in Sect. A.2.3 how to expand the vector product of two axisymmetric vectors in the R0
l (θ),

S0
l (θ), T0

l (θ). We apply the method to (B.1), with (cf. Eqs. (14) and (15))

X1 (r, θ) = j (r, θ) =
1
µ0

(∇ ∧ B (r, θ)) =
∞∑

l1=1

{
Al1

0 (r)R0
l1

(θ) + Bl1
0 (r)S0

l1
(θ) + Cl1

0 (r)T0
l1

(θ)
}

=
1
µ0

∞∑

l1=1



l1(l1 + 1)
χl1

0

r2

 R0
l1

(θ) +

[
1
r
∂rχ

l1
0

]
S0

l1
(θ) +

−∆l1


ξl10
r


 T0

l1
(θ)

 (B.2)

and (cf. Eq. (11))

X2 (r, θ) = B (r, θ) =
∞∑

l2=1

{
Dl2

0 (r)R0
l2

(θ) + El2
0 (r)S0

l2
(θ) + F l2

0 (r)T0
l2

(θ)
}

=

∞∑

l2=1



l2(l2 + 1)
ξl20
r2

 R0
l2

(θ) +

[
1
r
∂rξ

l2
0

]
S0

l2
(θ) +


χl2

0

r

 T0
l2

(θ)

 . (B.3)
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Table B.1. Values of the Xl
l1,l2

coefficient involved in the r-component of the Lorentz force and in the Ohmic heating.

X2
l1,l2

X4
l1,l2

l1 � l2 1 2 3 l1 � l2 1 2 3

1 −1 0 26
7 1 0 0 − 18

35

2 0 93
35 0 2 0 − 108

175 0

3 26
7 0 478

49 3 − 18
35 0 28 898

2695

Table B.2. Values of the dl
l1 ,1,l2 ,0

coefficients involved in the θ- and in the ϕ-components of the Lorentz force and in the Ohmic heating.

d1
l1 ,1,l2 ,0

d2
l1 ,1,l2 ,0

d3
l1 ,1,l2 ,0

l1 � l2 1 2 3 l1 � l2 1 2 3 l1 � l2 1 2 3

1 0 − 1
5 0 1 1

3 0 − 1
7 1 0 1

5 0

2 3
5 0 − 9

35 2 0 1
7 0 2 2

5 0 1
15

3 0 18
35 0 3 4

7 0 2
21 3 0 1

5 0

d4
l1 ,1,l2 ,0

d5
l1 ,1,l2 ,0

d6
l1 ,1,l2 ,0

l1 � l2 1 2 3 l1 � l2 1 2 3 l1 � l2 1 2 3

1 0 0 1
7 1 0 0 0 1 0 0 0

2 0 9
35 0 2 0 0 4

21 2 0 0 0

3 3
7 0 9

77 3 0 2
7 0 3 0 0 50

231

So, we have, using the definition of Sect. A.2.3:


Al1
0 =

1
µ0

[
l1(l1 + 1)

χ
l1
0

r2

]

Bl1
0 =

1
µ0

[
1
r ∂rχ

l1
0

]

Cl1
0 =

1
µ0

[
−∆l1

(
ξ

l1
0
r

)] and



Dl2
0 =

[
l2(l2 + 1)

ξ
l2
0

r2

]

El2
0 =

[
1
r ∂rξ

l2
0

]

F l2
0 =

[
χ

l2
0
r

]
.

(B.4)

Therefore, we get using Eqs. (A.44)–(A.46)–(A.48):

FL(r, θ) = X1(r, θ) ∧ X2(r, θ)

= XFL;0(r)̂er +

∞∑

l=1

{
XFL;l(r)Pl (cos θ) êr +YFL;l(r)P1

l (cos θ) êθ +ZFL ;l(r)P1
l (cos θ) êϕ

}

=


XFL;0

N0
0

 R0
0(θ) +

∞∑

l=1




XFL;l(r)

N0
l

 R0
l (θ) +


−YFL;l(r)

N0
l

 S0
l (θ) +


ZFL;l(r)

N0
l

 T0
l (θ)

 , (B.5)

where the radial functions XFL ;l (r), YFL;l (r) andZFL ;l (r) are:

XFL;l =
2
3

1
µ0

∞∑

l1=1

∞∑

l2=1

N0
l1
N0

l2




−∆l1


ξl10
r



[
1
r
∂rξ

l2
0

]
−

[
1
r
∂rχ

l1
0

] 
χl2

0

r


 Xl

l1,l2

 (B.6)

YFL;l =
1
µ0

∞∑

l1=1

∞∑

l2=1

N0
l1
N0

l2




−∆l1


ξl10
r



l2(l2 + 1)

ξl20
r2




l1+l2∑

j=I(l1 ,1,l2,0)

d j
l1,1,l2,0

δl, j −

l1(l1 + 1)

χl1
0

r2



χl2

0

r




l1+l2∑

j=I(l1 ,0,l2,1)

d j
l1,0,l2,1

δl, j


(B.7)

ZFL;l =
1
µ0

∞∑

l1=1

∞∑

l2=1

N0
l1
N0

l2




[
1
r
∂rχ

l1
0

] l2(l2 + 1)
ξl20
r2




l1+l2∑

j=I(l1 ,1,l2,0)

d j
l1,1,l2,0

δl, j −

l1(l1 + 1)

χl1
0

r2


[
1
r
∂rξ

l2
0

]
l1+l2∑

j=I(l1 ,0,l2,1)

d j
l1,0,l2,1

δl, j


. (B.8)

Explicit values for Xl
l1,l2

(A.42) are given in Table B.1, and in Table B.2 for the coupling coefficients dl
l1,1,l2,0

.

Appendix C: Advection term of the induction equation

We deal likewise with the advection term in the induction equation:
(
Uϕ +UM

)
∧ B, (C.1)
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whereUϕ(r, θ) = r sin θΩ(r, θ)̂eϕ andUM represents the meridional flow, whose expansions are found in (30). Therefore

X1 (r, θ) = Uϕ(r, θ) +UM(r, θ) =
∞∑

l1=0

{
Al1

0 (r)R0
l1

(θ) + Bl1
0 (r)S0

l1
(θ) + Cl1

0 (r)T0
l1

(θ)
}

=

∞∑

l1=0

{
ul1

0 (r) R0
l1

(θ) + vl10 (r) S0
l1

(θ) + wl1
0 (r) T0

l1
(θ)

}

(C.2)

and (cf. Eq. (11))

X2 (r, θ) = B (r, θ) =
∞∑

l2=1

{
Dl2

0 (r)R0
l2

(θ) + El2
0 (r)S0

l2
(θ) + F l2

0 (r)T0
l2

(θ)
}

=

∞∑

l2=1



l2(l2 + 1)
ξl20
r2

 R0
l2

(θ) +

[
1
r
∂rξ

l2
0

]
S0

l2
(θ) +


χl2

0

r

 T0
l2

(θ)

 . (C.3)

So, we have, expliciting the velocity field:



Al1
0 = ul1

0 =
Ul1

N0
l1

Bl1
0 = v

l1
0 =

Vl1

N0
l1

Cl1
0 = w

l1
0 = r

[
D0

l1−1

N0
l1−1
Ω∗l1−1 −

C0
l1+1

N0
l1+1
Ω∗l1+1

] where

{
Ω∗0 (r) = Ω0 (r) + 1

5Ω2 (r)
Ω∗l (r) = Ωl (r) for l > 0

and



Dl2
0 =

[
l2(l2 + 1)

ξ
l2
0

r2

]

El2
0 =

[
1
r ∂rξ

l2
0

]

F l2
0 =

[
χ

l2
0

r

]
.

(C.4)

Hence we get, using Eqs. (A.44)–(A.46)–(A.48):
(
Uϕ(r, θ) +UM(r, θ)

)
∧ B(r, θ) = X1(r, θ) ∧ X2(r, θ)

=

∞∑

l=1

{
XAd;l(r)Pl (cos θ) êr +YAd;l(r)P1

l (cos θ) êθ +ZAd;l(r)P1
l (cos θ) êϕ

}

=

∞∑

l=1




XAd;l(r)

N0
l

 R0
l (θ) +


−YAd;l(r)

N0
l

 S0
l (θ) +


ZAd;l(r)

N0
l

 T0
l (θ)

 , (C.5)

where XAd;l (r), YAd;l (r) andZAd;l (r):

XAd;l =
2
3

∞∑

l1=0

∞∑

l2=1

N0
l1
N0

l2



wl1
0

[
1
r
∂rξ

l2
0

]
− vl10


χl2

0

r


 Xl

l1,l2

 , (C.6)

YAd;l =

∞∑

l1=0

∞∑

l2=1

N0
l1
N0

l2



wl1
0

l2(l2 + 1)
ξl20
r2




l1+l2∑

j=I(l1 ,1,l2,0)

d j
l1,1,l2,0

δl, j −
ul1

0


χl2

0

r




l1+l2∑

j=I(l1 ,0,l2,1)

d j
l1,0,l2,1

δl, j


, (C.7)

ZAd;l =

∞∑

l1=0

∞∑

l2=1

N0
l1
N0

l2



vl10
l2(l2 + 1)

ξl20
r2




l1+l2∑

j=I(l1 ,1,l2,0)

d j
l1,1,l2,0

δl, j −
(
ul1

0

[
1
r
∂rξ

l2
0

]) l1+l2∑

j=I(l1 ,0,l2,1)

d j
l1,0,l2,1

δl, j


; (C.8)

Explicit values for Xl
l1,l2

(A.42) are given in Table C.1, and in Tables C.2–C.4 for the coupling coefficients dl
l1,1,l2,0

.

Appendix D: Ohmic heating

For sake of completeness, we also calculate the Ohmic heating rate, which we shall express in terms of the magnetic stream
functions ξl0 and χl

0. From Sect. 2.4, we get:

J = 1
µ0

[
||η|| ⊗ (∇ ∧ B)

]
· (∇ ∧ B) , (D.1)
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Table C.1. Values of the Xl
l1,l2

coefficients which are involved in the r-component of the induction equation.

X1
l1,l2

X2
l1 ,l2

X3
l1 ,l2

l1 � l2 1 2 3 l1 � l2 1 2 3 l1 � l2 1 2 3

1 0 13
5 0 1 −1 0 26

7 1 0 − 3
5 0

2 13
5 0 366

49 2 0 93
35 0 2 − 3

5 0 48
7

3 0 366
49 0 3 26

7 0 478
49 3 0 48

7 0

4 82
35 0 3594

245 4 0 226
21 0 4 92

15 0 774 082
38 115

Table C.2. Values of the coupling coefficients which are involved in the θ- and in the ϕ- components of the induction equation for l = 1.

d1
l1 ,1,l2 ,0

d1
l1 ,0,l2 ,1

l1 � l2 1 2 3 l1 � l2 1 2 3

1 0 − 1
5 0 1 0 3

5 0

2 3
5 0 − 9

35 2 − 1
5 0 18

35

3 0 18
35 0 3 0 − 9

35 0

4 0 0 10
21 4 0 0 − 2

7

Table C.3. Values of the coefficients involved in the θ- and in the ϕ- components of the induction equation for l = 2.

d2
l1 ,1,l2 ,0

d2
l1 ,0,l2 ,1

l1 � l2 1 2 3 l1 � l2 1 2 3

1 1
3 0 − 1

7 1 1
3 0 4

7

2 0 1
7 0 2 0 1

7 0

3 4
7 0 2

21 3 − 1
7 0 2

21

4 0 10
21 0 4 0 − 4

21 0

Table C.4. Same as in Table C.3, but for l = 3.

d3
l1 ,1,l2 ,0

d3
l1 ,0,l2 ,1

l1 � l2 1 2 3 l1 � l2 1 2 3

1 0 1
5 0 1 0 2

5 0

2 2
5 0 1

15 2 1
5 0 1

5

3 0 1
5 0 3 0 1

15 0

4 5
9 0 5

33 4 − 1
9 0 1

33

where we allow for different eddy-diffusivities (ηh, ηv) respectively in the horizontal and vertical direction. We apply again the
method of Sect. A.2.3, and identify the two vector functions which enter the scalar product:

X1 (r, θ) =
1
µ0

[||η|| ⊗ (∇ ∧ B(r, θ))
]
=

∞∑

l1=1

{
Al1

0 (r)R0
l1

(θ) + Bl1
0 (r) S0

l1
(θ) + Cl1

0 (r) T0
l1

(θ)
}

=

∞∑

l1=1


ηv

µ0

l1(l1 + 1)
χl1

0

r2

 R0
l1

(θ) +
ηh

µ0

[
1
r
∂rχ

l1
0

]
S0

l1
(θ) +

ηh

µ0

−∆l1


ξl10
r


 T0

l1
(θ)


(D.2)

and

X2 (r, θ) = ∇ ∧ B (r, θ) =
∞∑

l2=1

{
Dl2

0 (r)R0
l2

(θ) + El2
0 (r) S0

l2
(θ) + F l2

0 (r) T0
l2

(θ)
}

=

∞∑

l2=1



l2(l2 + 1)
χl2

0

r2

 R0
l2

(θ) +

[
1
r
∂rχ

l2
0

]
S0

l2
(θ) +

−∆l2


ξl20
r


 T0

l2
(θ)

 . (D.3)
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We thus obtain, using Eqs. (A.40) and (A.41):

J (r, θ) = X1 (r, θ) · X2 (r, θ) =
∞∑

l=0

Jl (r) Pl (cos θ) (D.4)

with the following expression for Jl (r):

Jl =
1
µ0

∞∑

l1=1

∞∑

l2=1

N0
l1
N0

l2




ηv

µ0

l1(l1 + 1)
χl1

0

r2


l2(l2 + 1)

χl2
0

r2




l1+l2∑

j=I(l1,0,l2,0)

d j
l1,0,l2,0

δl, j

+
2
3
ηh

µ0


[
1
r
∂rχ

l1
0

] [
1
r
∂rχ

l2
0

]
+

∆l1


ξl10
r



∆l2


ξl20
r



 Xl

l1,l2

, (D.5)

recalling that Xl
l1,l2

is given in (A.42), and in explicit form in Table B.1.

Appendix E: Equations to be implemented in stellar evolution codes

In this section we shall give the equations ready to be implemented in a stellar structure code, with all coupling coefficients being
replaced by their explicit value, in the special case where only the dipole (l = 1), quadrupole (l = 2) and octupole (l = 3) are kept
in the magnetic field, and where the differental rotation is reduced to its first term (l = 2).

E.1. Induction equation

The linear terms of this equation readily separate into their poloidal and toroidal components, and they project on a single
multipole, whereas the advection term is the result of various couplings.

E.1.1. Equations for the dipole

The induction equation translates into two evolution equations for the magnetic stream functions:


dξ10
dt = 2

√
π
3 rZAd;1 + ηhr∆1

(
ξ10
r

)

dχ1
0

dt + ∂r (ṙ) χ1
0 = 2

√
π
3

[
XAd;1 + ∂r

(
rYAd;1

)]
+

[
∂r

(
ηh∂rχ

1
0

)
− 2ηv

χ1
0

r2

] where ∆1 = ∂r,r +
2
r
∂r −

2
r2
, (E.1)

and where the advective terms are given by:
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(E.2)

with
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√
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(E.3)

E.1.2. Equations for the quadrupole

Likewise


dξ20
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where ∆2 = ∂r,r +

2
r
∂r −

6
r2

(E.4)
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and



XAd;2 =
2
3

1
2π

13

√
3
7

(
C3

0E
1
0 + C

1
0E

3
0

)
− 3

2
C1

0E
1
0 +

239
7
C3

0E
3
0 −

93
14
B2

0F
2
0 −

113
7

√
5B4

0F
2

0



YAd;2 =
1

4π


√

3
7

(
4C3

0D
1
0 − C

1
0D

3
0

)
+ C1

0D
1
0 −

5
7
A2

0F
2

0 +
4
7

√
5A4

0F
2
0 +

2
3
C3

0D
3
0



ZAd;2 =
1

4π

[
5
7

(
B2

0D
2
0 −A

2
0E

2
0

)
+

2
7

√
5
(
5B4

0D
2
0 + 2A4

0E
2
0

)]
.

(E.5)

All functionsA2
0 . . . F 3

0 have the same meaning as in (E.3).

E.1.3. Equations for the octupole

The result is similar for the octupole:
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and
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(E.7)

E.2. Mean equations

E.2.1. Mean rotation rate

We recall the transport equation for the mean angular momentum (48):

ρ
d
dt

(r2Ω) =
1

5r2
∂r

(
ρr4ΩU2

)
+

1
r2
∂r

(
ρνvr4∂rΩ

)
+ ΓFL (E.8)

where the mean magnetic torque is given by:

ΓFL = Γ0 −
1
5
Γ2 with


Γ0 = r

(
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)
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) (E.9)
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TheAl
0, Bl

0, Cl
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(E.11)

From (E.9), the final form of (E.8) is immediately derived:

ρ
d
dt

(r2Ω) =
1

5r2
∂r

(
ρr4ΩU2

)
+

1
r2
∂r

(
ρνvr4∂rΩ

)
+ rZFL;1. (E.12)

E.2.2. Mean chemical composition

We restate the mean transport equation for the concentration of chemical species, which remains unchanged by the introduction
of the magnetic field (Paper I, Eq. (B.2)):

ρ
d
dt

ci +
1
r2
∂r

[
r2ρciU

diff
i

]
=

1
r2
∂r

[
r2ρ(Dv + Deff)∂rci

]
. (E.13)

E.3. System for l = 2

E.3.1. Meridional circulation

We split (77)–(78) in two first order equations as:

U2 =
L

Mg


P

ρCpT


1

∇ad − ∇
B2 (E.14)

where

B2 = 2

1 −
f C + fL
4πGρ
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(
ε + εgrav

)
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g̃2
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+
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d ln µ
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)]
(E.15)

and

A2 = HT∂rΨ2 − (1 − δ + χT)Ψ2 − (ϕ + χµ)Λ2. (E.16)

The coefficients related respectively to the centrifugal force and to the Lorentz force are given by:

f C =
1
r2
∂r

(
r2a0

)
, f̃C,2 =

1
r2
∂r

(
r2a2

)
+ 6

b2

r
, (E.17)

fL =
1
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∂r

(
r2XFL ;0

ρ0

)
and f̃L,2 =

1
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(
r2XFL;2

ρ0

)
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rρ0
(E.18)

where
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(E.19)
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and
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TheAl
0, Bl

0, Cl
0,Dl

0, El
0 and F l

0 with l = {1, 2, 3} are given in (E.11).

The relative fluctuation of the effective gravity is given in (70); we apply it here to l = 2:

g̃2

g
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 (E.23)

where φ̂2 is solution of the Poisson equation (cf. Eq. (71)):

1
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. (E.24)

The Ohmic heating term is derived from (D.5):
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where theAl
0, Bl

0, Cl
0,Dl

0, El
0 and F l

0 with l = {1, 2, 3} are given by:
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(E.26)

E.3.2. Baroclinic relation

We apply Eq. (64) to l = 2:

ϕΛ2 − δΨ2 =
r
g

[
D2 +

XFL;2

rρ
+

1
r

d
dr

(
r
YFL;2

ρ

)]
(E.27)

whereD2 =
1
3

[
r∂rΩ

2
]
+ 8

35

[
r∂r

(
ΩΩ2

)]
+ 8

7ΩΩ2 and where XFL ;2 andYFL;2 have been given in (E.21)–(E.22).
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E.3.3. Horizontal fluctuation of the molecular weight

The evolution equation for the mean molecular weight (Paper I, Eq. (39)) is unchanged by the introduction of the magnetic field:

dΛ2

dt
− d lnµ

dt
Λ2 =

U2

Hp
∇µ −

6
r2

DhΛ2. (E.28)

E.4. System for l = 4

E.4.1. Horizontal shear

We have:

ρ
d
dt

(
r2Ω2

)
− 2ρΩr

[
1

3ρr
∂r

(
ρr2U2

)
− αU2

]
= −10ρνhΩ2 + Γ2 (E.29)

where the expression for Γ2 has been given in Eq. (E.9).

E.4.2. Meridional circulation

In the same way as for l = 2, we recast (77) and (78) in two first order equations as

U4 =
L

Mg


P

ρCpT


1

∇ad − ∇
B4 (E.30)

where
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and

A4 = HT∂rΨ4 − (1 − δ + χT)Ψ4 − (ϕ + χµ)Λ4. (E.31)

The coefficients related respectively to the centrifugal force and to the Lorentz force are given by:
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where:
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(E.34)

We get the relative fluctuation of the effective gravity from (70):
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 (E.35)

where φ̂4 obeys the Poisson equation:

1
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(cf. Eq. (71)). (E.36)
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We proceed as for l = 2 to calculate the Ohmic heating:
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(E.37)

where theAl
0, Bl

0, Cl
0,Dl

0, El
0 and F l

0 with l = {1, 2, 3} have been given in the previous section in (E.26).

E.4.3. Baroclinic relation

We apply (64) to l = 4. We get:

ϕΛ4 − δΨ4 =
r
g

[
D4 +

XFL;4

rρ
+

1
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d
dr

(
r
YFL;4

ρ

)]
(E.38)

whereD4 =
6

35

[
r∂r

(
ΩΩ2

)
− 2ΩΩ2

]
and where XFL;4 and YFL;4 have been given in (E.34).

E.4.4. Horizontal fluctuation of the molecular weight

This equation is not affected by the introduction of the magnetic field:

dΛ4

dt
− d lnµ

dt
Λ4 =

U4

Hp
∇µ −

20
r2

DhΛ4. (E.39)

These equations are ready to be implemented in a stellar evolution code, together with the boundary conditions discussed in
Sect. 7.


