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ABSTRACT

Context. Whether it be the heating problem or the destabilization of coronal structures, use is often made of the so-called “line-
tying” boundary conditions, which amounts to imposing the photospheric velocity at the photosphere as a boundary condition for
coronal dynamics. Directly coupling the low beta coronal evolution to prescribed photospheric motions of the magnetic footpoints
allows strong magnetic energy accumulation in the corona. But this amounts to ignoring possible feedback from the coronal loops on
photospheric motions, a neglect that is commonly justified by the strong density contrast between the photosphere and the corona. On
the other hand, the energy injected into the corona comes from the photosphere, so in principle the coronal loop might act as a conduit
communicating photospheric dynamics from one region to another.
Aims. Our objective is to test the degree of validity of this line-tying approximation by considering the role of the dense photosphere
explicitly.
Methods. We consider here a 1.5D MHD model of a magnetic loop including a strongly stratified solar-like atmosphere and consider
free (instead of prescribed/line-tied) boundary conditions applied deep in the photosphere, so as to quantify the coupling between the
photosphere and corona as determined by stratification. We give an initial kick to one of the footpoints in the form of an upwardly
propagating Alfvénic perturbation rising from the lower boundary, and then allow waves to freely escape the numerical domain from
the boundaries, seated deep in the photosphere.
Results. We find that the response of the loop differs in many aspects from what is predicted by the line-tied condition. a) The
magnetic energy density available in the corona is limited to a value equal to the kinetic energy density in the photospheric motion.
b) The initial velocity shear between the opposite loop footpoints vanishes after a time proportional to the loop length. The shear
between the coronal boundaries on opposite sides of the loop is quasi-uniform and is relaxed slowly by Alfvén waves propagating
downwards through the high-β photospheric layers. This process is insensitive to details of the thermal structure. c) Coronal loops
are thus shown to exert a strong feedback on the photospheric dynamics, intermediate between friction and diffusion, instead of no
reaction at all.
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1. Introduction

The line-tying condition applied at the corona-photosphere inter-
face amounts to prescribing photospheric velocities, neglecting
any feedback from the coronal dynamics on photospheric mo-
tions. These boundary conditions allow large magnetic energy
accumulation in the corona, as field lines are slowly sheared and
twisted by slow photospheric motions, and is helpful when deal-
ing with the coronal heating issue (e.g. Rappazzo et al. 2007)
or with the equilibrium of coronal structures (e.g. Velli & Hood
1989; Aulanier et al. 2005), which asks for long time integra-
tions that make the detailed modeling of the subcoronal region
a numerically challenging task (e.g. Archontis & Hood 2008;
Martinez-Sykora et al. 2008).

The line-tying condition amounts to considering the photo-
sphere as providing complete reflection of any coronal distur-
bance impinging from above. This is supported by early studies
by Leroy (1980), Hollweg (1984), and more recently by Ofman
(2002) and Gruszecki et al. (2007); however, these studies deal
with finite frequency oscillations, not with slow photospheric
movements.

To test the validity of the line-tied condition in the low-
frequency limit, we consider here a simple model problem. We
consider a standard 1.5D MHD model of a coronal loop of
length L with uniform axial field B0, including gravitational
stratification, and examine the response of the loop when we
give an initial kick to the left loop footpoint u⊥(x = 0) = U0,
in the form of an Alfvénic perturbation propagating from below
the lower boundary seated deep in the photosphere.

We do not perturb the loop further, leaving any perturba-
tion free to leave the numerical domain without reflection at the
simulation boundaries, which are taken to be transparent using
the standard technique of incoming and outgoing characteristics
(see e.g. Grappin et al. 2000). Physical reflection inside the do-
main due to the stratification is of course taken into account. The
boundary between photosphere and corona is well inside our nu-
merical domain.

We then examine how the initial perturbation is transmitted
or not to the right footpoint at x = L, and how much addi-
tional magnetic energy due to b⊥ can be stored in the corona
(at x = L/2).

The kick in u⊥ propagates first as an Alfvén wave along
the loop. Assuming the WKB limit to be valid, a transverse
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magnetic field b⊥ propagates as well, b⊥/B0 = −u⊥/vA, vA be-
ing the Alfvén speed. The coronal amplitude of b⊥ is weak com-
pared to its photospheric value, since the approximate conserva-
tion of wave energy flux leads to a decrease with density ρ as
b⊥ ∼ ρ1/4, hence

bc
⊥/B0 = (U0/v

0
A)(ρc/ρ0)1/4, (1)

the index c (resp. 0) denoting the coronal (resp. photospheric)
value.

Further evolution depends on the boundary conditions. If
line-tying is imposed at the opposite corona-photosphere bound-
ary, b⊥ grows uniformly along the loop linearly with time:

b⊥/B0 = U0t/L. (2)

In the other limit, if boundary velocities are free to vary and if
no reflection occurs, the velocity shear vanishes when the trans-
verse momentum given at one footpoint reaches the other one,
i.e., after one Alfvén traversal time τA, and the maximum value
reached by b⊥ is limited to the value reached at that moment in
Eq. (2), namely:

b⊥/B0 = U0/〈vA〉 (3)

where 〈vA〉 = L/τA is the average Alfvén speed along the loop.
Given the much higher density in the photosheric sections of our
loop, this average is dominated by the travel time in the pho-
spheric layers.

In this paper, we will show that the asymptotic magnetic en-
ergy actually brought to the corona by photospheric shear is in
between the two previous cases.

2. Equations, physics, and method

We consider a semi-circular loop (Fig. 1, left) of constant cross-
section with uniform magnetic field B0 = 100 G. We neglect for
simplicity 2D effects such as the curvature terms. Consequently,
we consider the loop as a straight cylinder confined between
two planes representing the footpoints (Fig. 1, right). We de-
note by x the direction parallel to the initial field, and by z the
horizontal direction perpendicular to the plane of the loop. We
consider no y-polarization. The velocity shear along the loop is
thus represented by u⊥(x) = uz(x), and the magnetic shear by
b⊥(x) = bz(x). The one-dimensional MHD equations read, to-
gether with the equation of state, as

∂tρ + ∂x(ρux) = 0, (4)

∂tux + ux∂xux + (1/ρ)∂x(P + b2
z/2) = g(x) + ν∂xxux, (5)

∂tuz + ux∂xuz = B0∂xbz + ν∂xxuz, (6)

∂tbz = −bz∂xux − ux∂xbz + B0∂xuz, (7)

∂tT + u∂xT + (γ − 1)T∂xux = κ∂xx(T − T0), and (8)

P = 2nkT. (9)

The initial magnetic field is in the x-direction, but when sub-
jected to a shear uz(x), it will turn, thus adding a bz component.
Here n (ρ = mpn) is the density and γ = 1. Due to∇.B = 0, bx re-
mains constant and equal to B0. A very small by is present from
the start, to prevent the boundary equations to become singular.
The viscosity is ν = U0L/1280 and conductivity κ = U0L/128.
Both are there for numerical stabilization purposes and play no
other role in the results, as seen in our simulations when chang-
ing their values by a factor of 10. Gravity projected on the semi-
circular loop is

g(x) = −g0 cos(πx/L) (10)

Fig. 1. Sketch of the model. A coronal loop is considered as a straight
magnetic field line with density and gravitational acceleration varying
along the axis of the line. A transverse kick is given to the left footpoint
at x = 0, during 0 ≤ t ≤ τ0, see Eq. (14).

where g0 is surface gravity. In Eq. (8), T0(x) is the temperature
profile of the atmosphere:

T0(x) = Ta + (Tb − Ta) tanh((x − x0)/δx) (11)

where Ta = 6000 K, Tb = 1 MK, x0 = 7 Mm, and δx = 0.7 Mm
are the position and width of the transition region. We found
that the thermal structure may be changed (for instance taking
x0 = 2 Mm and δx = 0.2 Mm) without any effect on the results.
The same is true when changing γ to 5/3 instead of 1. The initial
density profile ρ(x) is computed by integrating the hydrostatic
equilibrium.

We use a Runge-Kutta temporal scheme of order 3, a com-
pact finite difference scheme of order 6 in the spatial domain
(Lele 1992), and a uniform grid of N = 512 points. Time step is
automatically adapted using a priori estimations of the charac-
teristic times.

The boundary conditions are imposed on the incoming char-
acteristics of the equations (e.g. Grappin et al. 2000): the numer-
ical domain boundaries, situated deep in the photosphere, are
transparent to outgoing waves. In practice, time variation of each
field at the boundary is split into two contributions, that of in-
coming waves and that of outgoing waves (characteristics). The
outgoing part, communicating variations due to modes propa-
gating from the inside out, are calculated from the values of the
fields inside the domain, while the incoming characteristics are
assigned as a given function of time.

In the present case, ingoing perturbations are defined at x = 0
to generate a finite transverse velocity uz = U0 at the left foot-
point, no flow along the axis, ux = 0, while no incoming pertur-
bations are introduced at the opposite boundary.

We thus integrate at the left boundary the following equa-
tions for uz and bz (the other components are of less concern
here):

∂tuz =
dA
dt
− ux − vA

2

(
∂xuz +

∂xbz√
ρ

)
(12)

∂tbz√
ρ
= −dA

dt
− ux − vA

2

(
∂xuz +

∂xbz√
ρ

)
, (13)

where A(t) is a ramp reaching U0 = −100 m/s in a time τ0 =
100 s:

A(t) = U0(1 − exp(−(t/τ0)4)). (14)

At the right footpoint x = L, the equations for uz and bz are the
same as at the left footpoint, but with A(t) replaced by zero.

At short times, Eqs. (12), (13) imply that, at x = 0, uz = A(t)
and (neglecting density fluctuations at the photosphere) bz/

√
ρ =

−A(t), so that the left footpoint quickly approaches the speed
U0 = −100 m/s and bz = 14.5 G (i.e., bz/

√
ρ = 100 m/s).

This will remain so as long as there is no loop feedback in the
form of a reflected wave with uz + bz/

√
ρ � 0. Recall that with
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Fig. 2. Density (left), Alfvén (right, thick lines), and sound speed pro-
files (right, thin lines) vs. abscissa x along loop, for loop lengths 2, 10,
18, and 25 Mm (resp. solid, dotted, dashed, and dotted-dashed, except
Alfvén speed having all lines solid).

Fig. 3. Response of the 10 Mm loop to a −100 m/s drift of the left foot-
point. Top: first transit time; Bottom: further relaxation. uz (left) and bz

profiles (right). Abscissa, coordinate x along loop.

the line-tied boundary condition, bz would grow continuously,
precisely because the direct wave is completely reflected by the
right footpoint.

In summary, in our 1.5D loop model, there are only two
sources of motions for the loop footpoints: either the sub-
photospheric part of the loop (outside the numerical domain,
represented by the boundary conditions) or the atmospheric part
of the loop itself within the numerical domain. Hence, after the
initial kick has been given to the left footpoint (i.e., when dA/dt
has become negligible in Eqs. (12), (13), the only momentum
given to the footpoints will come from the atmospheric part of
the loop, with no perturbation and no constraint coming from the
photospheric boundary.

We considered several loop lengths: L = 2, 10, 18, and
25 Mm; the corresponding Alfvén and sound speed profiles are
shown in Fig. 2.

3. Results

We show in Fig. 3 the evolution of uz and bz profiles in a 10 Mm
loop. This loop has no thermal transition region, as its middle
part actually does not reach the corona, but note that when con-
sidering a lower transition region so as to include it within the
loop, we obtain quasi-identical results. The top shows the prop-
agation to the right footpoint, which takes about 40 min. After
some transient oscillations, uz and bz relax everywhere to their
initial “kick” values (resp. −100 m/s and 14.5 G). This takes
about 5 h. A shorter loop (2 Mm) leads to similar behavior, but
with a shorter relaxation time of about 1 h.

Fig. 4. Relaxation of velocity shear and saturation of magnetic shear:
2, 10, 18 and 25 Mm loops (dotted lines for 2 Mm, solid lines for all
others). Abscissa: time normalized by τ0

A (see text). Left: δuz = |uz−U0|
at left and right footpoints (U0 = −100 m/s). Right: bz at apex; dashed
line: line-tied result (Eq. (2)).

Increasing the loop length L (including a transition region
and a coronal region in the middle part of the loop) shows that
the relaxation always occurs, the time increasing linearly with
loop length. This is summarized in Fig. 4, in which one shows
the time variation of the deviation from the asymptotic speed
δuz = |uz − U0| at both footpoints for loop lengths 2, 10, 18,
and 25 Mm, as well as the magnetic field bz at the apex. The
time is normalized by τ0

A, which is the traversal time of a loop
length L for a fictitious Alfvén wave traveling everywhere with
the photospheric Alfvén velocity v0A:

τ0
A = L/v0A. (15)

A fit of the curves for the three longest loops gives

δuz = C exp(−2.1t/τ0
A). (16)

The asymptotic bz is independent on the position x (that is, the
loop is straight), and is 14.5 G, i.e., additional magnetic energy
is all along the loop equal to the photospheric kinetic energy:

bz/B0 = U0/v
0
A. (17)

This is greater than the purely “transparent” expression (Eq. (3)),
and is actually the result reached by the line-tied expression
(Eq. (2)) after one “photospheric” Alfvén time (Fig. 4, right).
We note that the relaxation times are the same for bz and uz.
The figure shows all curves nicely superposed, except the 2 Mm
loop, which relaxes more rapidly; however, a global fit including
the 2 Mm loop can be obtained by redefining the time scale as
τ0

A = (L − L0)/v0A, with L0 = 0.3 Mm.

4. Discussion

The exponential relaxation (16) just found can be explained by
considering the global velocity shear as trapped in the high-β re-
gion and leaking progressively. The relation (16) is finally recov-
ered by assuming the logarithm of the reflexion coefficient to be
given by the ratio of photospheric over coronal Alfvén speeds,
which is compatible with classical ideas on reflection (Ofman
2002). Another explanation not relying on wave trapping is pro-
posed below.

Figure 5 gives a view of the whole process. It shows in
a space-time (x, t) diagram the time derivative ∂uz/∂t for the
10 Mm loop, during the first two transit times (left panel) and
during a later period of four Alfvén times (right panel). The
left image shows how the transverse velocity signal propagates
upward, with the Alfvén characteristics crossing the loop apex
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Fig. 5. Space-time diagrams for ∂uz/∂t, 10 Mm loop. Left: first Alfvén
time showing propagation and reflexion of the first Alfvén signal from
the left to the right footpoints. Right: later phase showing the slow relax-
ation of the large scale shear by Alfvén waves propagating downwards
from the β = 1 region (solid lines).

rapidly, and finally reaching the right footpoint at the same time
as a strong reflected component reaches the left footpoint. This
reveals the large wave reflection by the upper part of the loop,
which then accelerates the left footpoint, and is also responsible
for the right footpoint getting only a small part of the momentum
at that time.

We now concentrate on the relaxation phase. The apex has
uz = −100 m/s, but there is global shear: the left footpoint pro-
ceeds faster, and the right footpoint is slower (Fig. 3, bottom
left). The transverse magnetic field bz shows a plateau: the low-
β region has a higher bz than the dense high-β region, that is,
there is a jump in the magnetic field at the vA = c boundary,
which is decreasing with time (Fig. 3, bottom right, t = 66 min).

The ∂uz/∂t contours shown in the right panel of Fig. 5
show distinct wave patterns. The low-β region shows standing
slow waves. (Since the mean field is now no longer parallel
to the wave vector, the pure Alfvén polarization is absent dur-
ing the relaxation phase.) These slow waves are quasi-acoustic
waves, with velocity polarization quasi-parallel to the total field:
uz/ux ∼ bz/B0, the fluctuations of bz being very small. These
waves are trapped within the low-β region (the leakage time is
much longer than our relaxation time) and are the remnant of
the initial Alfvén perturbation and generated by mode coupling
at that time. They are coupled with periodic quasi-Alfvén pulses
propagating in the high-β region, i.e., with mainly transverse
fluctuations uz and bz.

Let us focus on the vA = c (β 
 1) boundary. The jump in
bz there triggers, due to the magnetic field tension, a transverse
(quasi-Alfvén) wave that tends to suppress this bz jump. Let us
denote by δt� the time during which the wave travels from the
plateau boundary down to the surface. Since the wave suppresses
the bz jump δbz, it also carries a velocity jump δuz, which has
opposite signs at the left and right footpoints (as it should for
Alfvén modes propagating in opposite directions), and a magni-
tude, when arriving at the solar surface, equal to δbz/

√
ρ0, where

ρ0 is the photospheric density. This decreases the total velocity
shear between footpoints Δuz by the amount δΔuz = 2δbz/

√
ρ0.

Now, during the same time δt�, the magnetic field jump at
the va = c boundary is actually regenerated. Indeed, since the ve-
locity shear between footpoints is decreased but not suppressed,
the transverse magnetic component increases by the amount
δbz = ΔuzB0δt�/L. This double process of a slow increase of
the mean bz in the low-β region and the permanent emission of
progressive Alfvén wave in the low-β region is visible in Fig. 6,
which shows a series of profiles of uz and bz during the end of
the relaxation process for the 10 Mm loop.

Fig. 6. uz (left) and bz (right) profiles in the left half of the 10 Mm loop
(vertical lines: β = 1 layer). Alfvén waves are visible in the β > 1 re-
gion. The β < 1 region shows trapped acoustic uz oscillations and a
steady bz increase due to the residual mean velocity shear.

Replacing the previous expression in the one forΔuz, one has
finally: dΔuz/dt ≈ δΔuz/δt� = −2(v0A/L)Δuz, which leads to the
same time scale as in Eq. (16).

The exchange of momentum between loop footpoints
amounts to an anomalous diffusion, modifying the photospheric
dynamics. In the photospheric (y, z) plane, the diffusion term
may be written as ∂ui/∂t ∼ −v0A|ui(X + L)− ui(X)|/L ∼ −v0A|∇ui|,
(see Eq. (16)) where i = y, z and X = (y, z); the |∇| operator is
intermediate between friction and Laplacian. Such a modeling
of the effect of the corona on photospheric motions would be
of interest compared to a complete simulation including photo-
sphere and corona, or compared to the usual line-tied hypothesis,
which completely ignores any feedback of the loops on the pho-
tospheric motions. It offers a viewpoint complementary to that
of Erdélyi (2006). Further study, including in particular 2D ef-
fects, is desirable, in which case the role of the transition region
might be more pronounced (see DelZanna et al. 2005).

We conclude that these results change the status of the line-
tied condition for slowly varying photospheric motions because
the latter condition neglects the momentum exchanges between
footpoints that are important even at short times. Our result that
the coronal free magnetic energy equals the kinetic energy of
the photospheric motions (Eq. (17)) puts no new strong limit
on coronal heating. However, for the formation (and further
destabilization) of highly-stressed coronal fields, such as promi-
nences and sigmoids, our results imply that the largest part of
the magnetic shear cannot be induced by simple horizontal pho-
tospheric motions. This conclusion is strictly valid within the
low-frequency limit, for loops with constant cross-section, and
neglecting transverse structuring. Work relaxing these assump-
tions is in progress to continue exploring how photospheric and
coronal dynamics couple.
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