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ABSTRACT
Two fast and reliable numerical integrators for the motion of the Oort Cloud comets in the

Galactic tidal potential are presented. Both integrators are constructed as Hamiltonian splitting

methods. The first integrator is based upon the canonical Hamiltonian equations split into the

Keplerian part and a time-dependent perturbation. The system is regularized by the application

of the Kuustanheimo–Stiefel variables. The composition rule of Laskar and Robutel with a

symplectic corrector is applied. The second integrator is based on the approximate, averaged

Hamiltonian. Non-canonical Lie–Poisson bracket is applied allowing the use of non-singular

vectorial elements. Both methods prove superior when compared to their previously published

counterparts.

Key words: methods: analytical – methods: numerical – celestial mechanics – comets: general

– Oort Cloud.

1 I N T RO D U C T I O N

Galactic tides are one of the essential factors determining the evo-

lution of cometary orbits in the Oort Cloud. In the absence of an

analytical solution describing the motion of comets under the ac-

tion of the complete Galactic tide potential, numerical integration

remains the main path to the understanding of the Oort Cloud dy-

namics between sporadic events like stellar encounters. Gaining

knowledge of a dynamical system through numerical integration is

a fairly time-consuming process: huge samples of orbits spanning

the whole phase space have to be simulated. In recent years, a num-

ber of papers were published proposing new tools that may replace

a slow, general purpose integrator of high order. Brasser (2001)

vaguely reported the application of a presumably fast symplectic

integrator of Mikkola. Fast mappings were proposed in Fouchard

(2004); Fouchard et al. (2005, 2006), where a detailed accuracy

and performance tests can also be found. Another line of improve-

ment was proposed by Breiter & Ratajczak (2005) (see also Breiter

& Ratajczak 2006) who suggested the use of non-canonical

Hamiltonian formalism. Their Lie–Poisson integrator was designed

for axially symmetric Galactic disc perturbations.

In the present paper, we report two complementary integrators

that extend and improve the methods presented in Fouchard (2004);

Fouchard et al. (2005, 2006) and Breiter & Ratajczak (2005). Both

methods belong to a class of Hamiltonian splitting methods: one

of them integrates the exact equations of motion, and the other one

handles a first-order normalized (averaged) system.

�E-mail: breiter@amu.edu.pl (SB); fouchard@imcce.fr (MF); astromek

@amu.edu.pl (RR); bori@moon.astro.amu.edu.pl (WB)

Using the terminology of McLachlan & Quispel (2002), a split-

ting method consists of three elements: partitioning the right-hand

sides into a sum few vector fields, solving the equations of motion

induced by each vector field,1 and combining these solutions to yield

an integrator. The last element (to a large extent independent of the

first two) is usually referred to as ‘composition’. Thus a splitting

method for a particular system necessarily involves some compo-

sition method responsible for its local truncation error, but it is the

partitioning that determines additional properties of the integrator.

Namely, if the system is Hamiltonian and each vector field remains

Hamiltonian, the integrator will conserve the symplectic or Poisson

structure of the flow regardless of the composition method applied.

As a side effect, the Hamiltonian function has no secular error apart

from round-off effects.

Sometimes a splitting method can be improved by adding an

extra stage known as a corrector. Derived from some combination

of the partitioned right-hand side terms, it does not increase the

power of step size in the local truncation error estimate, yet it may

effectively decrease the local error by introducing an extra factor

independent of the step size. For example, the symplectic correctors

may diminish the error of a Hamiltonian function in the situation

when one of the terms in a partitioned Hamiltonian is much smaller

than the other (Wisdom, Holman & Touma 1996; Laskar & Robutel

2001; McLachlan & Quispel 2002). Our first integrator (LARKS

– after the names of Laskar, Robutel, Kuustanheimo and Stiefel),

described in Section 2, employs the composition method and the

symplectic corrector of Laskar & Robutel (2001) in the framework

1 The solutions can be either exact or approximate, but we assume only the

former case in the present paper.
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of the Kuustanheimo–Stiefel (KS) variables. To a large extent, it

can be considered as a direct descendant of the T-REX method of

Breiter (1998).

The second method, presented in Section 3, integrates first-order

normalized equations of motion that no longer depend on the mean

anomaly. They are derived from a Hamiltonian function with a non-

canonical Lie–Poisson bracket. Thanks to the use of ‘vectorial ele-

ments’ (dimensionless Laplace vector and angular momentum vec-

tor), no singularities are met regardless of orbital eccentricity and

inclination. This approach already proved fruitful for the Galactic

disc problem (Breiter & Ratajczak 2005, 2006). The method will be

referred to as Lie-Poisson with Vectorial elements (LPV). Unlike

LARKS, the integrator is based on the partition of the Hamiltonian

into three terms of similar magnitude, thus the application of a cor-

rector is neither easy nor advantageous, so only usual symmetric

composition methods are applied.

Both integrators are also supplied with algorithms that allow the

propagation of the associated variational equations. This feature is

of great importance for distinguishing regular and chaotic orbits, be-

cause many of the chaos detectors rely on checking the exponential

growth of the variations vector.

Section 4 presents performance tests and resolves some technical

questions related to the step size choice.

2 R E G U L A R I Z E D S Y M P L E C T I C
I N T E G R ATO R

2.1 Equations of motion

2.1.1 Hamiltonian in Cartesian variables

Let us consider the motion of a comet in a right-handed heliocen-

tric reference frame Oxyz. The fundamental plane Oxy is parallel to

the Galactic disc and the axis Oz points towards the North Galactic

Pole. If we fix the orientation of the Ox axis such that at the initial

epoch t = 0 it is directed to the Galactic Centre, we will obtain

an explicitly time-dependent problem of the heliocentric Keplerian

motion perturbed by the tidal force of the Galaxy. The time depen-

dence comes from the orbital motion of the Sun around the Galactic

Centre. Assuming the circular orbit of the Sun, we can represent

the heliocentric motion of the Galactic Centre as a uniform rotation

with the angular rate �0 < 0. Thus, similar to Fouchard (2004), we

can assume the Hamiltonian function

H = H0 + H1 (1)

H0 = 1

2

(
X 2 + Y 2 + Z 2

) − μ

r
, (2)

H1 = 1

2

(
G1x2

1 + G2 y2
1 + G3z2

)
, (3)

where x1 and y1 are the projections of a comet radius vector r =
(x, y, z)T on to the direction towards the Galactic Centre and its

perpendicular

x1 = x cos �0t + y sin �0t,

y1 = −x sin �0t + y cos �0t .
(4)

The uppercase X, Y and Z stand for the momenta canonically con-

jugate to the respective lowercase coordinates.

The physical constants appearing in the Hamiltonian involve the

heliocentric gravitational parameter μ = G M� and parameters Gi

related to the Oort constants of our Galaxy. Following Levison,

Dones & Duncan (2001), we adopt

G2 = −G1 = 7.0706 × 10−16 yr−2,

G3 = 5.6530 × 10−15 yr−2,

�0 = −√
G2.

(5)

Introducing the first of equations (5) explicitly, we can rewrite H1

as

H1(x, y, z, t) = 1

2
G2

[
(y2 − x2)C − 2xyS

] + 1

2
G3z2, (6)

where

C = cos (2 �0t), S = sin (2 �0t). (7)

It is well known that in cometary problems one cannot expect to

meet moderate eccentricities of orbits; some kind of regularization

will become unavoidable if a fixed step integrator is to be applied.

One of the standard regularizing tools, successfully tested in celes-

tial mechanics over decades, is the application of the so-called KS

transformation that turns a Kepler problem into a harmonic oscilla-

tor at the expense of increasing the number of degrees of freedom

(Stiefel & Scheifele 1971). Out of numerous ways of settling the

KS variables in the canonical formalism, we choose the approach

of Deprit, Elipe & Ferrer (1994), warning readers that the labelling

of variables may differ from the one commonly repeated after the

Stiefel and Scheifele textbook.

2.1.2 KS variables

Leaving apart the in-depth quaternion interpretation of the KS trans-

formation given by Deprit et al. (1994), we restrict ourselves to pro-

viding the basic set of transformation formulae, treating the KS vari-

ables as a formal column vector. In the phase space of the KS coordi-

nates, u = (u0, u1, u2, u3)T and KS momenta U = (U0, U1, U2, U3)T,

the former are defined by means of the inverse transformation

x = (
u2

0 + u2
1 − u2

2 − u2
3

)
/α,

y = 2 (u1u2 + u0u3)/α,

z = 2 (u1u3 − u0u2)/α,

(8)

where α is an arbitrary parameter with a dimension of length. A

dimension raising transformation cannot be bijective, so the inverse

of (8) is to some extent arbitrary. Following Deprit et al. (1994), we

adopt

u =
√

α

2 (r + x)
(0, r + x, y, z)T , (9)

for x � 0, and

u =
√

α

2 (r − x)
(−z, y, r − x, 0)T , (10)

otherwise. A remarkable property of this transformation is that the

distance r becomes a quadratic function of ui , namely

r =
√

x2 + y2 + z2 = u2
0 + u2

1 + u2
2 + u2

3

α
= u2

α
. (11)

The momenta conjugate to u are defined as

U = 2

α

⎛⎜⎜⎜⎝
u0 X + u3Y − u2 Z

u1 X + u2Y + u3 Z

−u2 X + u1Y − u0 Z

−u3 X + u0Y + u1 Z

⎞⎟⎟⎟⎠ . (12)
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The inverse transformation, allowing the computation of R =
(X , Y , Z )T,

R = 1

2 r

⎛⎜⎝ u0U0 + u1U1 − u2U2 − u3U3

u3U0 + u2U1 + u1U2 + u0U3

−u2U0 + u3U1 − u0U2 + u1U3

⎞⎟⎠ , (13)

can be supplemented with the identity

u1U0 − u0U1 − u3U2 + u2U3 = 0, (14)

that may serve as one of the accuracy tests during numerical

integration.

In order to achieve the regularization without leaving the canon-

ical formalism, we have to change the independent variable from t
to a fictitious time s and consider the extended phase space of di-

mension 10, with a new pair of conjugate variables (u∗, U∗). Thus

in the extended set of canonical KS variables, the motion of a comet

is governed by the Hamiltonian function

M = 4 u2

α2

(
K0 + U ∗ + K1

) = 0, (15)

where K0 and K1 stand for H0 and H1, respectively, expressed in

terms of the extended KS variables set. The presented transformation

is univalent, hence the respective Hamiltonians will have different

functional forms, but equal values: H0 = K0,H1 = K1. Restricting

the motion to the manifold of M = 0 is of fundamental importance

to the canonical change of independent variable; in practical terms

we achieve it by setting

U ∗ = −K0 − K1, (16)

at the beginning of the numerical integration.2

Splitting the Hamiltonian function M into a sum of the principal

term M0 and a perturbation M1, we have

M0 = 1

2
U 2 + (4U ∗/α2) u2, (17)

M1 = 4 u2

α2
H1(x, y, z, t). (18)

We find it convenient to maintain H1 as a function of Carte-

sian coordinates and time, because the values of x, y, z can be

quickly computed from equations (8) and partial derivatives re-

quired in next sections are simple enough to provide compact

expressions:

(
∂r
∂u

)T

= 2

α

⎛⎜⎜⎝
u0 u3 −u2

u1 u2 u3

−u2 u1 −u0

−u3 u0 u1

⎞⎟⎟⎠ . (19)

Although nothing prohibits u∗ and t to differ by an additive constant,

we do not profit from this freedom and so we will use the symbol t
in most of instances instead of the formal u∗. In the next section, we

provide equations of motion generated by M0 and M1 alone; the

complete equations of motion can quickly be obtained by adding

the respective right-hand sides.

2 More details concerning this kind of Hamiltonian regularization can be

found in Szebehely (1967), Stiefel & Scheifele (1971) and Mikkola &

Wiegert (2002).

2.2 Canonical splitting method

2.2.1 Keplerian motion

The principal virtue of the KS variables consists in their ability of

transforming the Kepler problem into a harmonic oscillator. Indeed,

M0 leads to the equations of motion

du
ds

= ∂M0

∂U
= U , (20)

dU
ds

= −∂M0

∂u
= −(8 U ∗/α2) u, (21)

dt

ds
= ∂M0

∂U ∗ = 4 u2/α2, (22)

dU ∗

ds
= −∂M0

∂t
= 0. (23)

Equations (20) and (21) define a four-dimensional oscillator with a

frequency

ω = 2

√
2U ∗

α
, (24)

and equation (23) indicates that the frequency is constant. Equa-

tion (22) explains the meaning of the fictitious time s: we can rewrite

it as

ds

dt
= α

4 r
. (25)

Thus, supposing that we study Keplerian motion on an ellipse

with a semi-axis a, ds/dt equals to (α/4a) dE/d�, where E and

� are the eccentric and the mean anomaly, respectively. It means

that apart from a multiplier, the fictitious time s behaves like

eccentric anomaly, albeit the former is not an angle and can-

not be treated ‘modulo period’. Thanks to the introduction of

α, the fictitious time s has the dimension of time and if we

assume

α = 2 μ

|U ∗| , (26)

orbital periods in s and t will be equal in the elliptic motion.

It should be noted, however, that the oscillator defined by M0

has the frequency ω = n/2 (where n is the mean motion), i.e.

the Keplerian ellipse period in Cartesian coordinates is two times

shorter than the KS oscillator’s period in t. This fact is a direct

consequence of equations (8); by a simple analogy, the square

of a 2π periodic sine function is only π periodic. Thus, select-

ing the integration step, one has to bear in mind that one cy-

cle of the KS oscillator maps on two revolutions in the Cartesian

space.

For U∗ > 0, the map �0 representing the solution of equations

(20)–(23) can be directly quoted from Breiter (1998). If � is the

fictitious time-step, then

�0,� :

⎛⎜⎝ u

U

U ∗

⎞⎟⎠ →

⎛⎜⎝u cos ω� + Uω−1 sin ω�

−u ω sin ω� + U cos ω�

U ∗

⎞⎟⎠ . (27)

Additionally, if v = �0,� u and V = �0,�U are the final values of

variables,

�0,� : t → t + 2 �

α2

(
u2 + U 2

ω2

)
+ 2

uTU − vTV
α2ω2

. (28)
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One may easily check that the sum u2 + U 2ω−2 is invariant under

�0 and it can be replaced by v2 + V 2ω−2 in practical computations

of the Kepler equation (28).

It may happen, however, that U∗ < 0 and the motion is (at least

temporarily) hyperbolic. A simple modification of �0 in that case

amounts to taking

ω = 2

√−2 U ∗

α
, (29)

and replacing equations (27) and (28) by

�0,� :

⎛⎜⎝ u

U

U ∗

⎞⎟⎠ →

⎛⎜⎝u cosh ω� + Uω−1 sinh ω�

u ω sinh ω� + U cosh ω�

U ∗

⎞⎟⎠ , (30)

and

�0,� : t → t + 2 �

α2

(
u2 − U 2

ω2

)
− 2

uTU − vTV
α2ω2

. (31)

Similarly to the elliptic case, u2 − U 2/ω2 is invariant under �0.

We do not provide the complete formulation for U∗ = 0, be-

cause the probability of meeting this case is practically negligible.

Actually, using the SBAB or SBABC composition methods (see

Section 2.4), it is even not easy to create this case intentionally.

We only observe that for a parabolic motion the selection rule of α

obviously cannot be based on U∗ and then any choice, like α equal

to the osculating perihelion distance, is acceptable. The parabolic

solution is easily derivable from equations (20)–(23) that lead to

constant U, linear functions of s for u and the quadratic function of

s for t, when U∗ = 0.

2.2.2 Galactic tide

Hamiltonian M1 has a nice property of being independent on mo-

menta. Thus a half of the equations of motion have right-hand sides

equal to zero, and the remaining right-hand sides are constant:

du
ds

= ∂M1

∂U
= 0, (32)

dt

ds
= ∂M1

∂U ∗ = 0, (33)

dU
ds

= −∂M1

∂u
= −F (u, t), (34)

dU ∗

ds
= −∂M1

∂t
= −4 u2

α2

∂H1

∂t
= −F∗(u, t). (35)

Accordingly, all KS coordinates are constant, the physical time t
does not flow, and the momenta are subjected to a linear ‘kick’

�1,� :

⎛⎜⎜⎜⎝
u

t

U

U ∗

⎞⎟⎟⎟⎠ →

⎛⎜⎜⎜⎝
u

t

U − �F (u, t)

U ∗ − �F∗(u, t)

⎞⎟⎟⎟⎠ . (36)

Mixing Cartesian ad KS variables for the sake of brevity, we can

represent F and F∗ as

F = 8H1

α2
u + 4u2

α2

∂H1

∂u
(37)

F∗ = 4 u2

α2
�0 G2ξ3, (38)

where

∂H1

∂u
= −G2 ξ2

∂x

∂u
+ G2 ξ1

∂y

∂u
+ G3 z

∂z

∂u
ξ1 = yC − x S,

(39)

ξ2 = xC + yS,

ξ3 = (x2 − y2) S − 2 x y C,
(40)

∂x/∂u is the first column of the Jacobian matrix (19), and so on.

2.2.3 Symplectic corrector

One of the advantages offered by Laskar & Robutel (2001) inte-

grators is a simple definition of a symplectic corrector – an extra

stage that improves the accuracy in perturbed motion problems. The

symplectic corrector is defined as a solution of equations of motion

generated by

Mc = {{M0, M1} , M1} , (41)

where { , } is the canonical (or ‘symplectic’) Poisson bracket in the

phase space spanned by u, t, U, U ∗. Observing thatM0 is quadratic

in U and linear in U∗, we easily obtain

Mc(u, t) =
3∑

i=0

(
∂M1

∂ui

)2

= F 2. (42)

The general form of equations of motion derived from Mc is simple

du
ds

= ∂Mc

∂U
= 0, (43)

dt

ds
= ∂Mc

∂U ∗ = 0, (44)

dU j

ds
= −∂Mc

∂u j
= −2

(
∂F
∂u j

)
· F (u, t), (45)

dU ∗

ds
= −∂Mc

∂t
= −2

(
∂F
∂t

)
· F (u, t), (46)

and their solution is elementary, resulting in

�c,� :

⎛⎜⎜⎜⎝
u

t

U j

U ∗

⎞⎟⎟⎟⎠ →

⎛⎜⎜⎜⎜⎝
u

t

U j − 2 �

(
∂F
∂u j

)
· F

U ∗ − 2 �
(

∂F
∂t

) · F

⎞⎟⎟⎟⎟⎠ . (47)

In spite of a formally simple form, equations (47) involve rather

complicated expressions for the second derivatives of M1, because

∂F
∂u j

· F (u, t) =
3∑

i=0

∂2M1

∂ui∂u j

∂M1

∂ui
, (48)

∂F
∂t

· F (u, t) =
3∑

i=0

∂2M1

∂ui∂t

∂M1

∂ui
. (49)
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Galactic tide integrators 1155

The Hessian matrix of M1 can be represented as a sum

∂2M1

∂u2
= 8

α2

[
H1 I4 + u

(
∂H1

∂u

)T

+ ∂H1

∂u
uT

+ u2

2

∂2H1

∂u2

]
, (50)

where I4 is a 4×4 unit matrix, and xyT stands for the tensor product

with components [xyT]i j = xi y j . The Hessian of H1 is composed

of two matrices

∂2H1

∂u2
= 2

α
(G + A) . (51)

The matrix G is

G =

⎛⎜⎜⎜⎜⎝
−G2ξ2 0 −G3z G2ξ1

0 −G2ξ2 G2ξ1 G3z

−G3z G2ξ1 G2ξ2 0

G2ξ1 G3z 0 G2ξ2

⎞⎟⎟⎟⎟⎠ . (52)

The matrix A is symmetric, so only 10 of its elements have to be

specified; using explicitly the KS coordinates, we obtain

a11 = G3u2
2 − G2

[(
u2

0 − u2
3

)
C + 2 u0u3 S

]
,

a22 = G3u2
3 − G2

[(
u2

1 − u2
2

)
C + 2 u1u2 S

]
,

a33 = G3u2
0 + G2

[(
u2

1 − u2
2

)
C + 2 u1u2 S

]
,

a44 = G3u2
1 + G2

[(
u2

0 − u2
3

)
C + 2 u0u3 S

]
,

a12 = −G3u2u3

−G2 [(u0u1 − u2u3) C + (u0u2 + u1u3)S] ,

a13 = G3u0u2

+G2 [(u0u2 + u1u3) C − (u0u1 − u2u3)S] ,

a14 = −G3u1u2 + G2

[
2u0u3 C − (

u2
0 − u2

3

)
S
]
,

a23 = −G3u0u3 + G2

[
2u1u2 C − (

u2
1 − u2

2

)
S
]
,

a24 = G3u1u3

+G2 [(u0u2 + u1u3) C − (u0u1 − u2u3)S] ,

a34 = −G3u0u1

+G2 [(u0u1 − u2u3) C + (u0u2 + u1u3)S] .

(53)

Partial derivatives required in (49) are simpler:

∂2M1

∂u∂t
= 8�0G2

α2

(
ξ3u − u2 H

)
, (54)

where

H =

⎛⎜⎜⎜⎝
(u3x + u0 y) C + (u3 y − u0x) S

(u2x + u1 y) C + (u2 y − u1x) S

(u1x − u2 y) C + (u1 y + u2x) S

(u0x − u3 y) C + (u0 y + u3x) S

⎞⎟⎟⎟⎠ . (55)

At the first glimpse, one may hesitate if the cost of computing the

corrector is worth the gain in accuracy from the point of view of the

computation time. The doubts, however, will be quickly dismissed

when the tangent map is to be attached to the integrator. The next

section shows that the second derivatives presented above are also

required for the tangent map, hence in that case the corrector is

actually evaluated almost at no cost.

2.3 Tangent maps

Considering the sensitivity of motion to the initial conditions, either

for the chaos test or for the differential correction of orbits, one

has to know the evolution of the tangent vector δ describing an in-

finitesimal displacement with respect to the fiducial trajectory in the

phase space. Although δ is formally infinitesimal, it obeys homo-

geneous linear equations of motion (variational equations), which

means that we can multiply it by an arbitrary constant and use the

initial value of δ normalized to δ = 1. From the formal point of

view, we should integrate the linear system of variational equations

derived from the equations of motion generated by M; but this is

by no means a simple way – far more complicated than taking the

shortcut indicated by Mikkola & Innanen (1999) that amounts to

linearizing the maps �0 and �1. Thus we provide expressions of

‘tangent maps’ D�0 and D�1 that serve to propagate the tangent

vector δ simultaneously with the integration of u, U, t and U∗. As

a matter of fact, we should also provide a tangent map D�c, but

computing third derivatives of M does not seem attractive and we

cut the Gordian knot by neglecting the corrector’s influence on δ.

2.3.1 Keplerian tangent map

Differentiating equations (27), (28) and their hyperbolic counter-

parts, we obtain the tangent map D�0 as the propagation rules for

the tangent vectorδ. The initial values ofδwill be labelled δu, δU, δt
and δU∗; the values after the fictitious time-step � will be referred

to as δv, δV, δt ′ and δV∗. Thus δV∗ = δU∗, and

δv = (δu) c� + (δU )
s�

ω
+ (δω)

ω

(
V� − U

s�

ω

)
, (56)

δV = ∓(δu) ω s� + (δU ) c� ∓ (δω) (ωv� + us�) , (57)

δt ′ = (δt) + 4�

α2

[
u · (δu) ± U · (δU )

ω2
∓ (δω)

ω3
U 2

]
± 2

α2ω2
[(δu) · U + u · (δU ) − (δv) · V − v · (δV)]

∓ 4(δω)

α2ω3
(u · U − v · V ) , (58)

δω = ±4 (δU ∗)

α2ω
. (59)

If U∗ > 0, the upper signs should be taken in the above equations

and s� = sin ω �, c� = cos ω �. In the opposite case, s� = sinh ω

�, c� = cosh ω �, and the lower signs are to be adopted.

2.3.2 Tidal tangent map

Differentiating the galactic tide map (36), we obtain formally simple

expressions of the tangent map D�1

D�1,� :

⎛⎜⎜⎜⎝
δu

δt

δU

δU ∗

⎞⎟⎟⎟⎠ →

⎛⎜⎜⎜⎝
δu

δt

δU − �P

δU ∗ − � P∗

⎞⎟⎟⎟⎠ ,

(60)
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1156 S. Breiter et al.

where

P =
[

∂F
∂u

]
(δu) + (δt)

∂F
∂t

=
[

∂2M1

∂u2

]
(δu) + (δt)

[
∂2M1

∂u∂t

]
, (61)

P∗ =
[

∂F∗

∂u

]
(δu) + (δt)

∂F∗

∂t

= ∂2M1

∂u∂t
(δu) + (δt)

∂2M1

∂t2
. (62)

Most of the derivatives required for this tangent map can be found

in Section 2.2.3, except for

∂2M1

∂t2
= 8 r

α
G2 �2

0

[
(x2 − y2)C + 2 xy S

]
. (63)

2.3.3 Initial conditions for the tangent map

Choosing an appropriate initial direction of the variation vector is

important; most of all, one should avoid the direction of δ parallel

to the right-hand sides of equations of motion, because it leads

to underestimated values of the maximum Lyapunov exponent and

related chaos indicators (Barrio 2005). An optimum choice of initial

δ is orthogonal to the flow. For the LARKS integrator, we have

adopted a simplified approach, setting the variations orthogonal to

the Keplerian flow, i.e.

δu = −U ′ = 8α−2U ∗u,

δU = u′ = U,

δt = −(U ∗)′ = 0,

δU ∗ = t ′ = 4α−2u2.

(64)

2.4 Laskar–Robutel integrators

The composition methods of Laskar & Robutel (2001) differ from

usual recipes, because regardless of the number of ‘stages’ involved

in one step, they all remain second-order integrators according to

the formal estimates (in this context the term ‘high order’ used by

Laskar and Robutel is a bit misleading). However, if the Hamiltonian

has been split into a leading term and a perturbation having a small

parameter ε as a factor, the truncation error of the integrator is

max (ε2h3, εhm) where m is the number of stages involved in one

step. The second term of this sum is similar to classical composition

methods errors, and the first can be quite small for weakly perturbed

problems. At the expense of the ε2 h3 term in the error estimate, the

authors were able to avoid backward stages that degrade numerical

properties of usual composition methods. The use of a corrector

improves the integrator by reducing the truncation error: its first term

drops to ε2 h5. Following the recommendation of Laskar & Robutel

(2001), we have adopted their SBABC3 method as the optimum

choice. In this case a single step of LARKS with the step size h can

be written as

�h = �c,q ◦ �1,d1
◦ �0,c2

◦ �1,d2
◦ �0,c3

◦
◦�1,d2

◦ �0,c2
◦ �1,d1

◦ �c,q , (65)

where

d1 = h/12, d2 = (5/12) h,

c2 = (1/2 − √
5/10) h, c3 = h/

√
5,

q = −h3(13 − 5
√

5)/288.

(66)

However, this choice has not been made without numerical tests

involving other composition rules with and without correctors. The

results of our tests are given in Section 4.

The tangent map D�h is constructed similarly, but we have de-

cided to skip the correction part. There is no need to struggle for a

high accuracy of variations vector as far as we are interested only

in detecting its exponential growth. Thus

D�h = D�1,d1
◦ D�0,c2

◦ D�1,d2
◦ D�0,c3

◦
◦D�1,d2

◦ D�0,c2
◦ D�1,d1

. (67)

3 L I E – P O I S S O N I N T E G R ATO R F O R T H E
AV E R AG E D S Y S T E M

3.1 Equations of motion

The integrator presented in the previous section solves the equations

of motion in the fixed reference frame, where the radial component

of the Galactic tide is explicitly time-dependent. Our second method

can be more conveniently discussed in a rotating heliocentric refer-

ence frame Ox1y1z. The Ox1y1 plane remains parallel to the Galactic

disc, but this time Ox1 axis is directed towards the Galactic Centre

hence the frame rotates around the Oz axis with the angular rate �0.

If we assume the right-handed Ox1y1z system of axes and the axis

Oz remains directed towards the North Galactic Pole, the rotation

is clockwise, which implies �0 < 0. The Hamiltonian function for

a comet subjected to the Galactic tide in the rotating frame is given

by

H = H0 + H1, (68)

H0 = 1

2

(
X 2

1 + Y 2
1 + Z 2

) − μ(
x2

1 + y2
1 + z2

) 1
2

, (69)

H1 = �0 (y1 X1 − x1 Y1) + 1

2

(
G2

(
y2

1 − x2
1

) + G3 z2
)

. (70)

The first-order normalization ofHwith respect toH0 is equivalent

to averaging with respect to the mean anomaly � and leads to the

new Hamiltonian

H∗ = H∗
0 + H∗

1, (71)

H∗
0 = − μ

2 a
, (72)

H∗
1 = 1

2 π

∫ 2π

0

H1 d�, (73)

where the elliptic Keplerian motion is assumed to evaluate the

quadrature in (73). The averaged Hamiltonian H∗
1 attains the sim-

plest form if expressed in terms of the Laplace vector e and a scaled
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Galactic tide integrators 1157

angular momentum vector h. Their components are related to the

Keplerian orbit elements

e ≡

⎛⎜⎝e1

e2

e3

⎞⎟⎠ = e

(
cos ω cos � − c sin ω sin �

cos ω sin � + c sin ω cos �

s sin ω

)
, (74)

h ≡

⎛⎜⎝h1

h2

h3

⎞⎟⎠ =
√

1 − e2

(
s sin �

−s cos �

c

)
, (75)

where e is the eccentricity, s = sin I, c = cos I are the sine and

cosine of the inclination, ω is the argument of perihelion and �

stands for the longitude of the ascending node with respect to the

Galactic Centre. Recalling that in the rotating frame momenta X1

and Y1 are not equal to velocities ẋ1 and ẏ1 (the fact that can be

immediately deduced from the canonical equations ẋ1 = ∂H/∂X1

and ẏ1 = ∂H/∂Y1), we assume that the usual transformation rules

between Keplerian elements and position/velocity are used with the

velocities directly substituted by the momenta. With this approach

the Keplerian motion in the rotating frame is described by means of

orbital elements that are all constant except for � which reflects the

frame rotation (�̇ = −�0).

Using the ‘vectorial elements’ h and e, and letting n to stand for

n =
√

μ

a3
, (76)

we obtain [Correction added after online publication 2007 April 13:

in the first line of equation (77), a redundant pair of right square

brackets appeared after 1
4

and have been removed.]

H∗
1 = −�0 n a2 h3 + 1

4
a2

[
G2

(
5 e2

2 − 5 e2
1 − h2

2 + h2
1

) +
+G3

(
1 − e2 + 5 e2

3 − h2
3

)]
. (77)

Strictly speaking, the Hamiltonian H∗ generates the motion of the

mean variables in the linear approximation. Thus, using the solution

generated by H∗ we neglect short-period perturbations depending

on � that are proportional to the small parameter ε ≈ H1/H0, and

we commit an error of the order of ε2 in the evolution of the mean

elements. The influence of this approximation will be discussed

later; meanwhile we accept the first-order correct, mean elements

that liberate us from discussing the mean anomaly � and lead to the

constant value of the mean semimajor axis a. As a consequence,

we can drop constant terms from H∗ and change the independent

variable from time t to τ 1, such that

dτ1

dt
= G3

n
. (78)

Using the usual approximation �0 = −√
G2, we introduce a dimen-

sionless parameter

ν = �2
0

G3

= G2

G3

, (79)

and thus we replaceH∗ by [Correction added after online publication

2007 April 13: in the first line of equation (80), h2
1 + was omitted

after the first 1
4

and an extra + symbol appeared at the end of the

line.]

H� = n a2

[
5

4
e2

3 + 1

4
h2

1 + 1

4
h2

2

+ ν

(
−5

4
e2

1 + 5

4
e2

2 + 1

4
h2

1 − 1

4
h2

2 − n �−1
0 h3

)]
. (80)

The vectorial elements can be used to create a Lie–Poisson bracket

( f ; g) ≡
(

∂ f

∂v

)T

J(v)
∂g

∂v
, (81)

with the structure matrix

J(v) =
(

ĥ ê
ê ĥ

)
. (82)

The ‘hat map’ of any vector x = (x1, x2, x3)T is defined as

x̂ =
(

0 −x3 x2

x3 0 −x1

−x2 x1 0

)
. (83)

This matrix is known as the vector product matrix, because

x̂ y = x × y. (84)

Using the Lie–Poisson bracket (81), we can write equations of mo-

tion for the vectorial elements

v = (h1, h2, h3, e1, e2, e3)T, (85)

in the non-canonical Hamiltonian form

v′ = (v; K), (86)

where derivatives with respect to τ 1 are marked by the ‘prime’

symbol and the scaled Hamiltonian

K = − H�

n a2
. (87)

Writing equations (86) explicitly, we obtain

h′
1 = −5

2
(1 − ν) e2 e3 + 1 − ν

2
h2 h3 + n ν

�0

h2, (88)

h′
2 = 5

2
(1 + ν) e1 e3 − 1 + ν

2
h1 h3 − n ν

�0

h1, (89)

h′
3 = ν (h1 h2 − 5 e1 e2), (90)

e′
1 = −4 + ν

2
h2 e3 + 5

2
ν h3 e2 + n ν

�0

e2, (91)

e′
2 = 4 − ν

2
h1 e3 + 5

2
ν h3 e1 − n ν

�0

e1, (92)

e′
3 = 1 − 4 ν

2
h1 e2 − 1 + 4 ν

2
h2 e1. (93)

Substituting ν = 0, the readers may recover the correct form of the

Galactic disc tide equations published in Breiter & Ratajczak (2005,

2006). Equations (88)–(93) admit three integrals of motion: apart

from the usual conservation of the time-independent Hamiltonian

K = constant, two geometrical constraints

h · e = 0, h2 + e2 = 1, (94)

are respected thanks to the properties of the Lie–Poisson bracket

(81). Indeed, both quadratic forms are the Casimir functions of our

bracket, i.e.

(h · e; f ) = (h2 + e2; f ) = 0, (95)

for any function f, hence for f = K in particular.
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1158 S. Breiter et al.

3.2 Lie–Poisson splitting method

HamiltonianK can be split into a sum of three non-commuting terms

K = K1 + K2 + K3, (96)

K1 = 5

4
ν e2

1 − 1 + ν

4
h2

1, (97)

K2 = −5

4
ν e2

2 − 1 − ν

4
h2

2, (98)

K3 = −5

4
e2

3 + n ν

�0

h3. (99)

Each of the terms Ki is in turn a sum of two components that com-

mute, because it can be easily verified that (ej ; hj ) = 0 for all j ∈ {1,

2, 3}. In these circumstances, we can approximate the real solution

v(τ ) = exp (τ L) v(0), (100)

where L f ≡ ( f ; K), using a composition of maps

�i,τ : v(0) → v(τ ) = exp (τ Li ) v(0), (101)

where Li f ≡ ( f ; Ki ), for i = 1, 2, 3. Each �i,τ is in turn a com-

position of two maps

�i,τ = Ei,τ ◦ Hi,τ = Hi,τ ◦ Ei,τ , (102)

generated by the ei and hi related terms of Ki .

3.2.1 The contribution of K1

The two terms of K1 generate equations of motion

v′ =
(
v;

5

4
ν e2

1

)
= 5

2
e1 ν

(
0 Y1

Y1 0

)
v, (103)

and

v′ =
(
v; −1

4
(1 + ν) h2

1

)
= −1

2
h1 (1 + ν)

(
Y1 0

0 Y1

)
v,

(104)

where

Y1 =

⎛⎜⎝0 0 0

0 0 1

0 −1 0

⎞⎟⎠ . (105)

Introducing

ci j = cos ψi j , si j = sin ψi j , (106)

we can write their solutions as

E1,τ : v →

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1

h2c11 + e3s11

h3c11 − e2s11

e1

e2c11 + h3s11

e3c11 − h2s11

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (107)

with

ψ11 = 5

2
e1 ν τ, (108)

and

H1,τ : v →

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1

h2c12 − h3s12

h3c12 + h2s12

e1

e2c12 − e3s12

e3c12 + e2s12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (109)

where

ψ12 = 1

2
(1 + ν) h1 τ. (110)

The composition of these two maps results in

�1,τ : v →
(

M1 N1

N1 M1

)
v, (111)

where

M1 =

⎛⎜⎝1 0 0

0 c11c12 −c11s12

0 c11s12 c11c12

⎞⎟⎠ , (112)

N1 =

⎛⎜⎝0 0 0

0 s11s12 s11c12

0 −s11c12 s11s12

⎞⎟⎠ . (113)

3.2.2 The contribution of K2

The equations of motion derived from the two terms of K2 are

v′ =
(
v; −5

4
ν e2

2

)
= 5

2
ν e2

(
0 Y2

Y2 0

)
v, (114)

and

v′ =
(
v; −1

4
(1 − ν) h2

2

)
= 1

2
(1 − ν) h2

(
Y2 0

0 Y2

)
v, (115)

where

Y2 =

⎛⎜⎝ 0 0 1

0 0 0

−1 0 0

⎞⎟⎠ . (116)

Their solutions are

E2,τ : v →

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1c21 + e3s21

h2

h3c21 − e1s21

e1c21 + h3s21

e2

e3c21 − h1s21

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (117)

where

ψ21 = 5

2
ν e2 τ, (118)
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Galactic tide integrators 1159

and

H2,τ : v →

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1c22 − h3s22

h2

h3c22 + h1s22

e1c22 − e3s22

e2

e3c22 + e1s22

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (119)

where

ψ22 = − h2 (1 − ν)

2
τ. (120)

Composing the two maps, we obtain

�2,τ : v →
(

M2 N2

N2 M2

)
v, (121)

where

M2 =

⎛⎜⎝c21c22 0 −c21s22

0 1 0

c21s22 0 c21c22

⎞⎟⎠ , (122)

N2 =

⎛⎜⎝ s21s22 0 c22s21

0 0 0

−c22s21 0 s21s22

⎞⎟⎠ . (123)

3.2.3 The contribution of K3

The equations of motion derived from the two terms of K3 are

v′ =
(
v; −5

4
e2

3

)
= 5

2
e3

(
0 Y3

Y3 0

)
v, (124)

and

v′ = (
v; h3 n ν �−1

0

) = −n ν

�0

(
Y3 0

0 Y3

)
v, (125)

where

Y3 =

⎛⎜⎝0 −1 0

1 0 0

0 0 0

⎞⎟⎠ . (126)

Their solutions are

E3,τ : v →

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1c31 − e2s31

h2c31 + e1s31

h3

e1c31 − h2s31

e2c31 + h1s31

e3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (127)

where

ψ31 = 5

2
e3 τ, (128)

and

H3,τ : v →

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1c32 + h2s32

h2c32 − h1s32

h3

e1c32 + e2s32

e2c32 − e1s32

e3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (129)

where

ψ32 = n ν

�0

τ. (130)

Composing the two maps, we obtain

�3,τ : v →
(

M3 N3

N3 M3

)
v, (131)

where

M3 =

⎛⎜⎝ c31c32 c31s32 0

−c31s32 c31c32 0

0 0 1

⎞⎟⎠ , (132)

N3 =

⎛⎜⎝s31s32 −c32s31 0

c32s31 s31s32 0

0 0 0

⎞⎟⎠ . (133)

3.3 Tangent map

In order to follow the evolution of a tangent vector δ, we linearize

the maps �i,τ , obtaining

D�i,τ : δ →
(

Mi Ni

Ni Mi

)
δ + (δi+3Qi,1 + δiQi,2)v, (134)

where

Qi,1 = ∂ψi1

∂ei

∂

∂ψi1

(
Mi Ni

Ni Mi

)
, (135)

and

Qi,2 = ∂ψi2

∂hi

∂

∂ψi2

(
Mi Ni

Ni Mi

)
. (136)

The resulting expressions are easy to derive (even by hand), so we

do not quote them explicitly.

Choosing the initial value of the tangent vector δ is a more subtle

task for the Lie–Poisson system than it was for the canonical KS

integrator. Not only we want to set up δ orthogonal to the flow, i.e.

δ · (v; K) = 0, (137)

but we also aim at respecting the properties (94), which means

δ · v = 0, (138)

δ1 e1 + δ2 e2 + δ3 e3 = −δ4 h1 − δ5 h2 − δ6 h3. (139)

Let us select

δ =
(

h × (h; K) + e × (e; K)

h × (e; K) + e × (h; K)

)
. (140)

Recalling the definition of the Lie–Poisson bracket (81), one can

easily verify that regardless of the form of K this choice satisfies all

three requests: (137), (138) and (139).
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1160 S. Breiter et al.

3.4 Higher order methods. General properties

The composition methods of Laskar & Robutel (2001) cannot be

used for our Lie–Poisson splitting method, because the Hamilto-

nian function has been partitioned into three terms. Moreover, none

of the terms can be qualified as a small perturbation. In these circum-

stances, the principal building block can be a ‘generalized leapfrog’

�� = �1,�/2 ◦ �2,�/2 ◦ �3,� ◦ �2,�/2 ◦ �1,�/2. (141)

This LPV2 method is a second-order method with a local truncation

error proportional to the cube of the step size �3. A similar com-

position method can be applied to the tangent map, with all � in

(141) replaced by D�. Although we use LPV2 as a final product in

this paper, it can be used as a building block for higher order meth-

ods. A collection of appropriate composition rules can be found in

McLachlan & Quispel (2002).

4 N U M E R I C A L T E S T S

4.1 Laskar–Robutel composition methods

Our final choice of BABC3 method of Laskar & Robutel (2001) in

LARKS has been the result of a series of accuracy tests involving

various BABN (without corrector) and BABCN (with corrector)

composition rules for N = 1, 2, 3, 4. As the accuracy measure, we

used the conservation of the time-independent Hamiltonian function

(68), reflected in the relative error parameter, i.e. the maximal error

along the trajectories given by

E(t) = max
0�τ�t

∣∣∣∣H(τ ) − H(t0)

H(t0)

∣∣∣∣ . (142)

Figure 1. Relative error E of the Hamiltonian over 500 orbital periods versus the number of steps per period (left) and the computational time (right) for a

30 000 au comet (top) and a 50 000 au comet (bottom). Black curves correspond to integrators without corrector, grey curves – integrators with corrector.

In principle, the truncation error of the Hamiltonian function in

splitting methods should be proportional to the local truncation error

of variables divided by the first power of step size.

Two fictitious comets were studied: one with a0 = 30 000 au, and

one with the initial semi-axis a0 = 50 000 au. The remaining orbital

elements were e0 = 0.1, i0 = 80◦ and ω0 = 110◦; both the ascending

node longitude and the mean anomaly were set to 0. The motion of

the test bodies was integrated over 500 orbital periods, with the time-

steps corresponding approximately to P0/k, where P0 is the initial

orbital period of the comet and for 2 � k � 1000. Orbital evolution

of the two test bodies is different: the one with a smaller semi-axis

reached the maximum eccentricity e ≈ 0.22, whereas the osculating

eccentricity of the second body was periodically reaching e ≈ 0.98.

Using the maximum values of the ratio |H1/H0| to estimate ε, we

found ε ≈ 0.01 and ε ≈ 0.04 for the two comets, respectively. The

ratio of these values is 0.25, in a good agreement with the rule of

thumb ε ∝ a3 that leads to the ratio (3 × 104/5 × 104)3 ≈ 0.22.

The error values of different composition methods versus the

number of time-step per orbital period, and those versus the com-

putational time needed for each integration are shown in Fig. 1.

Inspecting the step size dependence of various methods, we find

three characteristic slopes present to the left of Fig. 1; they refer

to the errors of the Hamiltonian proportional to N−2 (all BABs and

BABC1), or N−4 (BABC2, BABC3 and BABC4) for both orbits.

These features indicate that all uncorrected integrators are indeed

second-order methods, although BAB1 has the error of the Hamilto-

nian proportional to �2, whereas remaining methods have the error

term in the form ε�2, where � is the time-step and ε the ratio of the

perturbing term to the Keplerian Hamiltonian. Obviously, adding

corrector to BAB1 is useless, because suppressing the ε�2 term
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has no influence on the results. Other integrators are successfully

upgraded by corrector, attaining the ε2�4 error in good agreement

with the formal estimates of Laskar & Robutel (2001).

Considering only the models with corrector, we note in Fig. 1 that

BABC3 and BABC4 have almost the same accuracy and computa-

tion time. In these circumstances, we choose BABC3 as the method

with less intermediate stages.

4.2 Hamiltonian mapping versus new integrators

Let us compare the efficiency of the regularized symplectic integra-

tors with the Hamiltonian mappings introduced in Fouchard (2004)

and developed in Fouchard et al. (2005, 2006). The latter are built

as the Taylor series solution of the canonical equations of motion

averaged with respect to the comet’s mean anomaly. The final model

which is described in Fouchard et al. (2006) will be referred to as

the MAPP model.

We have also programmed a symplectic integrator using a similar

fictitious time as LARKS, but working in Cartesian coordinates and

momenta. This MIKLAR (Mikkola–Laskar–Robutel) code uses the

recipes compiled from Mikkola (1997), Preto & Tremaine (1999),

Mikkola & Wiegert (2002) and Mikkola, Palmer & Hashida (2002).

It is based on the Hamiltonian function

N = r
(
H(x, y, z, t, X , Y , Z ) + X∗) = 0, (143)

where H is given by equations (1)–(7), split into the Keplerian

part and the perturbation. The extended phase space has a lower

dimension than in KS variables (8 as compared to 10), but the ‘exact

leapfrog’ (Preto & Tremaine 1999; Mikkola & Wiegert 2002) used

in the Keplerian map is computationally more costly than in the

KS case. The repetition of the tests for various Laskar–Robutel

composition methods that are discussed in Section 4.1 resulted in the

results very similar to LARKS. The accuracy curves for MIKLAR

occurred to be very close to their LARKS counterparts shown in

Fig. 1, with the agreement on the level of few percents. One may

conclude that, at least in the problem discussed here, it is the time

regularization that plays a fundamental role; using the KS variables

or the Cartesian coordinates is merely a question of an arbitrary

choice. In these circumstances, we choose the LARKS integrator.

4.2.1 Test problem

In order to compare the reliability and speed of the integrators,

we performed the following experiment. 400 000 of initial orbital

elements were randomly chosen in a specified range, under the con-

dition that their respective distribution is uniform, i.e.:

(i) the initial semimajor axes are in the range 3000 � a0 �
105 au, such as their distribution is uniform in log10 a0;

(ii) the initial eccentricity is in the range 0 � e0 � 0.9999, with

a uniform distribution;

(iii) the initial inclination i0 is such that −1 � cos i0 � 1, with a

uniform distribution;

(iv) the initial argument of the perihelion, the longitude of the

ascending node, and the initial mean anomaly (where needed) in

the range from 0 to 2π, with a uniform distribution.

Using this set of elements, we integrated the equations over one

cometary period using LARKS, MIKLAR, LPV2, MAPP and con-

fronting the results with the ones obtained by the Radau–Everhart

RA15 integrator of the order of 15 (Everhart 1985) with the auto-

matic step size choice imposed by LL = 12. The relative error in

comet’s position Ep was defined as

Ep =
∣∣∣∣qmod − qR

q0

∣∣∣∣, (144)

where qmod, and qR denote the value of the perihelion distance at

the end of the integration of one period computed by the tested

integrator and by the RA15, respectively, and q0 is the initial value

of the perihelion distance.

Then, the e0–log10 a0 plane is divided into 60 × 70 cells. In each

cell, we record the maximum value Emax reached by the error Ep for

the initial conditions belonging to the cell.

4.2.2 LARKS step size choice

As we know from Fig. 1, the Hamiltonian error of LARKS, based

on the BABC3 composition, is proportional to ε2�4. Observing that

ε ∝ a3, where a is the semimajor axis of a comet, we look for the

step size selection rule that renders a similar precision for a wide

range of initial conditions. This can be achieved if the product

K = ε2�4, (145)

has similar values for all comets to be studied. Thus, finding some

optimum step size �o for a given semi-axis ao, and then launching

the integration for a different semi-axis a1, we adjust the step size

and use

�1 = �o (
ao

a1

)3/2. (146)

In the test described in this section, we set �o as 1/20 of the

Keplerian period implied by ao = 50 000 au and adjusted the step

according to (146) for other orbits. However, in order to avoid nu-

merical resonance between the step size and orbital period (Wisdom

& Holman 1992), we do not use the step size larger than 1/20 of

the Keplerian period, even if it might result from equation (146).

4.2.3 Stop time for LARKS

Fictitious time τ as the independent variable is an inevitable point of

the KS variables regularization. However, what if we aim to obtain

the state of a comet at some particular final epoch of the physical

time t? This problem appeared in our tests, because we wanted to

stop the integration as close as possible to the real orbital period of

the comet Tf. Let (up, U p) and tp be the KS variables and physical

time before some step, and (ua , Ua) and ta – after this step. We

stopped the integration as soon as ta � T f. Then, we performed an

additional step from the closest position to final one using a fictitious

time-step equal to �(T f − tc)/(ta − ti ), where � is the previous step

size and tc = tp or ta , depending on which epoch was closer to the

final one. After this stage, we used the approximate rule

� ≈ α2

4 u2
(Tf − t),

iterated until |T f − t| < 1 yr. Such precision is generally obtained

within two iterations; consequently the computational cost needed

to reach to correct final position was negligible.

4.2.4 Final results

The results obtained for the three models are shown in Fig. 2. The

MAPP and the LPV2 models, both used with a step size equal to

the unperturbed Keplerian period, are equivalent as the accuracy is
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Figure 2. Maximum error Ep (see equation 144) in each cell of the e0–a0 plane for the models MAPP (left), LPV2 (middle) and LARKS (right). The solid

line curves correspond to Ep = 0.01 and the dotted curves are the best fits of the level curves.

concerned. Indeed, the best analytical fit of the level curve Ep =
0.01 is given by

ac = 104.748±0.004(1 − e)0.182±0.006, (147)

for the MAPP model and,

ac = 104.751±0.003(1 − e)0.185±0.005, (148)

for the LPV2 model. These two equations may be considered as

identical within the error bounds of the exponents.

For both models the error is essentially due to the averaging of the

equations of motion with respect to the mean anomaly. Conversely,

the LARKS method is highly reliable in the whole phase-space

domain under study, since the error never exceeds 0.01. The effect

of the time-step selection rule (146) is clearly visible above a0 =
50 000 au; the reliability of LARKS is almost conserved when a0

increases.

Speaking about the computation times required to perform all the

integrations, the MAPP, LPV2 and LARKS needed 5.5, 1.8 and 75

s, whereas the RA15 integration took 1820 s. Consequently, LPV2

is three times faster than MAPP, and almost 40 times faster than

LARKS. All the timing tests were performed without the propaga-

tion of the variations vector. Including the tangent maps doubles the

computation time for LARKS and MIKLAR with SBABC3 (factors

of 2.4 and 2.2, respectively), due to the computation of the tangent

Kepler maps (four times per step) and of the tangent perturbation

maps (five times per step instead of two usually required for the

corrector). The difference in computation time with and without the

propagation of variations for LPV2 is smaller (factor of 1.7), thanks

to the simplicity of the tangent maps expressions. The difference is

even smaller for MAPP (about 1.01) because, based on the Taylor

series, it evaluates the Jacobian of the right-hand sides anyway.

5 C O N C L U S I O N S

The two integrators presented in this paper are fast and reliable.

Their application range is complementary in two aspects. First,

according to the results of Section 4.2.4, we can use LPV2 be-

low the Ep = 0.01 level curve (or its analytical fit given by equa-

tion 148), and LARKS above this level curve. This aggregate allows

a fast simulation of numerous cometary samples within the assumed

1 per cent accuracy bound. The integrators are also complementary,

because if we generate two maps of a chaos indicator values (one

with LARKS, and one with LPV), their comparison will immedi-

ately show which chaotic zones are due to secular resonances and

which come from the mean motion resonance. The results of such

studies will be published in a separate paper. We can already an-

nounce that the results of our simulations using the new tools are

coherent with that of Brasser (2001).
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