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Abstract. The purpose of this paper is to improve the modelization of the rotational mixing which occurs in stellar radiation
zones, through the combined action of the thermally driven meridional circulation and of the turbulence generated by the shear
of differential rotation. The turbulence is assumed to be anisotropic, due to the stratification, with stronger transport in the
horizontal directions than in the vertical. The main difference with the former treatments by Zahn (1992, A&A, 265, 115)
and Maeder & Zahn (1998, A&A, 334, 1000) is that we expand here the departures from spherical symmetry to higher order,
and include explicitly the differential rotation in latitude, to first order. This allows us to treat simultaneously the bulk of a
radiation zone and its tachocline(s). Moreover, we take fully into account the non-stationarity of the problem, which will enable
us to tackle the rapid phases of evolution. The system of partial differential equations, which govern the transport of angular
momentum, heat and chemical elements, is written in a form which makes it ready to implement in a stellar evolution code.
Here the effect of a magnetic field is deliberately ignored; it will be included in forthcoming papers.
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1. Introduction – Motivation

In rotating stars, radiation zones are generally not in radiative equilibrium, as was shown by Von Zeipel (1924). Eddington
(1925) and Vogt (1925) concluded that this thermal imbalance drives a large-scale meridional circulation, which was described
in detail by Sweet (1950) for a given rotation law. Mestel (1953) discussed the role of composition inhomogeneities, which build
up through the nuclear burning of hydrogen; he showed that they would slow down the circulation, and possibly prevent any
mixing. Partly for this reason, rotational mixing was largely ignored in further work on stellar evolution. The next significant step
was made by Busse (1982) who showed that angular momentum would be advected in such a way as to achieve a state of zero
circulation, at least in an non-evolving, inviscid star with no stress applied to its surface.

The subject has been re-examined in Zahn (1992), who assumed that hydrodynamical instabilities due to the shear of differ-
ential rotation would enforce a rotation law with much larger variation in the vertical than in the horizontal direction. With such
“shellular” rotation, the problem reduces to one dimension (or rather 1.5 dimension, since departures from spherical symmetry
are taken in account), and this renders it much more tractable. In particular one can then treat consistently the redistribution of an-
gular momentum through the meridional circulation, and thus its feedback on the rotation profile, while preserving its advective
nature. This makes it possible to prove that the boundary condition applied at the surface on the angular momentum flux plays a
crucial role. In a star which loses angular momentum through a wind, the meridional circulation is enforced by the requirement
of transporting this momentum to the surface. On the contrary, when the star loses no angular momentum, it relaxes to a state
where the advection of momentum is balanced by its transport through turbulent motions. Thereafter this treatment was extended
to inhomogeneous stars, with a general equation of state, and partly adapted to phases of fast stellar evolution (Maeder & Zahn
1998).

The first evolutionary sequence calculated according to these prescriptions was that of a 9 M� star (Talon et al. 1997); it was
followed by extensive grids of models built by Meynet & Maeder (2000), who refined the prescription for the loss of angular
momentum by taking into account the latitudinal variation of the wind. For massive stars, these models are in better agreement
with observational data than models without rotational mixing: they account for the observed surface composition, and they
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predict the correct ratio between red and blue supergiants observed in open clusters and in the Magellanic clouds (Maeder &
Meynet 2001). They also explain the absence of light elements depletion on the blue side of the Li dip, as shown by Talon
& Charbonnel (1998). But they fail to correctly reproduce the flat rotation profile in the radiative interior of solar-type stars
(Mathias & Zahn 1997). In such stars, which are slow rotators, other physical processes must therefore contribute to the transport
of angular momentum; the most plausible candidates are either magnetic stresses, as advocated already by Mestel (1953), or
internal gravity waves emitted at the interface with convection zones (Talon et al. 2002; Talon & Charbonnel 2003).

The purpose of the present paper is to improve the modeling of rotational mixing, in particular during the phases of fast stellar
evolution, when steep vertical gradients develop, both of angular velocity and of chemical composition. To achieve this, our aim
is threefold:

– we extend the linear expansion of all variables to higher order spherical harmonics, in order to capture the tachocline circu-
lation which is induced in its vicinity by the differential rotation of a convection zone;

– for the same reason, we treat explicitly the departure from shellular rotation, in the linear approximation;
– we retain all time derivatives, except those describing the relaxation to hydrostatic and geostrophic balance, in order to better

resolve the phases of fast stellar evolution.

In forthcoming papers, we shall introduce a magnetic field, and examine its impact on the thermally driven circulation.

2. Main assumptions

Our treatment is based on the assumption that the rotating star is only weakly two-dimensional, and this for two reasons. The first
is that the rotation rate is sufficiently moderate to allow the centrifugal force to be considered as a perturbation, compared to the
gravitational field. The second reason rests on the conjecture that the differential rotation induced by the meridional circulation
gives rise to turbulent motions which are strongly anisotropic due to the stable stratification, with much stronger transport in the
horizontal directions than in the vertical: i.e. νv � νh and Dv � Dh respectively for the turbulent viscosity and diffusivity. Such
anisotropic turbulence is observed in the Earth’s atmosphere and oceans; in a star we expect it to smooth the horizontal variations
of angular velocity and of chemical composition, a property we shall invoke to discard certain non-linear terms. The prescriptions
to be used for these turbulent diffusivities are discussed and updated in a companion paper (Mathis et al. 2004).

We thus consider an axisymmetric star, and assume that the horizontal variations of all quantities are small and smooth enough
to allow their linearization and their expansion in a modest number of spherical harmonics Pl(cos θ). As reference surface, we
chose either the sphere or the isobar, and write all scalar quantities either as

X(r, θ) = X0(r) +
∑

l

X̂l(r)Pl (cos θ) (1)

or

X(P, θ) = X(P) +
∑
l>0

X̃l(P)Pl (cos θ) . (2)

Let us establish the relation between those two modal expansions. We expand the pressure around the sphere as:

P(r, θ) = P0(r) +
∑
l>0

P̂l(r)Pl (cos θ) , (3)

and introduce the radial coordinate of the isobar

rP(r, θ) = r +
∑
l>0

ξl(r)Pl(cos θ), (4)

where r is the mean value of the radius of an isobar. Taking the Taylor expansion of P to first order, we have:

P

r +∑
l>0

ξl(r)Pl(cos θ), θ

 = P0(r) +
∑
l>0

P̂l(r)Pl(cos θ) +

(
dP0

dr

)∑
l>0

ξl(r)Pl(cos θ), (5)

and since by definition the pressure is constant on the isobar, we conclude that

ξl(r) = −
P̂l(r)

dP0/dr
· (6)

If we apply the same procedure to any other variable X, we get

X

r +∑
l>0

ξl(r)Pl(cos θ), θ

 = X0(r) +
∑
l>0

[
X̂l(r) −

(
dX0

dP0

)
P̂l(r)

]
Pl(cos θ) (7)

and therefore

X̃l(r) = X̂l(r) −
(

dX0

dP0

)
P̂l(r). (8)

This relation will serve below in Sect. 5.1 to calculate the effective gravity.
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3. Transport of angular momentum

We start from the momentum equation

ρ [∂tV + (V · ∇) V] = −∇P − ρ∇φ + ∇ · ||τ|| (9)

where ρ is the density, φ the gravitational potential, and ||τ|| represents the turbulent stresses. The macroscopic velocity field V
is the sum of a zonal flow with angular velocity Ω(r, θ) and a meridional flowU(r, θ):

V = r sin θΩ(r, θ) eϕ +U(r, θ). (10)

The latter can be split into a spherically symmetric part, which represents the contraction or dilation of the star during its
evolution, plus the meridional circulation

U = ṙ er +UM(r, θ), (11)

which we expand in spherical functions

UM =
∑
l>0

[
Ul(r)Pl (cos θ) er + Vl(r)

dPl(cos θ)
dθ

eθ

]
. (12)

Using the continuity equation in the anelastic approximation, i.e. ∇ · (ρUM) = 0, we obtain the following relation between Ul(r)
and Vl(r):

Vl =
1

l(l + 1)ρr
d
dr

(
ρr2Ul

)
. (13)

Making again use of the continuity equation, the azimuthal component of (9) can be written as an advection/diffusion equation
for the angular momentum:

ρ
d
dt

(
r2 sin2 θΩ

)
+ ∇ ·

(
ρr2 sin2 θΩUM

)
=

sin2 θ

r2
∂r

(
ρνvr4∂rΩ

)
+

1
sin θ
∂θ
(
ρνh sin3 θ ∂θΩ

)
, (14)

where as in Zahn (1992) we assume that the effect of the turbulent stresses on the large scale flow are adequately described by an
anisotropic eddy viscosity, whose components are νv and νh respectively in the vertical and horizontal directions. As discussed in
Mathis et al. (2004), they act to reduce the cause of turbulence, as observed in laboratory experiments of rotating flows, namely
here the vertical and horizontal gradients of angular velocity. This explains why the respective fluxes of angular momentum
contain only these gradients, in contrast with the treatment of Kippenhahn (1963), who considered the effect of an imposed
anisotropic turbulence, due to thermal convection; in that case the rotation becomes non-uniform, as is actually observed in the
solar convection zone. Note the introduction of the Lagrangian time-derivative d/dt, meaning that the radial coordinate r is the
mean radius of the layer (either sphere or isobar) which encloses the mass Mr , with dMr = 4πρr2dr.

The form of Eq. (14) incites to expand the angular velocity as

Ω(r, θ) = Ω(r) + Ω̂(r, θ) = Ω(r) +
∑
l>0

Ωl(r) Ql(θ), (15)

with the horizontal average being defined as

Ω(r) =

∫ π
0
Ω(r, θ) sin3 θ dθ∫ π

0
sin3 θ dθ

, (16)

and where the horizontal functions Ql(θ) satisfy the orthogonality condition∫ π
0

Ql(θ) sin3 θ dθ∫ π
0

sin3 θ dθ
= 0. (17)

These horizontal functions are readily identified:

Ql(θ) = Pl (cos θ) − Il with Il =

∫ π
0

Pl(cos θ) sin3 θ dθ∫ π
0

sin3 θ dθ
= δl,0 −

1
5
δl,2 ; (18)

except for l = 2, these functions Ql reduce to the Legendre polynomials.
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3.1. Vertical transport of angular momentum

Taking the horizontal average of Eq. (14), and using the assumption that Ω � Ωl, we obtain the following vertical advec-
tion/diffusion equation for the mean angular velocity Ω:

ρ
d
dt

(r2Ω) =
1

5r2
∂r

(
ρr4ΩU2

)
+

1
r2
∂r

(
ρνvr4∂rΩ

)
. (19)

Note that only the l = 2 component of the circulation is able to advect a net amount of angular momentum; the higher order
components ofUM (for instance those induced in its tachocline by a differentially rotating convection zone) do not contribute to
the vertical transport of angular momentum, as was explained in Spiegel & Zahn (1992).

3.2. Horizontal transport of angular momentum

We establish the equation governing the horizontal transport of angular momentum by multiplying Eq. (19) through sin2 θ and
subtracting it from the original form (14):

ρ
d
dt

(
r2 sin2 θ Ω̂

)
+ ∇ ·

(
ρr2 sin2 θΩUM

)
+

sin2 θ

5r2
∂r

(
ρr4ΩU2

)
=

sin2 θ

r2
∂r

(
ρνvr4∂rΩ̂

)
+

1
sin θ
∂θ
(
ρνh sin3 θ ∂θΩ̂

)
; (20)

in the advection term we have again neglected the fluctuation Ω̂ compared to the mean Ω.
The next step is to replace Ω̂(r, θ) by its expansion (15) in the horizontal functions Ql(θ). For l = 2, the equation separates

neatly into

ρ
d
dt

(
r2Ω2

)
− 2ρΩr [2V2(r) − α(r)U2] =

1
r2
∂r

(
ρνvr4∂rΩ2

)
− 10ρνhΩ2, (21)

with V2 =
1

6ρr
d
dr

(
ρr2U2

)
and α =

1
2

d ln
(
r2Ω

)
d ln r

, (22)

which we can simplify by assuming that the turbulent transport is much more efficient in the horizontal than in the vertical
direction, i.e. νv � νh:

ρ
d
dt

(
r2Ω2

)
− 2ρΩr [2V2 − αU2] = −10ρνhΩ2. (23)

In the asymptotic regime t � r2/νh, we retrieve the equation for Ω2 given by Zahn (1992):

νhΩ2(r) =
1
5

r [2V2(r) − α(r)U2(r)]Ω(r). (24)

For l > 2 the situation is more intricate, with couplings between terms of different l. However, when making the three following
assumptions: (i) stationarity (t � r2/νh); (ii) strong anisotropy of the turbulent diffusion (νv � νh); (iii) vertical advection
negligible compared to the horizontal one (thin layer approximation), the l-components separate, and one recovers the result
given by Spiegel & Zahn (1992) in their treatment of the solar tachocline:

νhΩl(r) = ΩrVl(r), (25)

namely that horizontal diffusion balances horizontal advection.

4. Transport of chemicals

The transport of chemicals species is governed by an advection/diffusion equation similar to that for the transport of angular
momentum:

ρ∂tci + ρU · ∇ci =
1
r2
∂r

(
r2ρDv∂rci

)
+

1
r2 sin θ

∂θ (ρDh sin θ ∂θci) , (26)

where ci is the concentration of a given element, and where we assume again that the turbulent diffusivity is anisotropic. For
simplicity, we have not included here the term representing the production or destruction of the species due to nuclear reactions,
which can be easily added. We follow the same procedure as for the angular momentum: we split the concentration in its
horizontal average and its fluctuation

ci(r, θ) = ci(r) + c′i(r, θ), (27)
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and explicit the velocity field in

U = erṙ +UM + erU
diff
i (28)

where, to the radial displacement accompanying the evolution of the star and to the meridional circulation, we add the microscopic
diffusion velocity Udiff

i , which depends on the considered species. We insert these expressions into Eq. (26), which leads us to

ρ
d
dt
(
ci + c′i

)
+ ρ(UM,r + Udiff

i )∂rci + ρUM · ∇c′i =
1
r2
∂r

(
r2ρDv∂r

(
ci + c′i

))
+

1
r2 sin θ

∂θ
(
ρDh sin θ ∂θc′i

)
. (29)

Then we take its horizontal average, making use of the anelastic continuity equation ∇ · (ρUM) = 0; we thus obtain the equation
governing the evolution of the mean concentration ci:

ρ
d
dt

ci +
1
r2
∂r

[
r2ρ < c′iUM,r >

]
+

1
r2
∂r

[
r2ρciU

diff
i

]
=

1
r2
∂r

(
r2ρDv∂rci

)
, with 〈 f 〉 =

∫ π
0

f sin θ dθ∫ π
0

sin θ dθ
· (30)

The subtraction of Eq. (30) from Eq. (29) yields the following equation for the fluctuations of the concentration:

ρ
d
dt

c′i + ρUM,r∂rci + ρUM · ∇c′i −
1
r2
∂r

[
r2ρ〈c′iUM,r〉

]
=

1
r2
∂r

(
r2ρDv∂rc

′
i

)
+

1
r2 sin θ

∂θ
(
ρDh sin θ∂θc′i

)
. (31)

Expanding c′i andUM,r in Legendre polynomials:

c′i =
∑
l>0

c̃i,l(r)Pl(cos θ) and UM,r =
∑
l>0

Ul(r)Pl(cos θ), (32)

and assuming that the gradient of the concentration fluctuations is negligible compared to that of the mean concentration,
i.e. |∇c′i | � ∂rci, this equation can be recast into

ρ
d
dt

c̃i ,l + ρUl∂rci =
1
r2
∂r

(
r2ρDv∂rc̃i,l

)
−

l(l + 1)
r2
ρDhc̃i,l. (33)

As in Chaboyer & Zahn (1992), we further assume that the horizontal diffusivity is much stronger than the vertical one, more
precisely that Dh � Dv(lh/lv)2, where lh(lv) is the distance over which c′i changes significantly in the horizontal (vertical)
direction, and we finally obtain:

d
dt

c̃i ,l + Ul∂rci = −
l(l + 1)

r2
Dhc̃i,l. (34)

For t � r2/Dh there is an asymptotic state where

c̃i ,l = −
r2

l(l + 1)Dh
Ul∂rci (35)

and then

ρ
d
dt

ci +
1
r2
∂r

[
r2ρciU

diff
i

]
=

1
r2
∂r

[
r2ρ(Dv + Deff)∂rci

]
with Deff =

∑
l>0

r2 (Ul)2

l(l + 1)(2l + 1)Dh
· (36)

However, in order to better resolve the fast evolution phases, one may prefer to retain the time derivative in (34), and solve the
equation for the mean concentration (30) in the form:

ρ
d
dt

ci +
1
r2
∂r

r2ρ
∑
l>0

c̃i,lUl

(2l + 1)

 + 1
r2
∂r

[
r2ρciU

diff
i

]
=

1
r2
∂r

[
r2ρDv∂rci

]
. (37)

Finally, let us recall how the molecular weight µ is related to the concentrations ci:

1
µ
=
∑

i

1 + Zi

Ai
ci (38)

where Ai is the mass number (protons+neutrons) and Zi the number of electrons. From Eq. (34) we can thus derive the following
advection/diffusion equation for the horizontal fluctuation of the molecular weight Λl = µ̃l/µ:

d
dt
Λl −

d ln µ
dt
Λl =

Ul

Hp
∇µ −

l(l + 1)
r2

DhΛl, (39)

where we have introduced the pressure scale-height Hp = |dr/d ln P| and the logarithmic gradient ∇µ = d ln µ/d ln P. This
equation will play a key role in the derivation of the meridional circulation, which we shall discuss in Sect. 6.
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5. Structural properties of the differentially rotating star

5.1. Baroclinic relation

In our case where we take a non-uniform and a non-cylindrical rotation law, the centrifugal force does not derive from a potential.
We are in the baroclinic configuration, where the isobars and the surfaces of constant density do not coincide anymore. To find
how the density varies on an isobar, we start from the hydrostatic equation:

1
ρ
∇P = g = −∇φ + FC with F C = 1

2
Ω2∇

(
r2 sin2 θ

)
(40)

where φ is the gravitational potential, and where the local effective gravity g includes the centrifugal force F C. Taking the curl
of this equation, we get

−
1
ρ2
∇ρ ∧ ∇P = −

1
ρ
∇ρ ∧ g = 1

2
∇(Ω)2 ∧ ∇(r sin θ)2, (41)

which to first order takes the form

−∇ρ
′ ∧ g
ρ

=
[
∂r(Ω

2)r cos θ sin θ − ∂θ(Ω2) sin2 θ
]

eϕ, (42)

with ρ′ being the variation of the density on the isobar, which we write as

ρ
′
(r, θ) =

∑
l>0

ρ̃l(r)Pl(cos θ). (43)

Likewise we expand Ω2 in spherical harmonics; since (cf. Eqs. (15), (18))

Ω(r, θ) = Ω(r) +
∑
l>0

Ωl(r) (Pl(cos θ) − Il) (44)

we have

Ω2(r, θ) =
[
Ω

2
− 2ΩΩ2I2

]
+ 2Ω

∑
l>0

ΩlPl(cos θ) (45)

where we kept only the terms linear in Ωl. We expect the largest departures from shellular rotation to occur in the tachoclines,
where they are enforced by the differential rotation of the adjacent convection zone; judging by the solar case, such departures
should be rather small, of the order of 1/10, thus justifying the linear approximation.

Inserting these expansions in Eq. (42), we reach after some algebra the following expression for the modal amplitudes of the
relative density fluctuation on an isobar

ρ̃l(r)
ρ
=

r
g
Dl(r), (46)

where g is the horizontal average, on the isobar, of the modulus of g, and

Dl(r) = N0
l

r∂r

[
Ω

2
(r) − 2Ω(r)Ω2(r)I2

] 1

3N0
2

δl,2

+2r
∑
s>0

∂r

(
Ω(r)Ωs(r)

) 1

N0
s

[
A0

s

(
−C0

s−1δl,s−2 + D0
s−1δl,s

)
+ B0

s

(
−C0

s+1δl,s + D0
s+1δl,s+2

)]

−2Ω(r)
∑
s>0

Ωs(r)

N0
s

[
G0

s

(
−C0

s+1δl,s + D0
s+1δl,s+2

)
− H0

s

(
−C0

s−1δl,s−2 + D0
s−1δl,s

)]. (47)

All numerical coefficients involved (A0
l , B

0
l ,C

0
l ,D

0
l ,G

0
l ,H

0
l ,N

0
l ) are given in Appendix A. We shall display here the result for l =

2, 4, where we keep only the first term Ω2 of the expansion of Ω:

D2 =
1
3

[
r∂rΩ

2
]
+

8
35

[
r∂r

(
ΩΩ2

)]
+

8
7
ΩΩ2 (48)

D4 =
6

35

[
r∂r

(
ΩΩ2

)
− 2ΩΩ2

]
. (49)

For Ω2 = 0 we recover the expression given in Zahn (1992): ρ̃2/ρ = (r2/3g)∂rΩ
2
.

This baroclinic Eqs. (46)−(47) plays a key role in linking the density fluctuation on an isobar with the rotation profile. It will
allow us to close the system formed by the equation for the transport of angular momentum, that for the transport of the chemical
species and that for the transport of heat, which we shall establish in Sect. 6.
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5.2. Effective gravity

Next we examine the redistribution of masses by the centrifugal force and its effect on the gravity inside the star. As all other
scalars, we expand the gravity as:

g(P, θ) = g(P) +
∑
l>0

g̃l(P)Pl(cos θ). (50)

The goal of this section is to determine the amplitude of the fluctuation on an isobar, g̃l. The first step will be to calculate the
perturbation of the gravitational potential φ on the sphere of radius r, and thus to calculate the functions φ̂l(r), where we have
expanded φ as:

φ(r, θ) = φ(0)(r) + φ(1)(r, θ) = φ0(r) +
∑
l>0

φ̂l(r)Pl(cos θ) with φ0(r) = −GM(r)
r
· (51)

We follow the method of linearization developed in Sweet (1950), and expand the pressure and the density around the sphere in
the same way as φ:

P(r, θ) = P(0)(r) + P(1)(r, θ) = P0(r) +
∑
l>0

P̂l(r)Pl(cos θ) (52)

ρ(r, θ) = ρ(0)(r) + ρ(1)(r, θ) = ρ0(r) +
∑
l>0

ρ̂l(r)Pl(cos θ). (53)

Then, we take the hydrostatic equation (using the classical definition of a potential, contrary to Zahn 1992):

∇P
ρ
= −∇φ + FC where FC = 1

2
Ω2∇(r2 sin2 θ), (54)

which we expand to first order:

∇P(0) = −ρ(0)∇φ(0) (55)

∇P(1) = −ρ(0)∇φ(1) − ρ(1)∇φ(0) + ρ(0)FC. (56)

We eliminate the pressure fluctuation by taking the curl of the latter equation, which gives us:

∂θρ
(1) =

∂rρ
(0)

g0
∂θφ

(1) +
1
g0

[
ρ(0)∂θ

(
FC,r

)
− ∂r

(
rρ(0)FC,θ

)]
. (57)

Next we insert the modal expansion of ρ(1) and those of the components of the centrifugal force:

FC,r(r, θ) =
∑

l

al(r)Pl(cos θ) FC,θ(r, θ) = −
∑

l

bl(r)∂θPl(cos θ); (58)

after integration in θ, this yields the modal amplitude of the density fluctuation over the sphere:

ρ̂l(r) =
1
g0

[
dρ0

dr
φ̂l + ρ0al +

d
dr

(rρ0bl)

]
. (59)

It remains to insert this expression in the perturbed Poisson equation ∇2φ̂l = 4πGρ̂l to retrieve Sweet’s result:

1
r

d2

dr2

(
rφ̂l

)
−

l(l + 1)
r2
φ̂l −

4πG
g0

dρ0

dr
φ̂l =

4πG
g0

[
ρ0al +

d
dr

(rρ0bl)

]
. (60)

The functions al(r) and bl(r) are given by

al(r) =
2
3

r
[
Ω

2
(r) − 2Ω(r)Ω2(r)I2

] (
δl,0 − δl,2

)
(61)

+2rΩ(r)
∑
s>0

Ωs(r)

[
1

N0
s

{
C0

s

(
G0

s−1N
0
s δl,s − H0

s−1N
0
s−2δl,s−2

)
− D0

s

(
G0

s+1N
0
s+2δl,s+2 − H0

s+1N
0
s δl,s

) }]

bl(r) =
1
3

r
[
Ω

2
(r) − 2Ω(r)Ω2(r)I2

]
δl,2 (62)

+2rΩ(r)
∑
s>0

Ωs(r)

N0
s

{
A0

s

(
−C0

s−1N
0
s−2δl,s−2 + D0

s−1N
0
s δl,s

)
+ B0

s

(
−C0

s+1N
0
s δl,s + D0

s+1N
0
s+2δl,s+2

) }
,
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where we have used the expansion (45) of Ω2. The numerical coefficients are given in Appendix A; here we shall quote only the
results for l = 2, 4, with the expansion of Ω limited to the term Ω2:

a0 =
2
3

rΩ
2

b0 = 0 (63)

a2 = −
2
3

rΩ
2
+

24
35

rΩΩ2 b2 =
1
3

rΩ
2
+

8
35

rΩΩ2 (64)

a4 = −
24
35

rΩΩ2 b4 =
6

35
rΩΩ2· (65)

With this multipolar expansion of the gravitational potential, we are ready to calculate the horizontal fluctuation of the effective
gravity:

g = −∇φ + FC = −∇φ0(r) −
∑

l

[
∇φ̂l(r)Pl(cos θ) + φ̂l(r)∇ (Pl(cos θ))

]
+ FC. (66)

Taking the scalar product of g by itself, and retaining only the first order terms, we get the following expansion for g2 over the
sphere of radius r:

g2(r, θ) =


(

dφ0(r)
dr

)2

− 2
dφ0(r)

dr
a0(r)

 + 2g0(r)
∑
l�0

dφ̂l(r)
dr
− al(r)

Pl(cos θ). (67)

Comparing with

g2(r, θ) =

g0(r) +
∑
l�0

ĝl(r)Pl(cos θ)


2

= g2
0(r) + 2g0(r)

∑
l�0

ĝl(r)Pl (cos θ) , (68)

we identify:

ĝl(r) =
dφ̂l(r)

dr
− al(r). (69)

Making use of (8) we get likewise for the variation along an isobar:

g̃l(P) =
dg0

dr
1
g0

 P̂l

ρ0

 + dφ̂l

dr
− al. (70)

It remains to replace P̂l by its expression drawn from the θ-component of the hydrostatic equation

P̂l

ρ0
= −φ̂l − rbl (71)

to finally obtain the variation of the effective gravity along an isobar:

g̃l

g
= −

dg0

dr
1

g2
0

rbl +
1
g0

al

 + d
dr

 φ̂l

g0

 . (72)

Keeping only the Ω2 term and carrying the expansion to l = 4, we have:

g̃2

g
= −dg0

dr
r2

g2
0

(
1
3
Ω

2
+

8
35
ΩΩ2

)
+

r
g0

(
2
3
Ω

2
− 24

35
ΩΩ2

)
+

d
dr

 φ̂2

g0

 (73)

g̃4

g
= −

dg0

dr
r2

g2
0

(
6

35
ΩΩ2

)
+

r
g0

(
24
35
ΩΩ2

)
+

d
dr

 φ̂4

g0

 · (74)

For strictly shellular rotation (Ω2 = 0) we retrieve the expression of Zahn (1992) (after changing the sign of φ̂2):

g̃2

g
=

1
3
Ω

2 d
dr

(
r2

g0

)
+

d
dr

 φ̂2

g0

 · (75)

The two terms represent respectively the contribution of the centrifugal force and that of the modified mass distribution. The
latter is obtained by integrating the perturbed Poisson Eq. (60) with the appropriate boundary conditions (see Sect. 7).
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6. Thermal imbalance and transport of heat

Following closely the procedure described in Zahn (1992), we now undertake to link the meridional circulation with the rotation
profile and the inhomogeneities of chemical composition. We start from the equation stating the conservation of thermal energy:

ρT

[
∂S
∂t
+U · ∇S

]
= ∇ · (χ∇T ) + ρε − ∇ · Fh (76)

where S is the entropy per unit mass, χ the thermal conductivity and ε the nuclear energy production rate per unit mass. As
Maeder & Zahn (1998), we include the flux Fh carried by horizontal turbulence.

We project this equation on the base of spherical harmonics, starting with the left hand side:

ρT

[
∂S
∂t
+U · ∇S

]
= ρT

dS
dt
+ ρT

∑
l>0

dS̃ l

dt
+ Ul

dS
dr

 Pl (cos θ) , (77)

where we have used again the expression of the velocity field (28)U = êrṙ +UM , together with the modal expansion of the
meridional flow (12). Recognizing in the horizontal average the production of energy related with the contraction or expansion
of the star during its evolution, i.e. TdS /dt = −εgrav, we rewrite Eq. (76) as

ρT
∑
l>0

dS̃ l

dt
+ Ul

dS
dr

 Pl (cos θ) = ∇ · (χ∇T ) + ρε + ρεgrav − ∇ · Fh, (78)

thus introducing the Lagrangian time derivative. Note that by construction the right hand side has now a zero horizontal average.
Then we expand the temperature in

T (P, θ) = T (P) +
∑
l>0

T̃l(P)Pl(cos θ), (79)

from which we deduce the gradient

∇T = ρ

dT
dP
+
∑
l>0

dT̃l

dP
Pl(cos θ)

 ∇P
ρ
+
∑
l>0

T̃l∇Pl(cos θ). (80)

Multiplying by the conductivity χ and taking the divergence, we obtain

∇ · (χ∇T ) = ρχ

dT
dP
+
∑
l>0

dT̃l

dP
Pl(cos θ)

∇ ·
(∇P
ρ

)
+ ∇

ρχ
dT

dP
+
∑
l>0

dT̃l

dP
Pl(cos θ)


 · ∇P
ρ

+
∑
l>0

∇
(
χT̃l

)
· ∇Pl(cos θ) +

∑
l>0

χT̃l∇2Pl(cos θ). (81)

Next we replace

∇P
ρ
= g = −∇φ + FC with |g| = g(P) +

∑
l>0

g̃l(P)Pl(cos θ) and FC = 1
2
Ω2∇(r sin θ)2, (82)

and expand

ρχ = ρχ +
∑
l>0

ρ̃χlPl(cos θ), ∇2φ = 4πGρ + 4πG
∑
l>0

ρ̃lPl(cos θ), ∇ · FC = f C +
∑
l>0

f̃C,lPl(cos θ). (83)

The functions f C and f̃C,l are easily derived. Expressing the components of the centrifugal force in terms of al and bl introduced
in (58), we get

∇ · FC =
∞∑

l=0

[
1
r2
∂r

(
r2al(r)

)
+

l(l + 1)
r

bl(r)

]
Pl(cos θ) (84)

and therefore:

f C =
1
r2
∂r

(
r2a0

)
and f̃C,l =

1
r2
∂r

(
r2al

)
+ l(l + 1)

bl

r
· (85)

Then we explicit the turbulent flux; with the assumption that the turbulent diffusivity is much stronger in the horizontal than in
the vertical direction (Dh � Dv), its divergence reduces to

∇ · Fh = −
1

r2 sin θ
∂θ
[
sin θDhρT ∂θS (r, θ)

]
(86)
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which we expand in

∇ · Fh =
∑
l>0

l(l + 1)
r2
ρT DhS̃ lPl(cos θ). (87)

After some arrangements, and keeping only first order terms, this leads us to

∇ · (χ∇T ) + ρε + ρεg − ∇ · Fh = 〈ρχ
dT
dP

(
−4πGρ + f C

)
+ ρ

d
dP

ρχdT
dP

 g2
+ ρ

(
ε + εg

)
〉 (88)

+
∑
l>0


ρχdT̃l

dP
+ ρ̃χ,l

dT
dP

 (−4πGρ + f C
)
+ ρχ

dT
dP

(
−4πGρ̃l + f̃C,l

)
+ ρ

d
dP

ρχdT
dP

 2g̃gl

+ ρ
d

dP

ρ̃χ,l dT
dP
+ ρχ

dT̃l

dP

 g2 −
l(l + 1)

r2
χT̃l + ρ̃l

d
dP

ρχdT
dP

 g2
+ ρ̃ε,l −

l(l + 1)
r2
ρT DhS̃ l

Pl(cos θ).

As mentioned above, the horizontal average < ... > is zero on a level surface, which means that the star is in average radiative
equilibrium, including the production of nuclear and gravitational energy.

It remains to replace all tilded quantities in terms of two only (for each l-component). Here we choose these two variables to
be the horizontal variations of temperature and molecular weight, instead of Zahn (1992) and Maeder & Zahn (1998) who took
the density variation. We define

Ψl =
T̃l

T
, Λl =

µ̃l

µ
, Θl =

ρ̃l

ρ
, (89)

and use the equation of state in differential form

dρ
ρ
= α

dP
P
− δdT

T
+ ϕ

dµ
µ

(90)

with the straightforward definitions δ = −(∂ lnρ/∂ ln T )P,µ etc., to express

Θl = ϕΛl − δΨl. (91)

We operate likewise with the other variables:

χ̃l

χ
= χTΨl + χµΛl,

ε̃l
ε
= εTΨl + εµΛl, (92)

and introduce

K =
χ

ρCP
, ρm =

M(P)
4
3πr

3
, εm =

L(P)
M(P)

and fε =
ε(

ε + εgrav

) · (93)

Switching to r as independent variable, with dP = −ρg dr, we cast (88) in its final form:

∇ · (χ∇T ) + ρε + ρεgrav − ∇ · Fh

ρ
=
∑
l>0

L
M
TlPl(cos θ) (94)

with

Tl = 2

1 − f C
4πGρ

−

(
ε + εgrav

)
εm

 g̃l

g
+

f̃C,l
4πGρ

−
f C

4πGρ
(−δΨl + ϕΛl)

−ρm

ρ

r
3
∂r

(
−HT∂rΨl + (1 − δ + χT )Ψl + (ϕ + χµ)Λl

)
−

(
ε + εgrav

)
εm

(
−HT∂rΨl + (1 − δ + χT )Ψl + (ϕ + χµ)Λl

)

+

(
ε + εgrav

)
εm

(
( fεεT − fεδ)Ψl + ( fε εµ + fεϕ)Λl

)
−

(
ε + εgrav

)
εm

(−δΨl + ϕΛl) −
ρm

ρ

l(l + 1)HT

3r

Ψl +

(Dh

K

) S̃ l

CP

 · (95)

Here we have used the property that

ρχ
dT
dP
=

∫∫
S (r)
χ∇T · dS∫∫

S (r)
g · dS

=

∫∫
S (r)
χ∇T · dS∫∫∫

V(r)

[
−∇2φ + ∇ · FC] dV

=
L(r)

4πGM(r) − r2a0(r)
· (96)
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To lowest order r2a0 = (2/3)r3Ω
2
, according to Eq. (61), which justifies the approximation

ρχ
dT
dP
=

L(r)
4πGM(r)

· (97)

The last step is to put in final form the left hand side of the heat Eq. (78). In a medium of varying composition the entropy of
mixing must be taken into account (Maeder & Zahn 1998). In the simplest case, where the stellar material can be approximated
by a simple mixture of hydrogen and helium with a fixed abundance of metals, the entropy of mixing can be expressed in terms
of the molecular weight only; then we have

dS = Cp

[
dT
T
− ∇ad

dP
P
+ Φ(P, T, µ)

dµ
µ

]
, (98)

where ∇ad is the adiabatic gradient and Φ is a function of the metal mass fraction and of µ, the mean molecular weight (see
Maeder & Zahn 1998). Applying this relation to the fluctuation of entropy around an isobar leads to:

S̃ l = Cp [Ψl + ΦΛl] . (99)

In the same way, we get for the mean entropy gradient:

∂rS =
Cp

Hp

(
∇ad − ∇ −Φ∇µ

)
(100)

with: ∇ = d ln T/d ln P and ∇µ = d ln µ/d ln P.
We refer back to Eq. (78) to express the left hand side of the thermal energy equation, and take into account that Λl obeys a

similar advection/diffusion Eq. (39); this permits the elimination of dΛl/dt on the l.h.s. and leads us to

TCp

[
dΨl

dt
+ Φ

d lnµ
dt
Λl +

Ul(r)
Hp

(∇ad − ∇)

]
=

L
M
Tl(r), (101)

where we cast Tl(r) (95) in its final form, having replaced S̃ l by (99) on the right hand side:

Tl = 2

1 − f C
4πGρ

−

(
ε + εgrav

)
εm

 g̃l

g
+

f̃C,l
4πGρ

−
f C

4πGρ
(−δΨl + ϕΛl) (102)

+
ρm

ρ

[
r
3
∂r

(
HT∂rΨl − (1 − δ + χT )Ψl − (ϕ + χµ)Λl

)
− l(l + 1)HT

3r

(
1 +

Dh

K

)
Ψl

]

+

(
ε + εgrav

)
εm

{ (
HT∂rΨl − (1 − δ + χT )Ψl − (ϕ + χµ)Λl

)
+ ( fεεT − fεδ + δ)Ψl + ( fε εµ + fεϕ − ϕ)Λl

}
.

We recall that f C +
∑

f̃C,lPl(cos θ) is the divergence of the centrifugal force (cf. Eq. (82)); the functions f C and f̃C,l are given
in (85).

This expression is similar to that derived in Maeder & Zahn (1998), where Θ2 = ρ̃2/ρ was used as dependent variable instead
of Ψl = T̃l/T here. However we note an important difference, namely that the l.h.s. involves here the only the thermal part
of the subadiabatic gradient (∇ad − ∇), whereas in Maeder & Zahn (1998) it was

(
∇ad − ∇ + (ϕ/δ)∇µ

)
. Also, here the highest

order derivative at the r.h.s. operates only on Ψl, whereas in Maeder & Zahn (1998) it applied both on Θ2 and on Λ2. We expect
therefore the present form to be less sensitive, numerically, to steep composition gradients.

The temperature fluctuation on an isobar is thus governed by an advection/diffusion equation, from which we can derive the
radial component of the meridional circulation. It allows us to link the circulation with its causes, namely both the rotation profile
and that of chemical composition. The fact that this equation has been derived for a general law of rotation allows us to treat
simultaneously the bulk of the radiation zones and the tachoclines.

The system of equations is now completed: we have an advection/diffusion equation for the transport of the angular momen-
tum (mean and fluctuating), another for the transport of chemical elements (mean and fluctuating), another for the temperature
(mean and fluctuating), and we have the baroclinic relation which allows us to close the system. It remains to specify the boundary
conditions of this system, to be applied on the limits of the radiation zone.
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7. Boundary conditions

We shall now review the differential equations we have established for the various quantities which enter in the problem, and
state for each of them the appropriate boundary conditions, for a given radiation zone. To be specific, we consider a star with a
radiation zone located between a convective core and an upper convection zone, and designate by rb and rt the radius respectively
of the base and of the top of that radiative zone. Of course, in a solar-type main-sequence star we have rb = 0, whereas for a
massive main sequence star rt = R, R being the radius of the star.

The equation for the mean angular velocityΩ (19) is of second order in r, and therefore it requires two boundary conditions.
They are obtained by evaluating the budget of angular momentum in each adjacent convective zone:

d
dt

[∫ rb

0
r4ρΩdr

]
=

1
5

r4ρΩU2 at r = rb
d
dt

[∫ R

rt

r4ρΩdr

]
= −1

5
r4ρΩU2 + FΩ at r = rt, (103)

where FΩ is the angular momentum flux which is lost at the surface by the stellar wind. (The perturbationΩ2 obeys an evolution
equation which does not include any derivative in r, at least with the approximation we made; therefore it needs no boundary
condition.)

Likewise, the equation for the mean concentration (30) is of second order in r, and its two boundary conditions are obtained
by calculating the evolution in time of that mean concentration ci in the two adjacent convection zones (cf. Palacios et al. 2001).
We thus have respectively for rt and rb:

d
dt

[
ci

∫ R

rt

r2ρdr

]
= r2ρ

(
Udiff

i ci

)
− r2ρ (Dv + Deff) ∂rci − Ṁci at r = rt,

d
dt

[
ci

∫ rb

0
r2ρdr

]
= −r2ρ

(
Udiff

i ci

)
+ r2ρ (Dv + Deff) ∂rci at r = rb, (104)

where Ṁ is the rate of mass loss through the wind.
Let us examine now the heat Eqs. (101)−(102), which is of second order in r for the variable Ψl. The variable Λl need not

to be considered here, since it is determined through its evolution Eq. (39). The boundary conditions on Ψl are deduced from
the baroclinic Eqs. (46)−(47), which involves Ω and Ω2, and their first order derivatives. We must therefore specify all these
functions at the boundaries of the radiation zone. For Ω this is already done (Eq. (103)), and for Ωl(r) we require the fluctuations
to be continuous at the boundaries:

Ωl(r) = Ωl,b at r = rb, Ωl(r) = Ωl,t at r = rt, (105)

thus assuming that there are no stresses between the radiative and the convective zone. From the baroclinic relation (42) we
deduce that the gradient of the angular velocity must also be continuous, and therefore that

∂rΩ(r) = ∂rΩb at r = rb, ∂rΩ(r) = ∂rΩt at r = rt,

∂rΩl(r) = ∂rΩl,b at r = rb, ∂rΩl(r) = ∂rΩl,t at r = rt. (106)

Since we do not solve here for the rotation law in the convective regions (a formidable task!), the best we can afford is to apply a
horizontal profile which is inspired from helioseismology, for the base of the outer convection zone. Since the rotation rateΩ(r, θ)
seems to be independent of r in the solar convection zone, we can take

∂rΩ(r) = 0 at r = rt, ∂rΩl(r) = 0 at r = rt. (107)

For the condition at the boundary of a convective core, we will have to rely on numerical simulations (see the recent results of
Browning et al. 2004). In the case where we stop the expansion of rotation at the Ω2 term, and where we assume that the vertical
gradient of Ω is zero, we obtain:

ϕΛ2 − δΨ2 =
8
7

r
g
ΩΩ2,

ϕΛ4 − δΨ4 = −
12
35

r
g
ΩΩ2. (108)

Finally, let us state the boundary conditions for the perturbed Poisson equation. Unlike the precedent equations above, this second
order equation must be integrated over the whole star. We require regularity at origin, and continuity with a potential field at the
surface (r = R):

φ̂l = 0 at r = 0, (l + 1)φ̂l +
d
dr
φ̂l = 0 at r = R. (109)
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8. Conclusion

The work presented here marks another step in the description of rotational mixing in stellar radiation zones, after the papers by
Zahn (1992) and Maeder & Zahn (1998). When applied to massive stars, which are fast rotators, such mixing yields much better
agreement between models and observations, as was discussed by Meynet & Maeder (2000). However numerical problems arise
during the advanced stages of evolution, when steep gradients of composition and rotation develop. For this reason, our main
purpose here was to increase the accuracy of the modelization in latitude by adding higher order terms to the expansion in
spherical harmonics, and also to better resolve the phases of rapid evolution by retaining all time derivatives, except those related
to the dynamical relaxation.

This allows us to include the transport occurring in the tachoclines, where the differential rotation imposed by the adjacent
convection zone generates an octupolar circulation, with no net advection of angular momentum. Until now, these layers required
an ad-hoc treatment, such as performed by Brun et al. (1999, 2002), who found that the mixing in the solar tachocline contributes
indeed to the depletion of lithium, and that it modifies sufficiently the structure of the star to be detected through helioseismology.

From a more technical point of view, we have written here the heat Eqs. (101)−(102), which determines the meridional
circulation, as a relaxation equation for the temperature fluctuationΨl. This breaks the apparent symmetry between the circulation
driven by the differential rotation profile (hence by Ψl) and the counteracting flow (Mestel’s µ-current) which is induced by the
inhomogeneities in chemical composition (Λl), since now the expression giving the circulation velocity involves only the first
derivative in Λl, while keeping the second derivative ofΨl. A benefit of that choice is that it renders this differential equation less
sensitive, numerically, to the steep composition gradients which arise in the course of stellar evolution.

One weakness of the modelization of rotational mixing remains the description of the turbulence which is generated by the
differential rotation. Such turbulence is certainly anisotropic, due to the stable stratification, and it tends therefore to smooth the
angular velocity and the chemical composition on horizontal surfaces. This problem is addressed in the companion paper (Mathis
et al. 2004), where we discuss the prescriptions for the turbulent transport which are presently available.

A major shortcoming of the present modelization of rotational mixing is that it predicts a rapidly spinning solar core, contrary
to the findings of helioseismology. This proves that other physical processes contribute to the transport of angular momentum
in solar-type stars, which are presently slow rotators because they have been spun down by their wind. Internal gravity waves,
which are generated by turbulent convection at the interface with a convective region, are one possible cause. Their effect has
been studied by Talon et al. (2002), and is now being introduced in stellar evolution codes (Talon & Charbonnel 2003).

Magnetic stresses are another serious candidate for the angular momentum transport, as was pointed out already by Mestel
(1953). The alternating dynamo field does not penetrate enough into the solar radiation zone to produce any impact on the rotation
law, as was shown by Garaud (1999). But even a weak fossil field could enforce nearly uniform rotation, although the outcome
depends sensitively on the poloidal field which is assumed, and on whether it penetrates into the differentially rotating convection
zone, as illustrated by the calculations performed by Ruediger & Kitchanitov (1996, 1997) and by MacGregor & Charbonneau
(1999). Therefore the problem must be treated consistently, taking into account the advection of the field by the meridional
circulation, itself being modified by the field, and imposing proper boundary conditions. We shall address this problem in two
forthcoming papers, one dealing with an axisymmetric field and the second with a non-axisymmetric field, as observed in oblique
rotators.
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Appendix A: Algebra related to the spherical harmonics

The spherical harmonics are defined by:

Ym
l (θ, ϕ) = Nm

l P|m|l (cos θ) eimϕ (A.1)

with the normalization:

Nm
l = (−1)

(m+|m|)
2

[
2l + 1

4π
(l − |m|)!
(l + |m|)!

] 1
2

· (A.2)

We recall that they obey the well-known differential equation:

1
sin θ
∂θ
(
sin θ∂θY

m
l (θ, ϕ)

)
+

1

sin2 θ
∂2
ϕY

m
l (θ, ϕ) = −l (l + 1) Ym

l (θ, ϕ) . (A.3)

In deriving certain equations in Sect. 5 we used the following recursion relations for m = 0:

cos θY0
l (θ) = A0

l Y0
l−1(θ) + B0

l Y0
l+1(θ) where A0

l =
l

√
(2l + 1)(2l − 1)

and B0
l =

(l + 1)
√

(2l + 3)(2l + 1)
, (A.4)

sin θY0
l (θ) = C0

l ∂θY
0
l−1(θ) − D0

l ∂θY
0
l+1(θ) where C0

l =
1

√
(2l + 1)(2l − 1)

and D0
l =

1
√

(2l + 3)(2l + 1)
, (A.5)

cos θ∂θY0
l (θ) = E0

l ∂θY
0
l−1(θ) + F0

l ∂θY
0
l+1(θ) where E0

l =
l + 1

√
(2l + 1)(2l − 1)

and F0
l =

l
√

(2l + 3)(2l + 1)
, (A.6)

sin θ∂θY0
l (θ) = G0

l Y0
l+1(θ) − H0

l Y0
l−1(θ) where G0

l =
l(l + 1)

√
(2l + 3)(2l + 1)

and H0
l =

l(l + 1)
√

(2l + 1)(2l − 1)
· (A.7)

The identities (A.5) and (A.6) have been deduced from the two others (A.4)–(A.7), with the help of (A.3).

Appendix B: System of transport equations for l = 2, 4

In this appendix we give the explicit form of the transport equations for l = 2, 4, with only the first term Ω2 being kept in the
expansion of the rotation rate Ω.

B.1. Mean equations

B.1.1. mean rotation rate

ρ
d
dt

(
r2Ω

)
=

1
5r2
∂r

(
ρr4ΩU2

)
+

1
r2
∂r

(
r4ρνv∂rΩ

)
(Eq. (19)); (B.1)

B.1.2. mean chemical composition

ρ
d
dt

ci +
1
r2
∂r

[
r2ρciU

diff
i

]
=

1
r2
∂r

[
r2ρ(Dv + Deff)∂rci

]
(Eq. (36)). (B.2)

B.2. System for l = 2

B.2.1. meridional circulation

We rewrite (101)–(102) in two first order equations as

U2 =
L

Mg

 P

ρCpT

 1
∇ad − ∇

B2 (B.3)

where we have defined:

B2 = −2

1 − ∂r(r3Ω
2
)

6πGρr2
−
ε + εgrav

εm


 r2

g2

dg
dr

(
1
3
Ω

2
+

8
35
ΩΩ2

)
+

r
g

(
24
35
ΩΩ2 −

2
3
Ω

2
)
− d

dr

 φ̂2

g0




+
1
πGρ

[
6
7
ΩΩ2 +

r
3

(
18
35
Ω2 − Ω

)
∂rΩ +

6
35

rΩ∂rΩ2

]
+
ρm

ρ

[
r
3
∂rA2 −

2HT

r

(
1 +

Dh

K

)
Ψ2

]
(B.4)

+
ε + εgrav

εm

[
A2 + ( fεεT − fεδ + δ)Ψ2 +

(
fε εµ + fεϕ − ϕ

)
Λ2

]
− M

L
CpT

(
dΨ2

dt
+ Φ

d lnµ
dt
Λ2

)
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and:

A2 = HT∂rΨ2 − (1 − δ + χT )Ψ2 −
(
ϕ + χµ

)
Λ2, (B.5)

and where we have replaced the gravity fluctuation by (74), f C by (84) and f̃C,2 by (85).

B.2.2. baroclinic relation

From Eqs. (46)–(48) we have:

ϕΛ2 − δΨ2 =
r
g

[
8
7
ΩΩ2 +

2
3

r

(
Ω +

12
35
Ω2

)
∂rΩ +

8
35

rΩ∂rΩ2

]
. (B.6)

B.2.3. horizontal fluctuation of the molecular weight

We apply (39) to l = 2:

dΛ2

dt
− d lnµ

dt
Λ2 =

U2

Hp
∇µ −

6
r2

DhΛ2. (B.7)

B.2.4. Poisson equation

Likewise, for (60):

1
r

d2

dr2

(
rφ̂2

)
− l(l + 1)

r2
φ̂2 −

4πG
g0

dρ0

dr
φ̂2 =

4πG
g0

[
ρ0a2 +

d
dr

(rρ0b2)

]
. (B.8)

B.3. System for l = 4

B.3.1. horizontal shear

ρ
d
(
r2Ω2

)
dt

− 2ρΩr

[
1

3ρr
∂r

(
ρr2U2

)
− αU2

]
= −10ρνhΩ2 (Eq. (23)). (B.9)

B.3.2. meridional circulation

We proceed as for l = 2:

U4 =
L

Mg

 P

ρCpT

 1
∇ad − ∇

B4 (B.10)

where we have defined:

B4 = −2

1 − ∂r(r3Ω
2
)

6πGρr2
−
ε + εgrav

εm


 r2

g2

dg
dr

(
6

35
ΩΩ2

)
− r
g

(
24
35
ΩΩ2

)
− d

dr

 φ̂4

g0




+
1
πGρ

[
6

35

(
2ΩΩ2 − r

[
Ω2∂rΩ + Ω∂rΩ2

])]
+
ρm

ρ

[
r
3
∂rA4 −

20HT

3r

(
1 +

Dh

K

)
Ψ4

]
(B.11)

+
ε + εgrav

εm

[
A4 + ( fεεT − fεδ + δ)Ψ4 +

(
fε εµ + fεϕ − ϕ

)
Λ4

]
−

M
L

CpT

(
dΨ4

dt
+ Φ

d lnµ
dt
Λ4

)

and:

A4 = HT∂rΨ4 − (1 − δ + χT )Ψ4 −
(
ϕ + χµ

)
Λ4. (B.12)

B.3.3. baroclinic relation

We restate (46)–(48) as

ϕΛ4 − δΨ4 =
6

35
r
g

[
rΩ2∂rΩ + rΩ∂rΩ2 − 2ΩΩ2

]
. (B.13)
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B.3.4. horizontal fluctuation of the molecular weight

dΛ4

dt
− d lnµ

dt
Λ4 =

U4

Hp
∇µ −

20
r2

DhΛ4 (Eq. (39)). (B.14)

B.3.5. Poisson equation

1
r

d2

dr2

(
rφ̂4

)
− l(l + 1)

r2
φ̂4 −

4πG
g0

dρ0

dr
φ̂4 =

4πG
g0

[
ρ0a4 +

d
dr

(rρ0b4)

]
(Eq. (60)). (B.15)

These equations are ready to be implemented in a stellar evolution code, together with the boundary conditions discussed
in Sect. 7.


