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ABSTRACT

Aims. In light of recent contradictory observational results concerning the atomic polarization of solar H i lines, our purpose is to
present certain collisional effects that might contribute towards a possible explanation. In particular, we aim to draw attention to the
possibility of creating the “impact circular polarization”.
Methods. A general theoretical formulation of the problem of anisotropic collisions in the tensorial representation is obtained in an
arbitrary symmetry of the relative velocity distribution. To try to understand this in concrete terms and estimate the effect of these
collisions for creating and increasing the atomic orientation, we determine an explicit expression of the alignment-to-orientation
transfer rates between two hydrogen levels in a particular case of symmetry.
Results. The anisotropic collisions could play a role in creating and increasing the atomic orientation by an alignment-to-orientation
conversion mechanism (impact circular polarization). Physically, this is due to coherence transfer by anisotropic collisions. This
transfer, and hence the creation of atomic circular polarization, can be achieved in different ways, which we describe in the case of
the Hα line. However, for given solar conditions, the alignment-to-orientation transfer rates seem to be 4 to 5 times lower than the
population-to-alignment transfer rates which are basically responsible for generating the impact linear polarization.
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1. Introduction

Symmetry-breaking processes, such as anisotropic illumination
and anisotropic collisions, could create the so-called atomic po-
larization. This polarization reflects the fact that the Zeeman sub-
levels ( jM) of the atomic system are unevenly populated and
characterized by definite coherence factors. In an aligned atomic
system, states of different |M| are unequally populated, while the
populations in M and −M could be the same. In contrast, an ori-
entated system is characterized by different populations in the M
and −M states.

The internal organization of the atomic system is described
by the density matrix elements jρk

q (0 ≤ k ≤ 2 j and −k ≤ q ≤ k)
expressed on the basis of the irreducible tensorial operators T k

q ,
which has been shown to be the most suitable to formulating
the problem of the formation of polarized spectral lines (e.g.
Sahal-Bréchot 1977; Landi Degl’Innocenti & Landolfi 2004).
The orientation of the atomic system is quantified by the den-
sity matrix elements with odd rank k ( jρk=1

q , jρk=3
q , etc.), while

the alignment is associated with the even ones: jρk=2
q , jρk=4

q , etc.
The population of the j-level is given by jρ0

0.
In the present work, we draw attention to the effect of

anisotropic collisions on the density matrix components. This
effect is characterized by mutual conversion of rank k. If
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anisotropic collisions are efficient under solar conditions, the
population-to-alignment transfer (alignment creation), which is
basically the origin of the well-known impact linear polariza-
tion, could be accompanied by alignment-to-orientaion transfer.
This transfer makes the creation of the orientation of the levels
by anisotropic collisions possible, leading to the observation of
a symmetric Stokes V parameter. We propose to call this phe-
nomenon impact circular polarization by analogy with the im-
pact linear polarization.

2. Anisotropic collisional rates in the irreducible
basis

In the framework of the impact approximation, the total effect
of the collisions is obtained by multiplying the collisional rate
for a binary collision by the perturber density. Let us consider a
binary collision between a neutral hydrogen atom and a proton.
The transition matrix T (b, u) = I − S (b, u) gives the time evolu-
tion of the state of the hydrogen atom, where S is the scattering
matrix, and b and u are the impact parameter and relative veloc-
ity, respectively. We notice that we are formulating the problem
in a semiclassical description, but our conclusions on the tenso-
rial component mixing of the collisional rates are independent
of this approximation and are the same in a quantum approach.
We use the atomic frame where the emitting atom is fixed at the
origin and the quantization axis is taken as perpendicular to the
collision plane (b, u).
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In the description of the hydrogen atom, we neglect the con-
tribution of the hyperfine structure (HFS). There are no addi-
tional conceptual difficulties for including the contribution of the
HFS, so the equations presented below can be obtained when
the HFS is taken into account simply by carrying out some for-
mal substitutions between fine and hyperfine quantum numbers.
However, our main conclusions remain unchanged.

The probability of the transfer of the coherence from | j2ν2〉
〈 j2ν′2| to | j1µ1〉 〈 j1µ′1| by collisions is1

Π( j1µ1µ
′
1 ← j2ν2ν

′
2; b, u) = (1)

T ( j1µ1 ← j2ν2; b, u) × T ( j1µ
′
1 ← j2ν

′
2; b, u)∗

where µ1 � µ′1 and/or ν2 � ν′2. The transition probability corre-
sponds to µ1 = µ

′
1 and ν2 = ν′2:

Π( j1µ1µ1 ← j2ν2ν2; b, u) = |T ( j1µ1 ← j2ν2; b, u)|2. (2)

In an arbitrary frame obtained in the rotation D(α, β, γ) of the
atomic frame by the Euler angles α, β, and γ, the coherence
transfer probability is

Π( j1 M1M′1 ← j2 M2M′2; b, u)=
∑

µ1,µ
′
1,ν2,ν

′
2

Π( j1µ1µ
′
1 ← j2ν

′
2ν
′
2; b, u)

×
[
D( j2)
ν2 M2

]∗ D( j1)
µ1 M1
D( j2)
ν′2 M′2

[
D( j1)
µ′1 M′1

]∗
. (3)

The collisional rates associated with the transfer of the coher-
ence from | j2M2〉〈 j2 M′2| to | j1M1〉〈 j1 M′1| in anisotropic colli-
sions are

ζ( j1 M1M′1 ← j2 M2M′2) = npert

∫
v f (u, T )d3u

×
∫

d2b Π( j1M1 M′1 ← j2 M2 M′2; b, u) (4)

where f (u, T ) is the velocity distribution for a local tempera-
ture T and npert the perturber density. In the tensorial basis, one
can readily show that

Dk←k′
q←q′ ( j1 ← j2) =

√
(2k + 1)(2k′ + 1) (5)

×
∑

M1,M′1

∑
M2,M′2

(−1) j1+ j2−M1−M2

×
(

j1 j1 k
M1−M′1−q

) (
j2 j2 k′

M2−M′2−q′
)
ζ( j1 M1M′1 ← j2 M2M′2),

implying that

Dk←k′
q←q′ ( j1 ← j2) =

√
(2k + 1)(2k′ + 1) (6)

×
∑

M1,M′1

∑
M2,M′2

(−1) j1+ j2−M1−M2

(
j1 j1 k

M1−M′1−q

) (
j2 j2 k′

M2−M′2−q′
)

×npert

∫
v f (u, T )d3u

∫
d2b

∑
µ1,µ

′
1,ν2,ν

′
2

Π( j1µ1µ
′
1 ← j2ν2ν

′
2; b, u)

×
[
D( j2)
ν2 M2

]∗ D( j1)
µ1 M1
D( j2)
ν′2 M′2

[
D( j1)
µ′1 M′1

]∗
.

1 The left arrow (←) is used because the transfer of the coherence
from | j2ν2〉 〈 j2ν

′
2 | to | j1µ1〉 〈 j1µ

′
1| represents gain terms in the statistical

equilibrium equations describing the evolution of the j1-level.

Using the contraction properties of the rotations matrix and after
some algebraic transformations one can find2

Dk←k′
q←q′ ( j1 ← j2) = (2k + 1)(2k′ + 1)

×
∑

µ1,µ
′
1,ν2,ν

′
2

∑
L,mL ,m′L

∑
P,P′

(2L + 1)(−1) j1+ j2−µ1−ν2+q′−P′

×
⎛⎜⎜⎜⎜⎝ j1 j1 k

µ′1−µ1P

⎞⎟⎟⎟⎟⎠
(
k k′ L
q−q′mL

) (
k k′ L
PP′m′L

) (
j2 j2 k′
ν2−ν′2P′

)
npert

∫
v f (u, T )d3u

×
∫

d2b Π( j1µ1µ
′
1 ← j2ν2ν

′
2; b, u) ×

[
D(L)

m′LmL

]
. (7)

Accurate calculation of the Dk←k′
q←q′ ( j1 ← j2) depends mainly on

determing of the velocity distribution f (u, T ) and the probability
of the transfer of the coherence Π( j1µ1µ

′
1 ← j2ν2ν′2; b, u). The

velocity distribution f (u, T ) depends on the medium in which the
collision occurs. The value of Π( j1µ1µ

′
1 ← j2ν2ν′2; b, u) should

be obtained after solving the Schrödinger equation, which im-
plies that the interaction potential has to be calculated.

From the general formula (7) one can recover the limiting
case of isotropic collisions. In fact, in isotropic symmetry, the
effect of the collisions is the same for diagonal density matrix
elements corresponding to populations where µ1 = µ

′
1 and ν2 =

ν′2 or for off-diagonal ones corresponding to coherences where
µ1 � µ′1 and/or ν2 � ν′2. In addition, one retains only the L =
0 term, which corresponds to an isotropic part of the velocity
distribution. We then obtain

Dk( j1 ← j2) = (2k + 1)
∑
µ1,ν2

(−1) j1+ j2−µ1−ν2

×
(

j1 j1 k
µ1 −µ1 0

) (
j2 j2 k
ν2 −ν2 0

)
ζ( j1µ1 ← j2ν2). (8)

This expression has been obtained by Sahal-Bréchot (1977) (see
also Follmeg et al. 1990) in another way and used in our previ-
ous calculations concerned with isotropic collisions (e.g. Eq. (3)
of Derouich et al. 2003). It is useful to note that for isotropic
processes the coupling terms implying k � k′ and transfer of
coherence q to q′ are zero, and that the depolarization and polar-
ization transfer rates are q-independent.

Equation (7) demonstrates the theoretical possibility of mix-
ing the tensorial orders k if the collisions are anisotropic. The
question now is how this mixing depends on the symmetry of
the problem.

3. Collisional effect in the particular case
of cylindrical symmetry

Consider an atomic system in an anisotropic environment having
cylindrical symmetry around a given direction that we choose as
the quantization axis of total angular momentum (the z-axis of
our reference system). We imagine the anisotropic collisions to
be a superposition of directive collisions organized in cylindrical
symmetry around the anisotropy z-axis. If one defines the purely
directive probability of the coherence transfer in the tensorial
basis as

Πk←k′
P ( j1 ← j2, directive) =

∑
µ1,µ

′
1,ν2,ν

′
2

(−1) j1+ j2−µ1−ν2

×
(

j1 j1 k
µ1−µ′1P

) (
j2 j2 k′
ν2−ν′2 P

)
Π( j1µ1µ

′
1 ← j2ν2ν

′
2; b, u), (9)

2 Details of the demonstration of the Eq. (7) are available on request
from the author.
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after some appropriate transformations, we find that

Dk←k′ ( j1 ← j2, cylindric) = (2k + 1)(2k′ + 1)

×
∑
L,P

(−1)−P (2L + 1)

(
kk′L
0 0 0

)

×
(
k k′ L
P−P0

)
× Dk←k′

P ( j1 ← j2, directive) (10)

where Dk←k′
P ( j1 ← j2, directive) is the purely directive polariza-

tion transfer for a given plane of collision (u, b), i.e. obtained by
integrating Πk←k′

P ( j1 ← j2, directive) over the velocities and im-
pact parameters in a given direction of the plane of the collisions
before taking any average over the angles. Or for a cylindrical
symmetry3,

f (v, θ, T ) = f (v,−θ + π, T ). (11)

Using this property of the Legendre polynomials

PL(θ) = PL(−θ + π) if L is even and (12)

PL(θ) = −PL(−θ + π) if L is odd,

one concludes that L is necessarily even. But also(
k k′ L
0 0 0

)
� 0, only if k + k′ + L is even. (13)

Equations (12) and (13) mean that the sum k + k′ is necessarily
even. Linear polarization can be produced by anisotropic cylin-
drical excitation of the emitting atoms mainly due to the pop-
ulation (k = 0)-to-alignment (k = 2) transfer. The well-known
example in astrophysics is the observation of the linear polariza-
tion in the Hα line in solar flares (e.g. Hénoux et al. 1990), which
is interpreted as due to anisotropic collisions between hydrogen
atoms and background charged particles – the impact of accel-
erated beams of electrons and/or protons on hydrogen atoms.
However, rates with k+k′ odd vanish, leading to the impossibility
of collisional transfer of the atomic alignment to orientation, or
in other words, the impossibility of the collisional emergence of
circular polarization from the existing atomic linear polarization.

We mention that there is now international controversy over
the existence of impact linear polarization during solar flares
(Bianda et al. 2005). Here we assume that such an impact linear
polarization exists and demonstrate the theoretical possibility of
impact circular polarization in the case of cylindrical symmetry
breaking.

4. Cylindrical symmetry-breaking:
the emergence of impact circular polarization

Let us consider now an atomic system illuminated by lin-
early polarized or unpolarized light having cylindrical symmetry
around a z-axis. The alignment-to-orientation conversion may be
induced by anisotropic collisions having a cylindrical symmetry
around the anisotropy axis if the angle between the anisotropy
axis and that of z-axis differs from 0 or π2 (Lombardi 1967;
Rebane 1968). Then, the breaking of the cylindrical symmetry
of the problem can cause alignment to orientation conversion.
This physical situation can occur when charged plasma particles

3 It should be noted that the cylindrical symmetry alone do not allows
Eq. (11). That equation becomes correct thanks to time reversal invari-
ance – the perturbed atom is insensitive to the sense of the movement
of the beams of the perturbers.

(e.g. protons or electrons) move along magnetic field having a
direction different from that of the radiation field.

To understand the effect of the anisotropic collisions in con-
crete terms, we assume that these collisions, apart of the cylin-
drical symmetry around the anisotropy axis, they have a symme-
try of reflection with respect to planes passing through this axis.
Therefore, Dk←k′

q←q′ ( j1 ← j2) vanishes if q � q′, but unlike the case
of Sect. 3 where the problem has a cylindrical symmetry, one
has q � 0. Although this is a particular case of symmetry, our
conclusions about the possibility of the transfer of the alignment
to orientation are applicable for any anisotropic non-cylindrical
distribution.

The expression of Dk←k′
q ( j1 ← j2) could be obtained from

Eq. (7):

Dk←k′
q ( j1 ← j2) = (2k + 1)(2k′ + 1)

∑
L,P

(−1)q−P

×(2L + 1)

(
k k′ L
q−q0

) (
k k′ L
P−P0

)
Dk←k′

P ( j1 ← j2, directive). (14)

Let us consider the H i electronic states 3s and 3p where j1 =
1/2, j2 = 3/2, k = 1, and k′ = 2. We find that

D1←2
1 (1/2← 3/2) = npert

∫
v f (u, T )d3u

×
∫

d2b × P2(cos θ) ×
√

15
8

×
⎡⎢⎢⎢⎢⎢⎣ − Π

(
j1

1
2
−1
2
← j2

3
2

1
2

)
− Π

(
j1
−1
2

1
2
← j2

−3
2
−1
2

)

+Π

(
j1
−1
2

1
2
← j2

1
2

3
2

)
+ Π

(
j1

1
2
−1
2
← j2

−1
2
−3
2

) ⎤⎥⎥⎥⎥⎥⎦. (15)

It is worth noticing that

Π( j1 µ1 µ
′
1 ← j2 ν2 ν

′
2) = (−1)µ1−µ′1+ν2−ν′2

×[Π( j1 − µ1 − µ′1 ← j2 − ν2 − ν′2)]

= [Π( j1 µ
′
1 µ1 ← j2 ν

′
2 ν2)]∗; (16)

then

Π

(
j1

1
2
−1
2
← j2

−1
2
−3
2

)
− Π

(
j1
−1
2

1
2
← j2

−3
2
−1
2

)
=

2 i × Im

(
Π

(
j1

1
2
−1
2
← j2

−1
2
−3
2

))

Π

(
j1
−1
2

1
2
← j2

1
2

3
2

)
− Π

(
j1

1
2
−1
2
← j2

3
2

1
2

)
= (17)

2 i × Im

(
Π

(
j1
−1
2

1
2
← j2

1
2

3
2

))

Π

(
j1
−1
2

1
2
← j2

1
2

3
2

)
= Π

(
j1

1
2
−1
2
← j2

−1
2
−3
2

)
,

so that

D1←2
1

(
1
2
← 3

2

)
= npert ×

∫
v f (u, T )d3u

∫
d2b, (18)

×P2(cos θ)
√

30 i × Im

(
Π

(
j1
−1
2

1
2
← j2

1
2

3
2

))
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which means in particular that the alignment-to-orientation con-
version is due to the transfer of coherence as from | j2 1

2 〉〈 j2 3
2 |

to | j1 −1
2 〉〈 j1 1

2 |, and that D1←2
1 (1/2 ← 3/2) is purely imaginary.

This last property can also be immediately retrieved from the
properties of Dk←k′

q ( j1 ← j2) in the tensorial representation:

Dk←k′
q ( j1 ← j2) = [Dk←k′

−q ]∗( j1 ← j2) (19)

and Dk←k′
q ( j1 ← j2) = (−1)k+k′Dk←k′

−q ( j1 ← j2).

We stress that Dk←k′
q ( j1 ← j2) is purely imaginary when k + k′

is odd because we considered a particular case of symmetry. But
the alignment (k′ = 2)-to-orientation (k = 1) transfer rate is gen-
erally complex. This rate is manifested by the conversion of the
alignment components j2ρ2

±1 of the j2-level into orientation in-
side the level j1 represented by j1ρ1

±1. Alignment-to-orientation
transfer effects have been reported in numerous papers; see, for
example, Petrashen’ et al. (1993), which also contains extensive
references.

As in the case of impact linear polarization, circular po-
larization can be generated from bombardment by background
charged particles having an anisotropic velocity distribution, so
we propose to call it impact circular polarization. It is interest-
ing to note that this circular impact polarization is possible only
for anisotropic non-cylindrical velocity distribution. In contrast,
impact linear polarization can be created even if the velocity dis-
tribution is cylindrical.

The alignment-to-orientation transfer rates have been cal-
culated theoretically within the limit of a dipole–dipole in-
teraction by Manabe et al. (1979); the same authors in 1981
gave first experimental evidence of transfer from alignment-
to-orientation (Manabe et al. 1981). They found in particu-
lar that the diagonal elements of the depolarization D-matrix
Dk←k

q are about 5 to 10 times higher than the alignment-
to-orientation transfer rates Dk←k′

q�0 (off-diagonal components
with k � k′), depending on the degree of anisotropy of
the velocity distribution. Of course, the usual rates Dk←k

q=0 ,
which are non-zero even for isotropic collisions, are espe-
cially higher than Dk←k+1

q . This is because they first de-
pend on the transition probabilities Π( j1µ1µ1 ← j2ν2ν2; b, u),
but Dk←k+1

q depends on the collisional coherence probabilities
Π( j1µ1µ

′
1 ← j2ν2ν′2; b, u)(µ1 � µ′1 and ν2 � ν′2), which are typi-

cally lower. Second, Dk←k
0 is generated by the isotropic and

anisotropic parts of the velocity distribution, whereas Dk←k+1
q�0 is

only created by the anisotropic part where L � 0.
The rate D1←2

1 ( j1 ← j2) should be lower than
D2←0

q=0 ( j1 → j2), in spite of the fact that both re-
sult from the anisotropic part of the velocity distribution
alone. This is mainly because D2←0

q=0 ( j1 → j2) depends on
the transition probabilities Π( j1µ1µ1 → j2ν2ν2; b, u), but
D1←2

1 ( j1 ← j2) depends on the collisional coherence probabil-
ities Π( j1µ1µ

′
1 ← j2ν2ν′2; b, u)(µ1 � µ′1 and ν2 � ν′2) . We expect

a factor 4 to 5 between alignment-to-orientation and population-
to-alignment transfer rates4. As a consequence, the impact cir-
cular polarization degree would be smaller than the impact

4 A similar conclusion was reached when we calculated the tensorial
components ζk=0

q=0( j) and ζk=1
q=0( j) describing the elastic scattering and the

depolarizing rates Dk=1
q=0( j). In fact, ζk=0

q=0( j) and ζk=1
q=0( j) are sensitive to

the diagonal elements of the T (b, u)-matrix and are about ∼4 to 5 times
higher than Dk=1

q=0( j), which depends only on the off-diagonal elements
(see Eqs. (15) and (16) of Derouich & Barklem 2007).

linear polarization. This might partially explain why the ob-
served Stokes V is customarily anti-symmetric, i.e. a footprint
of the Zeeman effect, and the impact polarization is believed to
be only linear.

We note that, because of the particular case of symmetry
adopted here, D1←2

q=0 (1/2 ← 3/2) = 0, as can be easily seen
from Eq. (19). If this particular case of symmetry breaks down,
D1←2

q=0 (1/2 ← 3/2) becomes non-zero and D1←2
1 (1/2 ← 3/2) in-

creases. We notice that the appearance of the non-diagonal rates
Dk←k′

q←q′ (1/2← 3/2) is completely due to the anisotropy of the rel-
ative velocity distribution, but that their increase is mainly due
to the value of the relative velocity rather than the anisotropy
(Manabe et al. 1979).

5. Implications in solar physics

The calculation of the collisional transfer probabilities
Π( j1 µ1 µ

′
1 ← j2 ν2 ν′2) requires, first, the calculation of the re-

quired atomic wavefunctions and interaction potentials and, sec-
ond, the resolution of the time-dependent Schrödinger equation.
In the collisional semi-classical method of Sahal-Bréchot et al.
(1996), only the probabilities of transition where µ1 = µ

′
1 and

ν2 = ν
′
2 were taken into account since they have been concerned

with the impact linear polarization of the Hα line in solar flares.
Sahal-Bréchot et al. (1996) have obtained the transition probabil-
ity by using the formulae of Seaton (1962), i.e. without solving
the Schrödinger equation. We think that a careful study based on
accurate interaction potentials and a close coupling dynamical
description is highly desirable to try to improve the calculations
of Sahal-Bréchot et al. (1996), where µ1 = µ

′
1 and ν2 = ν′2, and

most importantly to calculate the coherence probabilities where
µ1 � µ′1 and ν2 � ν′2.

The ns, np, and nd levels are remarkably close in the case
of hydrogen levels, for example, E(2p 2P3/2) − E(2s 2S1/2) =
0.33 cm−1 and E(3p 2P3/2) − E(3s 2S1/2) = 0.098 cm−1, making
the collisional coherence transfer between different electronic
states more efficient and consequently the emergence of impact
circular polarization. Moreover, it could be important to take the
coherence transfer inside the same electronic state into account.
The efficiency of the different possibilities of the transfer of the
coherence depends of the energy of the perturbers.

If the cylindrical symmetry breaks, anisotropic collisions
could convert alignment into orientation independently on the
values of the magnetic and electric fields. The regime of
j-level crossing is not needed for the collisional alignment-to-
orientation transfer. It is might be of interest to recall that, unlike
electric dipole radiative transitions, collisional processes do not
obey strong selection rules.

The seven components of the Hα line connect the hydrogen
electronic state 3p to 2s, the 3s to 2p, and the 3d state to 2p. The
observation of circular polarization (López Ariste et al. 2005)
attributed to the orientation of one of these levels could be due
to the coherence transfer by anisotropic collisions. For instance
(see Fig. 1):

– the relatively long-lived metastable level 2s 2S1/2 is par-
ticularly exposed to the effect of coherence transfer by
anisotropic collisions; this level is circularly polarizable
by alignment-to-orientation transfer processes with the
level 2p 2P3/2;

– the level 3s 2S1/2 can become orientated by alignment-to-
orientation transfer processes with the level 3p 2P3/2;

– the upper level of one component of the Hα line 3p 2P3/2
can be aligned as a result of the anisotropic collisions or
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Fig. 1. Schematic representation of non-exclusive ways for the colli-
sional transfer of coherence between different electronic states or in the
same state. As a result, impact circular polarization of the emitted light
could be observed. The states of the hydrogen atom taken into account
are 1s, 2s, 2p, 3s, 3p, and 3d. Note that the level spacings are not to
scale.

radiation; this alignment can convert to orientation of the
3p 2P3/2, leading to circular impact polarization. In this case,
expressions of the corresponding transfer rates associated
with this process can be obtained from the above general
equations by taking j1 = j2 = 3/2.

This reasoning is applicable to other levels intervening in the
Hα line structure. It can also be applied to other atomic lines.

It is useful to note that, since the hyperfine levels are closer
than fine levels, the coherence transfer probabilities between
hyperfine levels may be important. Collisional alignment-to-
orientation transfer rates may then play a role for atoms or ions
with important hyperfine-structure effects.

6. Conclusion

Spectropolarimetric observations by López Ariste et al. (2005)
of the Hα line in solar prominences show unexpected atomic
orientation (k = 1) in the hydrogen levels. On the other hand,
Ramelli et al. (2005) have recently found Stokes V profiles
showing only the typical 2-lobe antisymmetric pattern profiles
due to the Zeeman effect. Our aim was to pose the problem from
a collisional point of view.

Theoretical investigation of the effect of anisotropic col-
lisions shows the possibility of impact circular polarization,
i.e. the creation of symmetric Stokes V by anisotropic non-
cylindrical collisions. Physically, the collisional transfer of co-
herence between hydrogen levels is responsible for this creation,
which reflects the transfer of the alignment of a j2-level j2ρ2

±1
to the orientation of a j1-level represented by j1ρ1

±1. For a given
solar conditions, the rate of the creation of circular atomic po-
larization (symmetric Stokes V) seems to be 4 to 5 times lower
than that responsible for the creation of the well known impact
linear polarization.

Anisotropic collisions can be efficient in the generation of
symmetric Stokes V (atomic orientation) if the anisotropy axis
have a direction different from that of the radiation field. The
cylindrical symmetry of the problem could be broken for exam-
ple by the presence of a magnetic field having a direction differ-
ent from that of the light and guiding the beams of the perturbers.
Anisotropic collisions could convert alignment into orientation
regardless if the magnetic regime of level crossing is attempt or
not.

To complement this study, accurate calculations of all the
collisional rates intervening in the formation of hydrogen lines,
taking coherence transfer into account, are highly desirable.
These collisional rates, which enter the coupled set of equations
of radiative transfer and statistical equilibrium, would be impor-
tant for improving our understanding of the solar prominences
and flares.
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