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Thirty-two years ago, Brent Tully and Richard Fisher wrote this
ground-breaking article on a method of determining galaxy dis-
tances that is independent of redshift. This method is now the
most widely used one for spiral galaxies. They proposed using a
correlation between a distance-independent observable for spiral
galaxies, the global neutral atomic hydrogen (HI) profile width,
and their absolute magnitude or global luminosity, to indicate
distances. It was not the first time that comparable correlations
were used as distance indicators (e.g. Roberts 1962; Balkowski
et al. 1973; Shostak 1974), and the virial theorem was invoked as
the basis. But the simple correlation between luminosity and ro-
tational velocity had not yet been approached. Also many other
correlations had been studied, such as a correlation with mor-
phological type, so that the breakthrough in this paper was to
show that the correlation with type was secondary (since early
type objects are more massive and luminous) and that the prin-
cipal and original correlation was with luminosity.

As Brent Tully recalls now: “Opik in the 1920’s used the
virial theorem to get a distance to M 31, measuring luminosity,
radius and rotation rate and assuming a reasonable stellar value
for M/L. He got a distance to M 31 that was earlier and more
accurate than determined by Hubble using cepheids.

Then several groups in the 1960–70’s used a variation of the
virial theorem as a distance indicator: they assumed L ∝ rV2

with a constant determined from observations. This was one of
the many poor ways to get distances in those days. Notice that
there is distance dependence in 2 of the 3 parameters, and the
rV2 dependence is forced.

The relation proposed by Fisher and myself is L ∝ Vα so
only one of two parameters are dependent on distance and the
power law is to be discovered. We already knew those things at
the time we wrote the paper, but we couldn’t have anticipated the
tightness of the correlation”.

The difficulty of convincing the community of the quality
of the correlation was to reduce the errors that flawed early at-
tempts to calibrate it: by more accurately knowing the distance
of nearby galaxies, their inclination corrections of the intrin-
sic rotational velocity, and corrections to magnitude. Tully and
Fisher succeeded in obtaining good calibrators with careful cor-
rections, and then applied the relation to finding the distance to
the Virgo and Ursa Major cluster. They also derived an estimate
of the Hubble constant, H0 = 80 km s−1 Mpc−1, not so far from
the accepted value today (Sakai et al. 2000).

The distance to Virgo that they determined (13.2 Mpc)
was inconsistent with previous determinations of 19.5 Mpc

(Sandage & Tammann 1974), and they argued that the reason
was the previous inclusion of the Virgo II southern extension,
which does not belong to the same cluster. An interesting fea-
ture of their work is that they proposed both the correlation of
the HI line width with the magnitude and the diameter of spiral
galaxies. Given the uncertainties and the difficulty defining di-
ameters precisely, only the total luminosity was retained in later
literature.

Although their correlation could also help for understanding
galactic structure, Tully & Fisher (1977) put the emphasis on dis-
covering a new method of determining distances, in competition
with other distance indicators used as standard candles (peculiar
stars or giant HII regions). The correlation turned out to be an
impressive tool for distinguishing peculiar motions from expan-
sion and mapping the large-scale structure of the local universe
(Dekel 1994). At the beginning, most citations of the 1977 paper
were coming from individual galaxy studies, then, and more and
more from the large-scale structures and the expansion rate of
super-clusters. It was soon realized that the red or infrared mag-
nitudes were much better correlated to the HI line width than
the visible one (Aaronson et al. 1979; Giovanelli et al. 1997)
and that extinction was an important source of scatter. The in-
frared luminosity/H I velocity-width relation was a power law
with slope 4. Very soon the method was called the Tully-Fisher
relation (TFR), parallel to the Faber-Jackson (1976) equivalent
relation for elliptical galaxies. There were many attempts to find
a second parameter able to reduce the scatter, such as the mor-
phological type (Rubin et al. 1980); however, none actually suc-
ceeded, and the TFR remains a unique relation on one dimension
(but not a plane).

The TFR has revealed itself to be extremely rich in appli-
cations to the origin of galaxies, and even the scatter in the
relation was interpreted physically. It could help for under-
standing galaxy evolution along the Hubble sequence, bars in
galaxies, low-surface-brightness objects, or luminosity evolu-
tion (Burstein 1982; Sprayberry et al. 1995; Zwaan et al. 1995;
Barton et al. 2001; Courteau et al. 2003). This type of work from
scaling physical relations was developed in parallel for elliptical
galaxies, which are more difficult to deproject, and deep devel-
opment beyond the Faber-Jackson relation were worked out to-
wards the fundamental plane (Djorgovski et al. 1987). Terlevich
et al. (1981) discovered that a second parameter was needed to
determine the position of any elliptical galaxy, in contrast to spi-
ral galaxies.
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One part of the TFR may be explained by the virial relation,
which must be satisfied in galaxies, i.e., that the velocity width
(or peak of the rotation curve, V) has to vary as the square root of
the total mass M, divided by the characteristic radius R. Since the
TFR involves the luminosity, which is proportional to the mass
of baryons Mb, we write the virial relation as kMb = V2R, where
k is proportional to the total-to-baryon mass ratio. But then an-
other relation is required to account for the TFR, and this is typ-
ically a scaling relation between the baryon mass (or luminos-
ity) and the size. For a large category of high surface brightness
galaxies (HSB), such a relation was found by Freeman (1970)
as a constant surface density μHSB, since Mb = μHSBπR2. For all
HSB galaxies, the combination of this relation and the virial the-
orem yields μHSBπk2Mb = V4, and the TFR can be understood
as a constant baryon-to-total mass ratio. When another category
of galaxies of low surface brightness (LSB) were discovered, vi-
olating Freeman’s relation (Sprayberry et al. 1995), it was found
that they also satisfied the same TFR, i.e. μLSBπk2

LSBMb = V4,
or in other words that μk2 was an invariant for all categories.
Indeed LSB proportionally have a larger fraction of dark matter
than HSB, and their low values of μ are compensated for by a
high k, although they still have a low surface density, as far as
total mass is concerned (low μk), as confirmed by their slowly
rising rotation curves.

The baryonic mass is usually used here, deduced from the
luminosity through a well-motivated dependence of the stellar
mass-to-light ratio on the mass. The scaling law is fundamental
to a better understanding of the processes of galaxy formation
(e.g. Courteau et al. 2007) and has been continuously used for
many peculiar classes of galaxies, unlike the normal ones (e.g.
Iodice et al. 2003), or as a function of environment (Biviano
et al. 1990).

The TFR is one of the fundamental features sought in the
evolution of galaxies as a function of redshift. Many studies
try to establish how the relation is maintained or retrieved,
or it varies (Böhm et al. 2004; Conselice et al. 2005). The
results of observations remain preliminary, but in the future,
the comparison of the TFR at high z with the predictions from
the simulations will certainly be one of the major tools for
understanding galaxy formation and evolution.

Last but not least, the TFR is fundamental to better under-
standing the behavior of the dark matter in spiral galaxies. Since
on the one hand, the magnitude (or luminosity) accounts for the
visible baryons and, on the other, the rotational velocity traces
the gravitational potential provided by dark matter, the relation
is an index of the strong link between baryonic and dark matter.
The standard model of CDM has difficulty reproducing the for-
mation of galaxy in particular and its scaling laws, either through
fully numerical (Gnedin et al. 2007) or semi-analytical simula-
tions (Somerville & Primack 1999). While the slope of the TFR
is easy to retrieve, the zero point is a crucial test of the angu-
lar momentum problem in disk formation (Steinmetz & Navarro
1999). The TFR can be naturally explained in hierarchical mod-
els, but its normalization and evolution depend strongly on the
star formation algorithm chosen and on the cosmological param-
eters that determine the universal baryon fraction and the assem-
bly time of galaxies with different masses.

Since the TFR traces a strong link between the dark matter
and baryonic content of galaxies, it was interesting to see a break
for dwarf Irr galaxies, which are known to be dominated by dark
matter: in the optical TFR, galaxies with rotational velocities
lower than 90 km s−1 fall below the normal relation. These faint
galaxies, however, are very rich in gas, and the gas does not con-
tribute to the flux in the optical bands. It is sufficient to replace
the optical luminosity by the total visible mass of the disk (gas
and stars) to restore the relation, which is then called the bary-
onic TFR (McGaugh et al. 2000).

The TFR thus appears to be a fundamental relation between
rotation velocity and total baryonic mass. It therefore comes
as no surprise that the TFR has inspired cosmological models
to solve the dark matter problem in terms of modified gravity
(Milgrom 1983). In this modification of Newtonian gravity, a
mass-rotation velocity relation of the form M ∝ V4 is automati-
cally obtained.

The TFR is now an outstanding feature in galaxy physics, so
widely acknowledged that it has entered current language and
is used without even being cited. The citation rate of the origi-
nal paper still increases year after year. This fundamental study
aimed at providing a distance indicator has not only fullfilled its
first goal beyond expectations, but also surpassed these first steps
and extended them to new areas of large-scale structure, galaxy
physics, models of dark matter, galaxy formation, and evolution.
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