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Abstract Seismic waves radiated by small crustal earthquakes are prone to multiple

mode conversions caused by reflection and transmission at interfaces, and scattering

by small-scale heterogeneities in the bulk of the medium. The goal of this study is to

clarify the complex interplay between volume scattering and interface reflections in

crustal waveguides and how it will impact the crustal energy propagation. To carry

out this task, we have incorporated a rigorous description of wave polarization in the

context of Monte-Carlo simulations of the multiple-scattering process by introducing

a 5-dimensional Stokes vector. To shed light on the wave content of the regional short-

period seismic wavefield, we investigate the asymptotic partitioning of seismic energy

onto P , SV and SH polarizations in the coda, as well as the angular distribution

of energy flux in the waveguide. In full elastic space, equipartition theory predicts

that (1) the energy ratio between P - and S-wave energies tends to β3/(2α3), (2) an

equal distribution of energy among SV - and SH-waves and (3) that energy fluxes are

isotropic. In the presence of interfaces, we find that the isotropy of the wavefield is

systematically broken and that energy ratios are shifted to the detriment of P -waves

and in favor of SV -waves in a non-absorbing medium. This implies that a residual

polarization is preserved in the waveguide. Through an extensive parametric study,

we illustrate in detail how the anisotropy of the wavefield, the partitioning ratios

and the shear wave polarization depend on the crustal attenuation parameters. The

role of the initial polarization at the source has also been examined. In the case of an

explosion and a shear dislocation with equal magnitude, we find that the energy level

in the coda can differ by more than one order of magnitude when the effect of crustal

scattering becomes very weak compared to reflections or transmissions at interfaces.

sité Paul Sabatier, C.N.R.S., 14 Avenue Edouard Belin, Toulouse, France.

E-mail: marie.calvet@irap.omp.eu
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When comparing different shear dislocation mechanisms, we find that the energy

level in the coda can differ by up to 60 percent. While equipartition, depolarization

and coda normalization remain fundamental guides to our understanding of the coda,

their application requires a good a priori knowledge of the attenuation properties of

the crust.

Keywords coda waves · polarized waves · crustal waveguide · radiative transfer ·

scattering · energy partition · seismic source

1 Introduction

Coda waves are scattered waves by random small-scale heterogeneities of the

medium (Aki and Chouet, 1975) and contain valuable information on the fluctuations

of elastic and anelastic parameters in the Earth (see Sato et al., 2012; Sato, 2019, for a

review). Numerous studies extracted fundamental propagation properties from coda

waves, such as scattering and intrinsic attenuation (Wu, 1985; Fehler, 1991; Lacombe

et al., 2003; Sens-Schönfelder and Wegler, 2006b; Przybilla et al., 2009; Eulenfeld and

Wegler, 2016; Gaebler et al., 2015; Mayor et al., 2018), while others focused on the

extraction of source properties from these multi-scattered waves (Mayeda andWalter,

1996; Mayeda et al., 2003; Sens-Schönfelder and Wegler, 2006b; Denieul et al., 2015;

Sèbe et al., 2018). However, the separation of source, propagation and site effects can

be difficult, as a consequence of our incomplete knowledge of the small-scale physical

properties of the Earth’s interior in addition to oversimplified models or assumptions.

There are different approaches to model energy propagation in multiple scattering

media containing small-scale heterogeneities. In seismology, full wavefield simulations

have been fruitfully employed (Frankel and Clayton, 1986; Obermann et al., 2016;
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Leng et al., 2020). Here, we adopt a radiative transfer approach which has been

widely used in the past and is a common tool across disciplines.

Radiative transfer theory has been initially developed for electromagnetic waves

(Chandrasekhar, 1960), and then, transposed to seismology and acoustics (Wu, 1985;

Sato, 1994; Weaver, 1990; Ryzhik et al., 1996). The Monte-Carlo method is often

used to solve numerically the radiative transfer equations. Starting from a simpli-

fied unbounded heterogeneous medium in a scalar wave approximation (Gusev and

Abubakirov, 1987; Hoshiba, 1991), several improvements of the numerical models

have been made in order to consider more realistic Earth models. Gradually more

complex deterministic structures were considered, including depth-dependent veloc-

ity profiles consisting of several layers (Hoshiba, 1997; Margerin et al., 1998; Lacombe

et al., 2003), velocity gradients (Yoshimoto, 2000) or a 3D velocity model with a

variable crustal thickness (Sanborn and Cormier, 2018). These studies showed that

deterministic structure have great impact on the coda amplitude and shape, which

is controlled by partial guiding and leakage. The neglect of these effects could lead

to a biased estimation of source or attenuation parameters, as shown in Margerin

et al. (1998); Bianco et al. (2005).

Depth-dependent scattering and intrinsic attenuation were first implemented by

Hoshiba (1994), who also pointed out some possible limits of the coda normaliza-

tion method. More recently, lateral variations of scattering or intrinsic attenuation

parameters were also taken into account (Sens-Schönfelder et al., 2009; Sanborn and

Cormier, 2018), showing that a zone of strong attenuation affects considerably the

coda shape (especially the Lg coda which can be greatly attenuated).

An attractive feature of radiative transfer theory is that it allows one to keep

track of mode conversions and shear wave polarization in heterogeneous elastic me-
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dia. The theory was established by Weaver (1990) and the first seismological applica-

tions were developed by Zeng (1993); Sato (1994), including the P -to-S and S-to-P

conversions by scattering. In later numerical works, a complete description of po-

larization was included through a 5-dimensional Stokes vector (Turner and Weaver,

1994; Margerin et al., 2000). Such a description of shear waves allows one to sepa-

rate the contributions of SV and SH polarizations which behave differently at both

internal interface discontinuities and at the free surface. Turner and Weaver (1995)

developed a full treatment of wave polarization in the case of incident plan waves in

a scattering medium limited by a solid-liquid interface. Sens-Schönfelder et al. (2009)

and Sanborn et al. (2017) considered the contributions of SV and SH polarizations

in addition to deterministic reflections in the case of a crustal waveguide. To our

understanding, these two studies neglected the ellipticity aspect of wave polarization

which develops when S-waves are incident on a boundary at post-critical incidence

angles. Since polarization affects the scattering pattern of S-waves, a complex feed-

back can be expected between volume scattering and deterministic reflections. The

initial polarization state is controlled by the source radiation patterns, which have

been included into Monte-Carlo simulations in order to simulate realistic shear dislo-

cations such as small earthquakes (Rachman et al., 2015; Sanborn et al., 2017). The

source radiation influences the shape of the seismic signal, especially around the di-

rect arrivals, where the wavefield is not yet randomized. However, it is well accepted

that there is no signature of the source mechanism on the late coda excitation.

The literature referenced above amply illustrates that both deterministic struc-

tures and random heterogeneities can greatly influence the coda shape and its po-

larization state. Yet, the complex interactions between bulk scattering and reflec-

tion/transmission at interfaces have not yet been systematically explored. The pur-
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pose of our study is to fill this gap in our understanding of the coda, with a partic-

ular view on some well established wavefield properties in infinite scattering media:

equipartition and coda normalization. The use of these concepts in seismology is

summarized hereafter.

The principle of equipartition is well understood in unbounded random media,

where all directions of propagation become equiprobable after several scattering

events and the partition of body wave energy among different polarizations tends to

a fixed value which is independent of the source and scattering properties (Weaver,

1982; Ryzhik et al., 1996). This concept is fundamental for some domains of seis-

mology, such as coda wave interferometry (Snieder, 2002) used for imaging or moni-

toring (Sens-Schönfelder and Wegler, 2006a) or Green’s function retrieval from coda

(Campillo and Paul, 2003) or ambient noise correlations (Shapiro and Campillo,

2004).

In seismology, the equipartition principle has been supported by several numer-

ical or experimental studies. Margerin et al. (2000) show numerically that energy

equilibration is reached after a few scattering events in Monte-Carlo simulations.

(Souriau et al., 2011) shows that a stabilization of the H/V ratio is rapidly reached

for coda waves in the Pyrenees. This indicates that the diffuse wavefield has reached

a form of equilibrium akin to the predictions of equipartition theory. Using receiver

arrays, Campillo et al. (1999); Shapiro et al. (2000); Hennino et al. (2001); Margerin

et al. (2009) observed an equilibration of the ratio between compressional and shear

deformation energies in the coda. Furthermore, these studies revealed that the P -to-

S energy ratio can be different from the theoretical full-space value. In the case of

Hennino et al. (2001), the discrepancy was convincingly reconciled with equiparti-

tion theory by incorporating Rayleigh waves at the surface of a half-space. But other
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studies confirmed analytically or numerically that the P -to-S energy ratio is shifted

in the presence of intrinsic attenuation (Margerin et al., 2001; Trégourès and van

Tiggelen, 2002a), interfaces (Trégourès and van Tiggelen, 2002a) or sub-surface lay-

ering (Margerin et al., 2009). Based on a radiative transfer model for scalar waves in

a wavguide geometry, Margerin (2017) shows that the energy flux at the free surface

is never isotropic, even at long lapse-time. Hence, while a key concept, the conditions

of application of equipartition to seismological data needs to be carefully examined.

The principle of coda normalization which originates from the work of Aki and

Chouet (1975) is widely used to separate source, propagation and site properties

(Rautian and Khalturin, 1978; Tsujiura, 1978; Aki, 1980). This principle assumes

that, at a fixed lapse time, seismic coda amplitude becomes independent of the

source-receiver distance. Therefore, the energy in the coda should be proportional

to the radiated energy from the seismic source. However, this method shows some

limitations, particularly for media with variations of attenuation (Hoshiba, 1994) or

elastic parameters (Hoshiba, 1997; Yoshimoto, 2000). These studies show that the

coda excitation does not only depend on the source size, but also on the source depth

and medium parameters. As a result, the estimated radiated energy or magnitude

may be biased, which can lead to uncertainties in seismic hazard estimation.

In this paper, we will clarify the role of wave polarization in the complex interplay

between scattering by random heterogeneities and deterministic reflections in a sim-

ple waveguide geometry. The theoretical aspect of the transport of polarized elastic

waves in a crustal waveguide and the Monte-Carlo implementation will be outlined

in the next section. Next, we discuss the shape of the modeled energy envelopes,

the crustal energy decay and the partitioning energy ratios between the different

polarizations. The relative impacts of interfaces, scattering and intrinsic attenuation
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on the crustal energy decay, the angular distribution of the flux and the energy par-

tition is clarified with the aid of two parametric studies. Finally, the effects of the

source radiation on the coda excitation is examined through 2 additional parametric

studies, where the coda excitation by explosion or shear dislocations are compared.

2 Radiative transfer in a multiple-scattering crustal waveguide

2.1 Model presentation and important scale lengths

In this paper, we introduce a stratified medium consisting of a heterogeneous

crust overlying a homogeneous mantle, as a simple but nevertheless realistic model of

the lithosphere. The geometry is depicted in Fig. 1a. Crust and mantle are separated

by a horizontal velocity contrast (Moho) at a constant depth H where the energy

can be either reflected or transmitted. In the numerical examples we set H = 30 km.

The crust is bounded at the top by a free surface where only reflection is possible.

In Fig. 1a, the subscript 1 and 2 designate the elastic parameters of the crust and

mantle, respectively. The shear and longitudinal velocities (β, α) and the density

(ρ) of the crust and mantle are given by: β1=3.5 km/s, α1=
√

3β1 ≈ 6.06 km/s,

ρ1=2.8, β2=4.7 km/s, α2=
√

3β2 ≈ 8.14 km/s and ρ2=3.3. In our model, the crust

consists of a random medium with fluctuations of velocity and density δα, δβ and

δρ, superposed on a homogeneous background. Following Birch’s law, the continuous

fluctuations of velocity are assumed to be proportional to the density perturbations:

δα

α
= δβ

β
= 1
ν

δρ

ρ
. (1)

In this study, the parameter ν of Birch’s law is set to 0.8 as suggested for lithospheric

rocks (Sato, 1984). To describe the spatial correlation of the fluctuations, we choose
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an exponential function with scale length lc. This simple hypothesis is supported by

borehole observations (e.g. Wu et al., 1994). In a model of radiative transport, the

strength of heterogeneities is quantified by the mean free path which represents the

average distance between two scattering events. Equivalently, the mean free path l

can be defined as the characteristic scale length of attenuation of the coherent wave as

a consequence of scattering by heterogeneities. This quantity is a sensitive function of

the total variance of the fluctuations 〈ε2〉, the correlation length lc and the (circular)

frequency of the probing waves ω. It may be evaluated approximately with the aid

of the Born approximation (Sato, 1984) or more rigorously from the Dyson equation

(Weaver, 1990). In this work, we employed the former approach to calculate all the

parameters of the transport model. It is valid below the high-frequency geometrical

limit, i.e., the a-dimensional parameter ωlc
√
〈ε2〉/c must be smaller than 1 (c stands

for α or β) (e.g. Weaver, 1990). Note that in the case of elastic waves, the mean free

path also depends on the propagation mode (P or S) and will be denoted by lP and

lS .

It is important to point out that the scattering pattern is never isotropic in

elastic media. This property has profound effects on the overall transport of energy

in the heterogeneous medium and calls for the introduction of another scale length

known as the transport mean free path l∗. This quantity can be understood as the

average distance over which a coherent wave loses “memory” of its initial direction of

propagation as a consequence of multiple non-isotropic events. The ratio between l∗

and l depends critically on the scattering mechanism with l∗/l < 1 for preferentially

backward scattering and l∗/l > 1 for preferentially forward scattering. In the case

of elastic waves, the derivation of the transport mean free paths of elastic waves l∗P

and l∗S has been summarized by Turner (1998).
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Earth crust is not perfectly elastic and this gives rise to irreversible conversion of

seismic energy into other forms. In our model, these complex absorption processes are

described at a phenomenological level. We assume that the energy carried by a wave

decreases exponentially as it propagates through the medium. The characteristic

scale length of attenuation depends again on the propagation mode and will be

denoted by laP and laS for P - and S-waves, respectively.

As illustrated in Fig. 1a, we suppose for simplicity that there is no scattering in

the mantle (hence the infinite value of the mean free paths lP2,S2). Actually, scatter-

ing in the mantle is required to explain P -coda observations at teleseismic distances

(Mancinelli et al., 2016). Our model will nevertheless be applicable when the ratio

between the transport mean free paths in the crust and the mantle is sufficiently

small. More precisely, we require that the return time of waves transmitted to the

mantle be large compared to our observation time window. This will be the case if

the fluctuations in the mantle are either very weak (to decrease back-scattering) or

large scale (to promote forward scattering), or both. The results by Mancinelli et al.

(2016) suggest that the later condition is likely fulfilled. It is worth noting that,

due to the geometry of our model, the transmitted energy in the mantle cannot

come back to the crust. Therefore, even without absorption the crustal energy can

only decrease over time, a phenomenon called energy leakage (Korn, 1990; Marg-

erin et al., 1998). As shown in Margerin et al. (1998) and Margerin (2017), one can

distinguish two regimes for leakage. In the case of strong scattering in the crust

(l∗/H � 1), the typical leakage time scales like H2/(cl∗) (Margerin et al., 1999;

Wegler, 2004). This formula can be interpreted as the typical time required for dif-

fuse energy to propagate through the crust. In the opposite weak scattering regime

(l∗/H � 1), (Margerin, 2017) shows numerically that the leakage time increases
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like l∗/c. Physically, this means that the randomization of propagation directions

by multiple scattering controls the leakage out of the waveguide in the case where

reflections from the waveguide boundaries play a prominent role. In the following, we

will employ the adimensional parameter l∗S/H to compare the relative importance of

scattering in the bulk of the crust to deterministic reflections at the Moho and the

free surface.

Before presenting in details our physical model, we note that an alternative ap-

proach to the treatment of scattering in a waveguide has been proposed by Trégourès

and van Tiggelen (2002b); Borcea et al. (2021). These authors developed a trans-

port theory based on a surface wave representation of the wavefield, rather than a

body wave representation in our case. In the quasi-2D theory of Trégourès and van

Tiggelen (2002b), the surface eigenmodes of the waveguide exchange energy as they

propagate and interact with the inhomogeneities. A distinctive advantage of this

approach is that it incorporates naturally Rayleigh and Love waves. In our model,

Rayleigh waves are still lacking although recent developments let us foresee that this

could be remedied (Xu et al., 2022). Love waves, which consist of a coherent super-

position of multiply-reflected horizontally polarized S-waves (SH), are represented

as an incoherent superposition of SH energy in our case. These physical limitations

of our model should be noted. Nevertheless, our approach can cover a broad range of

cases that are not yet accessible with the quasi-2D theory. Indeed, in the strong scat-

tering regime, i.e. (l < H), the coherent waves are strongly attenuated in between

two waveguide boundary reflections, which implies that Love waves cannot develop

in this case (Trégourès and van Tiggelen, 2002b). Another important limitation of

the quasi 2-D theory is that the lower boundary acts as a perfect reflector, so that
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energy leakage cannot be modeled yet in this approach. In the next section, we recall

the definition of Stokes parameters and briefly discuss their physical interpretation.

2.2 Stokes vector and polarization

The central quantity in radiative transfer theory is the Stokes vector which rep-

resents both the intensity and the polarization of the waves propagating in a given

direction of space (at a given position and time). It should be noted that polarization

is entirely determined by the correlations among the components of the wavefield

(e.g. Wolf, 2007). Potentially, there are 9 independent components to fully repre-

sent the polarization of a 3-component wavefield. But as shown by Weaver (1990);

Ryzhik et al. (1996), 4 terms of the full correlation tensor in fact represent cross

terms between P - and S-waves. The contribution of these terms may be shown to be

negligible thanks to the large wavespeed difference between the two types of waves.

This leaves us with 5 independent parameters. In this work, we adopt the standard

Stokes description of polarization (4 parameters for S-waves) augmented with an

additional parameter for P -waves.

We will first recall the definition of the elastic Stokes parameters for a single

plane wave following the approach of Turner and Weaver (1994). We introduce a

Cartesian frame (x,y, z) and, for simplicity, consider waves propagating in the z

direction. The field of a plane wave u(r, t) can be expressed as follows:

u(r, t) =


uSx

uSy

uP

 =


ASx (t)e−iω(t−z/β)

ASy (t)e−iω(t−z/β)

AP (t)e−iω(t−z/α)

 (2)
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where AP , ASx and ASy stand for the complex displacement amplitudes of P -

waves and the x and y components of S-waves, respectively. The introduction of

complex numbers for the amplitudes allows one to incorporate possible phase shifts

between the x and y components of shear waves. As we shall see later, such phase

shifts may occur upon reflection at medium boundaries. In Eq. (2), we have allowed

the amplitudes AP , ASx and ASy to depend on time. In transport theory, such a

time dependence should be slow compared to the central frequency of the waves ω

(Weaver, 1990; Ryzhik et al., 1996). In other words, the amplitudes can be considered

as approximately constant over a large number of periods 2π/ω. In order to allow

for a complete description of S-wave polarization at the level of transport theory, a

5-dimensional Stokes vector S of specific intensities is introduced:

S = (IP , IS , Q, U, V )T (3)

We recall that the term “specific” refers to an angularly resolved flux of energy and,

as such, depends on the space direction. The components of the Stokes vector depend

on the complex amplitudes introduced in Eq. (2) in the following way:

IP = ραω2

2 〈|AP |2(t)〉

IS = ρβω2

2 〈|ASx|2(t) + |ASy|2(t)〉

Q = ρβω2

2 〈|ASx|2(t)− |ASy|2(t)〉

U = ρβω2〈<e(ASx(t)A∗Sy(t))〉

V = ρβω2〈=m(ASx(t)A∗Sy(t))〉,

(4)

where the brackets denote averaging over several periods. In Eq. (4) IP and IS are

recognized as the total intensities of P -waves and S-waves and Q as the difference

of S intensities measured along the x and y axes. U and V are related to the cross-
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correlation between the two components of the S-wave motion. It can be shown that

U is similar to Q in the sense that it measures the difference of S intensity along two

axes x′ and y′ that can be deduced from x and y by a 45 degrees rotation. Finally

V can be defined as the difference of circular left and circular right S intensities.

This last parameter is non-zero when the phases of the two amplitudes ASx and

ASy are different. This situation can occur in practice and gives rise to elliptically

polarized shear waves. The last four components of S are analogous to the Stokes

parameters of electromagnetic waves and we refer to Chandrasekhar (1960) for a

thorough treatment.

2.3 Radiative transfer theory

To model energy propagation in the multiple-scattering crustal waveguide, we

use the theory of radiative transfer for polarized elastic waves. As shown by previous

authors, (Weaver, 1990; Turner and Weaver, 1994; Ryzhik et al., 1996; Margerin,

2005), the full Stokes vector S is necessary to formulate the radiative transfer equa-

tion, that we recall hereafter:(
C−1 ∂

∂t
+ p.∇

)
S(t, r,p) = −

(
l−1 + la−1)S(t, r,p)

+ l−1
∫

4π
P (p,p′)S(t, r,p′)d2p′ + S0(t, r,p).

(5)

The left-hand side represents the variation of the Stokes vector followed along a

small bundle of rays in a scattering and absorbing medium. The first term on the

right-hand side corresponds to the decay of the incident specific intensity due to both

scattering and intrinsic absorption. The second term is the gain of specific intensity

from a beam originally propagating in direction p′ and scattered into direction p. Eq.

(5) can be interpreted as local balance of energy for polarized elastic waves (Turner
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and Weaver, 1994). The last term S0(t, r,p) represents the source and depends on

the focal mechanism. In this work we consider both earthquakes and explosions but

limit ourselves to point-like sources (see section 2.6 for more detail). The quantity

C = diag(α, β, β, β, β) is the diagonal 5×5 velocity matrix which contains the mean

velocities α and β of the P - and S-waves. The matrices l = diag(lP , lS , lS , lS , lS)

and la = diag(laP , laS , laS , laS , laS) are the mean free path and absorption length 5 × 5

matrices respectively. We note that l−1 = g, the latter being the diagonal matrix for

the integrated scattering coefficients. In the gain term, P (p,p′) is the 5× 5 Mueller

matrix that transforms the Stokes vector of an incident wave into the scattered Stokes

vector. This matrix describes all the mode conversions and polarization effects in

single scattering.

Here, we will recall the most important aspects of the theory, in particular

the treatment of polarization at scattering events in the bulk or upon reflection

at medium boundaries. To motivate the discussion, examples of snapshots of P - and

S-wave energies for an explosion source in the crust are displayed in Fig. 1b and Fig.

1c, at two different lapse time t = 0.75τS and t = 1.5τS , where τS is the S-wave mean

free time (set to 20 s here). In this Figure, we can recognize ballistic wavefronts, fol-

lowed by diffusive waves forming the coda. For seismological application, the P and

S energy densities are by far the most important quantities. But transport equations

give us access to far more detailed information such as the polarization state or the

angular spectrum of the wavefield, which are very helpful to understand the physics

of multiple-scattering. Isotropy and depolarization of the wavefield are also central to

important applications such as the Green’s function reconstruction from coda waves

(Campillo and Paul, 2003; Emoto et al., 2015). We will therefore devote some space

to the treatment of energy exchange between different polarizations in the following.
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Fig. 1: (a) Model geometry and parameters of the Monte-Carlo simulations. The

seismic source is placed at a depth of 15 km for all simulations. There is no scattering

in the mantle, which explains the infinite mean free paths. (b) and (c) Snapshot of

P - and S-wave energy propagation in the lithosphere, at a time of 0.75τS and 1.5τS

respectively, with τS = 20 s. The energy is generated by an explosion (red cross).

The waveguide is bounded by a free surface at the top and the Moho at the bottom

(represented by the dashed horizontal lines on the snapshot). The energy density is

averaged over cylindrical shells with radius and thickness equal to 5 km.
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2.4 Scattering and Mueller matrix for volume scattering

With the aid of definition (4), we can now write down the matrix relating incident

and outgoing Stokes vectors in the single-scattering process. For clarity, we begin with

the so-called scattering matrix. This requires the introduction of a few more notations

which are depicted in Fig. 2a. The incident wave propagates along direction p and is

scattered into direction p′. We introduce the scattering plane spanned by the vectors

p and p′. Two right-handed reference frames denoted by (r, l,p) and (r′, l′,p′) are

employed to express the incident and scattered Stokes vectors, respectively. The

directions r (r′) and l (l′) are perpendicular and parallel to the scattering plane,

respectively. Θ is the angle between the directions p′ and p, also called scattering

angle. Φ is the rotation angle between the reference frames (x,y, z) and (r, l,p)

around the z-axis. For simplicity, we imagine a scattering volume Vsc at the center

of the coordinate system, whose size is much larger than the correlation length lc,

yet much smaller than the scattering mean free path. We isolate Vsc from the rest of

the heterogeneous medium and calculate its response to an incident plane wave. For

simplicity, we also assume that the scatterers obey spherical symmetry. Following a

method similar to Margerin (2005), the scattered Stokes vector Ssc can be related

to the incident vector Si by the scattering matrix F as follows:

Ssc = 1
R2FS

i, (6)
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where R is the distance from the scatterer to the observer. F can be further explicited

like so:

F =



|fPP |2 α/(2β)|fSP |2 −α/(2β)|fSP |2 0 0

β/α|fPS |2 (|f⊥⊥|2 + |f‖‖|2)/2 (|f⊥⊥|2 − |f‖‖|2)/2 0 0

−β/α|fPS |2 (|f⊥⊥|2 − |f‖‖|2)/2 (|f⊥⊥|2 + |f‖‖|2)/2 0 0

0 0 0 <e(f⊥⊥f∗‖‖) −=m(f⊥⊥f∗‖‖)

0 0 0 =m(f⊥⊥f∗‖‖) <e(f⊥⊥f∗‖‖)


,

(7)

where f∗∗ designate the scattering amplitudes for the different mode conversions.

More specifically, f⊥⊥ and f‖‖ designate the S-to-S scattering amplitudes for polar-

ization respectively perpendicular and parallel to the scattering plane. Because the

specific intensities are expressed in frames that are attached to the scattering plane,

the scattering amplitudes depend only on the scattering angle when the scatterer is

rotationally invariant. Assuming a continuous medium with small fluctuations, the

amplitudes f∗∗, adapted from Sato et al. (2012, p. 142) under the Born approxima-

tion, can be found in Appendix A.1. Under the small fluctuation assumption, all the

scattering amplitudes are real
(
=m(f⊥⊥f∗‖‖) = 0

)
. Therefore, the scattering process

does not modify the phase of the two components of the S-wave.

The directional dependence of the scattered intensity is quantified by the scatter-

ing coefficient g∗∗(Θ,Φ), which is defined as the ratio between the energy scattered

into direction (Θ,Φ) per unit solid angle per unit time to the incident energy per unit

area per unit time, normalized by the scattering volume. These scattering coefficients



Title Suppressed Due to Excessive Length 19

depend on the incident polarization and the scattering amplitudes as follows:

gPP (Θ,Φ) = 4π
Vsc

〈
|fPP |2

〉
gPS(Θ,Φ) = 4π

Vsc
β

α

〈
|fPS |2

〉
gSP (Θ,Φ) = 4π

Vsc
α

2β
〈
|fSP |2

〉(
1− Qi cos 2Φ− U i sin 2Φ

IiS

)
gSS(Θ,Φ) = 4π

Vsc

[〈
|f⊥⊥|2 + |f‖‖|2

2

〉
+
〈
|f⊥⊥|2 − |f‖‖|2

2

〉(
Qi cos 2Φ+ U i sin 2Φ

IiS

)]
(8)

where Vsc is the elementary representative scattering volume that we have singled

out. The scattering coefficients have unit inverse length. Upon integration over all

scattering angles, the scattering coefficients provide the attenuations caused by the

scattering process. As an example, we write: gP = 1/lP = (4π)−1 ∫
4π(gPP (Θ,Φ) +

gPS(Θ,Φ)) sinΘdΘdΦ with lP the P -wave scattering mean free path.

All the quantities we have derived so far suffice to completely describe the single-

scattering process. To formulate the multiple scattering process, it is important to

fix a global reference frame (x,y, z) (see the geometry in Fig. 2b) and adopt a global

convention to decompose the Stokes vector. Following Turner and Weaver (1994),

we introduce a spherical coordinate system (θ,φ,ρ) to address this last point. If we

think of z as the normal to the interfaces of the medium (Moho and free surface),

the spherical coordinate system coincides in fact with the usual (SV ,SH,P ) basis

for shear vertical, shear horizontal and longitudinal wave motions. In spherical coor-

dinates, the incident and scattered directions of propagation are denoted by (θ0, φ0)

and (θ1, φ1), respectively. Following the conventions outlined above for the reference

frames, the scattered Stokes vector Ssc is obtained by taking the product of the

Mueller matrix P (θ1, φ1, θ0, φ0) with the incident Stokes vector Si. The Mueller
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matrix is deduced from the scattering matrix as follows:

P (θ1, φ1, θ0, φ0) = L(−ψ2)F (Θ)L(ψ1) (9)

where L is a rotation matrix for the Stokes vector (see appendix A.2). The rotations

allow us to first transform the coordinates of the incident Stokes vector to the (r, l,p)

system attached to the scattering plane, and then take the scattered Stokes vector

in the (r′, l′,p′) system back to the spherical basis. In Appendix A.3, we express the

rotation angles in terms of the incident and scattered propagation directions (θ0, φ0)

and (θ1, φ1) using analytical geometry. Turner and Weaver (1994) employ arguments

from spherical trigonometry to show that ψ1 = i1 + π/2 and ψ2 = −i2 − π/2, with

i1 and i2 the dihedral angles shown in Figure 2b. i1 is the angle between the vertical

plane containing the incident direction of propagation and the scattering plane. i2 is

the angle between the vertical plane containing the scattered direction of propaga-

tion and the scattering plane. The two approaches (analytical vs spherical geometry)

obviously yield the same results (see Appendix A.3). It is important to note that

in the Born approximation an elliptically polarized plane wave remains elliptically

polarized upon scattering. This property may be readily verified from the analytical

form of the Mueller matrix. We give an explicit example of such a verification pro-

cess in Appendix B where we compute the Mueller matrix for reflection at medium

boundaries, which is the topic of the next section.

2.5 Mueller matrix for interface reflection

When seismic energy reaches an interface, reflection and transmission result in

mode conversions and changes in the polarization. The purpose of this section is

to provide a concise derivation of the matrices relating the incident and scattered
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(a) (b)

Fig. 2: (a) Reference frames for incident and scattered waves. The vectors r and l are

perpendicular and parallel to the scattering plane, respectively. (b) Angle conventions

for the derivation of the Mueller matrix in a global reference frame. The scattering

plane is represented by the shaded surface.

Stokes vector at a flat interface. First, the amplitude and phase of the reflected or

transmitted waves are determined from the reflection and transmission coefficients

given by Aki and Richards (2002), adapted to our global reference frame (x,y, z).

For horizontal interfaces, only P - and SV -waves are coupled. Following Margerin

(1998, p.125), the reflected Stokes vector Sr at the free surface can be written as:

Sr = RSurfS
i (10)
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where RSurf is the Stokes reflection matrix. This matrix can be written as:

RSurf =



RI
Ṕ−P̀ RI

ŚV −P̀
/2 RI

ŚV −P̀
/2 0 0

RI
Ṕ−S̀V

(RI
ŚV −S̀V

+ 1)/2 (RI
ŚV −S̀V

− 1)/2 0 0

RI
Ṕ−S̀V

(RI
ŚV −S̀V

− 1)/2 (RI
ŚV −S̀V

+ 1)/2 0 0

0 0 0 RÚÙ RV́ Ù

0 0 0 RÚV̀ RV́ V̀


(11)

where RI∗∗ are the reflection coefficients for the specific intensity, which are defined as

products between the energy reflection coefficients RE∗∗ (Aki and Richards, 2002) and

the ratio between the squared velocities of the incident and the reflected waves. This

last factor takes into account the change of geometrical spreading associated with the

expansion or contraction of a ray bundle upon reflection. This follows immediately

from the application of Snell’s law at the interface. Note that in absence of mode

conversions, the coefficient RI∗∗ and RE∗∗ are equal. The expressions for the coupling

coefficients between the parameters U and V of the incident and scattered waves

are particularly simple because the reflection coefficient of SH-waves is unity. We

find: RÚÙ = RV́ V̀ = <e(ŚS̀V ) and RÚV̀ = −RV́ Ù = =m(ŚS̀V ), where ŚS̀V is the

amplitude reflection coefficient of the SV -to-SV reflection at the surface.

Likewise, we can develop Stokes reflection and transmission matrices RMoho and

TMoho for the reflection or transmission of specific intensity at the Moho. Following

a method similar to Turner and Weaver (1995), the reflected and transmitted Stokes

vectors Sr and St are written as:

Sr = RMohoS
i (12)

St = TMohoS
i (13)



Title Suppressed Due to Excessive Length 23

The reflection and transmission matrices are given by:

RMoho =



RI
P̀−Ṕ RI

S̀V −Ṕ
/2 RI

S̀V −Ṕ
/2 0 0

RI
P̀−ŚV

(RI
S̀V −ŚV

+RI
S̀H−ŚH

)/2 (RI
S̀V −ŚV

−RI
S̀H−ŚH

)/2 0 0

RI
P̀−ŚV

(RI
S̀V −ŚV

−RI
S̀H−ŚH

)/2 (RI
S̀V −ŚV

+RI
S̀H−ŚH

)/2 0 0

0 0 0 RÙÚ RV̀ Ú

0 0 0 RÙV́ RV̀ V́


(14)

and

TMoho =



T I
P̀−P̀ T I

S̀V −P̀
/2 T I

S̀V −P̀
/2 0 0

T I
P̀−S̀V

(T I
S̀V −S̀V

+ T I
S̀H−S̀H

)/2 (T I
S̀V −S̀V

− T I
S̀H−S̀H

)/2 0 0

T I
P̀−S̀V

(T I
S̀V −S̀V

− T I
S̀H−S̀H

)/2 (T I
S̀V −S̀V

+ T I
S̀H−S̀H

)/2 0 0

0 0 0 TÙÙ TV̀ Ù

0 0 0 TÙV̀ TV̀ V̀



,

(15)

respectively. The coupling coefficients between U and V areRÙÚ = RV̀ V́ = <e(S̀ŚV S̀Ś∗H),

RÙV́ = −RV̀ Ú = =m(S̀ŚV S̀Ś∗H), TÙÙ = TV̀ V̀ = <e(S̀S̀V S̀S̀∗H) and TÙV̀ = −TV̀ Ù =

=m(S̀S̀V S̀S̀∗H), where S̀ŚV and S̀S̀V are the amplitude reflection and transmission

coefficients of the SV -to-SV reflection at the Moho and S̀ŚH and S̀S̀H are the ampli-

tude reflection and transmission coefficients of the SH-to-SH reflection at the Moho.

The derivation of the main elements of the reflection matrix at the Moho is given in

Appendix B. We notice that at a post-critical angles of incidence, a phase shift occurs

between the SV and SH-waves both at the Moho and the free surface. This implies

in particular that an initially linearly polarized S-waves will acquire an elliptical po-

larization upon reflection. In turn, the polarization influences the scattering pattern
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in the bulk of the medium as shown in Eq. (8). Our analysis therefore demonstrates

that polarization introduces a complex interplay between scattering from interfaces

and from volumetric heterogeneities. To our knowledge, this phenomenon has been

largely ignored in the seismological literature. In particular, assuming that S-waves

are linearly polarized, i.e. V = 0, is only valid in unbounded media. Consequences of

polarization will be further explored through numerical simulations. The next section

is devoted to the treatment of energy radiation at the source for polarized elastic

waves.

2.6 Stokes vector for double couple sources

In this work, we will consider two basic types of sources: explosions (isotropic

P -wave sources) and dislocations (double-couple sources). In a Stokes parameters

framework, the treatment of explosions is particularly simple. The angular depen-

dence of the Stokes vector at the source S0, is given by:

S0(θ, φ) = 1
4π



1

0

0

0

0


(16)

The Stokes vector has been normalized in a way such that the total intensity at the

source equals 1.

For shear dislocations, we assume that they can be adequately represented by

point-like double-couples. The dislocation parameters, which can be set arbitrarily,

are φs (strike), δ (dip) and λ (rake). Following Aki and Richards (2002), the wave
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amplitude in the far-field of the source is proportional to the radiation patterns of

P -, SV - and SH-waves FP , FSV and FSH which may be written as:

FP (θ, φ) = cosλ sin δ sin2 θ sin 2(φ− φs)− cosλ cos δ sin 2θ cos(φ− φs)

+ sinλ sin 2δ
(
cos2 θ − sin2 θ sin2(φ− φs)

)
+ sinλ cos 2δ sin 2θ sin(φ− φs)

FSV (θ, φ) = sinλ cos 2δ cos 2θ sin(φ− φs)− cosλ cos δ cos 2θ cos(φ− φs)

+ 1
2 cosλ sin δ sin 2θ sin 2(φ− φs)− 1

2 sinλ sin 2δ sin 2θ
(
1 + sin2(φ− φs)

)
FSH(θ, φ) = cosλ cos δ cos θ sin(φ− φs) + cosλ sin δ sin θ cos 2(φ− φs)

+ sinλ cos 2δ cos θ cos(φ− φs)− 1
2 sinλ sin 2δ sin θ sin 2(φ− φs)

(17)

Since there are no phase shifts between the two components of the S-wave, they are

linearly polarized so that the last Stokes parameter V is zero. The Stokes vector in

the global frame (x,y, z) can be written as:

S0(θ, φ) = 5
8π



3
2WPF

P (θ, φ)2

WS

(
FSV (θ, φ)2 + FSH(θ, φ)2)

WS

(
FSV (θ, φ)2 − FSH(θ, φ)2)

2WSF
SV (θ, φ)FSH(θ, φ)

0


. (18)

Like for the explosion, the Stokes vector has been normalized in such a way that

the energy at the source is 1. WP and WS are the fraction of energy release at the

source, which are equal to:

WP = 2
2 + 3γ5

WS = 3γ5

2 + 3γ5 ,

(19)

where γ is the velocity ratio α/β.
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(a) (b)

Figure 3: (a) Simulated radiation patterns of a double-couple (strike, dip and rake are all equal
to 0°). From left to right are represented the energy radiation patterns of the modes P , S (sum
of SH and SV modes), SV and SH. (b) Corresponding theoretical radiation patterns of a
double-couple.

15

Fig. 3: (a) Simulated radiation patterns of a double-couple (strike, dip and rake are

all equal to 0°). From left to right are represented the energy radiation patterns

of the modes P , S (sum of SH and SV modes), SV and SH. (b) Corresponding

theoretical radiation patterns of a double-couple.
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2.7 Monte-Carlo implementation

The transport of polarized elastic waves in the crustal waveguide has been sim-

ulated with the Monte-Carlo method. In this approach, seismic energy is carried by

discrete seismic phonons (Shearer and Earle, 2004) who obey the laws of classical ray

theory in between two scattering events, where their mode (P , S), polarization state

(Stokes vector) and propagation direction change randomly. A major advantage of

this approach is its flexibility, allowing the treatment of various types of sources,

mode conversions and boundaries. In the numerical examples shown in this work,

millions or billions of phonon trajectories have been simulated to obtain reasonably

accurate results. The Monte-Carlo scheme, illustrated in Fig. 1a in the case of a

multiple-scattering waveguide, is divided into 3 steps:

(1) The initial direction of propagation and mode of a unit energy phonon is

randomly selected by interpreting Eqs. (16)-(18) in a probabilistic way. In the case

of the double-couple source, the initial direction of propagation is simulated by the

rejection method (Lux and Koblinger, 1991). The double-couple diagrams simulated

with 500 million phonons are shown in Fig. 3a for all the modes. We draw the

attention of the reader to the difference of scale between the P -wave and S-wave

radiation patterns, where the radiated S-wave energy is around 23.4 times greater

than the radiated P -wave energy. Despite small statistical fluctuations, the simulated

double-couple diagrams match well the theoretical formulas (Fig. 3b).

(2) Each phonon performs a “random walk” during which its direction of prop-

agation and polarization are modified at each scattering process that occurs in the

bulk of the medium or at an interface. The free path length between two scattering

events is determined by an exponential probability law with scale length lP or lS



28 Grégoire Heller et al.

for P and S modes, respectively. If the phonon reaches an interface in between two

scattering events, its mode, polarization and direction of propagation are modified

according to the laws of reflection/transmission outlined above. The new mode of

propagation of the phonon is determined by interpreting probabilistically the energy

conservation law at the interface. Subsequently, the propagation direction of the

phonon is modified deterministically by application of Snell’s law. The Stokes vector

is then updated by application of Eq. (10) and Eq. (12)-(13) at the free surface and

Moho, respectively. Note that upon reflection/transmission, the free path length is

adjusted to take into account the difference between the P and S scattering mean free

paths in the case of mode conversions or of transmission to a medium with different

scattering properties. When scattering occurs in the bulk of the medium, Eqs (8) are

interpreted probabilistically to determine the new mode and propagation directions

of the scattered phonon. This may be achieved by a decomposition into conditional

probabilities as explained in Margerin et al. (2000). Once the new state of the par-

ticle is determined, the scattered Stokes vector is updated by application of formula

Eq. (9). Finally, we remark that as the phonon propagates through the medium, its

weight decreases exponentially as a consequence of intrinsic attenuation. Again, the

scale length of exponential decay (laP , laS) depends on the propagation mode (P , S).

(3) As it propagates through the medium, the complete state of the phonon is

monitored at discrete time instants i × dt, where dt is the temporal resolution. At

each time step, the construction of the energy envelopes for each polarization state

is achieved through a weighted average of the Stokes vectors of the phonons present

in the sub-volume of the medium containing the receiver of interest. The resulting

envelopes are normalized by the total number of phonons to simulate a unit energy

source.
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3 Examples of numerical simulation results

The purpose of this section is to explain, through a typical example, the general

approach that we have adopted to analyze our results. A more detailed account

of the numerical exploration is given in the following sections. Results of Monte-

Carlo simulations in a heterogeneous crustal waveguide for an explosion source are

presented in Fig. 4. l∗S/H and l∗S/lS are set to 3.25 and 2.78, respectively and intrinsic

attenuation is neglected. These values correspond to a random medium with lc = 1

km, τS = 10 s, H = 30 km and a central frequency of 1 Hz. We recall that the non-

dimensional parameter l∗S/H measures the relative importance of reflection from

interfaces versus scattering in the bulk of the medium. When this parameter is large,

the former process has a very large impact on the propagation as illustrated later. The

second parameter l∗S/lS measures the level of scattering anisotropy. As this parameter

increases, the randomization of propagation directions requires an increasingly large

number of scattering events. This parameter controls the degree of angular anisotropy

of the energy fluxes in the waveguide at long lapse-time.

Typical energy envelopes are shown in Fig. 4a, for epicentral distances ranging

from 50 to 300 km. Energy envelopes in the waveguide exhibit a strong direct P -wave

arrival, followed by weak multiples caused by boundary reflections. We note that the

development of Lg-like phases is made possible by the guiding effect. At sufficiently

large post-critical distances, it is apparent that the guided phases dominate the

signal. Because the initial source is an explosion in the middle of the crust, the

envelope shape of the trapped S-wave has a diffuse character with no visible ballistic

arrival. In Fig. 4b, we observe that total energy in the crustal waveguide decays

exponentially after a few mean free times. This exponential decay (readily apparent
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in linear-log scale in Fig. 4b) is a consequence of the leakage effect. A leakage time

τl can therefore be introduced as follows:

Etot(t) = E0 exp
(
− t

τl

)
, (20)

where Etot(t) is the total energy in the crustal waveguide and E0 is a constant. Eq.

(20) is typically valid after a few mean free times. In Fig. 4b, we also observe that

the P - and S-waves energies trapped in the crustal waveguide decay exponentially

at the exact same rate after a few mean free times. To understand this fact, we may

introduce the intuitive idea that energy leakage plays a role equivalent to absorption:

some energy is removed from the system by transmission through the Moho at a

rate which is different for P - and S-waves. We may then refer to previous works by

Margerin et al. (2001) who discuss the impact of absorption on the equipartition

process. These authors show that even if the dissipation rate of one the modes (P or

S) is larger than the other, one still reaches a regime where the total energy of both

modes decays at the same rate, in agreement with the result shown in Figure 4b.

Figures 4c and 4d represent, respectively, the time evolution of the ratios between

the P - and the S-wave energies (EP /ES) and between the SV - and SH-wave energies

(ESV /ESH) in the whole crust. Interestingly, we observe that these ratios stabilize

after 10 to 15 S-wave mean free time. However, the limits differ from the theoretical

predictions of equipartition in infinite space, as derived by Weaver (1982, 1990);

Ryzhik et al. (1996):

lim
t→∞

EP
ES

= β3
1

2α3
1

lim
t→∞

ESV
ESH

= 1

. (21)

We stress that these results, valid in infinite space, do not depend on the scattering

properties, on the source type or on the amount of energy initially released at the
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source. In this sense, equipartition ratios can be deemed “universal”. Eq. (21) is the

mathematical translation of the fact that S-waves become depolarized as a result

of the multiple scattering process. However, in the example shown in Fig. 4, the

EP /ES and ESV /ESH ratios stabilize around 35.3 percent below and 12.4 percent

above the full space values (Eq. (21)), respectively. These results are in sharp contrast

with the equipartition principle. The deviation of the ESV /ESH ratio from 1 means

that a residual polarization subsists at long lapse-time in the waveguide, in sharp

contrast with the full-space predictions. This result shows that a full description of

wave polarization is required to model correctly the energy transport in the crust.

The reduction of the ratio EP /ES can be simply understood as a consequence of

the leaky nature of P -waves. In this sense, leakage behaves like absorption at a

phenomenological level. The equilibration ratio is simply shifted in favor of the mode

which is least absorbed (Margerin et al., 2001). The increase of the ESV /ESH ratio

requires a slightly more sophisticated argument. To understand the origin of the

observed shift, the guiding of SV and SH polarizations will be examined in Sections

5 and 6 through a parametric study.

4 Leakage

A parametric study has been carried out to investigate the effects of the scatter-

ing properties of the crust on energy leakage. We examined a wide range of mean

free paths, with lS/H varying from 0.073 to 37.3 and l∗S/lS ranging from 0.80 (pre-

dominantly backward scattering) to 41.95 (strong forward scattering). We examined

the validity condition of the Born approximation (ωlc
√
〈ε2〉/c < 1) for the set of

parameters used in this parametric study and found that only the couple of param-
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(a) (b)

(c) (d)

Figure 4: Monte-Carlo simulation results for a P -wave explosion in the crustal waveguide
described in Fig. 1a. lúS/H and lúS/lS are set to 3.25 and 2.78, respectively. There is no intrinsic
absorption. (a) Simulated energy envelopes for epicentral distances ranging from 50 km to 300
km. (b) Evolution of the total energy in the crustal waveguide. The P -waves and S-waves
energy contributions are also shown. (c) Evolution of the P -to-S energy ratio in the crust. (d)
Evolution of the SV -to-SH energy ratio in the crust. For (c) and (d), the theoretical limits
of the ratios for an infinite multi-scattering space are shown by the horizontal dashed line (see
Eq. (20)). For every sub-figure, note that the time is normalized by the S-wave mean free time
·S.

4 Leakage
A parametric study has been carried out to investigate the e�ects of the scattering properties

of the crust on energy leakage. We examined a wide range of mean free paths, with lS/H

varying from 0.072 to 37.3 and lúS/lS ranging from 0.80 (backward scattering) to 41.95 (strong
forward scattering). Leakage times ·l are estimated from the fit of the crustal energy decay with
Fig. 4b in a time window where the stabilization of the energy ratios is reached. The results
are shown in Fig. 5, where the inverse of ·l is represented as a function of the parameters lúS/H
and lúS/lS. We observe that leakage reaches maximum e�ciency around lúS = H in the case
of forward scattering, as previously noted by Margerin et al. (1999) and (Lacombe, 2001, p.
144). However, in the backward scattering case, the maximum e�ciency of leakage seems to be
reached when lúS is slightly lower than H. This maximum marks the limit between the di�usive
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Fig. 4: Monte-Carlo simulation results for a P -wave explosion in the crustal waveg-

uide described in Fig. 1a. l∗S/H and l∗S/lS are set to 3.25 and 2.78, respectively.

There is no intrinsic absorption. (a) Simulated energy envelopes for epicentral dis-

tances ranging from 50 km to 300 km. (b) Evolution of the total energy in the crustal

waveguide. The P -waves and S-waves energy contributions are also shown. (c) Evo-

lution of the P -to-S energy ratio in the crust. (d) Evolution of the SV -to-SH energy

ratio in the crust. For (c) and (d), the theoretical limits of the ratios for an infinite

multi-scattering space are shown by the horizontal dashed line (see Eq. (21)). For

every sub-figure, note that the time is normalized by the S-wave mean free time τS .

eters (l∗S/H = 0.073, l∗S/lS = 0.80) are outside of the range of applicability. These

parameters correspond to a medium with a very strong scattering and a dominantly

backward mechanism. Leakage times τl are estimated from the fit of the crustal en-
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ergy decay with Fig. 4b in a time window where the stabilization of the energy ratios

is reached. The results are shown in Fig. 5, where the inverse of τl is represented

as a function of the parameters l∗S/H and l∗S/lS . We observe that leakage reaches

maximum efficiency around l∗S = H in the case of forward scattering, as previously

noted by Margerin et al. (1999); Wegler (2004) and (Lacombe, 2001, p. 144). How-

ever, in the backward scattering case, the maximum efficiency of leakage seems to be

reached when l∗S is slightly lower than H. This maximum marks the limit between

the diffusive regime (l∗S < H) where leakage is limited by the transit time of diffuse

energy through the crust, and the guided regime (l∗S > H) where the seismic energy

is multiply-reflected at the medium boundaries and leakage occurs mostly through

the scattering of post-critically reflected crustal waves. In the diffusive regime, leak-

age is independent of the details of the scattering mechanism, in the sense that very

different levels of scattering anisotropy yield the same leakage rate provided only

that the wave diffusivities are equal. The situation is quite different in the guided

regime, where the leakage rate depends clearly on the scattering mechanism. Indeed,

we observe in Fig. 5 that the leakage rate depends on both l∗S/H and l∗S/lS in the

case l∗S > H. This shows that in regions where scattering is mostly weak like in

France (l∗S ≈ 250 km at 3 Hz (Lacombe et al., 2003)), the scattering mechanism has

a strong influence on the energy leakage and may influence the shape of the coda. In

particular, leakage effects contribute to its overall decay rate which may lead to an

overestimation of attenuation as determined for example from the coda quality factor

Qc (Margerin et al., 1999; Wegler, 2004). Note that absorption generally dominates

scattering in France so that the former mechanism is mostly responsible for the coda

decay, except in tectonically active areas such as the Pyrenees (Sens-Schönfelder

et al., 2009).
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Fig. 5: Inverse of the leakage time τ−1
l as a function of l∗S/H and l∗S/lS .

5 Angular distribution of energy fluxes in the waveguide

For an unbounded medium, the multiple scattering process tends to homogenize

the distribution of energy in phase space after a large number of scattering events

(Ryzhik et al., 1996). This implies that all propagation directions become equally

probable at long lapse-time. However, as shown by Margerin (2017) for scalar waves,

the angular distribution of specific intensity (i.e. of energy fluxes) never reaches

perfect isotropy in the long-lapse time limit in an open waveguide. In Margerin

(2017), it is shown that such a breakdown of strict-sense equipartition is mainly due

to the leakage effects. In the elastic case, we expect that the angular dependence

of both mode conversions and reflectivity at the Moho and free surface eventually
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contribute to the anisotropy of the wavefield. Based on the same parametric study

as described in Section 4, we now investigate the impact of medium boundaries on

the anisotropy of the energy fluxes at long lapse time in the crust. Fig. 6 shows polar

plots of the angular distribution of the P , S, SH and SV specific intensities averaged

over the whole crustal thickness and all azimuths for a set of representative values

of the key parameters l∗S/H and l∗S/lS . Note that the specific intensities have been

normalized by the sum of integrated P and S intensities in the crust. Furthermore,

the specific intensities have also been averaged temporally in a late time window,

such that all energy ratios have reached equilibrium. As an example, in the case

where l∗S/lS = 2.78, the time window is between 20τS and 40τS . For each sub-figure,

the asymptotic angular distributions are shown for a fixed scattering mechanism

and different values of the parameter l∗S/H. We try to keep the discussion as brief

as possible and examine asymptotic regimes for the parameter l∗S/H.

Fig. 6 clearly shows that when l∗S � H (or in the diffusive regime), the wave-

field is nearly isotropic for all the modes. Although leakage introduces a preferential

vertical transport direction across the slab, it leaves little imprint on the specific in-

tensities when the crust is thick compared to the mean free path. Furthermore it may

be demonstrated that, while the reflection coefficients are angularly dependent at the

free surface, they leave no imprint on an incident equipartitioned wavefield. In other

words, if the incident fluxes are isotropic and equilibrated (i.e. ES/EP = 2(α1/β1)3,

ESV = ESH), so will be the reflected wavefield. This fact is demonstrated in Ap-

pendix C. In the thick crust regime, the only imprint left by the presence of interfaces

is the exponential decay of the coda, not to be confused with dissipation by anelastic

processes.
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In the thin crust regime l∗S � H (or in the guided regime), the situation is

far more complex. We can clearly observe in Fig. 6 that the wavefield becomes

increasingly anisotropic as the the parameter l∗S/H increases. The effect is particu-

larly spectacular for P -waves whose distribution of propagation directions becomes

sharply peaked along the horizontal. This property may be traced back to their leaky

nature. Indeed, the P -waves that survive in the waveguide at long lapse-time must

minimize their interactions with the Moho, thereby favoring transport of energy

along the free surface. This result directly contradicts the principle of equipartition.

In the next section, we will show that the development of a strongly anisotropic P

wavefield is also associated with a very large shift of the ES/EP ratio in favor of

S-waves.

The SV and SH wavefields show similar behaviors with additional complexities

for the former in relation to the strong coupling with P -waves at the free surface.

The most prominent feature visible for both SH- and SV -waves is in Fig. 6 the large

jump in the energy fluxes between the pre- and post- critical angles of propagation

(the critical S-to-S reflection is at θ ≈ 48.1 degrees in our model). We note that

the post-critical SV and SH wavefields are nearly isotropic in the backward and

non-preferential scattering (l∗S/lS ≈ 1) cases. As the scattering becomes more and

more peaked in the forward direction, the angular patterns tend to flatten out along

the horizontal direction. It also apparent that the SV flux is slightly larger than the

SH flux for large l∗S/H. This finding is consistent with our previous examination of

Fig. 4d where the SV -to-SH energy ratio was found to be greater than 1 at long

lapse-time. We will further comment on this residual polarization effect when we

analyze the partitioning ratio. Other noticeable differences between the energy flux

distributions of SH and SV are the peaks visible around 30-35 degrees incidence for
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downgoing SV -waves. This extra intensity finds its origin in the P -SV conversions on

the free surface for P -waves propagating at nearly grazing incidence. The sharpness

of these peaks clearly attenuates as the scattering anisotropy increases. In the case of

strong forward scattering, the vanishing of the peaks of downgoing SV intensity can

be traced back to the very strong leakage of the P -wave energy out of the waveguide,

leaving almost no P -wave energy to be converted to SV -waves at the free surface. In

this case of extreme forward scattering, we observe that the angular distributions of

SH and SV fluxes are almost identical. This result will resurface when we discuss the

asymptotic energy partitioning ratios. As an additional difference of flux distribution

between SV - and SH-waves, we also notice smaller amplitude SV intensity peaks in

the upward direction (near θ = 150 degrees). They clearly correspond to the Moho

reflection of the extra SV intensity propagating at θ = 30− 35 degrees. These peaks

are mostly visible when scattering is preferentially backwards or weakly anisotropic,

and disappear in the limit of strong forward scattering.

These results show that adding the Moho breaks the isotropy of the wavefield, and

therefore, the equipartition principle can no longer be applied in the weak scattering

regime. In Fig. 4c and Fig. 4d, we could observe that the breakdown of equipartition

has also an impact on the long lapse time energy rations EP /ES and ESV /ESH . In

the next section, we will see how we can link the anisotropy of the flux to the shift

of the these ratios.

6 Energy partition

The results of the parametric study described in Sections 4 and 5 have also been

exploited to study the influence of the scattering properties on the long lapse-time
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Fig. 6: Polar plots of the angular distribution of the specific intensity in the crustal

waveguide for P -, S-, SV - and SH-waves for different values of l∗S/H. 4 different

scattering regimes have been considered: (a) l∗S/lS is fixed at 0.80 (backward scat-

tering). (b) l∗S/lS is fixed at 0.98 (non-preferential scattering). (c) l∗S/lS is fixed at

2.78 (forward scattering). (d) l∗S/lS is fixed at 41.95 (strong forward scattering). The

angle θ = 0 corresponds to the downward direction (i.e. propagation from the free

surface to the Moho).
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limits energy partitioning ratios averaged over the crust. The results for EP /ES and

ESV /ESH are presented in Sections 6.1 and 6.2, respectively. An additional paramet-

ric study, which highlights the effects of intrinsic attenuation on energy partitioning

in the coda has been carried out and results are presented in Section 6.3.

6.1 P -to-S energy ratios

In Fig. 7, the long lapse-time limit of the energy ratio EP /ES is represented as

a function of l∗S/H for a series of media with different levels of scattering anisotropy

quantified by the ratio l∗S/lS . The symbol colors correspond to the long lapse-time

limit of the energy ratio ESV /ESH . In the thick crust regime (l∗S � H), the energy

ratios EP /ES and ESV /ESH tend to the infinite space equipartition predictions (see

Eq. (21)) as expected. The leakage rate is so small that it hardly affects the energy

partitioning between the different polarizations. Furthermore, as already alluded to

in the previous section, an equipartitioned wavefield is left invariant when it interacts

with the free surface (see Appendix C). In the thin crust regime (l∗S � H), on the

one hand, EP /ES strongly decreases as the scattering weakens and eventually tends

to zero for very large l∗S , due to the leaky nature of P -waves. It is only through

the coupling with guided S-waves that some P -wave energy can be trapped at long

lapse-time in the crust. As the scattering strength decreases, the coupling becomes

weaker and weaker which explains the vanishing of the P -wave energy for thin crusts.

The transition between the thick and thin crust regimes occurs in a range of

crustal thickness 1 < l∗S/H < 20. Remarkably, the overall sigmoid shape of the curve

representing EP /ES as a function of l∗S/H depends little on the level of scattering

anisotropy, be it forward or backward. As an application, the study of Lacombe
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Fig. 7: Long lapse-time limit of the P -to-S ratio as a function of l∗S/H for different

levels of scattering anisotropy as quantified by l∗S/lS . The color scale provides the

corresponding limit of the ESV /ESH ratio. The infinite space value of EP /ES is

represented by the horizontal dashed line.

et al. (2003) suggests l∗S/H ≈ 8 in France. From Fig. 7, we deduce 0.25 / EP /ES /

0.4 which in turn implies that the average crustal EP /ES ratio is 2.5 to 4 times

smaller than the value expected in full space. The far more complicated dependence

of ESV /ESH on the scattering properties is examined in the next subsection.

6.2 SV -to-SH energy ratios

In Fig. 8, the long lapse-time limit of the energy ratio ESV /ESH is represented as

a function of l∗S/H for a series of media with different levels of scattering anisotropy,

as quantified by the ratio l∗S/lS . The results of the simulations for backward and
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forward scattering have been presented separately in Fig. 8a and Fig. 8b to enhance

the readability.

Before going into details, it is worth noting that for all the random media that we

have simulated the asymptotic ESV /ESH ratio always exceeds 1. We shall find some

counterexamples to this result when we introduce absorption in the next section. In

the thick crust regime l∗S < H, we observe little dependence of the asymptotic SV -

to-SH ratio on the scattering mechanism. Deviations from the depolarized state (say

by more than 10%) at long lapse-time only occur in the thin crust regime l∗/H > 1,

on which we will focus the discussion. In this regime, for a fixed l∗S/H, the ratio

ESV /ESH increases from the backward scattering case to the moderately forward

scattering case (l∗S/lS ≈ 1.5). From this point on, ESV /ESH starts to decrease. The

increase of the ESV /ESH ratio (and the joint decrease of the EP /ES ratio) may be

explained as follows. First we remark that in the thin crust regime, P -waves tend

to propagate near the horizontal direction, as seen in Section 5. This corresponds

to grazing incidence angles at the free surface which gives rise to large conversions

to SV -waves (see e.g. Aki and Richards, 2002). Furthermore, there are almost no

pre-critical SV -waves in the waveguide (Section 5), which tends to block conversions

from SV - to P -waves at the Moho or the free surface. We therefore suggest that

part of the extra SV energy comes from the surface conversion of P -waves which

tend to propagate mostly horizontally in the crust. Nevertheless, this explanation

is not sufficient because if we assume that the whole P -wave energy was converted

to SV energy, the SV -to-SH ratio would not exceed 1.19. This is in contradiction

with results from our numerical simulations, which show that the SV -to-SH ratio

can be as large as 1.28. By direct examination of the angular dependence of the SV

and SH reflection coefficients at the Moho (Aki and Richards, 2002), we found that
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Fig. 8: Long lapse-time limit of the SV -to-SH ratio as a function of l∗S/H for different

levels of anisotropy as quantified by l∗S/lS . (a) for different backward scattering

regimes. (b) for different forward scattering regimes. The color scale provides the

corresponding limit of the EP /ES ratio. The infinite space value of ESV /ESH is

represented by the horizontal dashed line.

pre-critical SV -waves are globally more guided than pre-critical SH-waves. This

is far from evident as part of the SV energy couples to mantle P -waves but it is

nevertheless true. Thus, the reflection properties of polarized S-waves at the Moho

provide a second mechanism to explain the extra SV energy in the crust. In the

case of strong forward scattering (l∗S/lS > 5), the SV -to-SH ratio limit reaches a

maximum and starts to decrease for increasingly large l∗S . This behavior can again

be understood in the light of reflection properties at the Moho. Indeed, in the thin

crust regime, there is less and less S-wave energy propagating at pre-critical angles of

incidence as l∗S/H increases, hence no differential behavior between the two modes.

This explanation is consistent with the similarity of the angular distribution of SV

and SH fluxes in the waveguide reported in Fig. 5.
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6.3 Role of intrinsic attenuation

An additional parametric study, which highlights the effects of intrinsic attenu-

ation on energy ratios in the coda, has been carried out. In this work, absorption

is introduced in a purely phenomenological manner and takes the form of a simple

exponential decay in the time domain with characteristic absorption time τaP,S for P -

and S-waves, respectively. In Fig. 9, the long lapse time limits of the energy ratios

EP /ES and ESV /ESH are represented as a function of the adimensional parameter

τaS/τS . The simulation results are shown for 4 different couples of scattering param-

eters. We fixed the P -wave attenuation time as τaP = 9/4τaS , which corresponds to

the usual assumption that all dissipation is caused by shearing in a Poisson solid

(see e.g. Shearer, 1999, p. 114). The relative contribution of scattering to the total

attenuation is often quantified with the aid of a seismic albedo defined as:

B = 1/τS
1/τS + 1/τaS

(22)

When scattering dominates intrinsic attenuation (i.e. B > 0.5 or τS < τaS), the shift

of both the EP /ES and ESV /ESH energy ratios with respect to the elastic case is

rather small. As shown analytically in Margerin et al. (2001) for an infinite medium

and in Trégourès and van Tiggelen (2002a) for a multiple scattering waveguide in the

diffusive regime, the P -to-S ratio should be shifted in favor of the least attenuated

mode. This effect becomes visible in Fig. 9a for sufficiently small albedos (B < 0.5

or τS > τaS). Interestingly, in this strong absorption regime the P -to-S ratio limit

becomes almost independent of the scattering parameters and can become largely

higher than the infinite space equipartition limit. There is in fact a competition

between the leakage effect which tends to decrease the P -to-S ratio and intrinsic at-

tenuation which acts oppositely. When the latter effect dominates it is in fact possible
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to reach extreme values of EP /ES as high as 100 times the full-space predictions.

Note however that in practice, the coda will likely return to the noise level before

any equipartition is reached if absorption dominates scattering.

As illustrated in Fig. 9b, the SV -to-SH ratio is significantly shifted from the elas-

tic medium value only in the strong absorption regime B < 0.5. Because there is no

difference in intrinsic attenuation between the two components of S-wave polariza-

tion, the overall effect of absorption is less pronounced for the SV -to-SH than for the

P -to-S partition ratio. Nevertheless, the dependence of the former on the albedo is

more delicate to understand. In the simpler forward scattering case (l∗S/lS = 2.78), we

remark an increase of the SV -to-SH ratio as the albedo decreases. In the backward

scattering case (l∗S/lS = 0.80), however, the SV -to-SH ratio first passes through a

minimum before increasing again as B → 0. The increase of the SV -to-SH ratio in

the strong absorption limit is easy to understand on the grounds that the dominance

of the P -wave energy in the waveguide (as seen in Fig. 9a) promotes the coupling

with SV -waves through conversions at the free surface. The decrease of the SV -to-

SH ratio in a small range of albedo is rather counterintuitive. To understand this

behavior we represent in Fig. 10 the distribution of the fluxes of P -, S-, SV - and

SH-waves for different ratios τaS/τS in the case of forward (Fig. 10a) and backward

scattering (Fig. 10b). It is important to keep in mind that for small albedos, the

energy is mostly transported by P -waves propagating horizontally in the waveguide.

Hence, we expect the P -to-S coupling induced by scattering and mode conversion

at interfaces to be at the origin of the observed complexity. To support this hypoth-

esis, we remark that the azimuthally averaged angular patterns for P -to-SH and

P -to-SV scattering generated by a horizontal P wavefield (Fig. 10c-d) can readily

be identified in the SH and SV angular flux distributions (Fig. 10a-b). Interestingly,
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for horizontally propagating P -waves, the scattered SH energy tends to propagate

predominantly near the horizontal direction, in contrast with SV -waves which can

show large lobe of scattered intensity off the incident horizontal direction. In the

case of predominantly backward scattering, the SV energy scattered at large angles

leaks out of the waveguide, which induces a reduction of the SV energy flux with

respect to the SH flux. In the case of forward scattering, the very large peaks of

P -to-SV conversions at the free surface tend to mask this effect. Furthermore, the

angular distribution of P -to-SV scattered energy is narrower in the forward scat-

tering than in the backward scattering case, which in turn explains the different

behavior of the SV -to-SH partition observed in the two scattering regimes. Again,

the extreme absorption cases analyzed in this section are probably of academic rel-

evance only, but they illustrate the complex polarization effects that come into play

when deterministic reflections interact with volumetric scattering.

7 Effects of the source mechanism on the coda excitation

In this section, we will focus on the effects of the source mechanism on the coda

excitation. We first recall the basic assumption underlying the coda normalization

method, initially developed by Rautian and Khalturin (1978) and Aki (1980), which

has been widely used to separate source, propagation and site effects from coda waves.

For a given station, the method stipulates that the coda decay at long lapse-time

is independent of epicentral distance and source radiation (Aki and Chouet, 1975).

Therefore, the coda energy level should be proportional to the source size (and site

effect) only. We will examine to what extent this principle remains applicable in the
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Fig. 9: (a) Long lapse-time limit of the P -to-S ratio as a function of the normalized

absorption time of S-waves τaS/τS . (b) Long lapse-time limit of the SV -to-SH ratio

as a function of τaS/τS . Each symbol corresponds to a fixed l∗S/H and l∗S/lS . The

limit in the infinite multiple scattering and purely elastic space is represented by

the horizontal dashed line. Vertical black lines indicate error bars (95 % confidence

interval).

case of a crustal waveguide through 2 parametric studies. For simplicity, we neglect

intrinsic attenuation.

In Fig. 11, we illustrate how the focal mechanism of a double-couple source af-

fects the coda excitation. In Fig. 11a, we compare the energy envelopes generated

by a horizontal fault (strike=0°, dip=0°, rake=0°) and a strike-slip fault (strike=0°,

dip=90°, rake=0°). In Fig. 11b, we compare the energy envelopes generated by a re-

verse fault (strike=0°, dip=45°, rake=90°) and a strike-slip fault. For the construction

of the energy envelopes generated by the double-couple, we subdivided the volume

into cylindrical voxels of angular aperture 20 degrees, thickness 10 km and radius 10

km. All the receivers were placed along the North direction. We consider these two

scenarios with l∗S/H = 3.25 and l∗S/lS = 2.78. The comparisons show, as expected,
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Fig. 10: (a) and (b) Polar plots of the angular distribution of the specific intensity

in the crustal waveguide for P -, S-, SV - and SH-waves for different values of at-

tenuation time of S-waves τaS/τS . (a) l∗S/H and l∗S/lS are respectively set to 3.25

and 2.78 (forward scattering). (b) l∗S/H and l∗S/lS are respectively fixed at 3.73 and

0.80 (backward scattering). (c) and (d) Azimuthal averages of the single scattering

patterns for a horizontally propagating incident P wavefield. (c) l∗S/lS is fixed at

2.78 (forward scattering). (d) l∗S/lS is fixed at 0.80 (backward scattering).
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moderate differences around the direct arrivals which are due to the changes in the

source radiation patterns. Nevertheless, there are still significant differences in the

coda excitation. With the scattering parameters adopted in Fig. 11a and Fig. 11b,

the coda excitation by the strike slip fault is, respectively, 28.7% and 21.2% larger

than the excitation by the horizontal and the reverse fault.

Fig. 11c and Fig. 11d show that the differences in the coda excitation depend on

the scattering strength. Although the differences are weak in thick crust regime, the

energy ratios in the coda can differ by as much as 60 percents in the thin crust regime

for the strike-slip mechanism compared to the horizontal fault or the reverse fault

mechanisms. If we suppose that the radiated energy is proportional to the seismic

moment, these results show that the magnitude of earthquakes determined from coda

waves, with different focal mechanisms, can be partly biased (by a maximum of 0.13

in Mw unit). These differences are related to the dynamics of energy transport at

early time, which depends on the source mechanism. For the strike slip fault, we find

that the energy is preferentially radiated around the horizontal plane (or at post-

critical angle), and is less susceptible to be transmitted into the mantle, compared

to the horizontal or reverse faults.

In Fig. 12, we compare the energy envelopes generated by an isotropic source

of P -waves and a double-couple (strike, dip and rake are all set to 0°), for two

representative scattering strengths (l∗S/H = 3.25 in Fig. 12a and l∗S/H = 12.98 in

Fig. 12b). The two sources release the same amount of energy.

As was to be expected, large differences of amplitude are noticeable for the direct

arrivals, as a consequence of the differences in source radiation. These differences in

the P and Lg phases can be used to discriminate an explosion source from a shear-

dislocation source (e.g. Sanborn et al., 2017). Fig. 12 also demonstrates clearly that
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Fig. 11: (a) Comparison between the energy envelopes generated by a horizontal fault

(continuous blue lines) and by a strike-slip fault (dashed red line). (b) Comparison

between the energy envelopes generated by a reverse fault (continuous blue lines)

and by a strike-slip fault (dashed red line). The epicentral distances range from 50

to 300 km. For every simulation in (a) and (b), l∗S/H and l∗S/lS are fixed to 3.25 and

2.78 (forward scattering), respectively. (c) Coda excitation ratios between a strike-

slip and a horizontal fault as a function of l∗S/H. (d) Coda excitation ratio between a

strike-slip and a reverse fault mechanism as a function of l∗S/H. for every simulation

in (c) and (d), l∗S/lS is fixed to 2.78 (forward scattering).

the long-lapse time coda is much more strongly excited by a double-couple than by

an explosion, but the decay rate is independent of the source mechanism. In Fig. 13,

we represent the ratio between the total crustal energy generated by a double-couple
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and an explosion. This gives us access to a quantitative estimation of the differences

in the coda excitation level. In the thick crust regime (l∗S < H), the coda levels are

similar for the two types of sources, implying that the coda normalization method

is applicable in this case. The differences between the two types of sources become

significant in the more common thin crust regime l∗S > H, where the coda excitation

can differ by more than one order of magnitude between a double couple and an

explosion for l∗S > 70H (in favor of the double-couple source). As an application,

in France where l∗S/H ≈ 8 (Lacombe et al., 2003), we expect the coda excitation

to differ by a factor 2-3 between an earthquake and an explosion. More specifically,

we found empirically that the ratio R between the energy of a double-couple and

an explosion in the coda can be summarized by a power-law of the R ∝ (l∗S/H)η

with η ≈ 0.7. As a result, in the case of weak scattering, the coda normalization

method has to be corrected for the difference in source mechanisms. If this cannot

be accomplished, cross-comparison of magnitude estimates between different source

types should be avoided. We investigated the mechanism at the origin of the large

variation of coda excitation between the explosion and the double couple. We found

that the differences observed in the coda are in fact inherited from the dynamics of

energy transport at early time, when the crustal energy released by the explosion is

mostly composed of P -waves. Since P -waves are leaky, a large fraction of the energy

released at the source escapes the crust before scattering has time to convert the

energy into partially guided S-waves.

This study suggests that for a given family of focal mechanisms, the details of

the fault parameters can affect the excitation of the coda at long lapse-time in the

thin crust regime l∗S > H. However, the differences of energy level are modest and

can cause only minor biases in magnitude estimation based on the coda normaliza-
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Fig. 12: Comparisons between the energy envelopes generated by a double-couple

source (continuous blue lines) and by an isotropic P -wave source (dashed red line).

The epicentral distances range from 50 to 300 km. The scattering parameters are set

to: (a) l∗S/H = 3.25 and l∗S/lS = 2.78. (b) l∗S/H = 12.98 and l∗S/lS = 2.78.

tion method. The biases typically do not exceed 0.1 in Mw scale, which is low. In

sharp contrast, different families of source mechanisms, such as explosions vs double

couples, yield measurably different levels of coda. This implies that the coda nor-

malization method should be corrected for large variations in source mechanism in

the thin crust (weak scattering) regime.

Since in practice the parameter l∗S depends on frequency (e.g. Sens-Schönfelder

and Wegler, 2006b; Przybilla et al., 2009; Calvet and Margerin, 2013; Eulenfeld and

Wegler, 2017), we may expect a frequency-dependent bias in the coda normalization

method. In the case of double couples with different mechanisms, the effect of l∗ on

the amplitude of the bias remains small. Indeed, we find that the difference in coda

excitation increases by at most 10 % when l∗S increases by a factor of 2. By contrast,

the difference in coda excitation for an explosion and a double-couple increases by

a factor 1.66 when l∗S increases by a factor 2, thereby introducing a potentially

frequency dependent bias in the coda normalization method.
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Fig. 13: Coda excitation ratios between an isotropic P -wave source and a double-

couple as a function of l∗S/H. l∗S/lS is fixed at 2.78 (forward scattering). The continu-

ous line is the best-fitting algebraic function fitting the last 4 points. The horizontal

dashed line indicates a coda excitation ratio equal to 1.

8 Conclusion

In this study, we evaluated the applicability of basic multiple scattering principles

(equipartition, depolarization of shear waves and coda normalization) to seismic

waves propagating in a heterogeneous crustal waveguide. To carry out this task, we

performed Monte-Carlo simulations of transport of elastic waves taking into account

deterministic reflection and transmission of waves at the medium boundaries, as well

as a complete description of polarization effects based on a 5-dimensional Stokes
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vector representation. We analyzed the effects of the scattering properties on the

energy decay, the energy partitioning and the angular distribution of energy flux in

the crustal waveguide and showed that a full description of polarization is required

to model correctly the energy transport. While the energy densities of the different

wave modes stabilize at long lapse time in the coda, the equilibration ratios generally

do not match the prediction of equipartition in full space, except when the crust is

thick compared to the transport mean free path. Like in the scalar case (Margerin

et al., 1999; Wegler, 2004), the decay rate common to all the modes can be quantified

by a leakage time τl and leakage is optimum when the transport mean free path is

of the order of the crustal thickness (l∗s ≈ H).

The effect of crustal interfaces becomes particularly pronounced when the trans-

port mean free path is greater than the crustal thickness, a common situation for

the continental lithosphere (Sato, 2019). In this thin crust regime regime l∗S > H,

we find that the wavefield is never isotropic, even at long lapse-time in the coda.

This confirms the breakdown of equipartition put forward by Margerin (2017) in the

scalar case. The anisotropy of the fluxes becomes more and more pronounced as the

scattering weakens and the number of reflection at interfaces between two scattering

events increases. The energy partitioning is shifted to the detriment of P -waves and

in favor of SV -waves (EP /ES < 1
2 (β1/α1)3 and ESV /ESH > 1). The magnitude of

the shifts depends on the parameters l∗S/H and l∗S/lS , quantifying the strength of the

scattering and the scattering anisotropy, respectively. In the limit of weak scattering,

the P -to-S energy ratio in the coda can decrease to nearly zero, as a consequence

of the leaky nature of P -waves. In the same limit, the SV -to-SH energy ratio can

increase up to 1.28, meaning that the S-waves are not completely depolarized in the

waveguide. This increase is simply explained by the fact that the energy reflection
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coefficient at the Moho is larger for SV than for SH polarizations, although the for-

mer mode can convert to P -waves. An additional mechanism favoring the dominance

of SV -waves is the strong P -to-SV conversion at the free surface. These results are

unaffected in the case of moderate levels of dissipation in the crust (seismic albedo

greater than 0.5). If intrinsic attenuation becomes comparable or larger than crustal

scattering, both the P -to-S and SV -to-SH energy ratios are affected, compared to

the elastic case. We provide complete explanations for the observed ratios in terms

of the scattering mechanism. While of academic interests, these results may not al-

ways be applicable to real data due to the presence of noise, which hampers the

observation of the asymptotic long lapse-time limit.

We also studied the validity of the assumption underpinning the coda normal-

ization method, namely that the source mechanism leaves no imprint on the coda

excitation at long lapse time. Through a first parametric study, we find that there

are small-to-moderate differences in coda excitation depending on the focal mech-

anism of the double couple. Through a second parametric study, we demonstrate

that the overall energy level in the coda is higher for double couple sources than for

explosions in the thin crust (or weak scattering) regime l∗ > H of the continental

crust. The weaker coda excitation related to explosions is a consequence of the strong

transmission of P -wave energy to the mantle at short lapse-time.

In weak scattering areas (l∗S � H), like in France where l∗S ≈ 250 km at 3 Hz

(Lacombe et al., 2003), earthquake data are expected to be globally far from the

equipartition ratios of the infinite medium. A residual polarization in the coda is

likely and the source mechanism could leave its imprint in the energy level of the

coda, even at long lapse-time. Hence, while basic multiple-scattering principles like

equipartition or coda normalization are important guides to our understanding of
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the coda, they may not always be applicable to real data. Correct estimation of

scattering (l∗S/H, l∗S/lS) and intrinsic attenuation properties (laS) in a sufficiently

realistic stratified model of Earth are therefore key to correctly interpret the infor-

mation encoded in the coda. In the future, this work may be continued by improving

on existing methods for the estimation of small to moderate earthquake magnitudes

based on the physical modeling of the seismogram envelopes (Sens-Schönfelder and

Wegler, 2006b; Eken, 2019).

Appendices

A Basic scattering formulas

A.1 Scattering amplitudes

We consider a continuous medium with small fluctuations of the elastic param-

eters (see the main text for further details). The scattering amplitudes f∗∗ can be

found in Sato et al. (2012, p. 142). Because the specific intensities are expressed in

frames that are attached to the scattering plane, the scattering amplitudes depend

only on the scattering angle Θ when the scatterer is rotationally invariant. These
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scattering amplitudes are expressed as:

fPP (Θ) = k2
P

4π

[
ν

(
−1 + cosΘ + 2

γ2 sin2Θ

)
− 2 + 4

γ2 sin2Θ

]
ξ̃

(
2kP

√
1− cosΘ

2

)

fPS(Θ) = −k
2
S

4π sinΘ
[
ν

(
1− 2

γ
cosΘ

)
− 4
γ

cosΘ
]
ξ̃
(
kP
√

1− 2γ cosΘ + γ2
)

fSP (Θ) = k2
P

4π sinΘ
[
ν

(
1− 2

γ
cosΘ

)
− 4
γ

cosΘ
]
ξ̃
(
kP
√

1− 2γ cosΘ + γ2
)

f⊥⊥(Θ) = k2
S

4π [ν(cosΘ − cos 2Θ)− 2 cos 2Θ] ξ̃

(
2kS

√
1− cosΘ

2

)

f‖‖(Θ) = k2
S

4π [ν(cosΘ − 1) + 2 cosΘ] ξ̃

(
2kS

√
1− cosΘ

2

)
.

(23)

ξ̃ is the Fourier transform of the spatial fluctuations of the random medium. kP and

kS are the P -wave and S-wave wavenumbers. γ is the velocity ratio α/β. We recall

that ν is the Birch coefficient introduced in Eq. (1). We note the following reciprocity

relation: fSP = − β2

α2 fPS .

A.2 Scattering coefficients

To derive the scattering coefficients, we start from Eq. (6) which relates incident

and scattered vectors in bases attached to the scattering plane. Suppose now that

the scattering plane is oriented at an arbitrary angle Φ with respect to the fixed basis

(x,y, z) with respect to which the incident Stokes vector is decomposed (see Figure

2a). Noting that the unit normal vector to the scattering plane may be written as

r = r′ = p′ ∧ p/|p′ ∧ p|, we have:

tanΦ = r · y
r · x

. (24)

The Stokes rotation matrix L(Φ), which expresses the Stokes vector in a new coor-

dinate system (rotated by an angle Φ around the direction of propagation axis), can
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be written as (Turner and Weaver, 1994):

L(Φ) =



1 0 0 0 0

0 1 0 0 0

0 0 cos 2Φ sin 2Φ 0

0 0 − sin 2Φ cos 2Φ 0

0 0 0 0 1


. (25)

The components IP , IS and V are invariant under such a rotation. Note that L(Φ) =

L(Φ±π) so that the rotation angle is defined modulo π. The scattered Stokes vector

Ssc in the (r′, l′,p′) basis may be expressed as (see Figure 2a):

Ssc = F (Θ)L(Φ)Si (26)

where Θ is the scattering angle and Φ is the rotation angle to bring the (x,y, z) axes

in coincidence with the (r, l,p) axes. From Eq. (26) we can deduce the expressions

of the scattering coefficients. We first compute the total scattered intensities:

IscP = 1
R2

(
〈|fPP |2〉IiP + α

2β 〈|fSP |
2〉(IiS −Qi cos 2Φ− U i sin 2Φ)

)
IscS = 1

R2

(
β

α
〈|fPS |2〉IiP +

〈|f⊥⊥|2 + |f‖‖|2〉
2 IiS +

〈|f⊥⊥|2 − |f‖‖|2〉
2 (Qi cos 2Φ+ U i sin 2Φ)

)
(27)

In Eq. (27), the brackets indicate an average over the realization of the random

medium. Note that for notational simplicity the dependence of the scattering am-

plitudes on Θ is implicit in Eq. (27) and following. Recalling that differential cross-

sections dσ∗∗/dΩ are defined as the ratio between the energy scattered in a given
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direction per unit of solid angle and time, and the incident energy flux, we write:

dσPP
dΩ

= IscP
IiP

dS

dΩ

dσPS
dΩ

= IscS
IiP

dS

dΩ

dσSP
dΩ

= IscP
IiS

dS

dΩ

dσSS
dΩ

= IscS
IiS

dS

dΩ

(28)

where the surface element is given by dS = R2dΩ. In turn, the scattering coefficients

g∗∗ are related to the cross-sections by:

g∗∗ = 4π
Vsc

dσ∗∗
dΩ

(29)

We then deduce the following expressions of the differential scattering coefficients:

gPP (Θ,Φ) = 4π
Vsc

〈
|fPP |2

〉
gPS(Θ,Φ) = 4π

Vsc
β

α

〈
|fPS |2

〉
gSP (Θ,Φ) = 4π

Vsc
α

2β
〈
|fSP |2

〉(
1− Qi cos 2Φ− U i sin 2Φ

IiS

)

gSS(Θ,Φ) = 4π
Vsc

[〈
|f⊥⊥|2 + |f‖‖|2

〉
2 +

〈
|f⊥⊥|2 − |f‖‖|2

〉
2

(
Qi cos 2Φ+ U i sin 2Φ

IiS

)]
(30)

The case discussed in Sato et al. (2012) corresponds to an incident Stokes vector

of the form: (0, 1, 1, 0, 0) (S-waves polarized along the x-axis). It may be readily

verified that formulas (30) agree with the one given in Sato et al. (2012) in this case.

In the case of an incident circular polarization (for example), the Stokes vector is

of the form: (0, 1, 0, 0,±1). Formulas (30) then predict that there is no azimuthal

dependence of the differential scattering coefficients. From a physical point of view,

this makes sense as both the medium and the incident wave are invariant by rotation
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about the propagation direction. We conclude that the scattering coefficients gSP

and gSS depend on the incident polarization.

A.3 Rotation angles for the Mueller matrix

The Mueller matrix relates the incident and scattered Stokes vectors using a

global convention to decompose the wavefields. Following previous works (Turner

and Weaver, 1994), we introduce a global reference frame (x,y, z) and a spherical

basis (θ,φ,ρ) such that θ, φφφ and ρ are in the directions of increasing θ (co-latitude),

φ (azimuth) and ρ (distance from origin), respectively. With this convention, the

derivation of the Mueller matrix requires the following steps: (1) rotate the incident

Stokes vector from the (θ,φφφ,ρ) frame to the (r, l,p) frame attached to the scat-

tering plane (note that p = ρ); (2) Apply the scattering matrix F ; (3) rotate the

scattered Stokes vector from the (r′, l′,p′) frame attached to the scattering plane to

the (θ′,φφφ′,ρ′) frame (the primes refer to the scattered wave direction with ρ′ = p′).

The angle ψ1 that realizes step (1) is defined by:

tan(ψ1) = r · φ
r · θ

, (31)

where the unit normal vector to the scattering plane is given by:

r = r′ = p′ ∧ p
|p′ ∧ p|

. (32)

Using the definition of the scattering angle Θ we note: |p′∧p| = sinΘ =
√

1− cos2Θ

with:

cosΘ = sin θ1 sin θ0 cos(φ1 − φ0) + cos θ1 cos θ0. (33)

From Eq. (31), we arrive after some algebra at:

tan(ψ1) = − sin θ0 cos θ1 + cos θ0 sin θ1 cos(φ0 − φ1)
sin θ1 sin(φ0 − φ1) , (34)
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The angle ψ2 which brings (θ′,φφφ′,ρ′) in coincidence with (r′, l′,p′) is defined by

tan(ψ2) =r
′ ·φφφ′

r′ · θ′

=sin θ1 cos θ0 − cos θ1 sin θ0 cos(φ0 − φ1)
sin θ0 sin(φ0 − φ1)

(35)

Note that rotation by an angle −ψ2 needs to be applied to the scattered Stokes

vector (see Eq. 9).

B Construction of the reflection matrix at the Moho

The elements of the reflection matrices (11, 14 and 15) can be derived from

the classical treatment of Aki and Richards (2002) by applying the superposition

principle. Let us illustrate the method by deriving some typical Stokes parameters

reflection coefficients for incident S-waves on the Moho. The vertical z-axis is ori-

ented downwards. In the spherical basis (θ,φ, r), an arbitrarily polarized incident

shear plane wave uiS may be written as:

uiS = θθθAθe
−iωt+iω(z cos j+x sin j)/β1 +φφφAφe

−iωt+iω(z cos j+x sin j)/β1 (36)

with j the angle between r and z. The θθθ, φφφ components correspond to the usual SV

and SH polarizations, respectively. In general the coefficients A may be complex

to take into account possible phase shifts between the two components of the shear

wave motion. The reflected S-wavefield urS may be written as:

urS = θrθrθrAθS̀ŚV e
−iωt−iω(z cos j−x sin j)/β1 +φrφrφrAφS̀ŚHe

−iωt−iω(z cos j−x sin j)/β1 (37)

with φφφ = φrφrφr and θrθrθr is the mirror image of θθθ by the interface. Let us now relate

incident and reflected Stokes parameters. To do so, we consider an incident bundle

of rays of typical angular aperture dΩiS = sin jdjdφ and denote by N i
S the number
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density of rays. In other words, the bundle contains N i
SdΩ

i
S statistically independent

rays. Up to the common pre-factor ρ1β1ω
2N i

S/2, we have

IiS =|Aθ|2 + |Aφ|2

Qi =|Aθ|2 − |Aφ|2

U i =2<e(AθA∗φ)

V i =2=m(AθA∗φ)

(38)

for the incident waves, where the coefficients A represent the typical amplitudes of

the rays in the bundle. Thanks to the assumption of statistical independence, the

Stokes parameters are proportional to the ray density. We denote by dΩrS and Nr
S

the solid angle subtended by the reflected ray bundle and the number density of

reflected rays, respectively. Up to the common pre-factor ρ1β1ω
2Nr

S/2, the Stokes

parameters of the reflected rays may be written as:

IrS =|Aθ|2|S̀ŚV |2 + |Aφ|2|S̀ŚH |2

Qr =|Aθ|2|S̀ŚV |2 − |Aφ|2|S̀ŚH |2

Ur =2<e(AθA∗φS̀ŚV S̀Ś∗H)

V r =2=m(AθA∗φS̀ŚV S̀Ś∗H).

(39)

Note that the angular aperture of the ray bundle is conserved for S-to-S reflection,

i.e. dΩiS = dΩrS . This implies in turn N i
S = Nr

S since we keep track of a fixed set of

rays. In Eq. (38), we have adopted a similar notation as Aki and Richards (2002) for

the displacement reflection coefficients. For instance S̀ŚV represents the reflection

coefficient for a downgoing SV -wave incident at the Moho reflected to an upgoing

SV -wave. Due to a different convention for the definition of the upgoing SV wave-

field, our displacement reflection coefficients involving an upgoing SV -waves differ

by a sign from those given in Aki and Richards (2002). From equations (38)-(39),
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we deduce the following relations between incident and reflected Stokes parameters:

IrS =(IiS +Qi)|S̀ŚV |2
2 + (IiS −Qi)|S̀ŚH |2

2

Qr =(IiS +Qi)|S̀ŚV |2
2 − (IiS −Qi)|S̀ŚH |2

2

Ur =(U i + iV i)S̀ŚV S̀Ś∗H
2 + (U i − iV i)S̀Ś∗V S̀ŚH

2

V r =(−iU i + V i)S̀ŚV S̀Ś∗H
2 + (iU i + V i)S̀Ś∗V S̀ŚH

2

(40)

which agrees with the formulas given in the text. These results are valid for any

incidence angle 0 ≤ j < π/2. From Eq. (40) we deduce:

(IrS)2− (Qr)2− (Ur)2− (V r)2 =
(
(IiS)2 − (Qi)2 − (U i)2 − (V i)2) |S̀Śv|2|S̀Śh|2 (41)

This last Eq. shows that a fully polarized incident wave (i.e. such that (Ii)2−(Qi)2−

(U i)2 − (V i)2 = 0) remains fully polarized upon reflection.

When all the transmitted and refracted rays are in the propagation regime, the

reflection coefficients for Stokes parameters are real. Furthermore, the off-diagonal

reflection coefficients for U and V are equal to zero (because they are related to

the imaginary part of the displacement reflection coefficients). As a consequence,

an initially linearly polarized S-wave (V i = 0) will remain linearly polarized upon

reflection (V r = 0).

When some rays are in the evanescent regime (which occurs when sin j > β2/α1)

the displacement reflection coefficients of SV -waves are complex and the Stokes

parameters of reflected S-waves will exhibit a non-zero parameter V characteristic

of elliptic polarizations. This elliptical polarization stems from the fact that the

reflected SV and SH components are phase shifted with respect to one another due

to their different reflection coefficients at the Moho.

Following the same line of reasoning, mode conversions may be treated with a

notable difference related to Snell’s law. Consider again an incident bundle of plane
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S-waves ( Eq. 36). The reflected P -wavefield of a single plane wave may be written

as:

urP = rrrAθS̀Ṕ e
−iωt−iω(z cos i−x sin i)/α1 (42)

with sin i = sin j α1

β1
. Let us note that if any reflected (transmitted) ray is in the

evanescent regime, the associated intensity reflection (transmission) coefficient is set

to 0. To illustrate the idea, we note for instance that RISV−P = 0 for 1/α1 < p < 1/β1

(p is the ray parameter) both at the Moho and the free surface. Note that in the

same range of ray parameters the reflection coefficients RIP−SV is undefined (since

P -waves are not propagating in this regime). With this in mind, we obtain for the

intensity of the reflected set of P -wave rays:

IrP = ρ1α1ω
2Nr

P |S̀Ṕ |2|Aθ|2

2 (43)

where S̀Ṕ is the displacement reflection coefficient at the Moho. Using Eq. (38), we

obtain:

IrP = α1|S̀Ṕ |2(IiS −Qi)Nr
P

2β1N i
S

(44)

Since we follow a given set of rays, the change in ray density is given by the ratio

between the incident and reflected solid angles:

Nr
P

N i
S

= dΩiS
dΩrP

(45)

where dΩrP denotes the solid angle subtended by the reflected P rays. Using Snell’s

law, we find:

dΩiS
dΩrP

= β2
1 cos i
α2

1 cos j (46)

Reporting (46) into (44), we arrive at:

IrP =
β2

1R
E
S̀V −Ṕ

(IiS −Qi)
2α2

1
(47)
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where RE
S̀V −Ṕ

= α1 cos i|S̀Ṕ |2/β1 cos j is the energy reflection coefficient as defined

by Aki and Richards (2002). The formula is valid for any incident angle such that

sin j < β1

α1
. The change of ray divergence at the Moho is at the origin of the fac-

tor β2
1/α

2
1 in Eq. (47). Note that this purely geometrical factor is automatically

accounted for in the numerical simulations since the seismic phonons obey Snell’s

law. In the text, we have lumped together the geometrical factor with the energy

reflection coefficient to define RI
S̀V −Ṕ

= β2
1R

E
S̀V −Ṕ

/α2
1.

C Reflection of a diffuse field at the free surface

In this Appendix, we demonstrate that the free surface does not affect an equili-

brated and isotropic wavefield. We recall that when this condition applies, we have

equal amount of SV - and SH-waves incident at the free surface, which acts as a mir-

ror for the latter. As a consequence, the isotropy of SH-waves is obviously preserved.

The critical aspect pertains to the mode coupling between P - and SV -waves which

strongly depends on the incidence angles. Let us illustrate the reasoning in the case

of a beam of dowgoing P -waves at the free surface (see Fig. 14). This beam originates

from the reflection of a set of upgoing P - and SV -wave rays. To properly quantify

the contribution of SV -waves, two important physical effects have to be taken into

account: mode conversions and focusing/defocusing of the beam of rays. We denote

by IP (ni) and ISV (nj) the specific intensities of P - and SV -waves incident at the

free surface. For the reflected P -waves we use the notation IP (no). Note that the

unit vectors ni, nj and no denoting the propagating direction of the rays are related

by Snell’s law. The principle of energy conservation for P -waves may be expressed
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as follows:

IP (no)|no · z|d2no = RE
Ṕ−P̀ (ni)IP (ni)|ni · z|d2ni +RE

ŚV −P̀
(nj)ISV (nj)|nj · z|d2nj

(48)

where d2ni,o,j represent elementary solid angles (see Fig. 14) and the RE denote

the energy reflection coefficients (see also the main text and Appendix B for further

details). Using the notations of Aki and Richards (2002), they can be expressed in

terms of the traditional displacement reflection coefficients as follows:

RE
Ṕ−P̀ (ni) =Ṕ P̀ (ni)2

RE
ŚV −P̀

(nj) =1− ŚS̀V (nj)2
(49)

Note that the displacement reflection coefficients are always real for the propagating

waves considered in our model. We may now put the ratio between the reflected and

incident energy densities in the form:

IP (no)
IP (ni) = Ṕ P̀ (ni)2|ni · z|d2ni

|no · z|d2no
+ IS(nj)(1− ŚS̀V (nj)2)|nj · z|d2nj

IP (ni)|no · z|d2no
(50)

We may now apply Snell’s law to simplify this expression. For P -to-P reflection we

clearly have: |ni ·z|d2ni = |no ·z|d2no. For S-to-P conversion we differentiate Snell’s

law to obtain:
cos idi
α1

= cos jdj
β1

(51)

where j is the incidence angle of SV -waves and i the reflection angle of P -waves.

Combining (Eq. (51)) with usual Snell’s law, we obtain:

|nj · z|d2nj

|no · z|d2no
= β2

1
α2

1
(52)

Reporting the last result in Eq. (50) yields:

IP (no)
IP (ni) = Ṕ P̀ (ni)2 + β2

1IS(nj)(1− ŚS̀V (nj)2)
α2

1IP (ni) (53)
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Fig. 14: Energy balance at the free surface. The downgoing P -waves propagating

around direction no have two origins: reflection of P -waves with incidence direction

ni, or conversion of SV -waves with incidence direction nj . The incidence angles of

P - and S-waves are denoted by i and j, respectively. The elementary solid angles of

incident P , incident S and reflected P -waves are denoted by d2ni, d2nj and d2no,

respectively.

For an equipartitioned upgoing wavefield, the specific intensities IS(nj) and IP (ni)

are independent of the incidence angles and their ratio is equal to α2
1/β

2
1 . Noting the

symmetry relation ŚS̀V (nj)2 = Ṕ P̀ (ni)2 (Aki and Richards, 2002), we arrive at the

desired result:

IP (no) = IP (ni) (54)

Following the same line of reasoning, the result can be extended to SV -waves. In

conclusion, if the wavefield incident at the free surface is equipartitioned, so is the

reflected wavefield.
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