Yves Achdou 
  
Paola Mannucci 
  
Claudio Marchi 
  
Nicoletta Tchou 
  
Nicoletta Tchou First 
  
First order Mean Field Games on networks

Keywords: deterministic mean field games, networks, Lagrangian formulation, first order Hamilton-Jacobi equations on networks. 2010 AMS Subject classification: 35F50, 35Q91, 35R02, 49K20, 49L25, 49N80, 91A16

à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

The theory of Mean Field Games (MFGs in short) introduced in the pioneering articles of Lasry and Lions [START_REF] Lasry | Jeux à champ moyen. I. Le cas stationnaire[END_REF][START_REF] Lasry | Jeux à champ moyen. II. Horizon fini et contrôle optimal[END_REF][START_REF] Lasry | Mean field games, Japan[END_REF], deals with the asymptotic behaviour of differential games, either deterministic or stochastic, as the number of players tends to infinity. The major part of the literature on deterministic MFGs addresses situations in which the state space is either R d or the flat torus R d /Z d , and in which the dynamics of the players is strongly controllable. In such cases, the mean field game is determined by the pair made of the distribution of states at all times and the optimal value of a representative agent. The latter quantities satisfy a system of PDEs coupling a continuity equation (forward in time) and a Hamilton-Jacobi (HJ) equation (backward in time), see [START_REF] Cardaliaguet | Notes on Mean Field Games[END_REF].

Assuming that the dynamics are strongly controllable, Cannarsa et al, [START_REF] Cannarsa | Existence and uniqueness for Mean Field Games with state constraints[END_REF][START_REF] Cannarsa | Cardaliaguet C 1,1 -smoothness of constrained solutions in the calculus of variations with application to mean field games[END_REF][START_REF] Cannarsa | Cardaliaguet Mean field games with state constraints: from mild to pointwise solutions of the PDE system[END_REF], have studied MFGs in which the agents are constrained to remain in the closure of a regular bounded open domain of R d . With such state constraints, the distribution of states may become singular, as it was first observed in [START_REF] Achdou | Income and wealth distribution in macroeconomics: a continuous-time approach[END_REF], and it becomes difficult to write boundary conditions for the continuity equation (see also Section 3 below for some examples of formation and propagation of Dirac masses). For this reason, Cannarsa et al, following ideas contained in [START_REF] Benamou | Brenier A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF][START_REF] Benamou | Carlier Augmented Lagrangian methods for transport optimization, mean field games and degenerate elliptic equations[END_REF][START_REF] Cardaliaguet | Santambrogio First order mean field games with density constraints: pressure equals price[END_REF], introduce a notion of relaxed equilibrium which is defined in a Lagrangian setting rather than with PDEs. The evolution of the game is described in terms of probability measures defined on a set of admissible trajectories, instead of timedependent probability measures defined on the state space. In the same vein, Mazanti and Santambrogio, [START_REF] Mazanti | Santambrogio Minimal-time mean field games[END_REF], obtain the existence of relaxed equilibria for minimal time MFGs, in which each agent aims at exiting a given closed subset of a general compact metric space in minimal time and faces congestion effects (her speed cannot exceed a bound depending on the density of players). See also [START_REF] Dweik | Mazanti Sharp semi-concavity in a non-autonomous control problem and L p estimates in an optimal-exit MFG[END_REF] for similar models in the Euclidean setting. In [START_REF] Achdou | Deterministic mean field games with control on the acceleration and state constraints[END_REF], the authors of the present paper prove the existence of relaxed equilibria for deterministic state constrained MFGs in which the agents control their acceleration. This is an example of state constrained MFGs in which the strong controllability property does not hold.

The present paper aims at studying relaxed equilibria for deterministic MFGs in which the state space is a network, i.e. a subset of R d made of a finite number of edges and vertices. Optimal control problem on junctions, networks or stratified sets is a rather recent field which contains a number of interesting open problems (see [START_REF] Achdou | Hamilton-Jacobi equations constrained on networks[END_REF][START_REF] Imbert | A Hamilton-Jacobi approach to junction problems and application to traffic flows[END_REF][START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF][START_REF] Barles | A Bellman approach for regional optimal control problems in R N[END_REF][START_REF] Lions | Viscosity solutions for junctions: well posedness and stability[END_REF][START_REF] Lions | Well-posedness for multi-dimensional junction problems with Kirchhoff-type conditions[END_REF][START_REF] Morfe | Convergence & rates for Hamilton-Jacobi equations with Kirchoff junction conditions[END_REF][START_REF] Barles | An Illustrated Guide of the Modern Approaches of Hamilton-Jacobi Equations and Control Problems with Discontinuities[END_REF]). The aforementioned paper [START_REF] Mazanti | Santambrogio Minimal-time mean field games[END_REF] on minimal time MFGs also applies to networks. Stochastic MFGs on networks (each agent is subject to an independent noise) have been studied in [START_REF] Achdou | Finite Horizon Mean Field Games on Networks[END_REF] (see also [START_REF] Cardaliaguet | Santambrogio First order mean field games with density constraints: pressure equals price[END_REF][START_REF] Achdou | A class of infinite horizon mean field games on networks[END_REF] for infinite horizon problems). Finally, in the recent preprint [START_REF] Saleh | First-order mean-field games on networks and Wardrop equilibrium[END_REF], Gomes et al study a class of stationary MFG on networks and their relationship with Wardrop equilibria. The present paper can be considered as a first step of a more general research project on deterministic MFGs on networks that we intend to pursue.

For simplicity, we hereafter focus on a junction, i.e. N half-lines in R d glued together at a single vertex, say the origin. Yet, all the results below may be generalized for general networks with more than one vertices and edges of possibly finite lengths. Given the time evolution of the distribution of the players, each agent solves an optimal problem with finite time horizon. We assume that the agents control their velocity. In particular, when an agent is at the vertex, she can choose either to remain still or to enter any edge. The running and terminal costs depend on the distribution of agents in a non local, regularizing manner, but are not supposed to be continuous across the vertex (the costs may change from one edge to the next). We also restrict ourselves to running costs which depend quadratically on the velocity. Finally, there is a distinct running cost for staying at the vertex.

The first part of the present paper is devoted to optimal control problems on the network, (which arise if the distribution of states in the MFG is given). The main results concerning optimal control are as follows: the existence of an optimal trajectory for any initial state, a closed graph property for the map which associates to each point on the network the set of optimal trajectories starting from that point, Euler-Lagrange conditions for the optimal control, the characterization of the value function of the optimal control problem as the generalized viscosity solution of an Hamilton-Jacobi problem posed on the network with suitable conditions at the vertex (the definition of generalized viscosity solution will be recalled), the local or global Lipschitz regularity of the value function. The second part of the paper deals with relaxed equilibria for MFGs on the network. The existence of the latter is proved using Kakutani's fixed point theorem applied to a suitable multivalued map, which requires in particular a closed graph property. To any relaxed equilibrium, it is then possible to associate a family of time-dependent probability measures on the state space (m(t)) t and the value function u of a suitable optimal control problem involving m. All the results of the first part of the paper apply to the latter optimal control problem. In particular, some regularity properties of u can be deduced. It is also possible to prove that m solves a continuity equation in a weak sense and to give information on the propagation of its singularities. The pair (u, m) is named a mild solution of the MFG, see [START_REF] Cannarsa | Existence and uniqueness for Mean Field Games with state constraints[END_REF].

This paper is organized as follows. The remaining part of Section 1 contains the description of the geometry and the definition of some notations. Section 2 is devoted to optimal control problems. In particular, we obtain the existence of an optimal trajectory for every starting point, a closed graph property for the map that associates to each point the set of optimal trajectories, and study the value function (mainly, its characterization as the viscosity solution of a HJ problem on the network and some regularity properties). Section 3 concerns deterministic MFGs on the junction. Relying on the results of Section 2, we prove the existence of a relaxed MFG equilibrium and study the related mild solutions.

Notations

Throughout this paper, the notation C b means continuous and bounded.

The junction. We adopt the notations of [START_REF] Achdou | Hamilton-Jacobi equations for optimal control on junctions and networks[END_REF]. In the whole paper, the state space is a junction in R d with N (N > 1) semi-infinite straight edges, denoted by (J i ) i=1,...,N . Let the edge J i be the closed half-line R + e i , and the vectors e i be two by two distinct unit vectors in R d . The junction G is obtained by gluing the half-lines J i at the origin O:

G = N i=1 J i .
For a vector ξ aligned with a given e i , we set ξ = ξ • e i . The geodetic distance d(x, y) between two points x, y of G is d(x, y) = |x -y| if x, y belong to the same edge J i |x| + |y| if x, y belong to different edges J i and J j .

If ϕ is a function defined on J i , we will sometimes use the same notation ϕ for the function R + ∋ x → ϕ(xe i ).

Gradient of a function. Let C 1 (G) be the set of continuous functions ϕ ∈ C(G) such that, for every i = 1, . . . , N , the restriction of ϕ to the edge J i , ϕ |J i belongs to C 1 (R + ); moreover, for ϕ ∈ C 1 (G), we set (1.1)

Dϕ(x) = Dϕ |J i if x ∈ J i \ {O}, Dϕ |J 1 , . . . , Dϕ |J N if x = O.
Observe that Dϕ(x) is 1-dimensional when the point x lies in the interior of a given edge while it is N -dimensional when x coincides with the vertex O.

In a similar manner, let C 1 (G × [0, T ]) be the set of continuous functions ϕ ∈ C(G×[0, T ]) such that for any 1 ≤ i ≤ N , the restriction ϕ |J i ×[0,T ] belongs to C 1 (J i ×[0, T ]).

Deterministic optimal control on networks

We consider optimal control problems on G with horizon T > 0 and different running costs in the edges and at the vertex. The set of controls, the dynamics and the running cost associated to a given edge J i are respectively denoted by A i , F i and li . For the sake of simplicity, we shall focus on the case where fi = α, i.e. the agent directly chooses its velocity, and where the running cost is li (x, t, α) = ℓ i (x, t) + |α| 2 /2 (it depends separately on the control and on the state variable). However, what follows may be easily extended to a more general setting, namely • a network instead of a simple junction • functions fi with a linear or sublinear growth at infinity and such that fi (A i ) contains a neighborhood of 0 (strong controllability assumption)

• running costs which depend separately on the control and the state variable and are strongly convex in the control.

More precisely, we make the following assumptions:

[H0] In order to avoid confusion between the control sets, we set A i = {i} × R for i = 0, . . . , N . Hence, the sets A i are disjoint. We set A = N i=0 A i . For a = (i, ā) ∈ A, we set |a| = |ā| and, with an abuse of notations, we shall write indifferently āe i and (i, ā). Let f i : J i × A i → R be defined by f i (x, a) = ā for a = (i, ā). We will use the notation F i (x) for the set {f i (x, a)e i , a ∈ A i } = Re i for x ∈ J i (i = 1, . . . , N ). We also set F 0 (O) = {0 R d }.

[H1] For i = 1, . . . , N , the running costs ℓ i belong to C b (J i × [0, T ]). Let us also introduce a specific cost for staying at the origin, namely ℓ * : [0, T ] → R, continuous and bounded.

For i = 1, . . . , N , the terminal costs g i belong to C b (J i ). Let g * be a fixed number.

In the remaining part of Section 2, we will always assume that the costs satisfy the minimal hypotheses made in this paragraph and will not repeat them. We will specify when additional hypotheses are needed.

Let us now recall a general version of Filippov implicit function lemma, which will be useful to prove Theorem 2.2 below. For the proof, we refer the reader to [START_REF] Mcshane | On Filippov's implicit functions lemma[END_REF]. Note that M is closed. Moreover, since the sets A i are disjoint, for each (x, a) ∈ M , there exist a unique i ∈ {1, . . . , N } and a unique a ∈ R such that (x, a) = (x, (i, ā)). Let the function f be defined on M by

f (x, a) =      f i (x, a)e i , if x ∈ J i \{O}, f i (O, a)e i , if x = O and a ∈ A i , i = 0, 0 R d , if x = O and a ∈ A 0 ,
for (x, a) ∈ M . Since the sets A i are disjoint, f is continuous on M . Let F (x) be defined by

F (x) = F i (x) if x ∈ J i \{O}, ∪ N i=0 F i (O) if x = O.
For x ∈ G, let the set of admissible paths starting from x be 

(2.2) Y x,0 = y x ∈ W 1,2
: [0, T ] → M , Φ = (φ 1 , φ 2 ) such that φ 2 = (i, φ2 ), with φ2 ∈ R, when φ 1 ∈ J i \ {O} (y x (s), ẏx (s)) = (φ 1 (s), f (φ 1 (s), φ 2 (s))), for a.e. s,
which means in particular that y x is a continuous representation of φ 1

Almost everywhere in

[0, T ], ẏx (s) = N i=1 1 {yx(s)∈J i \{O}} φ2 (s)e i 4.
Almost everywhere on {s :

y x (s) = O}, f (O, φ 2 (s)) = 0.
Proof. The proof of point 1 is easy, because 0 ∈ F (x) for every x ∈ G. The proof of point 2 is a consequence of Theorem 2.1, with

K = M , I = [0, T ], γ(s) = (y x (s), ẏx (s)) and Ψ(x, a) = (x, f (x, a)). Point 2 implies ẏx (s) = N i=1 1 {yx(s)∈J i \{O}} φ2 (s)e i + 1 {yx(s)=O} f (O, φ 2 (s)),
and from Stampacchia's theorem, f (O, φ 2 (s)) = 0 almost everywhere in {s : y x (s) = O}. This yields points 3 and 4.

Remark 2.3.

It is worth noticing that in Theorem 2.2, a solution y x can be associated with several control laws φ 2 which may be different even on sets with positive measure. Actually, for a.e. s ∈ {s ∈ [0, T ] | y x (s) ∈ J i \ {O}}, the control φ 2 (s) is uniquely defined as φ 2 (s) = ẏx (s) and belongs to Re i (for i = 1, . . . , N ). On the other hand, for a.e. s ∈ {s ∈ [0, T ] | y x (s) = O}, the control φ 2 (s) is 0 by Stampacchia theorem, and it can be arbitrarily chosen in any A i , for i = 0, . . . , N .

For any x ∈ G and t 1 , t 2 ∈ [0, T ] with t 1 < t 2 , consider the set of admissible trajectories (namely, pairs made of controls and paths) on the interval [t 1 , t 2 ] which start from x at t 1 :

(2.3) Γ t 1 ,t 2 [x] =    (y x , α) ∈ L 2 ([t 1 , t 2 ], M ) : y x ∈ W 1,2 ([t 1 , t 2 ]; G), y x (s) = x + s t 1 f (y x (τ ), α(τ ))dτ in [t 1 , t 2 ]    .
For simplicity, when t 2 = T , we write Γ t 1 [x] instead of Γ t 1 ,T [x] and, when t 2 = T and t 1 = 0, we drop the subscript: Γ

[x] = Γ 0,T [x].
Finally, the set of all admissible trajectories starting at time t = 0 is defined as follows:

(2.4) Γ = x∈G Γ[x].

Remark 2.4 (concatenation of two admissible trajectories). For

0 ≤ t 1 ≤ t 2 ≤ t 3 ≤ T and x ∈ G, if (y 1 , α 1 ) ∈ Γ t 1 ,t 2 [x] and (y 2 , α 2 ) ∈ Γ t 2 ,t 3 [y 1 (t 2 )]
, the trajectory (ỹ, α) defined by

ỹ(s) = y 1 (s) for s ∈ [t 1 , t 2 ] y 2 (s) for s ∈ [t 2 , t 3 ] and α(s) = α 1 (s) for s ∈ [t 1 , t 2 ] α 2 (s) for s ∈ [t 2 , t 3 ] belongs to Γ t 1 ,t 3 [x].
The cost functional. For t ∈ [0, T ], the cost associated to the trajectory (y x , α)

∈ Γ t [x] is (2.5) J t (x; (y x , α)) = T t N i=1 ℓ i (y x (τ ), τ )1 yx(τ )∈J i \{O} + ℓ O (τ )1 yx(τ )=O dτ + T t |α(τ )| 2 2 dτ + g(y x (T ))
where

ℓ O (τ ) = min{ℓ * (τ ), min i=1,...,N ℓ i (O, τ )} (2.6) g(y) = N i=1 g i (y)1 y∈J i \{O} + min{g * , min i=1,...,N g i (O)}1 y=O , (2.7)
recalling that g * and ℓ * are introduced in assumption (H 1 ). For brevity, defining

(2.8) L(x, t) = N i=1 ℓ i (x, t)1 x∈J i \{O} + ℓ O (t)1 x=O ∀(x, t) ∈ G × [0, T ],
enables one to write

J t (x; (y x , α)) = T t L(y x (τ ), τ ) + |α(τ )| 2 2 dτ + g(y x (T )).
Remark 2.5. The arguments below would also apply for costs of the form

J t (x; (y x , α)) = T t N i=1 ℓ i (y x (τ ), τ )1 yx(τ )∈J i \{O} + N i=0 ℓ i (O, τ )1 yx(τ )=O,α(τ )∈A i dτ + T t |α(τ )| 2 2 dτ + g(y x (T )),
where we have set ℓ 0 (O, τ ) = ℓ * (τ ).

The value function.

The value function of the optimal control problem is

(2.9) u(x, t) = inf (y,α)∈Γt[x] J t (x; (y, α)). Set (2.10) Γ opt t [x] = (y, α) ∈ Γ t [x] : J t (x; (y, α)) = min (ŷ, α)∈Γt[x] J t (x; (ŷ, α)) .
For simplicity, we drop the subscript when t = 0:

Γ opt [x] = Γ opt t [x].
Remark 2.6. The value function u is bounded. Indeed, the trajectory associated to the control α ≡ 0 is admissible and provides an upper bound for the value function, because the costs ℓ i and g are bounded. From this, it stems that the optimal controls, if they exist, are uniformly bounded in L 2 (0, T ).

Remark 2.7 (restriction of optimal trajectories). For (y, α) ∈ Γ )). Then, by Remark 2.4, the concatenation (ỹ, α) of (y, α) with (ȳ, ᾱ), defined by

ỹ(s) = y(s) for s ∈ [t, t] ȳ(s) for s ∈ [ t, T ] , and α(s) = α(s) for s ∈ [t, t] ᾱ(s) for s ∈ [ t, T ]
belongs to Γ t [x] and consequently there holds

u(x, t) = J t (x; (y, α)) = t t L(y(τ ), τ ) + |α(τ )| 2 2 dτ + J t(y( t); (y |[ t,T ] , α |[ t,T ] )) > t t L(y(τ ), τ ) + |α(τ )| 2 2 dτ + J t(y( t); (ȳ, ᾱ)) = J t (x; (ỹ, α)),
which contradicts the optimality of (y, α).

Remark 2.8. From Remark 2.7, we deduce that for any (y, α) ∈ Γ opt t [x], there holds

u(x, t) = u(y( t), t) + t t L(y(τ ), τ ) + |α(τ )| 2 2 dτ ∀ t ∈ [t, T ].
Remark 2.9. The concatenation of two optimal trajectories yields an optimal trajectory. More precisely, for any (y, α) ∈ Γ opt t [x], t ∈ (t, T ) and (ŷ, α) ∈ Γ opt t [y( t)], the concatenation (y 0 , α 0 ) of (y, α) and (ŷ, α) belongs to Γ opt t [x]. Indeed, from Remark 2.8,

u(x, t) = u(y( t), t) + t t L(y(τ ), τ ) + |α(τ )| 2 2 dτ = T t L(ŷ(τ ), τ ) + |α(τ )| 2 2 dτ + g(ŷ(T )) + t t L(y(τ ), τ ) + |α(τ )| 2 2 dτ = J t (x; (y 0 , α 0 )),
i.e. (y 0 , α 0 ) is optimal for u(x, t).

Lemma 2.10. If [H0] and [H1] hold, then for any

x ∈ G: lim t→T -u(x, t) = g(x). Proof. Fix x ∈ G. Since y corresponding to control α = 0 is admissible, u(x, t) ≤ T t L(y(τ ), τ ) dτ + g(x),
and because L is bounded, this implies that lim sup t→T -u(x, t) ≤ g(x).

On the other hand, for any ǫ ∈ (0, 1), let (y ǫ t , α ǫ t ) be an ǫ-optimal trajectory for u(x, t). The same arguments as in Remark 2.6 yield that there exists a constant C (independent of t and of ǫ) such that:

α ǫ t L 2 (t,T ) ≤ C so, in particular, y ǫ t (•) is 1/2-Hölder continuous with constant C. Hence, lim inf t→T - u(x, t) ≥ lim inf t→T - T t L(y ǫ t (τ ), τ ) dτ + g(y ǫ t (T )) -ǫ = g(x) -ǫ.
Letting ǫ tend to 0 yields the desired result. 

Existence of optimal trajectories

y x ∈ W 1,2 ([t, T ]; R d ), with y x (s) = x + s t α(τ ) dτ ∈ G, because G is closed. We now claim that (2.14) (y x , α) ∈ Γ t [x].
To obtain (2.14), it suffices to prove that α is an admissible control, i.e. that (y x (s), α(s)) ∈ M for a.e. s ∈ (t, T ). To this end, let us argue differently whether y x (s) coincides or not with O. Consider s ∈ (t, T ) such that y x (s) ∈ J i \ {O} for some i = 1, . . . , N . Since the y n are uniformly 1/2-Holder continuous and uniformly converge to y x , we deduce that, for ε > 0 sufficiently small and for any n sufficiently large, there holds

y n (τ ) ∈ J i \ {O} ∀τ ∈ (s -ε, s + ε).
In particular, for n sufficiently large,

α n (τ ) = ᾱn (τ )e i for τ ∈ (s-ε, s+ε). Letting n → ∞, we conclude that α(τ ) is aligned with e i for τ ∈ (s -ε, s + ε). Define the compact set (2.15) E = {s ∈ (t, T ) : y x (s) = O}.
From (2.13), Stampacchia's theorem yields that α(s) = 0 for a.a. s ∈ E. Hence, we may write for instance α = 0e where

I 1 = T t N i=1 ℓ i (y n (τ ), τ )1 y n (τ )∈J i \{O} 1 yx(τ )∈J i \{O} dτ, I 2 = T t N i=1 ℓ i (y n (τ ), τ )1 y n (τ )∈J i \{O} 1 yx(τ )∈G\J i dτ, I 3 = T t N i=1 ℓ i (y n (τ ), τ )1 y n (τ )∈J i \{O} 1 yx(τ )=O dτ, I 4 = T t ℓ O (τ )1 y n (τ )=O dτ, I 5 = g(y n (T )),
and study separately the different contributions in the right hand side of (2.17). It is well known that the convergence in the weak topology of

L 2 ([t, T ]; R d ) entails (2.18) T t |α(τ )| 2 2 dτ ≤ lim inf n→∞ T t |α n (τ )| 2 2 dτ.
Concerning I 1 , the uniform convergence of y n to y x as n → ∞ and the continuity of ℓ i ensure that, for any τ ∈ [t, T ],

ℓ i (y n (τ ), τ )1 y n (τ )∈J i \{O} 1 yx(τ )∈J i \{O} → ℓ i (y x (τ ), τ )1 yx(τ )∈J i \{O} as n → ∞.
Since the ℓ i 's are bounded, the dominated convergence theorem yields (2. [START_REF] Cannarsa | Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control[END_REF])

I 1 → T t N i=1 ℓ i (y x (τ ), τ )1 yx(τ )∈J i \{O} dτ as n → ∞.
As for I 2 , again the uniform convergence of y n to y x and the continuity of ℓ i ensure that the integrand tends to zero as n → ∞. Again the dominated convergence theorem yields (2.20)

I 2 → 0 as n → ∞.
Let us now consider the term I 5 and argue differently whether y x (T ) coincides or not with O. If y x (T ) ∈ J i \ {O} for some i ∈ {1, . . . , N } then, the uniform convergence of y n to y x and the continuity of On the other hand,

g i entail g(y n (T )) = g i (y n (T )) → g i (y x (T )) = g(y x (T )) as n → ∞. If y x (T ) = O,
I 3 + I 4 = T t N i=1 ℓ i (y n (τ ), τ )1 y n (τ )∈J i \{O} + ℓ O (τ )1 y n (τ )=O 1 yx(τ )=O dτ + T t ℓ O (τ )1 y n (τ )=O 1 yx(τ ) =O dτ.
Observe that 1 y n (•)=O 1 yx(•) =O → 0 as n → ∞. Hence, from the dominated convergence theorem,

T t ℓ O (τ )1 y n (τ )=O 1 yx(τ ) =O dτ → 0 as n → ∞.
Assume for a while that

(2.22) lim inf n→∞ T t N i=1 ℓ i (y n (τ ), τ )1 y n (τ )∈J i \{O} + ℓ O (τ )1 y n (τ )=O 1 yx(τ )=O dτ ≥ T t ℓ O (τ )1 yx(τ )=O dτ.
From (2.17), (2.18) and (2.22),

u(x, t) ≥ T t |α(τ )| 2 2 + N i=1 ℓ i (y x (τ ), τ )1 yx(τ )∈J i \{O} + ℓ O (τ )1 yx(τ )=O dτ + g(y x (T ))
which is equivalent to (2.16).

There remains to prove (2.22). Recall that the set E has been defined in (2.15). Since y n uniformly converge to y x , y ny x L ∞ (E) is arbitrary small for n sufficiently large. Then the continuity of ℓ i implies that for any ε > 0, 

ℓ i (y n (τ ), τ ) > ℓ O (τ ) -ε, ∀τ ∈ E,
(x, t) = T t 1 L(ȳ(τ ), τ ) + |ᾱ(τ )| 2 2 dτ + g(ȳ(T )) + t 1 t L(y 1 (τ ), τ ) + |α 1 (τ )| 2 2 dτ = J t (x; (y, α)),
(y, α) is optimal for u(x, t). 

First properties

α 1 (s) =        e 1 if x 1 ≤ x 2 -e 1 if x 1 > x 2 for s ∈ [t 1 , t 1 + δ], T -t 2 T -t 1 -δ α 2 T -t 2 T -t 1 -δ s -T (δ+t 1 -t 2 ) T -t 1 -δ for s ∈ (t 1 + δ, T ],
thus

y 1 (s) = x 1 + x 2 -x 1 δ (s -t 1 ) for s ∈ [t 1 , t 1 + δ], x 2 + s t 1 +δ T -t 2 T -t 1 -δ α 2 T -t 2 T -t 1 -δ τ -T (δ+t 1 -t 2 ) T -t 1 -δ dτ for s ∈ [t 1 + δ, T ].
Observe that, for s ∈ [t 1 + δ, T ], there holds

y 1 (s) = x 2 + T -t 2 T -t 1 -δ s- T (δ+t 1 -t 2 ) T -t 1 -δ t 2 α 2 (θ)) dθ = y 2 T -t 2 T -t 1 -δ s - T (δ + t 1 -t 2 ) T -t 1 -δ ,
and that (y 1 , α 1 ) ∈ Γ t 1 (x 1 ) with y 1 (T ) = y 2 (T ). On the other hand,

α 1 2 L 2 (t 1 ,T ) = δ + T t 1 +δ T -t 2 T -t 1 -δ 2 α 2 T -t 2 T -t 1 -δ s - T (δ + t 1 -t 2 ) T -t 1 -δ 2 dτ = δ + T -t 2 T -t 1 -δ α 2 2 L 2 (t 2 ,T ) = δ + α 2 2 L 2 (t 2 ,T ) + t 1 -t 2 + δ T -t 1 -δ α 2 2 L 2 (t 2 ,T ) . (2.24)
Let us estimate

J t 1 (x 1 ; (y 1 , α 1 )) -J t 2 (x 2 ; (y 2 , α 2 )) = 4 i=1 I i ,
where

I 1 = t 1 +δ t 1 L(y 1 (τ ), τ ) dτ, I 2 = α 1 2 L 2 (t 1 ,T ) -α 2 2 L 2 (t 2 ,T ) 2 , I 3 = T t 1 +δ L(y 1 (τ ), τ )dτ, I 4 = - T t 2 L(y 2 (τ ), τ ) dτ,
recalling that y 1 (T ) = y 2 (T ). From the boundedness of the running cost and (2.24), there holds |I 1 | ≤ Kδ for some constant K, and

|I 2 | ≤ δ 2 + α 2 2 L 2 (t 2 ,T ) 2 |t 1 -t 2 | + δ T -T 1 .
On the other hand, after a change of variable,

I 3 = T t 1 +δ L y 2 T -t 2 T -t 1 -δ τ - T (δ + t 1 -t 2 ) T -t 1 -δ , τ dτ = T -t 1 -δ T -t 2 T t 2 L y 2 (θ), T -t 1 -δ T -t 2 θ + T (δ + t 1 -t 2 ) T -t 2 dθ,
which implies that

|I 3 + I 4 | = t 2 -t 1 -δ T -t 2 T t 2 L y 2 (θ), T -t 1 -δ T -t 2 θ + T (δ + t 1 -t 2 ) T -t 2 dθ + T t 2 L y 2 (θ), T -t 1 -δ T -t 2 θ + T (δ + t 1 -t 2 ) T -t 2 -L(y 2 (θ), θ) dθ ≤ |t 2 -t 1 | + δ T -T 1 K + T ω |t 2 -t 1 | + δ T -T 1 2T ,
where ω is a modulus of continuity common to all the costs

ℓ i in B(0, R) with R > |x 1 | + |x 2 | + max s∈[0,T ] |y 2 (s)|. In conclusion, |J t 1 (x 1 ; (y 1 , α 1 )) -J t 2 (x 2 ; (y 2 , α 2 ))| ≤ K(|t 2 -t 1 | + δ) + ω(|t 2 -t 1 | + δ)
for a suitable constant K (depending only on T 1 ) and a suitable modulus of continuity ω (depending on T 1 , |x 1 | and |x 2 |). From the optimality of (y 2 , α 2 ),

u(x 1 , t 1 ) ≤ J t 1 (x 1 ; (y 1 , α 1 )) ≤ J t 2 (x 2 ; (y 2 , α 2 )) + K(|t 2 -t 1 | + δ) + ω(|t 2 -t 1 | + δ) ≤ u(x 2 , t 2 ) + K(|t 2 -t 1 | + δ) + ω(|t 2 -t 1 | + δ).
Reversing the role of (x 1 , t 1 ) and (x 2 , t 2 ), we get

|u(x 1 , t 1 ) -u(x 2 , t 2 )| ≤ K(|t 2 -t 1 | + δ) + ω(|t 2 -t 1 | + δ),
and the proof is done.

Remark 2.15 (Hölder/Lipschitz continuity). If the running costs ℓ i are θ-Hölder continuous with respect to time for θ = (0, 1], the same arguments as above can be used for proving that the value function is locally θ-Hölder continuous with respect to

(x, t) in G × [0, T ).
The following property will not be used in the remaining part of the paper.

Lemma 2.16. Fix (x, t) ∈ G×[0, T ) and (y, α) ∈ Γ t [x] and consider a sequence

{(x n , t n )} n∈N , such that (x n , t n ) ∈ G × [0, T ), δ ′ n = d(x n , x) + |t n -t| → 0 as n → ∞. There exists a sequence {(y n , α n )} n∈N , such that (y n , α n ) ∈ Γ tn [x n ] (2.25) (i) sup [tn∨t,T ] d(y n (•), y(•)) ≤ δ n + |t n -t| + α 2 δ ′ n , y n (T ) = y(T ) (ii) α n 2 2 ≤ α 2 2 + δ ′ n 1 + α 2 2 T -δ ′ n (iii) lim n→∞ J tn (x n ; (y n , α n )) = J t (x; (y, α)).
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α n (s) =            0, for s ∈ [t n , t], e 1 , if xn ≤ x, -e 1 , if xn > x, for s ∈ [t, t + δ n ], T -t T -t-δn α s T -t T -t-δn -δ n T T -t-δn , for s ∈ (t + δ n , T ],
and let y n be the corresponding path starting from x n at time t n . Clearly, (y n , α n ) ∈ Γ tn [x n ], and

y n (s) =      x n , for s ∈ [t n , t], x n + (x -x n )δ -1 n (s -t), for s ∈ [t, t + δ n ], y s T -t T -t-δn -δ n T T -t-δn , for s ∈ [t + δ n , T ].
The bounds in (2.25)-(i) and (ii) are obtained with the same arguments as above. Moreover,

J tn (x n ; (y n , α n )) -J t (x; (y, α)) = 5 i=1 I i ,
where, for i = 1, . . . , 4, the terms I i are analogous to the corresponding ones in (2.59), while I 5 = t tn L(x n , 0, τ ) dτ . Then |I 5 | ≤ K|tt n | for a suitable constant K, since the costs ℓ i are bounded functions. The same calculations as in the proof of Lemma 2.26 lead to the desired result.

Case 2:

t n ≥ t, ∀n ∈ N. It is clear that t + δ ′ n = t n + δ n . Consider the control α n (s) =        e 1 , if xn ≤ x, -e 1 , if xn > x, for s ∈ [t n , t + δ ′ n ], T -t T -t-δ ′ n α s T -t T -t-δ ′ n -δ ′ n T T -t-δ ′ n , for s ∈ (t + δ ′ n , T ],
and let y n be the corresponding path starting from x n at time t n . Then (y n , α n ) ∈ Γ tn [x n ] and

y n (s) = x n + (x -x n )δ ′-1 n (s -t), for s ∈ [t, t + δ ′ n ], y s T -t T -t-δn -δ n T T -t-δn , for s ∈ [t + δ ′ n , T ].
The desired result is obtained with the same calculations as in the proof of Lemma 2.26.

Euler-Lagrange conditions

Below, we address situations in which it is possible to write the Euler-Lagrange conditions for an optimal trajectory. They will consist of a family of differential equations along with a condition at the horizon. The following lemma deals with the Euler-Lagrange condition in time intervals [t 1 , t 2 ] ⊂ (0, T ) for which an optimal trajectory lies in the interior of a given edge. Lemma 2.17. Consider i ∈ {1, . . . , N }, and assume that the function ℓ i is differentiable with respect to its first argument with where o(1) is a function of h that tends to 0 as h → 0. Integrating by parts the last integral and observing that t 2 t 1 ᾱ1 ds = 0 yields

∂ x ℓ i ∈ C(J i × [0, T ]). Consider any (x, t) ∈ G × [0,
t 2 t 1 ℓ i (y h (s), s) -ℓ i (y(s), s) h ds = - t 2 t 1 s t 1 ∂ x ℓ i (y(θ), θ)dθ ᾱ1 (s)ds.
Inserting the latter in (2.27) and letting h → 0 leads to 0 ≤

t 2 t 1 ᾱ(s) - s t 1 ∂ x ℓ i (y(θ), θ)dθ ᾱ1 (s)ds, for every α 1 supported in [t 1 , t 2 ] with t 2 t 1 α 1 ds = 0. The linearity of the constraint then implies 0 = t 2 t 1 ᾱ(s) - s t 1 ∂ x ℓ i (y(θ), θ)dθ ᾱ1 (s)ds, i.e. that s → ᾱ(s) -s t 1 ∂ x ℓ i (y(θ), θ)dθ is orthogonal in L 2 (t 1 , t 2 ) to V = {f ∈ L 2 (t 1 , t 2 ) : t 2 t 1 f = 0} = R ⊥ L 2 (t 1 ,t 2 )
. Hence, this function is constant and (2.26) is proved.

Remark 2.18. A consequence of (2.26) is that α is Lipschitz continuous in each interval [t 1 , t 2 ] ⊂ [0, T ] such that y(t) = O for t ∈ (t 1 , t 2 ).

Remark 2.19. If we only suppose that for some

p ∈ [1, ∞], ℓ i (•, t) is bounded in W 1,p loc (J i ) uniformly with respect to t ∈ [0, T ], then y ∈ W 2,p (t 1 , t 2 ) and (2.26) holds for almost all s ∈ (t 1 , t 2 ).
The following lemma deals with the transversality condition for an optimal trajectory which stays in the interior of a given edge near the horizon T . Lemma 2.20. We keep the assumptions of Lemma 2.17 and we also assume that

g i ∈ C 1 (J i ). Consider any (x, t) ∈ G × [0, T ] and any (y, α) ∈ Γ opt t [x] such that y(T ) ∈ J i \ {O}. Then, there holds (2.28) α(T ) = -∂ x g i (y(T )).
Proof. The arguments are similar to those in the proof of Lemma 2.17. Since t → y(t) is continuous with y(T ) ∈ J i \ {O}, there exists δ > 0 such that y(s)

∈ J i \ {O} for s ∈ [T -δ, T ]. Consider α 1 ∈ L 2 (t, T ) with α 1 (s) ∈ Re i a.e. in (T -δ, T ), α 1 (s) = 0 a.e. in (t, T -δ).
In (Tδ, T ), both α and α 1 are aligned with e i and we may write α(s) = ᾱ(s)e i and α 1 (s) = ᾱ1 (s)e i . As before, for h ∈ R with |h| sufficiently small, the control α h (•) := α(•)+hα 1 (•) is admissible for (x, t). Let y h be the trajectory corresponding to the control α h . We deduce from the optimality of (y, α) that

0 ≤ T T -δ ᾱ(s)ᾱ 1 (s) + hᾱ 1 (s) 2 2 + ℓ i (y h (s), s) -ℓ i (y(s), s) h ds + g i (y h (T )) -g i (y(T )) h . Since y h (s) = y(s)+h s T -δ α 1 (τ )dτ for s ∈ [T -δ, T ],
arguing as in the proof of Lemma 2.17 leads to

g i (y h (T )) -g i (y(T ) h = ∂ x g i (y(T )) T T -δ ᾱ1 (τ )dτ + O(h),
and

T T -δ ℓ i (y h (s), s) -ℓ i (y(s), s) h ds = T T -δ ∂ x ℓ i (y(s), s) s T -δ ᾱ1 (τ )dτ ds + O(h) = T T -δ ∂ x ℓ i (y(θ), θ)dθ T T -δ ᾱ1 (τ )dτ - T T -δ s T -δ ∂ x ℓ i (y(θ), θ)dθ ᾱ1 (s)ds,
where the last equality is obtained after an integration by parts. Combining the latter three inequalities and letting h → 0 yield

0 ≤ T T -δ ∂ x ℓ i (y(θ), θ)dθ + ∂ x g i (y(T )) T T -δ ᾱ1 (s)ds+ T T -δ ᾱ(s) - s T -δ ∂ x ℓ i (y(θ), θ)dθ ᾱ1 (s)ds. Since y(s) ∈ J i \ {O} for s ∈ [T -δ, T ], we infer from (2.26) that 0 ≤ ( ᾱ(T ) + ∂ x g i (y(T ))) T T -δ ᾱ1 (s)ds.
This yields (2.28) since α 1 is arbitrary.

Lipschitz regularity of optimal trajectories

We now aim at proving that for any (x, t) ∈ G × [0, T ], any trajectory (y, α) ∈ Γ opt t [x] is such that α is bounded in (t, T ), with a bound that depends locally uniformly on x. The essential arguments are the Euler-Lagrange and the transversality conditions obtained in Section 2.3 and a key estimate on the initial velocity of an optimal trajectory, locally independent of the starting point, see Lemma 2.22 below.

Theorem 2.21. Assume that for all

i = 1, . . . , N , g i ∈ C 1 (J i ) with ∂ x g i ∈ C b (J i ), ℓ i is differentiable with respect to its first argument with ∂ x ℓ i ∈ C b (J i × [0, T ])
, and let M g , M ℓ , L g and L ℓ be defined by

M g = g L ∞ (G) , L g = max i=1,...,N ∂ x g i L ∞ (J i ) , M ℓ = L L ∞ (G×[t,T ]) , L ℓ = max i=1,...,N ∂ x ℓ i L ∞ (J i ×[t,T ]) . (2.29)
For any (x, t) ∈ G × [0, T ] and for any trajectory (y, α) ∈ Γ opt t [x], the control α belongs to L ∞ (t, T ). Moreover, there exists a positive constant V (depending only on

L g , M ℓ , L ℓ , d(x, O) and (T -t) -1 ) such that α ∞ ≤ V. Proof. Consider a trajectory (y, α) ∈ Γ opt t [x]. Set (2.30) V * = L g + (T -t)L ℓ .
Let us split the interval [t, T ] in order to distinguish the times s for which y(s) ∈ J i \ {O}, i = 1, . . . , N , and y(s) = O. More precisely, set

I 0 = {s ∈ [t, T ] : y(s) = O}, I i = {s ∈ [t, T ] : y(s) ∈ J i \ {O}} for i = 1, . . . , N.
Since y(•) is continuous, the set I 0 is closed and each I i can be written as the disjoint union of a (possibly infinite) family of subintervals of [t, T ], open in [t, T ]. We aim at bounding α ∞ . For that, we consider the following different cases:

1. From Stampacchia theorem, α(s) = 0 for a.e. s ∈ I 0 .

2. Assume that, for some t 1 ∈ (t, T ) and for some i ∈ {1, . . . , N }, (t 1 , T ] ⊂ I i . This implies in particular that y(T ) ∈ J i \{O}. From the Euler-Lagrange condition (2.26) and the transversality condition (2.28),

α(s) = -∂ x g i (y(T )) + s T ∂ x ℓ i (y(τ ), τ ) dτ.
From the assumptions made on g i and ℓ i , this implies that α L ∞ (t 1 ,T ) ≤ V * .

3. Assume that for some i ∈ {1, . . . , N }, [t, T ] ⊂ I i . Then the same argument as in the previous point yield that α L ∞ (t,T ) ≤ V * .

4. Assume that, for some t 1 , t 2 ∈ [t, T ], y(t 1 ) = y(t 2 ) = O, and for some i ∈ {1, . . . , N }, (t 1 , t 2 ) ⊂ I i . From Lemma 2.17, the function s → α(s) is continuous on (t 1 , t 2 ). Then, from standard calculus, we deduce that there exists t 3 ∈ (t 1 , t 2 ) such that α(t 3 ) = 0. Then (2.26) implies that for s ∈ (t 1 , t 2 ),

α(s) = s t 3 ∂ x ℓ i (y(τ ), τ ) dτ, therefore that α L ∞ (t 1 ,t 2 ) ≤ V * .
5. Assume that, for some t 1 ∈ (t, T ), y(t 1 ) = O, and for some i ∈ {1, . . . , N }, [t, t 1 ) ⊂ I i . From Remark 2.18, the control α is Lipschitz continuous and the bound (2.26) holds in (t, t 1 ). In particular, α(t) is well defined. Take α(s) = ᾱ(s)e i and y(s

) = ȳ(s)e i for s ∈ [t, t 1 ]. It is clear that (2.31) ᾱ(t) -L ℓ (s -t) ≤ ᾱ(s) ≤ ᾱ(t) + L ℓ (s -t) ∀s ∈ [t, t 1 ).
We distinguish two subcases

(a) If ᾱ(t) is nonnegative, then since ȳ(t 1 ) = 0 < ȳ(t), there exists t 2 : t ≤ t 2 < t 1 such that ᾱ(t 2 ) = 0. As above ᾱ(s) = s t 2 ∂ x ℓ i (y(τ ), τ )dτ , which yields α L ∞ (t,t 1 ) ≤ V * (b) If ᾱ(t)
is negative, then we can apply Lemma 2.22 below, which yields the desired bound on α L ∞ (t,t 1 ) .

By using the fact that [t, T ] = ∪ N i=0 I i , the observations above on I 0 and I i , and by combining all the points above, we get the desired estimate on α L ∞ (0,T ) . Lemma 2.22. Keeping the assumptions of Theorem 2.21, we also assume that, for some t 1 ∈ (t, T ], y(t 1 ) = O, and for some i ∈ {1, . . . , N }, y(s) ∈ J i \ {O} for s ∈ [t, t 1 ), and that α(t) • e i < 0. Then, for some positive constant C (depending only on

(T -t) -1 , d(x, O), M ℓ , L ℓ , L g defined in (2.29)), there holds α(s) • e i ≥ -C in [t, t 1 ).
Proof of Lemma 2.22. Set x = xe i , α(t) = -ve i with v > 0, and for any s ∈ [t, t 1 ), let ᾱ(s), ȳ(s) be the real numbers such that α(s) = ᾱ(s)e i and y(s) = ȳ(s)e i . Hence, from Lemma 2.17, the claim is equivalent to the existence of some positive

C (depending only on M ℓ , L ℓ , L g , d(x, O) and (T -t)), such that v ≤ C. From (2.26), for s ∈ [t, t 1 ) there holds (2.32) (i) -v -L ℓ (s -t) ≤ ᾱ(s) ≤ -v + L ℓ (s -t), (ii) x -v(s -t) -L ℓ (s-t) 2 2 ≤ ȳ(s) ≤ x -v(s -t) + L ℓ (s-t) 2 2 .
Let us start by some useful estimates. We claim that, for v ≥ 2L ℓ T there holds

(2.33) t + 4x 5v ≤ t 1 ≤ t + 4x 3v . Indeed, the left inequality in (2.32)-(ii) with s = t 1 yields x ≤ (t 1 -t) v + L ℓ (t 1 -t) 2 ≤ (t 1 -t) v + L ℓ T 2 ≤ (t 1 -t) 5v 4 .
Analogously, the right inequality in (2.32)-(ii) with s = t 1 yields

-x ≤ (t 1 -t) -v + L ℓ (t 1 -t) 2 ≤ (t 1 -t) -v + L ℓ T 2 ≤ -(t 1 -t) 3v 4 .
This concludes the proof of (2.33).

We now claim that, for v ≥ max{2L ℓ T, 4x/(3T )}, there holds

(2.34) ᾱ(s) ≤ - v 2 ∀s ∈ [t, t 1 )
and

t 1 t ᾱ(s) 2 2 ds ≥ vx 10 .
Indeed, observe first that (2.32)-(i) entails

ᾱ(s) ≤ -v + L ℓ (t 1 -t) ∀s ∈ [t, t 1 ).
From estimate (2.33) and our choice of v,

ᾱ(s) ≤ -v + 2x 3T ≤ - v 2 ∀s ∈ [t, t 1 ).
where we have successively used that v ≥ 2L ℓ T and that 3T v ≥ 4x. Next, we deduce from the first inequality in (2.34) and (2.33) that

t 1 t ᾱ(s) 2 2 ds ≥ v2 (t 1 -t) 8 ≥ vx 10 ,
and (2.34) is proved.

We are now going to find estimates on v by proposing suitable competitors for the optimal control problem defining u(x, t). Let V * be the constant defined in (2.30).

If v ≤ max {2L ℓ T, 4x/(3T ), 40x/(Tt), 20V * }, there is nothing to do. We are left with estimating v in the case when

(2.35) v > max 2L ℓ T, 4x 3T , 40x T -t , 20V * .
The arguments below differ according to the behaviour of (y, α) after time t 1 .

Case A:

d(y(s), O) ≤ x for s ∈ [t 1 , T ].
Recall that the case under focus is when (2.35) holds. Consider the control

α 1 (s) = -v/20 e i in [t, t + 20x/v], α 1 (s) = 0 in [t + 20x/v, T ].
Let (y 1 , α 1 ) be the corresponding trajectory. Observe that (y 1 , α 1 ) is admissible for (x, t), so the optimality of (y, α) entails

0 ≤ J t (x; (y 1 , α 1 )) -J t (x; (y, α)) ≤ t+20x/v t v2 800 + ℓ i (y 1 (s), s) -L(y(s), s) ds - t 1 t ᾱ(s) 2 2 ds + T t+20x/v (ℓ O (s) -L(y(s), s)) ds +g(O) -g(y(T )). Since v > max{2L ℓ T, 4x/(3T )}, (2.34) implies that (2.36) 0 ≤ - 3xv 40 + 40M ℓ x v + T t+20x/v (ℓ O (s) -L(y(s), s)) ds + g(O) -g(y(T )).
Denoting by I the last integral, (2.8) and (2.6) yield

I = N i=1 T t+20x/v [ℓ O (s) -ℓ i (y(s), s)] 1 y(s)∈J i \{O} ds (2.37) ≤ N i=1 T t+20x/v [ℓ i (0, s) -ℓ i (y(s), s)] 1 y(s)∈J i \{O} ds ≤ T L ℓ x,
where the latter inequality follows from the definition of case A. Similarly, g(O)-g(y(T )) ≤ L g x. Injecting these estimates in (2.36), we get

0 ≤ - 3v 2 40 + (T L ℓ + L g )v + 40M ℓ , which implies that v ≤ 20 3 ((T L ℓ + L g )) 2 + 12M ℓ + (T L ℓ + L g ) . We have proven that in case A, (2.38) v ≤ max 2L ℓ T, 4x 3T , 40x T -t , 20V * , 20 3 ((T L ℓ + L g )) 2 + 12M ℓ + (T L ℓ + L g ) . Case B: ∃τ ∈ (t 1 , T ] such that d(y(τ ), O) > x.
Recall that (2.35) holds. For later use, set

τ 2 = inf{τ ∈ [t 1 , T ] : d(y(τ ), O) > x}, l ∈ {1, . . . , N } such that y(τ 2 ) ∈ J l \ {O}, τ 1 = inf{s ∈ [t 1 , T ] : y(τ ) ∈ J l \ {O} ∀τ ∈ (s, τ 2 ]}.
In other words, τ 2 is the first time larger than t 1 at which the trajectory reaches a distance to the origin greater than x and τ 1 is the time at which the trajectory enters in J l \ {O} and remains there up to time τ 2 (note that the trajectory can also visit J l \ {O} before τ 1 ). Let us distinguish three subcases. Subcase B1:

τ 1 ≥ t + 20x/v. Consider the control α 1 (s) = - v 20 e i in [t, t+20x/v), α 1 (s) = 0 in [t+20x/v, τ 1 ), α 1 (s) = α(s) in [τ 1 , T ],
and let (y 1 , α 1 ) be the corresponding trajectory, which is clearly admissible for (x, t). The optimality of (y, α) entails

0 ≤ J t (x; (y 1 , α 1 )) -J t (x; (y, α)) ≤ t+20x/v t v2 800 + ℓ i (y 1 (s), s) -L(y(s), s) ds - t 1 t ᾱ(s) 2 2 ds + τ 1 t+20x/v (ℓ O (s) -L(y(s), s)) ds.
Then, from (2.34),

0 ≤ v 40 - v 10 x + 40 M ℓ v x + τ 1 t+20x/v (ℓ O (s) -L(y(s), s)) ds.
As above, we deduce that 0 ≤ -

3v 2 40 + T L ℓ v + 40M ℓ , which proves that in Subcase B1, (2.39) v ≤ max 2L ℓ T, 4x 3T , 40x T -t , 20V * , 20 3 (T L ℓ ) 2 + 12M ℓ + T L ℓ . Subcase B2: τ 1 < t + 20x/v and y(s) ∈ J l \ {O} for s ∈ (τ 1 , T ]. Consider the control (2.40) α 1 (s) = - v 20 e i in [t, t + 20x/v], α 1 (s) = aα(as + b) in (t + 20x/v, T ],
with

a = T -τ 1 T -t -20x/v , and b = T τ 1 -t -20x/v T -t -20x/v ,
(note that a > 1). Let (y 1 , α 1 ) be the corresponding trajectory. There holds

y 1 (s) = (x -v(s -t)/20)e i in [t, t + 20x/v], y 1 (s) = y(as + b) in [t + 20x/v, T ].
In particular, (y 1 , α 1 ) is admissible for (x, t). The optimality of (y, α) entails

0 ≤ J t (x; (y 1 , α 1 )) -J t (x; (y, α)) ≤ t+20x/v t v2 800 + ℓ i (y 1 (s), s) ds + T t+20x/v a 2 |α(as + b)| 2 2 + L(y 1 (s), s) ds - t 1 t ᾱ(s) 2 2 ds - τ 1 t 1 |α(s)| 2 2 ds - T τ 1 |α(s)| 2 2 ds - τ 1 t L(y(s), s)ds - T τ 1 L(y(s), s)ds ≤ v 40 - v 10 x + t+20x/v t ℓ i (y 1 (s), s)ds + T t+20x/v a 2 |α(as + b)| 2 2 + L(y 1 (s), s) ds - T τ 1 |α(s)| 2 2 ds - τ 1 t L(y(s), s)ds - T τ 1 L(y(s), s)ds. (2.41) Similarly as above, (2.42) t+20x/v t ℓ i (y 1 (s), s)ds - τ 1 t L(y(s), s)ds ≤ M ℓ 20x v + (τ 1 -t) ≤ 40M ℓ x v .
On the other hand,

T t+20x/v a 2 |α(as + b)| 2 2 ds- T τ 1 |α(s)| 2 2 ds = (a-1) T τ 1 |α(s)| 2 2 ds ≤ 40x v(T -t) T τ 1 |α(s)| 2 2 ds,
where the latter inequality comes from the fact that a -1

≤ 20x/v T -t-20x/v and that v(T -t) > 40x.
Recall that V * is the constant defined in (2.30), and that

α ∞ ≤ V * in [τ 1 , T ].
Then, from the latter inequality, we deduce

(2.43) T t+20x/v a 2 |α(as + b)| 2 2 ds - T τ 1 |α(s)| 2 2 ds ≤ 20x v V 2 * .
On the other hand,

T t+20x/v L(y 1 (s), s)ds- T τ 1 L(y(s), s)ds = T t+20x/v L(y(as+b), s)ds- T τ 1 L(y(s), s)ds = I 1 +I 2 for I 1 = - t+20x/v τ 1
L(y(s), s)ds

I 2 = T t+20x/v (L(y(as + b), s) -L(y(s), s)) ds. Since 0 < t + 20x/v -τ 1 ≤ 20x/v, I 1 ≤ 20M ℓ x v .
On the other hand, since both y(as + b) and y(s) belong to J l \ {O} for s ∈ (t + 20x/v, T ], there holds (2.44)

d(y(as+b), y(s)) ≤ s as+b |α(θ)|dθ ≤ V * (T -s) t + 20x/v -τ 1 T -t -20x/v ≤ V * (T -t) T -t -20x/v 20x v ≤ 40V * x v ,
where the last inequality comes from the fact that v(Tt) > 40x. This implies that

I 2 ≤ 40V * L ℓ T x v .
Hence,

(2.45)

T t+x/K 0 L(y 1 (s), s)ds - T τ 1 L(y(s), s)ds ≤ 20(M ℓ + 2L ℓ V * T ) x v .
Injecting (2.42), (2.43) and (2.45) in (2.41), we obtain

0 ≤ - 3v x 40 + 20(3M ℓ + V 2 * + 2V * L ℓ T ) x v , thus (2.46) v ≤ max 2L ℓ T, 4x 3T , 40x T -t , 20V * , 20 2 3 (3M ℓ + V 2 * + 2L ℓ V * T ) .
Subcase B3: τ 1 < t + 20x/v and ∃τ ∈ (τ 1 , T ) such that y(τ ) = O. Set

τ 3 = min{τ ∈ (τ 1 , T ] : y(τ ) = O},
i.e. τ 3 is the first time greater than τ 1 at which the trajectory y(•) reaches the vertex.

Clearly, from the definition of τ 1 , y(τ ) ∈ J l \ {O} for τ ∈ (τ 1 , τ 3 ) and τ 3 > τ 2 . As in the previous cases,

τ 2 > τ 1 + x V * ≥ t + x V * .
Since v > 20V * , we know that τ 2 > t + 20x/v. Hence,

τ 1 < t + 20 x v < τ 2 < τ 3 .
Consider the trajectory (y 1 , α 1 ) defined in (2.40). Note that

y 1 (s) = y(as+b) ∈ J l \{O} ∀s ∈ I * := t + 20 x v , τ 3 (T -t -20x/v) -T (τ 1 -t -20x/v) T -τ 1 .
Observe that τ 3 ∈ I * and y(•)y 1 (•) = (ȳ(•) -ȳ1 (•))e l in I * with ȳ(t + 20x/v) -ȳ1 (t + 20x/v) > 0 and ȳ(τ 3 ) -ȳ1 (τ 3 ) < 0. We deduce that there exists τ 4 ∈ (t + 20x/v, τ 3 ) such that y(τ 4 ) = y 1 (τ 4 ).

We can now choose a competitor (y 2 , α 2 ) as the trajectory corresponding to the control

α 2 (s) = α 1 (s) in [t, τ 4 ], α 2 (s) = α(s) in (τ 4 , T ].
Note that there holds:

y 2 (s) ∈ J i \ {O} for s ∈ [t, t + 20x/v), y 2 (t + 20x/v) = O, y 2 (s) ∈ J l \ {O} and y 2 (s) = y(as + b) for s ∈ [t + 20x/v, τ 4 ), y 2 (s) = y(s) for s ∈ [τ 4 , T ].
The optimality of (y, α) entails

0 ≤ J t (x; (y 2 , α 2 )) -J t (x; (y, α)) ≤ t+20x/v t v2 800 + ℓ i (y 2 (s), s) ds + τ 4 t+20x/v a 2 |α(as + b)| 2 2 + L(y 2 (s), s) ds - t 1 t ᾱ(s) 2 2 ds - τ 1 t 1 |α(s)| 2 2 ds - τ 4 τ 1 |α(s)| 2 2 ds - τ 1 t L(y(s), s)ds - τ 4 τ 1 L(y(s), s)ds. (2.47) As above, t+20x/v t v2 800 ds - t 1 t ᾱ(s) 2 2 ds ≤ - 3vx 40 .
The same arguments as those used for obtaining (2.42),(2.43) lead to

t+20x/v t ℓ i (y 2 (s), s)ds - τ 1 t L(y(s), s)ds ≤ 40M ℓ x v , τ 4 t+20x/v a 2 |α(as + b)| 2 2 ds - τ 4 τ 1 |α(s)| 2 2 ds ≤ 20V 2 * x v .
On the other hand,

Λ := τ 4 t+20x/v L(y 2 (s), s)ds - τ 4 τ 1 L(y(s), s)ds = τ 4 t+20x/v L(y(as + b), s)ds - τ 4 τ 1 L(y(s), s)ds = - t+20x/v τ 1 L(y(s), s)ds + τ 4 t+20x/v
[L(y(as + b), s) -L(y(s), s)] ds

≤ 20M ℓ x v + τ 4 t+20x/v [ℓ l (y(as + b), s) -ℓ l (y(s), s)] ds,
where the last inequality is due to the fact that both y(as + b) and y(s) belong to

J l \ {O} for s ∈ (t + 20x/v, τ 4 ). Observe that estimate (2.44) holds on [t + 20x/v, τ 4 ], hence Λ ≤ 20(M ℓ + 2L ℓ V * T ) x v .
Injecting all these estimates in (2.47), we obtain

0 ≤ - 3vx 40 + 20 3M ℓ + V 2 * + 2L ℓ V * T x v , thus, in Subcase B3, (2.48) v ≤ max 2L ℓ T, 4x 3T , 40x T -t , 20V * , 20 2 3 (3M ℓ + V 2 * + 2L ℓ V * T ) .
Finally, in all cases, v is smaller than the maximal value of the right hand sides in (2.38),(2.39),(2.46),(2.48).

If, in addition to the assumptions made in Theorem 2.21, the final cost is continuous on the whole network G (thus Lipschitz continuous on G because of the other assumptions), then it turns out that the optimal controls are uniformly bounded in the whole time interval [0, T ]: Theorem 2.23. We keep the assumptions of Theorem 2.21 and also assume that g ∈ C 0 (G). Then, the same result of Theorem 2.21 holds true with a constant V independent of (Tt), namely: there exists a constant

V # > 0 (dependent on L g , M g , L ℓ , d(x, O) but independent of (T -t)) such that α ∞ ≤ V # ∀(y, α) ∈ Γ opt t [x].
Proof. We consider the same cases as in the proof of Theorem 2.21. Cases ( 1)-( 4) and ( 5) -(a) are dealt with using the same arguments as in the proof of Theorem 2.21. In Case ( 5) -(b), we apply Lemma 2.24 below.

Lemma 2.24. Under the assumptions of Theorem 2.23, the statement of Lemma 2.22 holds true with a constant V # independent of (Tt).

Proof. We borrow some notations of Lemma 2.22. In particular, we set:

x = xe i , (y, α) ∈ Γ opt t [x], α(t) = -ve i with v > 0, α(s) = ᾱ(s)e i for s ∈ [t, t 1 ). (Recall: y(t 1 ) = O)
. By Lemma 2.17, without any loss of generality, we assume v so large to have ᾱ(s) < 0 for s ∈ [t, t 1 ). Note that points (1)-( 4) in the proof of Theorem 2.23 ensure that there exists a positive constant

V 1 (dependent on L g , M g , L ℓ , d(x, O) but independent of (T -t) and of (T -t 1 )) such that: |α(s)| ≤ V 1 for s ∈ [t 1 , T ].
We proceed constructing a competitor (y 1 , α 1 ). For a constant µ ≥ V 1 which will suitably chosen later on, we introduce the trajectory (y

1 , α 1 ) ∈ Γ t,t 1 [x] obeying to the control α 1 (s) = ᾱ1 (s)e i with ᾱ1 (s) = ᾱ(s) if ᾱ(s) ≥ -µ 0 otherwise.
Clearly, if y 1 (t 1 ) = y(t 1 ), then α(•) = ᾱ(•) a.e. in [t, t 1 ] and there is nothing to prove. So we consider y 1 (t 1 ) = O. We take

y 1 (s) = ȳ1 (s)e i for s ∈ [t, t 1 ]. Since |ᾱ 1 (•)| ≤ |ᾱ(•)| in [t, t 1 ], y 1 (t 1 ) ∈ J i \ {O}, namely ȳ1 (t 1 ) > 0. Recalling y(t 1 ) = O and ᾱ(•) < 0 in [t, t 1 ), ȳ1 (t 1 ) = [y 1 (t 1 ) -y(t 1 )] • e i = - t 1 t ᾱ(s)1 { ᾱ(s)<-µ} ds = t 1 t |ᾱ(s)|1 { ᾱ(s)<-µ} ds =: A and also (2.49) d(y 1 (s), y(s)) ≤ - s t ᾱ(τ )1 { ᾱ(τ )<-µ} dτ ≤ A ∀s ∈ [t, t 1 ].
In order to construct our competitor after time t 1 , we need an auxiliary trajectory. We consider the trajectory (y 2 , α 2 ) starting at point y 1 (t 1 ) = Ae i at time t 1 and obeying to the control

α 2 (s) = -V 1 e i for s ∈ [t 1 , t 1 +A/V 1 ]. Clearly, y 2 (s) ∈ e i \{O} for s ∈ [t 1 , t 1 +A/V 1 ) with y 2 (t 1 + A/V 1 ) = O. We set t 2 = min {T, t 1 + A/V 1 , min{s ∈ [t 1 , T ] : y 2 (s) = y(s)}}
namely t 2 is the first moment among: the time horizon T , the instant t 1 + A/V 1 when y 2 reaches O and the first moment when the trajectories y(•) and y 1 (•) intersect. On the interval [t 1 , t 2 ), we define our competitor (y 1 , α 1 ) as: y 1 (s) = y 2 (s). We note that, for s ∈ [t 1 , t 2 ), there holds

(2.50) d(y 1 (s), y(s)) ≤ d(y 1 (s), O) + d(O, y(s)) ≤ A -V 1 (s -t 1 ) + V 1 (s -t 1 ) ≤ A.
Let us now argue differently according to the different situations in the definition of time t 2 .

Case (a): t 2 = T . In this case, our competitor is already completely constructed. By the optimality of (y, α),

(2.51) 0 ≤ J t (x; (y 1 , α 1 )) -J t (x; (y, α)) = 5 i=1 I i
where

I 1 = t 1 t |α 1 (s)| 2 -|α(s)| 2 2 ds, I 2 = t 1 t (ℓ i (y 1 (s), s) -ℓ i (y(s), s)) ds, I 3 = t 2 t 1 |α 1 (s)| 2 -|α(s)| 2 2 ds, I 4 = t 2 t 1 (ℓ i (y 1 (s), s) -L(y(s), s)) ds, I 5 = g(y 1 (T )) -g(y(T )).
From our choice of α 1 in [t, t 1 ], the Lipschitz continuity of ℓ i and (2.49),

I 1 = - t 1 t |α(s)| 2 2 1 { ᾱ(s)<-µ} ds, I 2 ≤ L ℓ T d(y 1 (s), y(s)) L ∞ (t,t 1 ) ≤ L ℓ T A. Moreover, we note t 2 -t 1 ≤ A/V 1 because of t 2 = T . From our choice of α 1 in [t 1 , t 2 ], I 3 ≤ t 2 t 1 |α 1 (s)| 2 2 ds = V 2 1 2 (t 2 -t 1 ) ≤ V 1 A 2 .
In order to estimate I 4 and I 5 , observe that for s ∈ [t 1 , t 2 ] y 1 (s) and y(s) may belong to different edges. For this reason, nothing better than

I 4 ≤ 2M ℓ (t 2 -t 1 ) ≤ 2M ℓ A/V 1 and I 5 ≤ L g d(y 1 (T ), y(T )) ≤ L g A,
can be obtained, where the latter estimate is due to the global Lipschitz continuity of g and (2.50) (here, the continuity of g in the vertex plays a crucial role). Replacing all these estimates in (2.51), by the definition of A, we get 0 ≤

t 1 t - |α(s)| 2 + (L ℓ T + V 1 /2 + 2M ℓ /V 1 + L g ) |α(s)|1 { ᾱ(s)<-µ} ds. Hence, if {ᾱ(s) < -µ} ∩ [t, t 1 ] has positive measure and µ > 2(L ℓ T + V 1 /2 + 2M ℓ /V 1 + L g ),
then we get the desired contradiction.

Case (b):

t 2 = min{s ∈ [t 1 , T ] : y 2 (s) = y(s)}.
We need to construct (y 1 , α 1 ) also on (t 2 , T ]; we choose: (y 1 (s), α 1 (s)) = (y(s), α(s)) for s ∈ (t 2 , T ]. Note that also in this case, t 2t 1 ≤ A/V 1 . Following the same calculations as those of case-(a), we end the proof.

Case (c): Case (c1): t 3 = T . From the optimality of (y, α),

t 2 = t 1 + A/V
(2.53) 0 ≤ J t (x; (y 1 , α 1 )) -J t (x; (y, α)) = 7 i=1 I i
where: for i = 1, . . . , 5, the I i 's are the same as those of case (a) (in particular, the estimates obtained in case (a) still hold true because t 2t 1 = A/V 1 ) and

I 6 = t 3 t 2 |α 1 (s)| 2 -|α(s)| 2 2 ds, I 7 = t 3 t 2 (L(y 1 (s), s) -ℓ j (y(s), s)) ds.
Our definition of α 3 entails: I 6 = 0. Moreover, thanks to assumption (2.6) on the structure of ℓ O , the Lipschitz continuity of ℓ i and (2.52),

I 7 ≤ t 3 t 2 (ℓ j (y 1 (s), s) -ℓ j (y(s), s)) ds ≤ L ℓ T A.
Replacing all these estimates in (2.53), we get 0 ≤

t 1 t - |α(s)| 2 + (2L ℓ T + V 1 /2 + 2M ℓ /V 1 + L g ) |α(s)|1 { ᾱ(s)<-µ} ds. Hence, if {ᾱ(s) < -µ}∩[t, t 1 ] has positive measure and µ > 2(2L ℓ T +V 1 /2+2M ℓ /V 1 +L g ),
then we get the desired contradiction.

Case (c2):

t 3 = min{s ∈ [t 2
, T ] : y 3 (s) = y(s)} with t 3 < T . We define our competitor on [t 3 , T ] as the trajectory starting at y 1 (t 3 ) = y(t 3 ) at time t 3 and obeying to the control α 1 (s) = α(s) for s ∈ [t 3 , T ]. We end our proof using the same calculations of case (c1). 

Closed graph property

:= d(x n , x) → 0 as n → ∞. Then, there exists a sequence {(y n , α n )} n∈N such that, for any n ∈ N, (y n , α n ) ∈ Γ[x n ], (2.54) (i) sup [0,T ] d(y n (•), y(•)) ≤ δ n + α 2 √ δ n with y n (T ) = y(T ) (ii) α n 2 2 ≤ α 2 2 + δ n 1 + α 2 2 T -δn (iii) lim n→∞ J 0 (x n ; (y n , α n )) = J 0 (x; (y, α)).
Proof of Proposition 2.25. Consider x, x n , (y n , α n ) and y as in the statement. We wish to prove that there exists a control α such that i) (y, α) belongs to Γ[x],

ii) (y, α) is optimal for J 0 , i.e.J 0 (x, (y, α)) ≤ J 0 (x, (ŷ, α)) for every (ŷ, α)

∈ Γ[x].
Fix any (ŷ, α) ∈ Γ[x]. Lemma 2.26 ensures that there exists a sequence

{(ŷ n , αn )} n∈N such that (ŷ n , αn ) ∈ Γ[x n ] and (2.55) ŷn → ŷ uniformly in [0, T ] as n → ∞, αn 2 ≤ α 2 + o n (1), lim sup n→∞ J 0 (x n ; (ŷ n , αn )) ≤ J 0 (x; (ŷ, α))
where o n (1) is a sequence such that lim n o n (1) = 0. On the other hand, the optimality of (y n , α n ) yields (2.56)

J 0 (x n ; (y n , α n )) ≤ J 0 (x n ; (ŷ n , αn )).
From the observations above, we deduce that J 0 (x n ; (y n , α n )) are uniformly bounded and, in particular that there exists a constant C, independent of n, such that T t |α n (τ )| 2 dτ ≤ C. Hence, repeating the same arguments as those in the proof of Proposition 2.11 (in particular, for obtaining (2.14)), we deduce that {α n } n∈N converges to some control α in the weak topology of L 2 ([0, T ], R d ) and (y, α) ∈ Γ[x]. Hence, point i) is proved. Taking the lim inf n in (2.56) and using (2.55), we also deduce J 0 (x, (y, α)) ≤ J 0 (x, (ŷ, α)). Thanks to the arbitrariness of (ŷ, α) ∈ Γ[x], we deduce point ii).

Proof of Lemma 2.26. Without any loss of generality, we may assume that, (possibly after extracting a subsequence that we still denote {x n }) all the points x and x n belong to the same edge (for simplicity, say J 1 ) for n sufficiently large, so x = xe 1 , x n = xn e 1 for x, xn ∈ R + . Indeed, if x = O, we may argue edge by edge since there are finitely many edges. Set

δ n = d(x, x n ) = |x -xn |.
Let us now introduce a control α n such that the corresponding path y n is admissible (i.e. it takes its values on the network).

Set

α n (s) =        e 1 if xn ≤ x -e 1 if xn > x for s ∈ [0, δ n ] T T -δn α (s -δ n ) T T -δn for s ∈ (δ n , T ]
(note that here the structure A i = {i} × R plays a crucial role) and let y n start from x n and correspond to α n :

y n (s) = x n + s t α n (τ ) dτ.
Observe that for s ∈ [0, δ n ],

y n (s) = x n + (s/δ n ) (x -x n ) in particular, y n (δ n ) = x.
From the definition of α n , we get after a change of variable that, for s ∈ [δ n , T ], This and (2.57) imply that for s ∈ [δ n , T ],

y n (s) = x + s δn T T -δ n α (τ -δ n ) T T -δ n dτ = x + (s-δn) T T -δn 0 α(τ ) dτ = y (s -δ n ) T T -δ n . ( 2 
d(y(s), y n (s)) = d y(s), y (s -δ n ) T T -δ n ≤ s (s-δn) T T -δn |ᾱ(τ )| dτ ≤ α 2 δ n T -s T -δ n .
The latter two inequalities easily imply the bound (2.54)-(i).

Next, by definition of α n ,

α n 2 2 = δ n + s δn T T -δ n 2 α 2 (τ -δ n ) T T -δ n dτ = δ n + T 0 T T -δ n α(τ ) 2 dτ = δ n + α 2 2 + δ n T -δ n α 2 2 ,
which easily implies the bound of (2.54)-(ii). We now prove (2.54)-(iii). From (2.58), g(y n (T )) = g(y(T )). Hence, (2.59)

J 0 (x n ; (y n , α n )) -J 0 (x; (y, α)) = 4 i=1 I i
where

I 1 = δn 0 N i=1 ℓ i (y n (τ ), τ )1 yn(τ )∈J i \{O} + ℓ O (τ )1 yn(τ )=O dτ, I 2 = α n 2 2 -α 2 2 2 , I 3 = T δn N i=1 ℓ i (y n (τ ), τ )1 yn(τ )∈J i \{O} + ℓ O (τ )1 yn(τ )=O dτ, I 4 = - T 0 N i=1 ℓ i (y(τ ), τ )1 y(τ )∈J i \{O} + ℓ O (τ )1 y(τ )=O dτ.
The boundedness of ℓ i implies

|I 1 | ≤ Kδ n , for K = N 1 ℓ i ∞ + ℓ * ∞ .
On the other hand, (2.54)-(ii) entails

|I 2 | ≤ δ n 2 1 + α 2 2 T -δ n .
The definition of α n and (2.57) yield =O dτ, which becomes after a change of variable,

I 3 = T δn N i=1 ℓ i y (τ -δ n ) T T -δ n , τ 1 y (τ -δn) T T -δn ∈J i \{O} +ℓ O (τ )1 y (τ -δn) T T -δn
I 3 = T 0 N i=1 ℓ i y(θ), T -δ n T θ + δ n 1 y(θ)∈J i \{O} +ℓ O T -δ n T θ + δ n 1 y(θ)=O 1 - δ n T dθ.
Let G ′ a bounded subset of G such that y(s) belongs to G ′ for all s ∈ [0, T ] and let ω be a common modulus of continuity of the ℓ i in J i ∩ G ′ . The latter observation and the definition of I 4 yield

|I 3 + I 4 | ≤ T 0 (N + 1)ω δ n T -θ T dθ + δ n (N + 1)K ≤ (N + 1)T ω(δ n ).
Combining all the estimates with (2.59) and taking the lim sup, we complete the proof of (2.54)-(iii).

Lipschitz continuity of the value function

We investigate the Lipschitz continuity of the value function u. We will see below that special assumptions will be needed for it to hold up to the horizon T . 

G δ = {x ∈ G : d(x, O) ≤ δ}.
Step 1. We first prove that u(•, t) is locally Lipschitz continuous in J i \ {O} locally uniformly with respect to t ∈ [0, T ). More precisely, having fixed T 1 ∈ (0, T ) and R > 0, we wish to prove that for any t ∈ [0, T 1 ], x 0 = x0 e i ∈ J i ∩ G R \ {O} and r > 0 sufficiently small, the function u(•, t) is Lipschitz continuous on (x 0r, x0 + r)e i with a Lipschitz constant which depends only on the parameters of the problem and on T 1 and R (it is independent of x0 , r, t and i).

For that, fix some r, 0 < r < x0 /4. Observe that (x 0 -4r, x0 + 4r

)e i ⊂ J i \ {O}. Consider x, x1 ∈ (x 0 -r, x0 + r), with x = x1 and |x -x1 | ≤ 2(T -t)V , where V is the constant found in Theorem 2.21 for the set G 5R/4 × [0, T 1 ]. Set x = xe i , x 1 = x1 e i and τ = |x-x 1 | 2V . For (y, α) ∈ Γ opt t [x]
, let (y 1 , α 1 ) be the trajectory starting at x 1 at time t and associated to the control

α 1 (s) = α(s) + (x -x 1 )/τ for s ∈ [t, t + τ ], α 1 (s) = α(s) for s ∈ (t + τ, T ].
From Theorem 2.21, y does not reach the origin O before time t + 3r V . On the other hand, τ ≤ r V . Hence, in the time interval (t, t + τ ), y stays in

J i \ {O}. It is clear that y(•) = y 1 (•) in (t + τ, T ]. We claim that (i) (y 1 , α 1 ) ∈ Γ t [x 1 ]. (ii) d(y(•), y 1 (•)) ≤ |x -x1 | in (t, T ]
Let us prove (i). From the observation above, it is enough to prove that y 1 (s)

∈ J i for s ∈ [t, t + τ ]. We observe that d(y 1 (s), x 0 ) ≤ d(y 1 (s), x 1 ) + |x 1 -x0 | ≤ s t α(θ) + x -x 1 τ dθ + r ≤ s t |α(θ)|dθ + s -t τ |x -x1 | + r ≤ V (s -t) + |x -x1 | + r ≤ 4r,
where the last inequality is due to our choice of τ . The inequality found above yields that

y 1 (s) ∈ J i for s ∈ [t, t + τ ], then (i).
Let us now prove (ii). For s ∈ (t + τ, T ], (ii) is obvious. For s ∈ (t, t + τ ], there holds

d(y(s), y 1 (s)) = (x -x1 ) - s t x -x1 τ ds = |(x -x1 ) τ -(s -t) τ | ≤ |x -x1 |.
The claims (i) and (ii) are proved. By definition of u, and recalling that in the interval (t, t + τ ) both y and y 1 stay in

J i \ {O}, (2.61) u(x 1 , t) -u(x, t) ≤ t+τ t |α 1 (s)| 2 2 - |α(s)| 2 2 + ℓ i (y 1 (s), s) -ℓ i (y(s), s) ds.
The definition of α 1 and Theorem 2.21 imply that

t+τ t |α 1 (s)| 2 2 - |α(s)| 2 2 ds ≤ 1 2 t+τ t |x -x1 | 2 τ 2 + 2 |x -x1 ||α(s)| τ ds ≤ 1 2 |x -x1 | 2 τ + |x -x1 |V ≤ 2V |x -x1 |,
where the last inequality is due to the choice of τ . On the other hand, assumption (2.29) and point (ii) entail

t+τ t (ℓ i (y 1 (s), s) -ℓ i (y(s), s)) ds ≤ L ℓ |x-x 1 |τ = L ℓ |x -x1 | 2 2V ≤ L ℓ r V |x-x 1 | ≤ L ℓ R 4V |x-x 1 | because |x -x1 | ≤ 2r ≤ x0 /2 ≤ R/2.
The latter two inequalities and (2.61) yield

u(x 1 , t) -u(x, t) ≤ 2V + L ℓ R 4V |x -x1 |.
Reversing the role of x and x 1 , we obtain the desired Lipschitz continuity with constant 2V + L ℓ R/4V , and complete Step 1.

Step 2. We observe that the Lipschitz constant found in Step 1 is independent of x0 , provided that x0 ∈ G R . Hence, u(•, t) is Lipschitz continuous in (G R ∩ J i ) \ {O} with the same Lipschitz constant as above.

Step 3. By the continuity of u (see Proposition 2.14), u(•, t) is Lipschitz continuous in G R with Lipschitz constant 2V + L ℓ R/4V . Note that this Lipschitz constant depends implicitly on T 1 through V .

Step 4. We now prove the Lipschitz continuity in time of u for t ∈ [0, 

T 1 ]. Consider x ∈ G R and
) -u(y(t 2 ), t 2 )| ≤ 2W + L ℓ (R + V T ) 4W d(x, y(t 2 )) ≤ (2W + L ℓ (R + V T ) 4W ) t 2 t 1 |α(s)| ds ≤ 2V W + L ℓ (R + V T ) 4 |t 2 -t 1 |.
On the other hand, the Dynamic Programming Principle (see Proposition 2.13) ensures that

|u(y(t 2 ), t 2 ) -u(x, t 1 )| ≤ t 2 t 1 |α(s)| 2 2 + |L(y(s), s)| ds ≤ V 2 2 + M ℓ |t 2 -t 1 |.
From the latter three inequalities, we deduce that

|u(x, t 2 ) -u(x, t 1 )| ≤ 2V W + V 2 2 + L ℓ (R + V T ) 4 + M ℓ |t 2 -t 1 |.
Hence, Step 4 is done.

Step 5. We achieve the proof by combining the results obtained in steps 3 and 4.

If furthermore the terminal cost g is continuous on G, then the Lipschitz continuity of u w.r.t. (x, t) holds locally in x and globally in t ∈ [0, T ]:

Corollary 2.29. Under the assumptions of Theorem 2.23, the value function u is locally

Lipschitz continuous in G × [0, T ].
Proof. Since u is continuous on G × [0, T ], it is enough to repeat the proof of Proposition 2.27 using Theorem 2.23 instead of Theorem 2.21.

The following proposition, which will not be used in the remaining part of the paper, addresses the local Lipschitz continuity of the value function with respect to x up to the horizon T , provided that the terminal cost g is Lipschitz continuous on G and the running costs ℓ i are Lipschitz continuous w.r.t. x, but without assuming C 2 continuity of the costs in J i \ {O}. Note that its proof does not rely on the optimality conditions stated in Lemmas 2.17 

Proof. For what follows, let us fix v an arbitrary positive constant.

There is no loss of generality in assuming that x 1 and x 2 belong to the same edge, say J i , i.e. x 1 = x1 e i and x 2 = x2 e i . From Remark 2.6, there exists C > 0 such that for every (y, α) ∈ Γ opt t [x], α 2 ≤ C and y is 1/2-Hölder continuous with Hölder constant C. Let us distinguish several cases. 1/2 . Let y 1 be the path starting from x 1 at time t and associated to the control α 2 . For s ∈ [t, T ], both y 2 (s) and y 1 (s) belong to J i , and

Case 1: x 1 , x 2 ∈ J i \{O} with x1 , x2 ≥ C(T -t) 1/2 . Consider (y 2 , α 2 ) ∈ Γ opt t [x 2 ]. Since d(y 2 (s), x 2 ) ≤ C(T -t) 1/2 for every s ∈ [t, T ], the control α 2 is also admissible for (x 1 , t) because d(x 1 , O) ≥ C(T -t)
d(y 2 (s), y 1 (s)) = d(x 2 , x 1 ) = |x 2 -x1 |. By definition of u, there holds u(x 1 , t) -u(x 2 , t) ≤ T t |ℓ i (y 1 (s), s) -ℓ i (y 2 (s), s)| ds + |g(y 1 (T )) -g(y 2 (T ))| ≤ (L ℓ T + L g ) d(x 1 , x 2 ).
The proof is completed by reversing the roles of x 1 and x 2 .

Case 2: x 1 , x 2 ∈ J i with x1 ≤ 2C(T -t) 1/2 and x 2 = O. For (y 2 , α 2 ) ∈ Γ opt t [x 2 ], set α 1 (s) = -max{v, |α 2 (s)|}e i , for s ∈ [t, t * ],
where v is the constant fixed above. Let y 1 be the path defined on [t, t * ] such that y 1 (t) = x 1 and corresponding to the control α 1 . The time t * is defined by

t * = min T, min s ∈ [t, T ] : y 1 (s) = y 2 (s) , min s ∈ [t, T ] : y 1 (s) = O . Then (2.62) t * -t ≤ x1 v = d(x 1 , x 2 ) v . because y 1 (s) = O for s ∈ [t, t * ) and α 1 (s) • e i ≤ -v for s ∈ [t, t * ].
The definition of α 2 also implies that (2.63)

d(y 1 (s), y 2 (s)) ≤ d(y 1 (s), O) + d(y 2 (s), O) ≤ x1 - s t |α 2 (τ )|dτ + s t |α 2 (τ )|dτ = d(x 1 , x 2 ), for s ∈ [t, t * ]. Again from (2.62), (2.64) t * t |α 1 (s)| 2 2 - |α 2 (s)| 2 2 + L(y 1 (s), s) -L(y 2 (s), s) ds ≤ v 2 2 + 2M ℓ d(x 1 , x 2 ) v .
The following arguments will differ according to the value of t * .

Subcase 2-a: t * = T . From (2.63) and the Lipschitz continuity of g,

g(y 1 (T )) -g(y 2 (T )) ≤ L g d(x 1 , x 2 ).
This inequality and (2.64) yield

u(x 1 , t) -u(x 2 , t) ≤ 4M ℓ + v 2 2v + L g d(x 1 , x 2 ). Subcase 2-b: t * = min{s ∈ [t, T ] : y 1 (s) = y 2 (s)} < T . In this case, set α 1 (s) = α 2 (s) for s ∈ (t * , T ]. Clearly, y 1 (s) = y 2 (s) for s ∈ (t * , T ]. This and (2.64) imply u(x 1 , t) -u(x 2 , t) ≤ (2M ℓ + v 2 /2) |x 2 -x1 | v .
Subcase 2-c: t * = min{s ∈ [t, T ] : y 1 (s) = O} < min{T, min{s ∈ [t, T ] : y 1 (s) = y 2 (s)}}. Then, y 2 (t * ) belongs to some J j \ {O} with j = i and y 1 (t * ) = O. Indeed, should y 2 (t * ) belong to J i \ {O}, then there would exist a time τ ∈ (t, t * ) such that y 1 (τ ) = y 2 (τ ), in contradiction with the definition of t * , and y 1 (t * ) = y 2 (t * ) = O has been addressed in Subcase 2-b.

Let us define (y 

u(x 1 , t) -u(x 2 , t) ≤ (2M ℓ + v 2 2 )d(x 1 , x 2 ) + t * * t * [L(y 1 (s), s) -L(y 2 (s), s)] ds +g(y 1 (T )) -g(y 2 (T )) ≤ (L g + 2M ℓ + v 2 2 )d(x 1 , x 2 ) + t * * t * [ℓ j (y 1 (s), s) -ℓ j (y 2 (s), s)] ds
where the last inequality is due to the Lipschitz continuity of g and (2.65). Then the Lipschitz continuity of ℓ j and (2.65) again lead to

(2.66) u(x 1 , t) -u(x 2 , t) ≤ (T L ℓ + L g + 2M ℓ + v 2 2 )|x 2 -x1 |.
Subcase 2-c2: t * * < T . Hence, y 1 (t * * ) = y 2 (t * * ). Set (y 1 , α 1 ) = (y 2 , α 2 ) on (t * * , T ].

The same calculations as in Subcase 2-c1 yield (2.66).

Case 3:

x 1 , x 2 ∈ J i with 0 < x2 < x1 ≤ 2C(T -t) 1/2 . Consider (y 2 , α 2 ) ∈ Γ opt t [x 2
] and define the path y 1 starting at x 1 at time t and corresponding to the control

α 1 (s) = -|α 2 (s)|e i for s ∈ [t, t * ],
where

t * = min T, min s ∈ [t, T ] : y 2 (s) = O , min s ∈ [t, T ] : y 1 (s) = y 2 (s) .
Observe that, for s ∈ [t, t * ), both y 1 (s) and y 2 (s) belong to J i \ {O}, and

(2.67) d(y 1 (s), y 2 (s)) ≤ x1 - s t |α 2 (τ )|dτ -x2 - s t α 2 (τ ) • e i dτ ≤ x1 -x2 = d(x 1 , x 2 ).
This implies (2.68)

t * t |α 1 (s)| 2 2 - |α 2 (s)| 2 2 + L(y 1 (s), s) -L(y 2 (s), s) ds ≤ L ℓ T d(x 1 , x 2 ).
Let us argue differently according to the cases in the definition of t * .

Subcase 3-a: t * = T . Arguing as in Subcase 2-a and using (2.67)-(2.68) leads to the desired result. Case 4:

x 1 , x 2 ∈ J i with 0 < x1 < x2 ≤ 2C(T -t) 1/2 . Consider (y 2 , α 2 ) ∈ Γ opt t [x 2
] and the trajectory (y 1 , α 1 ) such that α 1 (s) = |α 2 (s)|e i on [t, t * ], where

t * = min T, min s ∈ [t, T ] : y 1 (s) = y 2 (s) . Note that, in [t, t * ], α 1 (s) • e i ≥ 0. Hence, y 2 cannot hit the vertex O before crossing y 1 . For s ∈ [t, t * ] and (2.69) d(y 1 (s), y 2 (s)) = x 2 + s t α 2 (τ )dτ -x 1 - s t |α 2 (τ )|dτ ≤ x 2 -x 1 = d(x 1 , x 2 ).
This implies (2.70)

t * t |α 1 (s)| 2 2 - |α 2 (s)| 2 2 + L(y 1 (s), s) -L(y 2 (s), s) ds ≤ L ℓ T d(x 1 , x 2 ).
The arguments differ according to the cases in the definition of t * . 

Local semi-concavity of the value function away from the vertex

Here, we wish to prove that the value function u is semi-concave with respect to x with a linear modulus of semi-concavity, locally in J i \ {O} and for t bounded away from the horizon T . For the definition of semi-concavity and the main related properties, we refer the reader to the monograph [START_REF] Cannarsa | Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control[END_REF].

Proposition 2.31. We keep the assumptions of Theorem 2.21 and assume furthermore that for all i and s, ℓ i (•, s)

∈ C 1,1 (J i ) and that ∂ 2 xx ℓ i L ∞ (J i ×[0,T ]) < ∞. Consider t ∈ [0, T ) and x, y ∈ J i \ {O} with 0 < r ≤ |x|, |y| ≤ R.
Under the same assumptions as in Theorem 2.21, there exists a constant C (depending on r, R and on 

T -t) such that λu(x, t) + (1 -λ)u(y, t) -u(λx + (1 -λ), t) ≤ Cλ(1 -λ)|x -y| 2 , ∀λ ∈ [0, 1].
∈ W 1,∞ , α(t) • h = - t+t * t d ds [α(s) • (y h (s) -y(s))] ds = - t+t * t α ′ (s) • (y h (s) -y(s)) + α(s) • (α h (s) -α(s)) ds = - t+t * t [∂ x ℓ i (y(s), s)e i • (y h (s) -y(s)) + α(s) • (α h (s) -α(s))] ds,
where the latter identity is due to Euler-Lagrange condition (2.26).

Combining the latter two observations leads to

u(x+h, t)-u(x, t)+α(t)•h ≤ t+t * t |α h (s) -α(s)| 2 2 ds+ t+t * t ℓ i (y h (s), s)-ℓ i (y(s), s)ds - t+t * t ∂ x ℓ i (y(s), s)e i • (y h (s) -y(s))ds.
In what follows, C is a constant which may change from line to line and depends only on x and Tt. The regularity of ℓ i implies

u(x + h, t) -u(x, t) + α(t) • h ≤ t+t * t |α h (s) -α(s)| 2 2 + ∂ 2 xx ℓ i ∞ 2 |y h (s) -y(s)| 2 ds ≤ C y h -y 2 W 1,2 ([t,t+t * ],G) (2.74) ≤ C|h| 2 ,
the last line being obtained thanks to (2.72) and (2.73). The desired inequality is proved.

Regularity of u along optimal trajectories and optimal synthesis

Here, we investigate some regularity properties of u in the interiors of the edges. The following lemma is reminiscent of [START_REF] Cardaliaguet | Notes on Mean Field Games[END_REF]Lemma 4.9].

Lemma 2.33. Consider t ∈ [0, T ), x ∈ J i \ {O} for some i = 1, . . . , N , (y, α) ∈ Γ opt t [x] and set t * = T ∧ min{τ ∈ [t, T ] : y(τ ) = O}.
Under the same assumptions as in Proposition 2.31, the following properties hold:

(i) For any s ∈ (t, t * ), α |(s,t * ) is the unique optimal control for u(y(s), s) up to time t * .

In other words for any (y

1 , α 1 ) ∈ Γ opt s [y(s)], α 1 coincides with α in (s, t * ) (ii) ∂ x u(x,

t) exists if and only if the set

A(x) = α(t) : (y, α) ∈ Γ opt t [x]
is as singleton. Moreover, in this case, A = -∂ x u(x, t)e i .

(iii) For any s ∈ (t, t * ), the function u(•, s) is differentiable at y(s) with ∂ x u(y(s), s)e i = -α(s).

Proof. (i). The arguments are similar to the proof of [20, Lemma 4.9-( 1)], so we refer the reader to that paper for the details and focus only on the main new aspects.

For any s ∈ (t, t * ), consider (y 1 , α 1 ) ∈ Γ opt s [y(s)] and set t * ,1 = T ∧ min{τ ∈ [t, T ] : y 1 (τ ) = O}. For 0 < h < (st) ∧ (t * ∧ t * ,1s), we consider the following control

α h (τ ) =      α(τ ) if τ ∈ [t, s -h] y 1 (s+h)-y(s-h) 2h if τ ∈ (s -h, s + h) α 1 (τ ) if τ ∈ [s + h, T ]
and the corresponding trajectory (y h , α h ) which is admissible for u(x, t), from the choice of h. Let (y 0 , α 0 ) stand for the concatenation of (y, α) and (y 1 , α 1 ) at time s. From Remark 2.9, (y

0 , α 0 ) ∈ Γ opt t [x].
Comparing the costs associated (y 0 , α 0 ) and to (y h , α h ) and letting h tend to 0 permits to prove that α(s) = α 1 (s), see [START_REF] Cardaliaguet | Notes on Mean Field Games[END_REF]. Then, from Lemma 2.17, y(•) and y 1 (•) satisfy the same second order differential equation with the same initial conditions: y(s) = y 1 (s) and y ′ (s) = α(s) = α 1 (s) = y ′ 1 (s). Therefore, y(τ ) = y 1 (τ ) and α(τ ) = α 1 (τ ) for τ ∈ (s, t * ), and t * = t * ,1 . (ii). Assume that ∂ x u(x, t) exists. We wish to prove that A(x) is a singleton. Let (y, α) belong to Γ opt t [x]. By the local semi-concavity of u, see Lemma 2.32,

u(x + h, t) -u(x, t) + α(t)h ≤ Ch 2
for h sufficiently small.

Then, from [START_REF] Cannarsa | Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control[END_REF]Proposition3.3.4], we infer:

-ᾱ(t) ∈ D + u(x, t). Moreover, since u(•, t) is differentiable at x, D + u(x, t) is a singleton. Hence, A(x) is the singleton {-∂ x u(x, t)e i }.
Conversely, assume that A(x) is a singleton. We wish to prove that u is differentiable at (x, t). To this end, we claim that, if p ∈ D * u(x, t), then the unique solution to

(2.75) ξ ′′ (τ ) = ∂ x ℓ i (ξ(τ ), τ )e i , ξ(t) = x, ξ ′ (t) = -pe i is such that there exists (y, α) ∈ Γ opt t [x] with y(τ ) = ξ(τ ) for 0 ≤ τ ≤ t * ,ξ := T ∧ min{τ ∈ [t, T ] : ξ(τ ) = O}.
Before proving the claim, let us first see how to use this intermediate result to conclude: since A(x) is a singleton, if the claim is true, then also D * u(x, t) is a singleton and it coincides with A(x). Then [START_REF] Cannarsa | Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control[END_REF]Proposition 3.3.4] yields that u is differentiable at (x, t) with ∂u(x, t)e i = -α(t) for every (y, α) ∈ Γ opt t [x] and the proof of (ii) is complete. There remains to prove the claim above: since p ∈ D * u(x, t), there exists a sequence {x n } n∈N with x n → x and ∂ x u(x n , t) → p as n → ∞. Consider the unique solution to (iii). It is enough to combine the previous two statements (see also [START_REF] Cardaliaguet | Notes on Mean Field Games[END_REF]Remark 4.10]).

(2.76) ξ ′′ n (τ ) = ∂ x ℓ i (ξ n (τ ), τ )e i , ξ n (t) = x n , ξ ′ n (t) = -∂ x u(x n , t)e i . Since u is differentiable at (x n , t), we have already proved that A(x n ) is the singleton {-∂ x u(x n , t)e i }.

Corollary 2.34. Consider two optimal trajectories γ

i ∈ Γ opt [x i ] such that γ 1 (t) = γ 2 (t) ∈ J k \ {O} for some t ∈ (0, T ). Let I i , i = 1, 2, be
the largest open interval containing t such that γ i (s) ∈ J k \ {O} for s ∈ I i . Under the same assumptions as in Proposition 2.31,

I 1 = I 2 .
Proof. There exists δ > 0 such that both γ 1 (s) and γ 2 (s) lie in J k \{O} for s ∈ (t-δ, t+δ). Let us prove first that γ 1 and γ 2 coincide in (t, t + δ). For that, let γ 3 be the concatenation of γ 1| [0,t] and γ 2| [t,T ] . From Lemma 2.33-(i), γ 1 = γ 3 in (tδ, t + δ). This implies that

γ 1 = γ 2 in (t, t + δ).
As a second step, from the latter result and Euler-Lagrange optimality condition, we deduce that γ 1 and γ 2 coincide also in (tδ, t). By a standard connexity argument, I 1 = I 2 and γ 1 and γ 2 coincide in this interval.

We now tackle the counterpart of [START_REF] Cardaliaguet | Notes on Mean Field Games[END_REF]Lemma 4.11] on optimal synthesis in the time interval in which the trajectory remains in the interior of a given edge. We first need the following definition: Definition 2.1. Consider (x, t) ∈ G × [0, T ] and t 1 ∈ (t, T ). We say that the trajectory (y, α) ∈ t,t 1 [x] is optimal for u(x, t) on the interval (t, t 1 ) if there exists (ỹ, α) ∈ Γ opt t [x] with (y, α) = (ỹ, α) on (t, t 1 ). Proof. The first part of the statement is a consequence of Lemma 2.33-(ii) and -(iii).

Lemma 2.35. The assumptions are the same as in Proposition 2.31. Consider

t ∈ [0, T ), x ∈ J i \ {O} for some i = 1, . . . , N . If u(•, t) is differentiable at x,
The arguments for proving the optimality of y on (t, t * ) are reminiscent of [START_REF] Cardaliaguet | Notes on Mean Field Games[END_REF]Lemma 4.11]. Hence, we focus on the main new aspects and refer the reader to [START_REF] Cardaliaguet | Notes on Mean Field Games[END_REF] From Remark 2.12, we infer that (y, y ′ ) is optimal on (t, t * ).

2.9

The PDE satisfied by u on G × [0, T )

The aim of this paragraph is to prove that the value function is the unique viscosity solution (in a suitable sense that will defined) of Hamilton-Jacobi equations in the network, with a suitable transmission condition at the origin.

Relaxed controls

To start with, let us recall the definition of the relaxed controls introduced in [START_REF] Achdou | Hamilton-Jacobi equations constrained on networks[END_REF]. They will be used to construct the Hamiltonians involved in the Hamilton-Jacobi equations on G × [0, T ). For x ∈ J i , i = 1, . . . , N , set

F L i (x, t) = co{(a, a 2 /2) : a ∈ R}, and F L ↓ i (x, t) = F L i (x, t) ∩ {(ζ, ξ) ∈ R 2 : ζ ≥ 0}.
Here, the notation co stands is used for the convex hull. It can be easily checked that

F L i (x, t) = {(ζ, ξ) ∈ R 2 : ξ ≥ ζ 2 /2}, and F L ↓ i (x, t) := {(ζ, ξ) ∈ R 2 : ζ ≥ 0, ξ ≥ ζ 2 /2}. For x = O, set F L(O, t) = N i=1 F L ↓ i (O, t).

Hamiltonians

For x ∈ J i , i = 1, . . . , N , t ∈ [0, T ], p ∈ R, p = (p 1 , . . . , p N ∈ R N , set H i (x, t, p) = sup (ζ,ξ)∈F L i (x,t) {-pζ -ξ -ℓ i (x, t)}, H ↓ i (x, t, p) = sup (ζ,ξ)∈F L ↓ i (x,t) {-pζ -ξ -ℓ i (x, t)}, H O (t, p) = max -ℓ * (t), max i=1,...,N {-ℓ i (O, t)} , max i=1,...,N H ↓ i (O, t, p i ) = max -ℓ O (t), max i=1,...,N H ↓ i (O, t, p i ) .
Elementary calculus yields

H i (x, t, p) = sup a∈R -pa - |a| 2 2 -ℓ i (x, t) = |p| 2 2 -ℓ i (x, t) ∀x ∈ J i , (2.78) H ↓ i (O, t, p) = max ᾱ≥0 {-ᾱp -ℓ i (O, t) -|ᾱ| 2 /2} = |p| 2 2 -ℓ i (O, t) if p ≤ 0, -ℓ i (O, t) if p > 0. (2.79)

Hamilton-Jacobi equations on G × [0, T )

We are interested in the system of first-order PDEs on G × (0, T ):

(2.80)

-∂ t u + H i (x, t, Du) = 0, if x ∈ J i \ {O}, -∂ t u + H O (t, Du) = 0, if x = O,
where Du(x, t) is defined in (1.1) and is a 1-dimensional (resp.

N -dimensional) object if x ∈ J i \ {O} (resp. x = O).
2.9.4 Viscosity solution of (2.80)

Definition 2.2. A function u ∈ C(G × (0, T )
) is a viscosity subsolution (resp. supersolution) of (2.80) if for every function ϕ ∈ C 1 (G × (0, T )) touching u from above (resp. below) at (x, t) ∈ G × (0, T ), there holds

-∂ t ϕ(x, t) + H i (x, t, Dϕ) ≤ 0 (resp. ≥ 0) if x ∈ J i \ {O}, -∂ t ϕ + H O (t, Dϕ) ≤ 0 (resp. ≥ 0) if x = O. A function u ∈ C(G × (0, T )
) is a viscosity solution of (2.80) if it is both a viscosity subsolution and a viscosity supersolution of (2.80).

Main result

Theorem 2.36. Under assumptions [H0] and [H1], the value function u defined in (2.9) is a viscosity solution of (2.80) in G × (0, T ). Moreover, for all x ∈ G, t → u(x, t) is continuous in [0, T ] and u(x, T ) = g(x).

Proof. We borrow some arguments from the proof of [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF]Theorem 6.4]. Clearly, the standard theory on viscosity solutions can be applied in G \ {O}, so it suffices to focus on the origin O.

Step 1:

u is a supersolution at O. Let ϕ ∈ C 1 (G × [0, T ]
) be a function touching u from below at (O, t), for some t ∈ (0, T ). Without loss of generality, since u is bounded, we may assume that uϕ achieves a global minimum at (O, t) with value 0, i.e.

ϕ(x, t) ≤ u(x, t) ∀(x, t) ∈ G × [0, T ] and ϕ(O, t) = u(O, t). Let (y, α) ∈ Γ t[O]
be an optimal trajectory for u(O, t). The Dynamic Programming Principle in Proposition 3.12-(i) and Remark 2.7 ensure

u(O, t) = u(y(s), s) + s t L(y(τ ), τ ) + |α(τ )| 2 2 dτ, ∀s ∈ [ t, T ],
which entails

ϕ(y(s), s) -ϕ(O, t) + s t L(y(τ ), τ ) + |α(τ )| 2 2 dτ ≤ 0, ∀s ∈ [ t, T ].
With the same arguments as in [23, Theorem 6.4 (proof)], we deduce (2.81)

s t ∂ t ϕ(y(τ ), τ ) + Dϕ(y(τ ), τ ) • α(τ ) + L(y(τ ), τ ) + |α(τ )| 2 2 dτ ≤ 0, ∀s ∈ [ t, T ],
setting Dϕ(τ, y(τ )) • α(τ ) = 0 for a.a. τ ∈ τ ∈ [ t, T ] : y(τ ) = O =: T 0 , which makes sense because from Stampacchia theorem, α(τ ) = 0 for a.a. τ ∈ T 0 .

From the uniform bound of the optimal control in L 2 , see Remark 2.6, there holds

d(y(τ ), O) ≤ τ t |α(s)| ds ≤ C(τ -t) 1/2 , ∀τ ∈ [ t, T ].
Hence, from the regularity of ϕ, there exists a constant K such that, for ψ = ϕ, ∂ t ϕ, Dϕ,

(2.82) |ψ(y(τ ), τ ) -ψ(O, t)| ≤ K(τ -t) 1/2 , ∀τ ∈ [ t, T ].
It is convenient to introduce the following sets of times:

T s 0 = {τ ∈ ( t, s) : y(τ ) = O} and T s i = {τ ∈ ( t, s) : y(τ ) ∈ J i \ {O}} for i = 1, . . . , N. Note that T s O is closed while if i > 0, then T s i is open, and that ( t, s) = N i=0 T s i . Hence (2.81) becomes: (2.83) N i=0 T s i ξ(τ ) dτ ≤ 0, ∀s ∈ [ t, T ],
where

ξ(τ ) = ∂ t ϕ(y(τ ), τ ) + Dϕ(y(τ ), τ ) • α(τ ) + L(y(τ ), τ ) + |α(τ )| 2 2 .
In (2.83), let us address separately the terms corresponding to i = 0 and i = 1, . . . , N .

Consider i = 0 first. From Stampacchia theorem, α(τ ) = 0 and L(y(τ ), τ ) = ℓ O (τ ) for a.a. τ ∈ T s 0 . Hence,

T s 0 ξ(τ ) dτ = T s 0 [∂ t ϕ(O, τ ) + ℓ O (τ )] dτ ≥ T s 0 ∂ t ϕ(O, t) + ℓ O ( t) dτ -(s -t)ω(s -t),
where the inequality is due to (2.82) and to the continuity of ℓ O , and where ω is a modulus of continuity depending on the constant K in (2.82) and on the modulus of continuity of ℓ O . On the other hand, the definition of

H O guarantees ℓ O ( t) ≥ -H O ( t, p) ∀p ∈ R N .
The latter two observations imply that (2.84)

T s 0 ξ(τ ) dτ ≥ |T s 0 | ∂ t ϕ(O, t) -H O ( t, Dϕ( t, O)) -(s -t)ω(s -t).
Consider now i ∈ {1, . . . , N }. For a.a. τ ∈ T s i , the control α(τ ) has the form α(τ ) = ᾱ(τ )e i with ᾱ(τ ) ∈ R. From (2.82), Remark 2.6 and the continuity of ℓ i , there exists a modulus of continuity ω such that

T s i ξ(τ ) dτ = T s i ∂ t ϕ(y(τ ), τ ) + Dϕ |J i (y(τ ), τ )ᾱ(τ ) + ℓ i (y(τ ), τ ) + |ᾱ(τ )| 2 2 dτ ≥ T s i ∂ t ϕ(O, t) + Dϕ |J i (O, t)ᾱ(τ ) + ℓ i (O, t) + |ᾱ(τ )| 2 2 dτ -(s -t)ω(s -t). (2.85)
Thanks to the convexity of the set F L i , the same arguments as those in [23, eq.(6.22)] (as a matter of fact, it is enough to use Jensen inequality in the present case), lead to the existence of (

ζ i , ξ i ) ∈ F L i (O, t) such that T s i Dϕ |J i (O, t)ᾱ(τ ) dτ = Dϕ |J i (O, t) T s i ᾱ(τ ) dτ = |T s i |Dϕ |J i (O, t)ζ i , T s i |ᾱ(τ )| 2 /2 dτ = |T s i |ξ i .
Note that the path y( t) = O and that during the interval ( t, s) may enter and exit several edges. However, if y(s) ∈ J i \ {O} for s ∈ (t 1 , t 2 ) and y(t 1 ) = y(t 2 ) = O, then, there holds

t 2 t 1
ᾱ(τ ) dτ = 0, and consequently

T s i ᾱ(τ ) dτ = y(s) if y(s) ∈ J i , 0 otherwise, which implies that ζ i ≥ 0. Therefore, T s i Dϕ |J i (O, t)ᾱ(τ ) + ℓ i (O, t) + |ᾱ(τ )| 2 2 dτ = |T s i | Dϕ |J i (O, t)ζ i + ℓ i (O, t) + ξ i ≥ -|T s i |H ↓ i (O, t, Dϕ |J i (O, t)).
The latter inequality and (2.85) yield

T s i ξ(τ ) dτ ≥ |T s i | ∂ t ϕ(O, t) -H ↓ i (O, t, Dϕ |J i (O, t)) -(s -t)ω(s -t) ≥ |T s i | ∂ t ϕ(O, t) -H O ( t, Dϕ(O, t)) -(s -t)ω(s -t).
This, (2.84) and (2.83) then imply that

(N + 1)(s -t)ω(s -t) ≥ N i=0 |T s i | | ∂ t ϕ(O, t) -H O ( t, Dϕ(O, t)) ≥ (s -t) ∂ t ϕ(O, t) -H O ( t, Dϕ(O, t)) ,
the last line is obtained because ( t, s) = ∪ N i=0 T s i and T s i ∩ T s j = ∅ for i = j. Dividing t by (st) and letting s tend to t+ yield

-∂ t ϕ(O, t) + H O ( t, Dϕ(O, t)) ≥ 0,
i.e. the desired inequality.

Step 2: u is a subsolution at O. Let ϕ ∈ C 1 (G × [0, T ]) be a function touching u from above at (O, t), for some t ∈ (0, T ). As above, it may be assumed that ϕ(x, t) ≥ u(x, t) ∀(x, t) ∈ G × [0, T ] and ϕ(O, t) = u(O, t). The Dynamic Programming Principle in Proposition 2.13 ensures that for any s ∈ ( t, T ) and any (y, α)

∈ Γ t,s [O]: u(O, t) ≤ u(y(s), s) + s t L(y(τ ), τ ) + |α(τ )| 2 2 dτ.
This implies that, for any s ∈ ( t, T ) and any (y, α)

∈ Γ t,s [O], (2.86) ϕ(y(s), s) -ϕ(O, t) + s t L(y(τ ), τ ) + |α(τ )| 2 2 dτ ≥ 0.
Note that (2.86) can be written

(2.87) ϕ(y(s), s) -ϕ(O, t) + N i=0 T s i L(y(τ ), τ ) + |α(τ )| 2 2 dτ ≥ 0,
where the sets T s i are defined as in Step 1 and depend upon the trajectory (y, α). The arguments below will differ whether (y, α) ∈ Γ t,s [O] remains at O or enters in a given edge J i .

Case (a): the trajectory remains at O. For any s ∈ ( t, T ], consider the trajectory (y, α)

∈ Γ t,s [O] with α(•) = 0. Clearly, y(•) = O and ( t, s) = T s 0 . Then (2.87) becomes ϕ(O, s) -ϕ(O, t) + s t ℓ O (τ )dτ ≥ 0.
From the continuity of ℓ O with respect to t,

ϕ(O, s) -ϕ(O, t) + (s -t)ℓ O ( t) ≥ -(s -t)ω(s -t),
for some modulus of continuity ω. Dividing by (st),letting s → t+ taking into account the regularity of ϕ yield

(2.88) ∂ t ϕ(O, t) + ℓ O ( t) ≥ 0.
Case (b): the trajectory enters in a given edge. Fix i ∈ {1, . . . , N }. For any n ∈ N \ {0}, fix ā ∈ (0, n). For any s ∈ ( t, T ], consider the trajectory (y, α)

∈ Γ t,s [O] with α(τ ) = āe i for τ ∈ ( t, s). Clearly, α(τ ) ∈ A i and y(τ ) ∈ J i \ {O} for τ ∈ ( t, s). Thus ( t, s) = T s i .
Note that here the unboudedness of J i is not essential. Indeed, if J i had a finite length l i , then it would be enough to choose s ≤ t + l i /ā. By the same arguments as in Step 1 (see (2.81)), inequality (2.87) can be written

s t ∂ t ϕ(y(τ ), τ ) + Dϕ |J i (y(τ ), τ )ā + ℓ i (y(τ ), τ ) + ā2 2 dτ ≥ 0, ∀s ∈ [ t, T ].
As in Step 1, taking into account Remark 2.6, estimate (2.82) and the uniform continuity of ℓ i in any neighbourhood of O, we get

s t ∂ t ϕ(O, t) + Dϕ |J i (O, t)ā + ℓ i (O, t) + ā2 2 dτ ≥ -(s -t)ω(s -t), ∀s ∈ [ t, T ]
for a suitable modulus of continuity ω. Dividing the previous inequality by (st) and letting s → t+ yield

∂ t ϕ(O, t) + Dϕ |J i (O, t)ā + ℓ i (O, t) + ā2 2 ≥ 0. Since ā ∈ (0, n) is arbitrary, ∂ t ϕ(O, t) -sup ā∈(0,n) -Dϕ |J i (O, t)ā -ℓ i (O, t) - ā2 2 ≥ 0,
and, since n is arbitrary,

∂ t ϕ(O, t) -sup ā≥0 -Dϕ |J i (O, t)ā -ℓ i (O, t) - ā2 2 ≥ 0. Then (2.79) yields ∂ t ϕ(O, t) -H ↓ i (O, t, Dϕ |J i (O, t)) ≥ 0.
Since i is arbitrary, and from inequality (2.88), we deduce

∂ t ϕ(O, t)-max max -ℓ * ( t), max i=1,...,N -ℓ i (O, t) , max i=1,...,N H ↓ i (x, t, Dϕ |J i (O, t)) ≥ 0,
i.e. the desired inequality.

Remark 2.37. If g ∈ C(G), then there is a unique viscosity solution u of (2.80) such that u ∈ C b (G × [0, T ]) and u(•, T ) = g, see e.g. [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF]. We have not found any relevant literature on uniqueness when g is not continuous and plan to address this topic in a future work.

Relaxed Mean Field Games equilibria

We are now ready to tackle Mean Field Games. Relying on the results contained in Section 2, we prove that there exists a relaxed MFG equilibrium and study the related mild solutions.

Setting and notations

Probability sets and evaluation map. Let P(G) denote the set of Borel probability measures on G endowed with the narrow topology. Similarly, P(Γ) stands for the set of Borel probability measures on Γ. For t ∈ [0, T ], the evaluation map e t : Γ → G is defined by e t (y x , α) = y x (t). For any µ ∈ P(Γ) and t ∈ [0, T ], the Borel probability measure m µ (t) on G is defined by m µ (t) = e t ♯µ. Let the real number K be defined as follows:

Costs

(H MFG 1 ) K = max sup m∈P(G) L * [m] L ∞ , max i=1,...,N sup m∈P(G) L i [m] L ∞ , sup m∈P(G) G * [m] L ∞ , max i=1,...,N sup m∈P(G) G i [m] L ∞ ∈ R + .
For brevity, we write

(3.1) L[m](x, t) = N i=1 L i [m](x, t)1 x∈J i \{O} + L O [m](t)1 x=O , G[m](x) = N i=1 G i [m](x)1 x∈J i \{O} + min G * [m], min i=1,...,N G i [m](O) 1 x=O , for x ∈ G and t ∈ [0, T ],
where

L O [m](τ ) = min L * [m](τ ), min i=1,...,N L i [m](O, τ ) .
Admissible paths. Let us introduce the sets of admissible paths

(3.2) ΓC [x] = {y ∈ Y x,0 : d(y(s), O) ≤ C, ∀s ∈ [0, T ], ẏ 2 ≤ C} , ΓC = x∈G ΓC [x],
and endow ΓC with the topology of uniform convergence. Note that a path is the sole y ∈ Y y(0),0 while a trajectory is formed by the couple (y, α) ∈ Γ. 

(3.3) Γ Lip C,V [x] = y ∈ ΓC [x] : y ′ ∞ ≤ V , Γ Lip C,V = x∈G Γ Lip C,V [x],
and endow Γ Lip C,V with the topology of uniform convergence. The same arguments as in Lemma 3.1 yield that Γ Lip C,V is compact. ). With µ ∈ P( ΓC ) and (y, α) ∈ Γ[x], we associate the cost For every y ∈ ΓC [x], we define α y the control such that (y, α y ) ∈ Γ[x] and α y (t) = 0 ∈ A 0 for a.e. t ∈ {t ∈ [0, T ] : y(t) = O}. Note that this control is uniquely defined up to a set of null measure. whose minimum w.r.t. ᾱ ∈ (0, +∞) is attained when ᾱ = 2. With this choice of ᾱ, the cost is 2x -T which is the minimal one, provided that T is sufficiently large. Our claim is completely proved.

(3.4) J µ (x; (y, α)) = T 0 L[m µ (τ )](y(τ ), τ ) + |α(τ )| 2 2 dτ + G[m µ (T )](y(T )
Therefore, the distribution of agents develops a singularity at the vertex O immediately after time s = 0: for s ∈ (0, T ], the singularity is c(s)δ O (here, δ O is the Dirac delta at O) with c(s) = 2s for s ∈ (0, 1/4] and c(s) = 1/2 for s ∈ [1/4, T ].

Analogously, for L 1 = L 2 = 1 and L * = -1, a Dirac delta immediately appears at O and after the time 1/4, the whole population is concentrated at O.

In the next example, again without interactions, the distribution of states develops a singularity that, after a while, starts travelling inside the edges.

Example 3.2. Consider a network with two vertices V 1 and V 2 and three edges J 1 , J 2 and J 3 such that

J 1 ∩ J 2 = V 1 , J 2 ∩ J 3 = V 2 , J 1 ∩ J 3 = ∅.
For simplicity, assume that V 1 coincides with the origin O. The edges J 1 and J 3 are unbounded while the edge J 2 has length equal to 1, say J 2 = [0, 1]e 2 for some unit vector e 2 ( i.e. V 1 = 0e 2 and V 2 = e 2 ). The running cost L and the terminal cost G are defined on the three edges as follows: for any measure m on the network

L[m](x, t) = 0, if x ∈ J 1 ∪ {V 1 }, k L , if x ∈ (J 2 ∪ J 3 ∪ {V 2 }) \ {V 1 }, G[m](x, t) = 0, if x ∈ (J 1 ∪ J 2 ∪ {V 1 }) \ {V 2 }, -k G , if x ∈ J 3 ∪ {V 2 },
for some positive constants k L and k G which will be chosen later on. Note that these costs fulfill the assumptions (2.6) and (2.7). The time horizon T will be chosen suitably large later on. Assume for a moment that, for T > (2k L ) -1/2 and k G > 2 √ 2k L , for any t ∈

[0, T -(2k L ) -1/2 ], any (y, α) ∈ Γ opt t [V 1 ] is such that (3.6) y(s) = V 1 , for s ∈ [t, T -(2k L ) -1/2 ], (2k L ) 1/2 -T + (2k L ) -1/2 + s e 2 , for s ∈ (T -(2k L ) -1/2 , T ],
i.e. the trajectory remains at V 1 up to time T -(2k L ) -1/2 and enters afterwards in J 2 with constant velocity, so to reach V 2 at time T . Under the latter assumption, let us prove that, for T sufficiently large, if

(y, α) ∈ Γ opt 0 [xe 2 ], with x ∈ [0, 1], then (3.7) y(s) =        -(2k L ) 1/2 s + x e 2 , for s ∈ [0, x(2k L ) -1/2 ), V 1 , for s ∈ [x(2k L ) -1/2 , T -(2k L ) -1/2 ], (2k L ) 1/2 -T + (2k L ) -1/2 + s e 2 , for s ∈ (T -(2k L ) -1/2 , T ],
i.e., the trajectory moves towards V 1 with velocity (2k L ) 1/2 , reaches V 1 at time (2k L ) -1/2 x and remains there until time T -(2k L ) -1/2 , then moves towards V 2 with velocity (2k L ) 1/2 and reaches V 2 at the horizon T . Clearly, if m 0 is supported in J 2 , then (3.7) entails that all the agents first reach V 1 , (so a singularity appears in the distribution), then all together start to move toward

V 2 at time T -(2k L ) -1/2 .
Let us prove (3.7). Since xe 2 ∈ J 2 \{V 1 , V 2 }, Euler-Lagrange condition in Lemma 2.17 implies that the control α is constant on an interval [0, τ ), for some τ ∈ (0, T ].

Let us list all the possible strategies and compare the corresponding costs. Strategy A: y(s) = xe 2 and α(s) = 0 for all s ∈ [0, T ]. The cost is J A = k L T . Strategy B: α is constant on [0, τ ), where τ = min{T, min{s > 0 : y(s) ∈ {V 1 , V 2 }}}. Note that, if y remains in J 2 \ {V 1 , V 2 } in the whole interval [0, T ], then the cost J A is not larger. Thus we may assume τ = min{s > 0 : y(s) ∈ {V 1 , V 2 }} < T . We distinguish two subcases whether y(τ ) = V 1 or y(τ ) = V 2 . Strategy B1: y(τ ) = V 2 . Euler-Lagrange conditions yields α(s) = (1 -x)/τ e 2 and y(s) = τ -1 [xτ +(1-x)s]e 2 on [0, τ ). It is then clear that y(s) = V 2 for s ∈ [τ, T ], because the other possibilities lead to higher costs. The corresponding cost is (1-x) 2 /(2τ ) +k L T -k G . Since the latter quantity is strictly decreasing w.r.t. τ , its minimum in τ is achieved by τ = T . Hence the optimal cost with Strategies of type B1 is

J B1 = (1 -x) 2 /(2T ) + k L T -k G . Strategy B2: y(τ ) = V 1 . Euler-Lagrange condition yields α(s) = -(x/τ )e 2 and y(s) = x(1 -s/τ )e 2 on [0, τ ). Then (3.6) implies that y(s) = V 1 for s ∈ [τ, T -(2k L ) -1/2 ], (2k L ) 1/2 -T + (2k L ) -1/2 + s e 2 for s ∈ (T -(2k L ) -1/2 , T ].
The cost corresponding to this trajectory is

1 2 x2 τ + k L τ + 1 2 2k L + k L T -k L T - 1 √ 2k L -k G ,
and its minimum w.r.t. τ ∈ [0, T ] is achieved by τ = x/ √ 2k L . Hence the optimal cost in Strategy B2 is

J B2 = (1 + x) √ 2k L -k G .
Conclusion. Comparing the costs J A , J B1 and J B2 , we obtain that J B1 > J B2 and J A > J B2 for k L > 1, k G satisfying the assumptions before (3.6) and T sufficiently large. Hence, the optimal trajectory is that of Strategy B2.

There remains to prove (3.6). To this end, let us distinguish several possible strategies. Strategy Ã:

y(s) = V 1 in [t, T ]. The cost is J Ã = 0.
Strategy B: Immediately or after a while, the trajectory y enters in J 1 \ {V 1 } and remains in J 1 . Since the cost associated to the kinetic energy is higher than with Strategy Ã, Strategy B is strictly suboptimal. Strategy C: Immediately or after a while, the trajectory y enters in J 2 \ {V 1 } and is such that y(T ) ∈ (J 1 ∪ J 2 ) \ J 3 , in particular, y(T ) = V 2 . Since the cost associated to the kinetic energy is higher than with Strategy Ã, Strategy C is strictly suboptimal. Strategy D: Immediately or after a while, the trajectory y enters in J 2 and is such that

y(T ) = V 2 . Hence, • y(s) = V 1 on [t, s 1 ] for some s 1 ∈ [t, T ]
• for s 2 = min{s ∈ (s 1 , T ] : y(s) = V 2 }, there holds: y(s 2 ) = V 2 and y(s) ∈ J 2 \ {V 1 } for s ∈ (s 1 , s 2 ). Then, from Euler-Lagrange condition, α(s) = (s 2s 1 ) -1 e 2 for s ∈ (s 1 , s 2 )

• y(s) = V 2 for s ∈ [s 2 , T ] because all the other possibilities result in a higher cost.

The resulting cost is

1 2 1 s 2 -s 1 + k L T -k L s 1 -k G .
Let us minimize the latter cost w.r. 

T -s 1 + k L T - k L s 1 -k G with respect to s 1 ∈ [t, T ). The minimum is reached at s 1 = T -(2k L ) -1/2 ,
and takes the value J D = √ 2k Lk G which is less than J Ã from the assumption on k G .

Strategy Ẽ: Immediately or after a while, the trajectory y enters in J 2 and is such that y(T ) ∈ J 3 \ {V 2 }. Comparing the resulting cost with that of Strategy D, one can check that Strategy Ẽ is strictly suboptimal.

Relaxed MFG equilibrium

Fix µ ∈ P m 0 ( ΓC ); for any x ∈ G, let us set

(3.8) Γ µ,opt C [x] = y ∈ ΓC [x] : J µ (x; (y, α y )) = min ( y, α)∈Γ[x] J µ (x; ( y, α))
where J µ is defined in (3.4) and α y is a control such that (y, α y ) ∈ Γ[x] (see Remark 3.2).

Definition 3.1. The complete probability measure µ ∈ P m 0 ( ΓC ) is a relaxed mean field game equilibrium associated with the initial distribution m 0 if

(3.9) supp(µ) ⊂ x∈supp(m 0 ) Γ µ,opt C [x].
The following two theorems address the existence of MFG equilibria under different hypothesis. The proof of Theorem 3.5 is postponed to subsection 3.5. Theorem 3.6. Keeping the assumptions of Theorem 3.5, we also assume that, for some positive constant K,

(H MFG 3 )      G i [m] ∈ C 2 (J i ) and L i [m](•, t) ∈ C 2 (J i ) ∀m ∈ P(G), t ∈ [0, T ] sup m∈P(G) max i=1,...,N ∂G i [m] ∞ ≤ K sup m∈P(G) max i=1,...,N sup t∈[0,T ] ∂L i [m](•, t) ∞ ≤ K,
Then, there exists a relaxed MFG equilibrium µ ∈ P m 0 (Γ Lip C,V ), where the constants V and C appear respectively in Theorem 2.21 with t = 0 and x ∈ supp(m 0 ) and in Theorem 3.5.

The proof of Theorem 3.6 is postponed to subsection 3.6.

Preliminary results

Lemma 3.7. Let a sequence of probability measures {µ n } n∈N , µ n ∈ P( ΓC ), be narrowly convergent to µ ∈ P( ΓC ) as n → ∞. For all t ∈ [0, T ], the sequence {m µn (t)} n∈N is narrowly convergent to m µ (t).

Proof. Adapting the arguments of [START_REF] Achdou | Deterministic mean field games with control on the acceleration and state constraints[END_REF]Lemma 3.1] ). There holds

leads to G f (x)dm µn (t)(x) = ΓC f (y(t))dµ n (y) → ΓC f (y(t))dµ(y) = G f (x)dm µ (t)(x), for all f ∈ C 0 b (G; R).
sup µ∈Pm 0 ( ΓC ) Wass 1 (m µ (t), m µ (s)) ≤ C|t -s| 1 2 ∀t, s ∈ [0, T ].
Similarly,

sup µ∈Pm 0 (Γ Lip C,V ) Wass 1 (m µ (t), m µ (s)) ≤ V |t -s| ∀t, s ∈ [0, T ].
Proof. Consider any µ ∈ P m 0 ( ΓC ). For any t, s ∈ [0, T ], there holds

sup φ G φ(x)[dm µ (t) -dm µ (s)](x) = sup φ ΓC [φ(y(t)) -φ(y(s))] dµ(y) ≤ ΓC |y(t) -y(s)|dµ(y) ≤ |t -s| 1 2 α 2
where the supremum is performed over all the continuous 1-Lipschitz function. Owing to the definition of ΓC in (3.2) and to the arbitrariness of µ ∈ P m 0 ( ΓC ), the latter relation entails the first statement. The second statement is obtained in a singular way.

It is useful to recall the disintegration theorem: Theorem 3.9. Let X and Y be Radon metric spaces, π : X → Y be a Borel map, µ be a probability measure on X. Set ν = π♯µ. There exists a ν-almost everywhere uniquely defined Borel measurable family of probability measures (µ y ) y∈Y on X such that µ y (X \ π -1 (y)) = 0, for ν-almost all y ∈ Y, and for every Borel function f :

X → [0, +∞], X f (x)dµ(x) = Y X f (x)dµ y (x) dν(y) = Y π -1 (y) f (x)dµ y (x) dν(y).
Recall that (µ y ) y∈Y is a Borel family of probability measures if for any Borel subset B of X, Y ∋ y → µ y (B) is a Borel function from Y to [0, 1].

A closed graph property

Choosing C ≥ C, where C is the constant introduced in Remark 3. [x], namely any trajectory (y, α y ) is an optimal trajectory for J µ . In other words, the multivalued map (x, µ) ⇒ Γ µ,opt C [x] enjoys the closed graph property.

Proof of Proposition 3.10. There are similar arguments as in the proof of Proposition 2.25, so we will mailnly focus on the new aspects. We wish to prove that

(i) y ∈ ΓC [x],
(ii) (y, α y ) is optimal for J µ .

From the definition of ΓC , the controls α yn are uniformly bounded in L Let us now study separately the two sides of (3.10). For the right hand side, the construction and the properties of (ŷ n , αn ) entail

J µn (x n ; (ŷ n , αn )) ≤ J µ (x; (ŷ, α)) + 4 i=1 Īi where, for δ n = d(x, x n ), Ī1 = δn 0 L[m µn (τ )](ŷ n (τ ), τ )dτ, Ī2 = α n 2 2 -α 2 2 2 ≤ o n (1), Ī3 = T δn L[m µn (τ )](ŷ n (τ ), τ )dτ, Ī4 = - T 0 L[m µ (τ )](ŷ(τ ), τ )dτ.
The boundedness of L implies that lim n→∞ Ī1 = 0. Then, arguing as in the proof of Lemma 2.26,

Ī3 = T 0 N i=1 L i m µn T -δ n T ξ + δ n ŷ(ξ), T -δ n T ξ + δ n 1 ŷ(ξ)∈J i \{O} +L O m µn T -δ n T ξ + δ n T -δ n T ξ + δ n 1 ŷ(ξ)=O 1 - δ n T dξ = T 0 L m µn T -δ n T ξ + δ n ŷ(ξ), T -δ n T ξ + δ n 1 - δ n T dξ,
and consequently,

Ī3 + Ī4 = Ī5 + Ī6 + Ī7 + Ī8 where Ī5 = - δ n T T 0 L m µn T -δ n T ξ + δ n ŷ(ξ), T -δ n T ξ + δ n dξ, Ī6 = T 0 L m µn T -δ n T ξ + δ n ŷ(ξ), T -δ n T ξ + δ n -L [m µn (ξ)] ŷ(ξ), T -δ n T ξ + δ n dξ, Ī7 = T 0 L [m µn (ξ)] ŷ(ξ), T -δ n T ξ + δ n -L [m µ (ξ)] ŷ(ξ), T -δ n T ξ + δ n dξ, Ī8 = T 0 L [m µ (ξ)] ŷ(ξ), T -δ n T ξ + δ n -L [m µ (ξ)] (ŷ(ξ), α(ξ), ξ) dξ.
The boundedness of L entails: 

| Ī5 | = o n (1
= T 0 N i=1 L i [m µn (τ )](y n (τ ), τ )1 yn(τ )∈J i \{O} 1 y(τ )∈J i \{O} dτ, Î2 = T 0 N i=1 L i [m µn (τ )](y n (τ ), τ )1 yn(τ )∈J i \{O} 1 y(τ )∈G\J i dτ, Î3 = T 0 N i=1 L i [m µn (τ )](y n (τ ), τ )1 yn(τ )∈J i \{O} 1 y(τ )=O dτ, Î4 = T 0 L O [m µn (τ )](τ )1 yn(τ )=O dτ, Î5 = G[m µn (τ )](y n (T )).
The convergence in the weak topology of L

2 ([t, T ]; R d ) entails T 0 |α(τ )| 2 2 dτ ≤ lim inf n→∞ T 0 |α n (τ )| 2 2 dτ.
Recall from Lemma 3.7 that, for each t ∈ [0, T ], the map P( ΓC ) ∋ µ → m µ (t) ∈ P(G) is continuous. Hence, by our assumption, for every i ∈ {1, . . . , N },

L i [m µn (t)](•, •) and G i [m µn (T )](•) converge uniformly respectively to L i [m µ (t)](•, •) and to G i [m µ (T )](•) as n → ∞. Therefore, the dominated convergence theorem yields Î1 → T 0 N i=1 L i [m µ (τ )](y(τ ), τ )1 y(τ )∈J i \{O} dτ and Î2 → 0, as n → ∞.
The same arguments as in the proof of Proposition 2.11 and the definition of

G[m] in (3.1) imply lim inf n→∞ Î5 ≥ G[m µ (T )](y(T )). Furthermore, Î3 + Î4 = T 0 N i=1 L i [m µn (t)](y n (τ ), τ )1 yn(τ )∈J i \{O} + L O [m µn (t)](τ )1 yn(τ )=O 1 y(τ )=O dτ + T 0 L O [m µn (t)](τ )1 yn(τ )=O 1 y(τ ) =O dτ.
Again the dominated convergence theorem ensures

T 0 L O [m µn (t)](τ )1 yn(τ )=O 1 y(τ ) =O dτ → 0 as n → ∞.
Then, from Fatou's Lemma and the boundedness of

L i , lim inf n→∞ T 0 N i=1 L i [m µn (τ )](y n (τ ), τ )1 yn(τ )∈J i \{O} +L O [m µn (τ )](τ )1 yn(τ )=O 1 y(τ )=O dτ ≥ T 0 L O [m µ (τ )](τ )1 y(τ )=O dτ.
Combining all the observations above with (3.12) yields lim inf Since (ŷ, α) ∈ Γ[x] is arbitrary, we get J µ (x; (y, α y )) = min (ŷ, α)∈Γ[x] J µ (x; (ŷ, α)) which is equivalent to (ii).

n→∞ J µn (x n ; (y n , α yn )) ≥ T 0 |α(τ )| 2 2 + N i=1 L i [m µ (τ )](y(τ ), τ )1 y(τ )∈J i \{O} +L O [m µ (τ )](τ )1 y(τ )=O dτ + G[m µ (T )](y ( 

Proof of Theorem 3.5

Let us first recall some notations. For every µ ∈ P m 0 ( ΓC ), let J µ be the associated cost as in (3.4); for any x ∈ G, let Γ µ,opt C [x] be the set of optimal paths starting from x for the cost J µ as in (3.5). Proposition 2.11 ensures: Γ µ,opt C [x] = ∅ for every x ∈ G. It is worth recalling that the set ΓC is compact, from Lemma 3.1. By Prokhorov theorem [9, Theorem 5.1.3], P( ΓC ) is also compact.

The multivalued map E : P m 0 ( ΓC ) ⇒ P m 0 ( ΓC ) is defined as follows:

(3.14)

E(µ) = {μ ∈ P m 0 ( ΓC ) : supp μx ⊂ Γ µ,opt C [x] m 0 -a.e. x ∈ G},
where {μ x } x∈G is the family of Borel probability measures on P m 0 ( ΓC ) obtained applying the disintegration Theorem 3.9 to µ, X, Y and π being replaced respectively by μ, P m 0 ( ΓC ), G and e 0 (so, clearly, ν coincides with m 0 ). The proof of the theorem amounts to proving that the map E admits a fixed point. Let us assume for the moment the following properties (i) for every µ ∈ P m 0 ( ΓC ), the set E(µ) is not empty and convex (ii) the map E enjoys the closed graph property.

Then, Kakutani fixed point theorem ensures that E admits a fixed point µ. Without any loss of generality, we can complete the measure µ and obtain a relaxed MFG equilibrium. It remains to prove the above mentioned two properties. for every x ∈ G. We introduce a measure μ on ΓC as follows:

μ(B) = G δ y µ x (B) m 0 (dx) ∀ Borel B ⊂ ΓC ,
where δ y µ x (•) is the Dirac delta-function centered in y µ x . Note that μx = δ y µ x for m 0 -a.e. x ∈ G. Hence, μ belongs to E(µ).

Let us now prove that E(µ) is convex. Fix µ 1 , µ 2 ∈ E(µ) and λ ∈ [0, 1]. By easy calculation, one obtains λµ 1 + (1λ)µ 2 ∈ P m 0 ( ΓC ). On the other hand, for i = 1, 2, since µ i ∈ E(µ), by the disintegration theorem 3.9, there exists a Borel measurable family {µ i

x } x∈G of probability measures (which is m 0 -a.e. uniquely defined and "disintegrate" µ i with respect to m 0 ) and a set A i ⊂ G such that m 0 (A i ) = 0 and supp µ i x ⊂ Γ µ,opt C

[x] for every x ∈ G \ A i . Therefore, the measure λµ 1 + (1λ)µ 2 can be disintegrated as follows: for each Borel function f on ΓC , there holds

ΓC f (γ)(λµ 1 + (1 -λ)µ 2 ) (dγ) = G ΓC f (γ)(λµ 1 x + (1 -λ)µ 2 x ) (dγ) m 0 (dx) with m 0 (A 1 ∪ A 2 ) = 0 and supp (λµ 1 x + (1 -λ)µ 2 x ) ⊂ Γ µ,opt C [x] ∀x ∈ G \ (A 1 ∪ A 2 ).
Hence, λµ 1 + (1λ)µ 2 belongs to E(µ), so E(µ) is convex. (ii). Consider a sequence {µ n } n∈N of probability measures µ n ∈ P m 0 ( ΓC ) which narrowly converges to some µ ∈ P m 0 ( ΓC ) as n → ∞. Consider also a sequence {μ n } n∈N , with μn ∈ E(µ n ) for any n ∈ N, which narrowly converges to some μ ∈ P m 0 ( ΓC ) as n → ∞.

Our aim is to prove that μ belongs to E(µ). By the disintegration theorem, there exists a m 0 -a.e. uniquely defined Borel measurable family of measures {μ x } x∈G on ΓC and A ⊂ G such that: m 0 (A) = 0, μx ( ΓC \e -1 0 ({x})) = 0 for every x ∈ G \ A and Proof. (a). The arguments are reminiscent of those used in [START_REF] Cannarsa | Cardaliaguet Mean field games with state constraints: from mild to pointwise solutions of the PDE system[END_REF]Theorem 4.1]. Fix (x, t) ∈ Q m and consider (p 1 , p 2 ) ∈ D + u(x, t). Without any loss of generality, let us assume that x ∈ J i with x = xe i . From Theorem 3.13, u is a viscosity solution to problem (2.80) with the cost ℓ i defined in (3.16) and g = G[m ν (T )]. Hereafter, for simplicity, we refer to (2.80) as the HJ-problem. Since u is a viscosity subsolution to the HJ-problem, -p 1 + H(x, t, p 2 ) ≤ 0.

Let us now prove the reverse inequality. Since x ∈ supp(m(t)), there exists a trajectory (γ, γ ′ ) ∈ Γ opt [γ(0)] with γ(t) = x. Let r be small enough such that γ(ts) ∈ J i \ {O} for every s ∈ [0, r]; we write γ(ts) = γ(ts)e i . From the definition of the subdifferential, u(γ(ts), ts)u(x, t) ≤ -p 1 sp 2 (xγ(ts)) + o(r) = -p 1 sp 

Properties of m

Consider a mild solution (u, m) associated to a given relaxed MFG equilibrium µ ∈ P m 0 (Γ Lip C,V ). Here, we wish to investigate the behaviour of the point masses of m if they exist.

Let us recall from Example 3.1 and Example 3.2 that m may develop a singularity of the form of a point mass at the origin and that the latter singularity may be transported into the edges. Below, we prove that each singular point conserves its mass when it travels in the interior of an edge. This implies that point masses cannot appear/vanish in the interior of a given edge. In particular, the creation of a point mass can occur only at the vertex. Finally, we provide an example with two vertices in which m is a Dirac mass at the first vertex until some time t 1 , a Dirac mass at the second vertex after t 2 > t 1 , and in which there is no mass points between the two vertices at all t, t 1 < t < t 2 . Theorem 3.19. Under the assumptions of Theorem 3.6, let µ ∈ P m 0 (Γ Lip C,V ) be a relaxed MFG equilibrium and (u, m) be the corresponding mild solution. Consider x ∈ supp(m(t))∩ J j \ {O} for some j = 1, . . . , N and t ∈ (0, T ). The following holds:

(a) there exists x 0 ∈ supp(m 0 ) and γ ∈ Γ Lip C,V with (γ, α γ ) ∈ Γ µ,opt [x 0 ] and γ(t) = x (recall that the control α γ was introduced in Remark 3.2) (b) for i = 1, 2, consider x 0,i and γ i satisfying point (a) and denote t * ,i = sup{s ∈ [0, t] ; γ i (s) = O} and t * ,i = 0 if the latter set is empty and, similarly, t is not empty for every r > 0. We infer that there exist a sequence {x n } n , with x n ∈ B(x, 1/n) and a sequence γ n ∈ Γ Lip C,V with (γ n , α γn ) ∈ Γ µ,opt , γ n (0) ∈ supp(m 0 ) and γ n (t) = x n . By standard arguments, we see that, as n → ∞, γ n uniformly converge to some path γ ∈ Γ Lip C,V with γ(0) ∈ supp(m 0 ) and γ(t) = x. From the stability of optimal trajectories, (γ, α γ ) belongs to Γ µ,opt . Point (a) is proved. (t * = 0 and respectively t * = T when the corresponding set is empty). This implies that if m has a point mass, then the latter is conserved as long as it stays in the interior of a given edge.

We now focus on the case when no optimal trajectory hits x at time t. between D ′ (0, T ) and C ∞ 0 (0, T ). We claim that, for distributions q i ∈ D ′ (0, T ), i = 1, . . . , N , that will be characterized later, there holds Consider a function ψ ∈ C ∞ (G), supp(ψ) ⊂ J i \ {O}, ψ(x) = 1 for all x ∈ J i such that d(x, O) ≥ 1 and ψ| J i is increasing with respect to d(x, O). Setting ψ ǫ (x) = ψ( x ǫ ), we observe that ψ ǫ converges pointwise to 1 J i \{O} has ǫ → 0. Hence, From Remark 3.17 and the definition of ψ ǫ , for all t ∈ (0, T ], for µ-a.a. γ, 1 γ(t)∈J i \{0} = 1 γ(t)∈J i \{0} 1 (γ(t),t)∈Qm , ψ ǫ (γ(t)) = ψ ǫ (γ(t))1 (γ(t),t)∈Qm . 1 γ(t) =O γ ′ (t) = -1 γ(t) =O Du(γ(t), t) for µ -a.e. γ.

I i = -lim ǫ→0 T 0 χ ′ (t)
Since the right hand side of (3.27) is the limit as h → 0 of -1 γ(t) =O (u(γ(t)+h)-u(γ(t))/h as h → 0, it is measurable and essentially bounded w.r.t. µ, and so is the function in the left hand side of (3.27). Hence, observing also that 0 / ∈ supp(ψ ǫ ), differentiation under the integral sign is permitted for t → Γ φ(γ(t), t)ψ ǫ (γ(t))µ(dγ). We get where γ(t) = γ(t)e i , β ǫ is defined by In order to complete the proof, there remains to check (3.22) and (3.21). Clearly, there holds: d dt m(•)({O})+ i m(•) (J i \ {O}) = 0. Hence, (3.22) will follow from (3.21). From the definition of q i as the limit of -Γ Dψ ǫ (γ(•))Du(γ(•), •)µ(dγ) as ǫ tends to 0 and from (3.27), there holds q i , χ = -lim 

I i = lim
β ǫ (x) =

Theorem 2 . 1 .

 21 Let I ⊂ R be an interval and γ :I → R d × R d be a measurable function. Let A be a metric space. Let K be a closed subset of R d × A and Ψ : K → R d × R d be continuous. Assume that γ(I) ⊂ Ψ(K), then there is a measurable function Φ : I → K such that Ψ • Φ(t) = γ(t)for a.a. t ∈ I. Let us introduce the set (2.1) M = {(x, a) : x ∈ G; a ∈ A i if x ∈ J i \{O}, and a ∈ A if x = O} .

  )

I 5 ≥

 5 again by the uniform convergence of y n to y x and by the definition of g in (2.7), for any ε > 0, we get g(y n (T )) ≥ g(O)ε = g(y x (T ))ε for n sufficiently large. In both cases, g(y x (T )).

  .57) The trajectory (y n , α n ) is admissible and (2.58) y n (T ) = y(T ). The trajectory y n starts at x n , moves with speed 1 until it reaches the point x at time δ n (clearly, in this time interval it always remains in the edge J 1 ) and, from time δ n , becomes a time-rescaled version of the trajectory y such that y n (T ) = y(T ). Let us now estimate d(y(s), y n (s)). For s ∈ [0, δ n ], d(y(s), y n (s)) ≤ d(y n (s), x) + d(y(s), x) ≤ (δ ns) + s 0 |ᾱ(τ )| dτ ≤ (δ ns) + α 2 √ s (Cauchy-Schwarz inequality is used in the last line).

  and 2.20, in contrast with Corollary 2.29. Proposition 2.30. If the terminal cost g is Lipschitz continuous in G with Lipschitz constant L g and the costs ℓ i are bounded ( ℓ i ∞ ≤ M ℓ ) and Lipschitz continuous in x with Lipschitz constant L ℓ , then, the value function is locally Lipschitz continuous with respect to x in G × [0, T ].

Subcase 3 -

 3 b: t * = min s ∈ [t, T ] : y 2 (s) = O < T . Combining the conclusions in Case 2 and (2.67)-(2.68) leads to the desired result. Subcase 3-c: t * = min s ∈ [t, T ] : y 1 (s) = y 2 (s) < T . The conclusion follows by setting (y 1 , α 1 ) = (y 1 , α 1 ) on (t * , T ].

Subcase 4 -

 4 a: t * = T . Arguing as in Subcase 2-a and using by (2.69)-(2.70) yields the desired result.

Subcase 4 -

 4 b: t * = min s ∈ [t, T ] : y 1 (s) = y 2 (s) . The result follows from the same arguments as in Subcase 3-c using (2.69)-(2.70). The proof is complete.

.

  The running cost and the terminal cost depend on the distribution of the population. We consider the costs L i ∈ C(P(G); C b (G × [0, T ])), for i = 1, . . . , N , and L * ∈ C(P(G); C([0, T ]). Similarly, let G i : P(G) → C b (G), i = 1, . . . , N , and G * : P(G) → R be continuous functions. The images of m ∈ P(G) by L i , respectively by G i are denoted by L i [m](•, •), respectively G i [m](•), and we introduce similar notations for L * and G * .

Lemma 3 . 1 .

 31 For every positive constant C, the set ΓC is compact.Proof. Fix C > 0 and consider a sequence {y n } n∈N , with y n ∈ ΓC . Possibly for a subsequence (still denoted byy n ), { ẏn } n converges in the weak topology of L 2 ([0, T ], R d ) to some α ∈ L 2 ([0, T ], R d ), with α 2 ≤ C.Then, {y n } n converges uniformly to some y ∈ C([0, T G). Clearly, α = ẏ. The same arguments as in the proof of Proposition 2.11 yield that the path y is admissible, i.e. y ∈ Y y(0),0 , and consequently that y belongs to ΓC .Lipschitz admissible paths.Given two positive constants V and C, let us introduce the sets of Lipschitz admissible paths

Theorem 3 . 5 . 1 ) 2 )

 3512 Assume (H 0 ), (H MFG and in (H MFG ; consider C ≥ C (where C is the constant introduced in Remark 3.3). Then, there exists a relaxed mean field equilibrium µ ∈ P m 0 ( ΓC ).

Lemma 3 . 8 .

 38 Assume (H MFG 2

  T )) = J µ (x; (y, α y )). (3.13) In conclusion, (3.10), (3.11) and (3.13) entail J µ (x; (y, α y )) ≤ J µ (x; (ŷ, α)).

  (i). Recall that Γ µ,opt C [x] = ∅ for every x ∈ G and that the map Γ µ,opt C [•] has the closed graph property, from Proposition 2.11 and Proposition 2.25, Therefore, the result [8, Theorem 8.1.4] guarantees that the map Γ µ,opt C [•] has a Borel measurable selection denoted x → y µ x

f

  (y)μ x (dy) m 0 (dx). Consider x ∈ G \ A and ŷ ∈ supp μx . Kuratowski theorem ([9, Proposition 5.1.8]) ensures that there exists a sequence {y n } n∈N , with y n ∈ supp μn , which converges to ŷ in the topology of ΓC . Let x n = e 0 (y n ). Since μn ∈ E(µ n ), there holds: y n ∈ Γµn,opt C [x n ]. By Proposition 3.10, we infer ŷ ∈ Γµ,opt C [x]. By the arbitrariness of ŷ ∈ supp μx , we obtain supp μx ⊂ Γµ,opt C [x] and consequently, by the arbitrariness of x ∈ G \ A, that μ belongs to E(µ).

  Proof. (a). For every positive r, m(t)(B(x, r)) > 0. Hence,0 < m(t)(B(x, r)) = G 1 {ξ∈G∩B(x,r)} m(t)(dξ) = {y∈Γ Lip C,V : (y,αy)∈Γ µ,opt , y(0)∈supp(m 0 )} 1 {y : y(t)∈B(x,r)} µ(dy)where the last equality comes from the definition of m. Consequently the set E = y ∈ Γ Lip C,V : (y, α y ) ∈ Γ µ,opt , y(0) ∈ supp(m 0 ), y(t) ∈ B(x, r)

Proposition 3 . 20 .

 320 (b). It is a direct consequence of Lemma 3.16-(c). (c). Consider s ∈ (t * , t * ). The definition of m entailsm(t)({x}) = {y∈Γ Lip C,V : (y,αy)∈Γ µ,opt , y(0)∈supp(m 0 )} 1 {y : y(t)=γ(t)} µ(dy) (3.19)where α y is the control defined in Remark 3.2. From point (b), there holds{y ∈ Γ Lip C,V : (y, α y ) ∈ Γ µ,opt , y(0) ∈ supp(m 0 ), y(t) = γ(t)} = {y ∈ Γ Lip C,V : (y, α y ) ∈ Γ µ,opt , y(0) ∈ supp(m 0 ), y(s) = γ(s)} for every s ∈ (t * , t * ). Combining the latter identity and (3.19) yields m(t)({x}) = {y∈Γ Lip C,V : (y,αy)∈Γ µ,opt , y(0)∈supp(m 0 )} 1 {y : y(s)=γ(s)} µ(dy) = m(s)({γ(s)}) for every s ∈ (t * , t * ) which is our statement. The following result is direct consequence of Theorem 3.19-(c). Under the hypotheses of Theorem 3.6, let µ ∈ P m 0 (Γ Lip C,V ) be a relaxed MFG equilibrium and (u, m) be the corresponding mild solution. For every γ as in Theorem 3.19-(a) such that there exists t ∈ (0, T ) with γ(t) ∈ J i \ {O}, there holds m(s)({γ(s)}) = m(s ′ )({γ(s ′ )}) ∀s, s ′ ∈ (t * , t * ) where t * = sup{s ∈ [0, t] : γ(s) = O}, t * = inf{s ∈ [t, T ] : γ(s) = O}

Proposition 3 . 21 .

 321 Let µ ∈ P m 0 (Γ Lip C,V ) be a relaxed MFG equilibrium and (u, m) be the corresponding mild solution. If m(t)({x}) = 0 and point (a) in Theorem 3.19 does not hold, then there exists δ > 0 such that m(s)({x}) = 0 ∀s ∈ (tδ, t + δ).Proof. From Theorem 3.19-(a), x / ∈ supp(m(t)). Then, there exists a positive number r such that B(x, r) ∩ supp(m(t)) = ∅ and, consequently, the setE = y ∈ Γ Lip C,V : (y, α y ) ∈ Γ µ,opt , y(0) ∈ supp(m 0 ), y(t) ∈ B(x, r)is negligible for the measure µ. Taking into account the uniform Lipschitz continuity of the optimal trajectories, we obtain that there exists a sufficiently small δ > 0 such thatE(s) := y ∈ Γ Lip C,V : (y, α y ) ∈ Γ µ,opt , y(0) ∈ supp(m 0 ), y(s) ∈ B(x, r/2) ⊂ E for every s ∈ (tδ, t + δ). Since µ is complete, E(s) is also negligible for µ and m(s)(B(x, r/2)) = 0 ∀s ∈ (tδ, t + δ),which achieves the proof. We now provide an example with two vertices in which• there is a Dirac mass at the first vertex which disappears• a Dirac mass arises at the second vertex• no Dirac mass travels in the edge between the two vertices.

  φ(x, •) -Dφ(x, •)Du(x, •)] 1 x∈J i \{O} m(•)(dx)in the sense of D ′ (0, T ). Indeed, for every test function χ ∈ C ∞ 0 (0, T ), (t), t)1 γ(t)∈J i \{O} µ(dγ) dt.

Γ

  φ(γ(t), t)ψ ǫ (γ(t))µ(dγ) dt.

Therefore, Proposition 3 .

 3 18-(b) and Lemma 3.16-(b) (in particular the validity of Lemma 2.33-(ii)) guarantee that (3.27)

ΓΓ

  Dψ ǫ (γ(t))Du(γ(t))µ(dγ)dt =:I i3 + I i4 .We now deal with I i3 and I i4 separately. First, from the regularity of φ,I i3 = -T 0 χ(t) Γ [Dφ(O, t)γ(t) + ǫo(1)] Dψ ǫ (γ(t)) Du(γ(t), t)µ(dγ)dt = -Dφ(O, t)Dβ ǫ (γ(t))Du(γ(t), t)µ(dγ) dt + o(1)

ΓΓ

  ξe i )dξ ∀x ∈ [0, ∞).and o[START_REF] Achdou | Income and wealth distribution in macroeconomics: a continuous-time approach[END_REF] stands for a function of ǫ such that lim ǫ→0 o(1) = 0. Note that β ǫ is an increasing regular function and fulfills: β ǫ (0) = 0, β ǫ (x) is a constant for x ≥ ǫ with β ǫ (ǫ) = O(ǫ). Therefore, taking into account the regularity of φ and of χ and arguing as above, we getI i3 = -Dφ(O, t)Dβ ǫ (γ(t))Du(γ(t), t) + ∂ t Dφ(O, t)β ǫ (γ(t))µ(dγ)dt + o(1) Dφ(O, •)β ǫ (γ(•)) µ(dγ)dt + o(1) Dφ(O, •)β ǫ (γ(•))µ(dγ)dt + o(1) = o(1) (3.29)where the last line is due to the properties of β ǫ . From (3.29) and (3.28), we deduce that lim ǫ→0 I i4 = I i -lim ǫ→0 I i1 . Because we can choose φ(O, •) = 1 on supp(χ), this in particular implies thatt → -Γ Dψ ǫ (γ(t))Du(γ(t), t)µ(dγ)tends to some q i in D ′ (0, T ) as ǫ → 0. Hence, (3.30) t → -φ(O, t) Γ Dψ ǫ (γ(t))Du(γ(t), t)µ(dγ) tends to φ(O, •)q i in D ′ (0, T ) as ǫ → 0. We have obtained (3.23). Injecting (3.23) into (3.25) yields (3.24).

∂

  Dψ ǫ (γ(t))Du(γ(t), t)µ(dγ) χ(t)dt t ψ ǫ (γ(t))µ(dγ) χ(t)dt t)∈J i \{O} µ(dγ) χ ′ (t)dtfor every test function χ ∈ C ∞ 0 (0, T ), where the last equality is due to the dominated convergence theorem. The proof of (3.22) with (3.21) is achieved.

. Since the above equality can be written u

  

	for n sufficiently large, which implies inequality (2.22).		
	Remark 2.12. The following statement can be seen as the "converse" of Remark 2.8. If
	there exist t 1 ∈ [0, T ] and (y 1 , α 1 ) ∈ Γ t,t 1 [x] such that		
	u(x, t) = u(y 1 (t 1 ), t 1 ) +	t	t 1	L(y 1 (τ ), τ ) +	|α 1 (τ )| 2 2	dτ,
	then, there exists (y, α) ∈ Γ opt t [x] with (y 1 , α 1 ) = (y, α) on (t, t 1 ). Indeed, consider the concatenation (y, α) of (y 1 , α 1 ) with (ȳ, ᾱ) where (ȳ, ᾱ) is any trajectory in Γ opt t 1 [y 1 (t 1 )]. from Remark 2.4, (y, α) is admissible for u(x, t)

  . We adapt the arguments in the proof of Lemma 2.26. It is enough to focus on the situation in which all the points x n and x belong to the edge e 1 , and all the t n are either smaller or larger than t. Set δ n = d(x n , x).Case 1: t n ≤ t, ∀n ∈ N. Let us introduce the control

  Fix t ∈ (t 1 , t 2 ) and consider α 1 ∈ L 2 (t, T ), with α 1 (s) ∈ Re i a.e. in (t 1 , t 2 ), α 1 (s) = 0 for s / ∈ (t 1 , t 2 ) and t 2 t 1 α 1 ds = 0. In (t 1 , t 2 ), both α and α 1 are aligned with e i and can be written α(s) = ᾱ(s)e i and α 1 (s) = ᾱ1 (s)e i with ᾱ(s), ᾱ1 (s) ∈ R. For h ∈ R, with |h| sufficiently small, the controlα h (•) := α(•) + hα 1 (•) is admissible for (x, t) because y| t 1 ,t 2 ]is bounded from below by a positive number. Let y h denote the trajectory corresponding to the control α h . It is clear that y h (T ) = y(T ).

	and any (y, α) ∈ Γ opt t [x] such that, for some t 1 , t 2 ∈ (t, T ), there holds	T ]
				y(s) ∈ J i \ {O},		∀s ∈ [t 1 , t 2 ].
	Then, the control α is C 1 in (t 1 , t 2 ) and		
	(2.26)		α ′ (s) = ∂ x ℓ i (y(s), s),		∀s ∈ (t 1 , t 2 ).
	Proof. Then, since
	(y, α) is optimal,						
	(2.27)								
	0 ≤	J t (y h , α h ) -J t (y, α) h	=	t 2 t 1	ᾱ(s)ᾱ 1 (s) +	hᾱ 1 (s) 2 2	+	ℓ i (y h (s), s) -ℓ i (y(s), s) h	ds.
	Since y h (s) = y(s) + h s t 1 α 1 (τ )dτ for s ∈ [t 1 , t 2 ], we deduce from the regularity of ℓ i with respect to the state variable that
		t 2 t 1	ℓ i (y h (s), s) -ℓ i (y(s), s) h	ds =	t 2 t 1	∂ x ℓ i (y(s), s)	t 1 s	ᾱ1 (τ )dτ ds + o(1),

  another auxiliary trajectory; let y 3 (•) be the path that starts at O at time t 2 and obeying to the control α 3 (s) = |α(s)|e j for s ∈ [t 2 , T ]. We set t 3 = min {T, min{s ∈ [t 2 , T ] : y 3 (s) = y(s)}} and we define (y 1 (s), α 1 (s)) = (y 3 (s), α 3 (s)) for s ∈ (t 2 , t 3 ]. Note that, in the interval [t 2 , t 3 ] both y 1 (s) and y(s) belong to the same edge J j ; moreover, by y 1 (t 2 ) = O and |y(t 2 )| ≤ A, for s ∈ [t 2 , t 3 ] there holds (2.52) Now, we split our arguments according to the different situations in the definition of time t 3 .

	d(y 1 (s), y(s)) ≤ d	s t 2	|α(τ )|dτ e j , A +	s t 2	α(τ )dτ e j = A +	s t 2	(α(τ ) -|α(τ )|) dτ ≤ A.

1 with t 2 < T and t 2 < min{s ∈ [t 1 , T ] : y 2 (s) = y(s)}}. Observe that y 1 (t 2 ) = O and y(t 2 ) ∈ J j \ {O} for some j ∈ {1, . . . , N } with |y(t 2 )| ≤ A. In this case, we need to construct our competitor also in the interval [t 2 , T ]. To this end, we need

  Let us now investigate a closed graph property of the multi-valued map x ⇒ Γ opt [x] defined in(2.10). An intermediate step in the proof of Proposition 2.25 is Lemma 2.26 below which deals with the approximation of admissible trajectories. The proof of Lemma 2.26 is postponed after that of Proposition 2.25. Fix x ∈ G and (y, α) ∈ Γ[x]; consider a sequence {x n } n∈N of points x n ∈ G such that δ n

	Lemma 2.26.

Proposition 2.25. Fix x ∈ G and a sequence {x n } n∈N with x n ∈ G and x n → x as n → ∞. Consider (y n , α n ) ∈ Γ opt [x n ] for any n ∈ N. Assume that, as n → ∞, y n uniformly converge to a path y. Then, the y belongs to Y x,0 (defined in (2.2)). Moreover, there exists a measurable function α such that (y, α) belongs to Γ opt [x] defined in (2.10).

  Note that in contrast with Remark 2.15, we do not suppose that the costs ℓ i are Lipschitz continuous with respect to time.Proof. The proof borrows some ideas of[START_REF] Cannarsa | Cardaliaguet C 1,1 -smoothness of constrained solutions in the calculus of variations with application to mean field games[END_REF] Proposition 4.1] and is split into several steps.

	For brevity, we set
	(2.60)

Proposition 2.27. Under the same assumption as in Theorem 2.21, the value function is locally Lipschitz continuous in G × [0, T ).

Remark 2.28.

  t 1 , t 2 ∈ [0, T 1 ]. Without loss of generality, we may assume that t 1 ≤ t 2 .

	From Step 3 and Theorem 2.21,
	|u(x, t 2

Consider (y, α) ∈ Γ opt t 1 [x]. Observe that y(t 2 ) ∈ G R+V T . Let W ≥ V be the constant found in Theorem 2.21 for the set G 5(R+V T )/4 × [0, T 1 ]. Obviously, |u(x, t 2 )u(x, t 1 )| ≤ |u(x, t 2 )u(y(t 2 ), t 2 )| + |u(y(t 2 ), t 2 )u(x, t 1 )|.

  The main technical part of the proof of Proposition 2.31 makes use of the following lemma. Recall that by (2.26) α(t) is well defined. Consider x ∈ J i \{O} for some i = 1, . . . , N , t ∈ [0, T ) and (y, α) ∈ Γ opt t [x]. Set x = xe i . Under the same assumptions as in Proposition 2.31, there exists a constant C (depending on |x| and on Tt) such that

	Lemma 2.32. (2.71)				
	t * =	T -t 2	∧	x 2V	,
	One easily checks that				
	(2.73)				
	y				

u(x + h, t)u(x, t) + α(t) • h ≤ C|h| 2 for any h = he i with | h| sufficiently small. Proof of Proposition 2.31. Our arguments are reminiscent of [18, Corollary 3.2]. Lemma 2.32 implies that there exists a constant C (depending on r, R and on Tt) such that 1 2 u(x + h, t) + 1 2 u(xh, t)u(x, t) ≤ C|h| 2 , ∀h, |h| ≤ |x|. Since u is continuous (see Proposition 2.14), the latter inequality is equivalent to (2.71), see [19, Theorem 2.1.10]. Proof of Lemma 2.32. The arguments are reminiscent of the proof of [18, Lemma 3.1]. Consider t, x, (y, α) as in the statement. Take h = he i with |h| < x/2, and set where V is the constant associated to G x, see (2.60). Consider the trajectory (y h , α h ) starting at x + h at time t with the control (2.72) α h (s) = α(s)h/t * for s ∈ [t, t + t * ], and α h (s) = α(s) for s ∈ [t + t * , T ]. h (s) = y(s) + h t *s + t t * for s ∈ [t, t + t * ], and y h (s) = y(s) for s ∈ [t + t * , T ], and that y h (s) ∈ J i \ {O} for all s ∈ [t, T ]. Therefore, u(x + h, t)u(x, t) ≤ t+t * t |α h (s)| 2 -|α(s)| 2 2 + ℓ i (y h (s), s)ℓ i (y(s), s) ds. On the other hand, since α| [t,t+t * ]

  On the other hand, from Lemma 2.17, any trajectory (y n , α n ) ∈ Γ opt t [x n ] satisfies (2.76) on [t, t * ,n ) where t * ,n = T ∧ min{τ ∈ [t, T ] : y n (τ ) = O}. Observe now that, from Theorem 2.21, there exists t * ,min > t such that t * ,n ≥ t * ,min for any n. Hence, y n (τ ) = ξ n (τ ) for τ ∈ [t, t * ,min ]. From the uniform Lipschitz continuity of optimal trajectories (see Theorem 2.21), we deduce that y n uniformly converges to y as n → ∞. Next, Proposition 2.25 ensures that there exists a measurable function α such that (y, α) ∈ Γ opt

t [x]. Passing to the limit in (2.76), we infer that y(τ ) = ξ(τ ) in [t, t * ,min ]. The claim is proved.

  for the details. From Proposition 2.27, u is Lipschitz continuous on each interval [t, t 1 ] ⊂ [t, T ). Hence, also y is Lipschitz continuous on [t, t 1 ]. The same arguments as in the proof of [20, Lemma 4.11] yield

	d ds	u(y(s), s) = -	1 2	|y ′ (s)| 2 -ℓ i (y(s), s),
	for a.a. s ∈ (t, t * ). Integrating this inequality on (t, t * ) leads to
	u(x, t) = u(x, t) +	t	t *		|y ′ (s)| 2 2	+ ℓ i (y(s), s) ds.

  The set P( ΓC ) and the associated costs. Let P( ΓC ) denote the set of probability measures on ΓC endowed with the narrow topology. For t ∈ [0, T ], the evaluation map e t : ΓC → G is defined by e t (y) = y(t). For any µ ∈ P( ΓC ) and t ∈ [0, T ], define the Borel probability measure m µ (t) on G by m µ (t) = e t ♯µ. Clearly, supp(m µ (t)) ⊂ {x ∈ G : d(x, O) ≤ C}. It is possible to prove that, if µ ∈ P( ΓC ), then the map t → m µ (t) belongs to C 1/2 ([0, T ], P(G)), see Lemma 3.8 below. Hence, for all (y, α) ∈ Γ, the functions t → F i [m µ (t)](y(t)) are continuous and bounded by the constant K introduced in (H MFG 1

  ).

	Remark 3.2. We recall that for each y ∈ ΓC [x] there exists α ∈ L 2 ([0, T ], R d ) such that (y, α) ∈ Γ[x], from Theorem 2.2 and Remark 2.3 . Such a control α is unique for a.e. t ∈ {t ∈ [0, T ] : y(t) = O}, which is not the case in {t ∈ [0, T ] : y(t) = O}. However, the associated cost is independent of the choice of this control, namely: for any y ∈ ΓC [x], there holds
	J

µ (x; (y, α 1 )) = J µ (x; (y, α 2 )) ∀(y, α 1 ), (y, α 2 ) ∈ Γ[x].

  t. s 1 ∈ [t, T ) and s 2 ∈ (s 1 , T ]. Since it is strictly decreasing w.r.t. s 2 , let us choose s 2 = T so there remains to minimize 1

	1
	2

  Consider µ ∈ P m 0 ( ΓC ) and x ∈ supp(m 0 ). Consider also a sequence of probability measures {µ n } n∈N , with µ n ∈ P m 0 ( ΓC ), narrowly convergent to µ as n → ∞ and a sequence of points {x n } n∈N , with x n ∈ G and x n → x as n → ∞. Let {y n } n∈N be a sequence of paths such that y n ∈ Γµn,opt ] and y n uniformly converge to some path y as n → ∞. Then, y belongs to Γ µ,opt C

3, we first establish a closed graph property for the map Γ µ,opt C [x]. Proposition 3.10. C [x n

  2 . The same arguments as in the proof of Proposition 2.25 show that, possibly up to a subsequence (still denoted by α yn ), {α yn } n converges in the weak topology of L 2 ((0, T ), R d ) to some control α

y , with α y 2 ≤ C, that (y, α y ) ∈ Γ[x] and y ∈ ΓC [x]. The proof of point (i) is done. Concerning (ii), it suffices to prove that

J µ (x; (y, α y )) ≤ J µ (x; (ŷ, α)) ∀(ŷ, α) ∈ Γ[x].

Fix any (ŷ, α) ∈ Γ[x]. Lemma 2.26 ensures that there exists a sequence {ŷ n , αn )} n∈N such that (ŷ n , αn ) ∈ Γ[x n ], ŷn (T ) = ŷ(T ) and ŷn → ŷ uniformly in [0, T ] as n → ∞, αn 2 ≤ α 2 + o n (1), where o n (1) is a sequence such that lim n o n (1) = 0. Since y n ∈ Γµn,opt C [x n ], (3.10) J µn (x n ; (y n , α yn )) ≤ J µn (x n ; (ŷ n , αn )).

  ). From Lemma 3.8, the assumptions on the costs L i and Lebesgue dominated convergence theorem, | Ī6 | = o n (1). From Lemma 3.7, again the assumptions on the costs L i and Lebesgue dominated convergence theorem, | Ī7 | = o n (1). Finally, since ŷ is bounded and L i [m] are continuous, | Ī8 | = o n (1).

	To summarize, there holds					
	(3.11)	lim sup					
	(3.12)	0	T	|α yn (τ )| 2 2	dτ +	i=1 5	Îi ,
	where						
	Î1						

n J µn (x n ; (ŷ n , αn )) ≤ J µ (x; (ŷ, α)).

The left hand side of (3.10) is addressed with arguments from the proof of Proposition 2.11. By definition of cost (3.4), J µn (x n ; (y n , α yn )) =

  On the other hand, from Remark 2.7, (γ|[t-s,T ] , γ ′ |[t-s,T ] ) and (γ |[t,T ] , γ ′ |[t,T ] ) belong respectively to Γ opt t-s [γ(ts)] and to Γ opt t [γ(t)]. Hence, Letting s → 0 + , we infer 0 ≤ -p 1p 2 γ ′ (t) -|γ ′ (t)| 2 2 ℓ i [m(t)](x) ≤ -p 1 + H(x, t, p 2 )where the last inequality comes from the definition of H, see (2.78). (b). Point (b) is obtained with the arguments in the proof of [18, Proposition 4.2] replacing [18, Theorem 4.1] and [18, Corollary 4.1] respectively with point (a) and Lemma 3.16-(a).

					2	t-s t	γ ′ (τ )dτ + o(r).
				t t-s	|γ ′ (τ )| 2 2	+ ℓ[m(τ )](γ(τ )) dτ.
	The latter two observations yield
	t t-s	|γ ′ (τ )| 2 2 + ℓ This implies
	1 s	t t-s	|γ ′ (t)| 2 2	+ ℓ

u(γ(ts), ts)u(x, t) = i [m(τ )](γ(τ )) dτ ≤ -p 1 sp 2 t t-s γ ′ (τ )dτ + o(r).

Next, the regularity of m (see Theorem 3.6) and of γ in (ts, t) (see the Euler-Lagrange relation in Lemma 2.17) entail

ℓ i [m(τ )](γ(τ )) = ℓ i [m(t)](x) + O(s), and γ ′ (τ ) = γ ′ (t) + o(1)

for any τ ∈ (ts, t). i [m(t)](x) dτ + o(1) ≤ -p 1p 2 γ ′ (t) + o(1).

  φ(γ(t), t) -Dφ(γ(t), t) • Du(γ(t), t) ψ ǫ (γ(t)) -φ(γ(t), t)Dψ ǫ (γ(t)) • Du(γ(t),t) µ(dγ)dt. Dφ(γ(t), t)Du(γ(t), t)] 1 γ(t)∈J i \{O} µ(dγ)dt [φ(γ(t), t)φ(O, t)] Dψ ǫ (γ(t))Du(γ(t), t)µ(dγ) dt

	Dominated convergence theorem yields
	lim ǫ→0	I i1 =	0	T	χ(t)
	(3.28)	=	0	T	χ(t)	G	[∂ t φ(x, t) -Dφ(x, t)Du(x, t)] 1 x∈J i \{O} m(t)(dx) dt.
	On the other hand, there holds
	I i2 = -		0	T	χ(t)
	Hence,						
								I i = lim ǫ→0 (I i1 + I i2 )
	where						
		I i1 =	0	T	χ(t)

Γ ∂ t Γ (∂ t φ(γ(t), t) -Dφ(γ(t), t)Du(γ(t), t))ψ ǫ (γ(t))µ(dγ)dt I i2 = -T 0 χ(t) Γ φ(γ(t), t)Dψ ǫ (γ(t))Du(γ(t), t)µ(dγ)dt. Γ [∂ t φ(γ(t), t) -Γ
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J µ (x; ( y, α))

where J µ is defined in (3.4). Proposition 2.11 entails that for each µ ∈ P( ΓC ) and x ∈ G, the set Γ µ,opt [x] of optimal trajectories starting from x is not empty. We set Γ µ,opt = ∪ x∈G Γ µ,opt [x].

Remark 3.3.

From assumption (H MFG

), there exists a positive constant C such that, for every µ ∈ P( ΓC ), x ∈ G and (y, α) ∈ Γ µ,opt [x], there holds α 2 ≤ C. In particular, if m 0 ∈ P(G) has compact support, then for every µ ∈ P( ΓC ), x ∈ supp(m 0 ) and (y, α) ∈ Γ µ,opt [x], there holds y ∈ Γ C [x] (possibly after taking a larger value of the constant C).

The set P m 0 ( ΓC ). We assume

m 0 ∈ P(G) has compact support.

Let P m 0 ( ΓC ) denote the set of measures µ ∈ P( ΓC ) such that e 0 ♯µ = m 0 . In general, P m 0 ( ΓC ) may be empty. However, in the present framework, this is not the case: ) and (H MFG

), for C sufficiently large, P m 0 ( ΓC ) is not empty.

Proof. The proof consists of adapting some arguments in [START_REF] Cannarsa | Existence and uniqueness for Mean Field Games with state constraints[END_REF]Remark 3.2]. For C ≥ C (where C is the constant introduced in Remark 3.3), consider the map: j : supp(m 0 ) → ΓC , j(x)(t) = x for any t ∈ [0, T ]. Set m0 = m 0|supp(m 0 ) , the restriction of m 0 to its support.

Observe that e 0 #(j# m0 ) = m 0 , hence (j# m0 ) ∈ P m 0 ( ΓC ).

The set P m 0 (Γ Lip C,V ). We assume (H MFG

). Let P m 0 (Γ Lip C,V ) denote the set of measures µ ∈ P(Γ Lip C,V ) such that e 0 ♯µ = m 0 . Adapting the arguments in the proof of Lemma 3.4, we obtain that, for C and V sufficiently large, P m 0 (Γ Lip C,V ) is not empty. Let us give an example, particularly simple because the agents do not interact, in which the distribution of states may develop a singularity.

Example 3.1. In a junction with two edges, consider the costs:

Let (y, α) be an optimal trajectory starting at xe 2 at time t = 0. We claim that, for T sufficiently large, (y, α) reaches O at time t x = x/2 and stops there. Indeed, either y(•) = xe 2 in [0, T ] (and the corresponding cost is equal to T ) or there exists s 1 ∈ (0, T ] such that s 1 = min{s ∈ [0, T ] : y(s) = O} because the other possibilities are less convenient. In the latter case, y(

Then, from the Euler-Lagrange condition in Lemma 2.17, there holds α(•) = -ᾱe 2 in (0, s 1 ) for a constant ᾱ > 0. Hence, s 1 = x/ᾱ. The resulting cost is

Proof of Theorem 3.6

This paragraph contains the proof of Theorem 3.6. We proceed adapting the proof of Theorem 3.5 and using some ideas from [START_REF] Cannarsa | Cardaliaguet C 1,1 -smoothness of constrained solutions in the calculus of variations with application to mean field games[END_REF]Theorem 4.1]. We consider the multivalued map E, defined in (3.14) which has the closed graph property (see point (ii) in the proof of Theorem 3.5). We then introduce the multivalued map E 0 as the restriction of E to the set P m 0 (Γ Lip C,V ) where C and V are chosen as in the statement of the theorem. The proof consists of checking that E 0 fulfills the hypotheses of Kakutani fixed point theorem. To this end, we need to check that 

, for any μ ∈ E 0 (µ). Invoking [START_REF] Cannarsa | Cardaliaguet C 1,1 -smoothness of constrained solutions in the calculus of variations with application to mean field games[END_REF]Lemma 4.1], we get: μ ∈ P m 0 (Γ Lip C,V ) and the proof of (i) is achieved. (ii). From Lemma 3.1, the set ΓC is compact. Then, from Ascoli-Arzelà Theorem, Γ Lip C,V is compact. From Prokhorov theorem, P Lip (Γ Lip C,V ) is compact so, in particular, P m 0 (Γ Lip C,V ) is compact. (iii) and (iv). These properties have already been obtained in the proof of Theorem 3.5. We refer the reader to that proof for the details. In conclusion, by Kakutani theorem, there exists a fixed point of the map E 0 , namely a relaxed MFG equilibrium in P m 0 (Γ Lip C,V ).

Mild solutions

Let µ ∈ P m 0 (Γ) be a relaxed MFG equilibrium whose existence is guaranteed by Theorem 3.5. We consider the value function naturally associated to µ:

where J µ t is the cost defined in (3.4). Definition 3.2. Let µ ∈ P m 0 (Γ) be a relaxed MFG equilibrium. The pair (u, m) is the associated mild solution if u is the value function defined in (3.15) 

For simplicity of notations, we set (3.16) 

and we shall also use the abridged notation L as in (2.8). The costs ℓ i are those payed by the agents in the MFG. By Lemma 3.8, the functions ℓ i fulfill assumption (H 1 ).

The purpose of this section is to derive several properties of the value function from the results of Section 2. As a preliminary step, invoking Proposition 2.13, Proposition 2.14, Remark 2.15 and Lemma 3.8, we obtain the following proposition: Proposition 3.12. Under the assumptions of Theorem 3.5, the value function u defined in (3.15) has the following properties:

where

Applying Theorem 2.36, it can now be proved that u solves the HJ problem associated with the costs ℓ i . Theorem 3.13. Under the same assumptions as in Theorem 3.5, the value function u defined in (3.15) is a solution to (2.80) with the costs ℓ i defined in (3.16). Moreover, for all x ∈ G, t → u(x, t) is continuous in [0, T ] and u(x, T ) = g(x) with the costs g i defined in (3.16).

Corollary 3.14. Under the same assumptions as in Theorem 3.6, there holds

Proof. Assumption (H MFG

) entails that the costs ℓ i and g i associated to µ in (3.16) fulfill the assumption of Theorem 2.21. Hence, for proving points (a) and (b), it is enough to apply respectively Proposition 2.27 and Corollary 2.29.

Remark 3.15 (Uniqueness of the mild solution). We say that

are strictly monotone, then it can be proved with the same arguments as in [START_REF] Cannarsa | Existence and uniqueness for Mean Field Games with state constraints[END_REF]Theorem 4.1 and Remark 4.1], that if (u 1 , m 1 ) and (u 2 , m 2 ) are mild solutions respectively associated to two relaxed equilibria µ 1 and µ 2 , then u 1 = u 2 . Under a more restrictive monotonicity assumption on L, it can also be proved that m 1 = m 2 . It is worth noticing that the uniqueness of the mild solution does not imply the uniqueness of the relaxed MFG equilibrium as shown in the following example. For 0 < t 1 ≤ t 2 < T , consider four paths γ i ∈ Γ (i = 1, . . . , 4) such that

and such that γ 1 does not coincide with γ 3 on [0, t 1 ] and with γ 2 on [t 2 , T ]. Then (3.17) holds for the probabilities on Γ defined by

Let us provide examples of strictly monotone operators. d(x,y)) where d is the distance in G. The function K has the following properties:

y)m(dy).

Let the running cost L : P(G) × G → R be defined by

where ℓ : G × R → R is a smooth function such that w → ℓ(y, w) is strictly increasing for every y ∈ G. It is standard that 

and the equality in (3.18) holds true if and only if

Regularity of u in the interior of the edges

In what follows, we collect several properties of the value function in a mild solution, starting with easy consequences of the results contained in Section 2. Then we aim at obtaining more accurate information at the points (x, t) such that x lies in the support of m(t), i.e. the points that are actually hit by optimal trajectory. Lemma 3.16. We make the same assumptions as in Theorem 3.6. Let µ ∈ P m 0 (Γ) be a relaxed MFG equilibrium and (u, m) be the related mild solution.

(a) The function u is locally semi-concave in Next, let us prove that u is a bilateral subsolution (see [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi Bellman equations, Systems and Control: Foundations and Applications[END_REF]Definition III.2.27]) of the Hamilton-Jacobi equation and is differentiable at least at the points (x, t) such that x belongs to the support of m(t) and does not coincide with O. To this end, some new notations are useful. Set

and introduce the subdifferential of u at (x, t) ∈ Q m as

where x = xe j , y = ȳe j (note that j is uniquely defined, from the definition of Q m ).

Remark 3.17. Similar arguments as those in the proof of [START_REF] Cannarsa | Cardaliaguet Mean field games with state constraints: from mild to pointwise solutions of the PDE system[END_REF]Theorem 4.5] 

and

where K L > 1 and K G are positive constants that will chosen later (note that they fulfill assumptions (2.6) and (2.7)). The time horizon T will be chosen later. Take

It is obvious that every optimal trajectory (y, α) with y(0

and finally remain at V 2 until T . The constants T , K L and K G will be chosen sufficiently large so that τ 1 < T .

From the Euler-Lagrange condition (2.26), there exists

Let us minimize the cost J 0 (V 1 ; (y, α)) with respect to τ 1 and c. There holds

Hence, the minimum of

Let us take T larger than 1 + 1/ √ 2 and introduce the family

which are all optimal from the above calculations. There exists a positive constant C sufficiently large such each y τ belongs to ΓC . Define the measure µ on ΓC (defined in (3.2)) as follows: for all Borel set A ⊂ ΓC ,

where L is the Lebesgue measure. The measure µ fulfills

therefore, the measure µ is a relaxed MFG equilibrium. Let (u, m) be the corresponding mild solution. We claim that for all x ∈ G \ {V 1 , V 2 } and all t ∈ [0, T ]

Indeed,

the last equality is true since the set {τ ∈ [0, 1] : y τ (t) = x} contains at most one value.

The continuity equation

Consider a mild solution (u, m) associated to some relaxed MFG equilibrium µ ∈ P m 0 (Γ Lip C,V ). Here, we make the same hypotheses as in Theorem 3.6, and we study the evolution of the distribution m(t). We obtain that m satisfies (in a suitable weak sense) a continuity equation in which the drift is given as the optimal feedback from the Hamilton-Jacobi equation.

Theorem 3.22. Under the hypotheses of Theorem 3.6, let µ ∈ P m 0 (Γ Lip C,V ) be a relaxed MFG equilibrium and (u, m) be a related mild solution. Then, for every φ ∈ C ∞ (G ×[0, T ]) such that supp(φ(•, t)) is contained in a compact subset of G independent of t, there holds

For any i = 1, . . . , N , (

)

is well defined in D ′ (0, T ), and there holds

in the sense of D ′ (0, T ).

Remark 3.23. In fact, in the proof of Theorem 3.22, we will also obtain that, for all i = 1, . . . , N ,

in the sense of D ′ (0, T ).

Remark 3.24. Equation (3.20) implies in particular that for all

Before giving the proof of Theorem 3. is a bounded measurable function on (0, T ). In particular, F φ,i admits a derivative in D ′ (0, T ).

Proof. Fix φ and i as in the statement. Consider a family of functions {ψ ǫ } such that: ψ ǫ (x) ∈ [0, 1], ψ ǫ ∈ C ∞ (G), supp(ψ ǫ ) ⊂ J i \ {O} and ψ ǫ (x) = 1 for d(x, O) ≥ ǫ. Clearly, lim ǫ→0 ψ ǫ (x) = 1 J i \{O} (x) for any x ∈ G. The functions t → Γ φ(γ(t), t)ψ ǫ (γ(t))µ(dγ) are (Lipschitz) continuous. On the other hand, from the dominated convergence theorem, lim ǫ→0 Γ φ(γ(t), t)ψ ǫ (γ(t))µ(dγ) = F φ,i (t).

Being the pointwise limit of bounded continuous functions, the function F φ,i is measurable and bounded. 

φ(γ(t), t)1 γ(t)∈J i \{O} µ(dγ).

Note that Lemma 3.25 and Lemma 3.26 ensure that each contribution in the right hand side of the latter identity has a derivative in D ′ (0, T ). We may therefore calculate the distributional derivative of ζ. From now on, the notation •, • stands for the duality