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First order Mean Field Games on networks

Yves Achdou∗, Paola Mannucci†, Claudio Marchi ‡, Nicoletta Tchou §

June 21, 2022

Abstract
We study deterministic mean field games in which the state space is a network.

Each agent controls its velocity; in particular, when it occupies a vertex, it can enter
in any edge incident to the vertex. The cost is continuous in each closed edge but
not necessarily globally in the network. We shall follow the Lagrangian approach
studying relaxed equilibria which describe the game in terms of a probability measure
on admissible trajectories. The first main result of this paper establishes the existence
of a relaxed equilibrium. The proof requires the existence of optimal trajectories and
a closed graph property for the map which associates to each point of the network the
set of optimal trajectories starting from that point.
Each relaxed equilibrium gives rise to a cost for the agents and consequently to a value
function. The second main result of this paper is to prove that such a value function
solves an Hamilton-Jacobi problem on the network.

Keywords: deterministic mean field games, networks, state constraints, Lagrangian for-
mulation, first order Hamilton-Jacobi equations on networks.
2010 AMS Subject classification: 35F50, 35Q91, 35R02, 49K20, 49L25, 49N80, 91A16.

1 Introduction
The theory of mean field games (MFGs) has been investigated more and more since the
pioneering works [19, 20, 21] of Lasry and Lions. Its purpose is to study the asymptotic
behaviour of differential games, either deterministic or stochastic, as the number of players
tends to infinity. It is well known that, when the dynamics are deterministic, the math-
ematical modeling of the MFG reveals a system of PDEs coupling a continuity equation
for the density of the distribution of states (forward in time) and a Hamilton–Jacobi (HJ)
equation for the optimal value of a representative agent (backward in time); see [14]. The
major part of the literature on deterministic MFG addresses situations when the dynam-
ics of each player is strongly controllable and the players are not constrained to remain
in a given set. Nevertheless, under a strong controllability assumption, following ideas
contained in [9, 10, 15], Cannarsa et al. in [11, 12, 13] study some models in which the
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agents are constrained to remain in a given compact set Ω̄, where Ω is a regular bounded
open domain of the Euclidean space. In this setting, the distribution of states can become
singular so they introduce a relaxed notion of equilibrium, which is defined in a Lagrangian
setting rather than with PDEs: the evolution of the game is described in terms of prob-
ability measures defined on a set of admissible trajectories instead as a time-dependent
measures on the set of states. In the same vein, Mazanti and Santambrogio [23] obtain
the existence of MFG equilibria for minimal time MFGs; in their problem, each agent
aims to exit a given closed subset of a general compact metric space in minimal time
with a bounded speed. (For some generalizations in the Euclidean setting, see also [16]).
Moreover, in [3], Achdou et al. prove the existence of a relaxed equilibrium in the case of
deterministic MFG with control on the acceleration with state constraints; in this case,
the strong controllability condition does not hold and the Hamiltonian fails to be convex
or coercive.

The aim of the present paper is to prove similar results for MFGs where the state
space is a network. A network is a rather irregular set made of edges and vertices; here
we will focus on the model case of a junction where N half-lines are glued at a point, for
instance the origin, but we remark that all the results hold also for a general network with a
finite number of vertices and of edges. We assume that the agents control their velocity; in
particular, when an agent is in the junction, it can choose either to enter in any edge or to
remain in the junction. Moreover, the costs (running and terminal) can change from edge
to edge and other costs can appear for the times when the trajectories stay in the origin.
All the costs depend on the distribution of agents in a nonlocal, regularizing, manner.
If the time evolution of the distribution of the players is known, then each agent has to
solve an optimal problem with finite time horizon, a quadratic cost on the velocity and a
bounded cost which is continuous in the state inside each edge but not in the vertices.
The study of deterministic control problem on junctions, networks or stratified sets is
rather recent (see [2, 18, 17, 8, 22, 25]) and this topics still displays a lot of interesting
open problems. Let us recall that the aforementioned paper [23] on minimal time MFGs
also applies to networks. In the recent preprint [5] Gomes et al. study a class of stationary
MFG on networks that can be reformulated in terms of Wardrop equilibria.
The results of the present paper are the first step of a more general research project on
deterministic MFGs on networks which we intend to pursue. In the first part of this
paper we study the well posedness of the optimal control problem on networks (without
dependence on the distribution of states): we establish that, for each initial state, there
exists an optimal trajectory and that the map which associates to each point the set of
optimal trajectories starting from that point fulfills a closed graph property. We recall
the definition of the associated HJ problem on the network and of generalized viscosity
solution. We prove that the value function of our optimal control problem is a generalized
viscosity solution. From the point of view of the optimal control, the HJ at the junction
is motivated by two features of the problem. When it is in the junction, the agent may
remain there or enter in some edge (in particular, it can move only in the directions
pointing inward some edge and it cannot move in the opposite direction) and it has to
consider also a cost that appears only at the junction.

The second part deals with equilibria for MFG constrained in a network. The
main result of this paper is the existence of such a MFG equilibrium; the proof relies
on the Kakutani’s fixed point theorem and on a closed graph property. With such an
equilibrium at hand, the costs for the agents are well defined so we can introduce the
value function. Using the results obtained in the first part, we obtain that this value
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function is a generalized viscosity solution to the associated HJ problem.
Our work is a first attempt to prove the existence of a MFG equilibrium in the

model case of a junction with costs depending separately on the control (velocity) and on
the state, which may change from edge to edge and with another cost for the sole vertex.

We point out that in this article we have no formulation of the distribution of the
states of the agents in terms of a differential equation. Let us just observe that, in our
setting, singular measures (as Dirac measures) may appear; see Example 3.1 below.

In a forthcoming paper we will prove similar results for optimal control problems
(and MFGs) where the agents are constrained to remain in a network and control only
their acceleration, also in the case when the control set is bounded.

This paper is organized as follows. In the rest of this section we introduce the
geometry of a junction and some notations. Section 2 is devoted to optimal control problem
on the junction; in particular, we establish the existence of an optimal trajectory for every
starting point, a closed graph property for the map that associates to each point the set of
optimal trajectories and some properties of the value function (mainly, that it solves a HJ
problem on the junction). Section 3 concerns deterministic MFGs on the junction; taking
advantage of the results of previous section, we prove the existence of a MFG equilibrium
and that the value function of the associated optimal control problem solves a HJ problem.

1.1 Notations

The geometry of a junction. We shall adopt the notations of the paper [4]. We focus
on the model case of a junction in Rd with N (N > 1) semi-infinite straight edges, denoted
by (Ji)i=1,...,N . The edge Ji is the closed half-line R+ei. The vectors ei are two by two
distinct unit vectors in Rd. The half-lines Ji are glued at the origin O to form the junction
G:

G =
N⋃
i=1

Ji.

The geodetic distance d(x, y) between two points x, y of G is

d(x, y) =
{
|x− y| if x, y belong to the same edge Ji
|x|+ |y| if x, y belong to different edges Ji and Jj .

If ϕ is a function on Ji, with a small abuse of notations, we still denote ϕ the function
R+ 3 x̄ 7→ ϕ(x̄ei) defined on R+.

Gradient of a function. We denote C1(G) the set of continuous functions ϕ ∈ C(G)
such that, for every i = 1, . . . , N their restriction to the edge Ji, ϕ|Ji belongs to C1(R+);
moreover, for ϕ ∈ C1(G), we set

(1.1) Dϕ(x) =
{
Dϕ|Ji if x ∈ Ji \ {O}(
Dϕ|J1 , . . . , Dϕ|JN

)
if x = O;

note that Dϕ(x) is 1-dimensional when the point x is “inside” some edge while it is N -
dimensional when the point x coincides with the vertex O. In a similar manner, we denote
C1(G × [0, T ]) the set of continuous functions ϕ ∈ C(G × [0, T ]) such that their restriction
to each edge ϕ|Ji×[0,T ] belongs to C1(Ji × [0, T ]).

3



2 The optimal control problem
For T > 0, we consider optimal control problems with horizon T which have different
running costs in the edges and at the vertex. We are going to describe the assumptions
on the dynamics and costs in each edge Ji. The sets of controls are denoted by Ai
and the system is driven by a dynamics f̃i and the running cost is given by ˜̀

i. For
the sake of simplicity, we shall focus our study on the case where the agent chooses
directly its velocity and the cost depend separately on the control, namely: f̃i = α and
˜̀
i(x, t, α) = `i(x, t) + |α|2/2. However, let us stress that all our calculations may be easily
extended to more general settings such as: networks (instead of a simple junction), running
costs which are strongly convex and coercive in the control and depend separately on the
control and dynamics strongly controllable, at most linear with respect to the control and
with unbounded velocity. Our main assumptions are as follows

[H0] For i = 0, . . . , N , in order to avoid confusion among the control sets, we set Ai =
{i}×R; hence, the sets Ai are disjoint. We set A :=

⋃N
i=0Ai. For a = (i, ā) ∈ A, we

denote |a| = |ā|. We identify a and āei so, with some abuse of notations, we shall
write āei instead of (i, ā) and viceversa.
We set fi : Ji × Ai → R, with fi(x, a) = ā for a = (i, ā) and we will use the
notation Fi(x) for the set {fi(x, a)ei, a ∈ Ai} = Rei for x ∈ Ji (i = 1, . . . , N) and
F0(O) = {0}.

[H1] For i = 1, . . . , N , the functions `i : Ji × [0, T ] → R are continuous and bounded
functions. We introduce `∗ : [0, T ]→ R continuous and bounded.
For i = 1, . . . , N , the functions gi : Ji → R are continuous and bounded functions.
Let g∗ be a fixed number.

We now provide a general version of Filippov implicit function lemma, which will
be useful to prove Theorem 2.2 below. For the proof, we refer the reader to [24].

Theorem 2.1 Let I be an interval of R and γ : I → Rd × Rd be a measurable function.
Let A be a metric space. Let K be a closed subset of Rd × A and Ψ : K → Rd × Rd be
continuous. Assume that γ(I) ⊂ Ψ(K), then there is a measurable function Φ : I → K
with

Ψ ◦ Φ(t) = γ(t) for a.a. t ∈ I.

Let us introduce the set

(2.1) M = {(x, a); x ∈ G, a ∈ Ai if x ∈ Ji\{O}, and a ∈ A if x = O}

and note that it is closed; moreover, since the sets Ai are disjoint, for each (x, a) ∈ M
there exist a unique i ∈ {1, . . . , N} and a unique ā ∈ R such that (x, a) = (x, (i, ā)). We
also define the function f on M by

∀(x, a) ∈M, f(x, a) =


fi(x, a)ei if x ∈ Ji\{O},
fi(O, a)ei if x = O and a ∈ Ai, i 6= 0,
0 if x = O and a ∈ A0.

The function f is continuous on M because the sets Ai are disjoint. Let F̃ (x) be defined
by

F̃ (x) =
{
Fi(x) if x ∈ Ji\{O}
∪Ni=0Fi(O) if x = O.

4



For x ∈ G, the set of admissible curves starting from x is

(2.2) Yx,0 =
{
yx ∈W 1,2([0, T ];G) :

∣∣∣∣∣ ẏx(t) ∈ F̃ (yx(t)), for a.e. t > 0,
yx(0) = x,

}
.

Theorem 2.2 Assume [H0] and [H1]. Then

1. For any x ∈ G, Yx,0 is nonempty.

2. For any x ∈ G, for any yx ∈ Yx,0, there exists a measurable function Φ : [0, T ]→M ,
Φ = (φ1, φ2) such that

φ2 = (i, φ̄2), with φ̄2 ∈ R, when φ1 ∈ Ji \ {O}
(yx(s), ẏx(s)) = (φ1(s), f(φ1(s), φ2(s))), for a.e. s,

which means in particular that yx is a continuous representation of φ1

3. Almost everywhere in [0, T ],

ẏx(s) =
N∑
i=1

1{yx(s)∈Ji\{O}}φ̄2(s)ei.

4. Almost everywhere on {s : yx(s) = O}, f(O,φ2(s)) = 0.

Proof. The proof of point 1 is easy, because 0 ∈ F̃ (x) for every x ∈ G.
The proof of point 2 is a consequence of Theorem 2.1, with K = M , I = [0, T ], γ(s) =
(yx(s), ẏx(s)) and Ψ(x, a) = (x, f(x, a)).
From point 2, we deduce

ẏx(s) =
N∑
i=1

1{yx(s)∈Ji\{O}}φ̄2(s)ei + 1{yx(s)=O}f(O,φ2(s)),

and from Stampacchia’s theorem, f(O,φ2(s)) = 0 almost everywhere in {s : yx(s) = O}.
This yields points 3 and 4. 2

Remark 2.1 It is worth noticing that in Theorem 2.2, a solution yx can be associated
with several control laws φ2 which may be different even on sets with positive measure.
Actually, for a.e. s ∈ {s ∈ [0, T ] | yx(s) ∈ Ji \ {O}}, the control φ2(s) is uniquely defined
as φ2(s) = ẏx(s) and belongs to Rei (for i = 1, . . . , N). On the other hand, for a.e.
s ∈ {s ∈ [0, T ] | yx(s) = O}, by Stampacchia theorem, the control φ2(s) is null and it can
be arbitrarily chosen in any Ai, for i = 0, . . . , N .

For any x ∈ G and t1, t2 ∈ [0, T ] with t1 < t2, we introduce the set of admissible
trajectories (namely, couples of controls and curves) on the interval [t1, t2] which start
from x at t1:
(2.3)

Γt1,t2 [x] =

 (yx, α) ∈ L2([t1, t2],M) : yx ∈W 1,2([t1, t2];G),
yx(s) = x+

∫ s

t1
f(yx(τ), α(τ))dτ in [t1, t2]

 ;
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for simplicity, when t2 = T , we just write Γt1 [x] instead of Γt1,T [x] and, when t2 = T and
t1 = 0, we drop the subscript: Γ[x] = Γ0,T [x]. Moreover, we define the set of all admissible
trajectories starting at time t = 0 as follows:

(2.4) Γ :=
⋃
x∈G

Γ[x].

Remark 2.2 The concatenation of two admissible trajectories is still an admissible tra-
jectory. In other words, for 0 ≤ t1 ≤ t2 ≤ t3 ≤ T and x ∈ G, if (y1, α1) ∈ Γt1,t2 [x] and
(y2, α2) ∈ Γt2,t3 [y1(t2)], the trajectory (ỹ, α̃) defined by

ỹ(s) :=
{
y1(s) for s ∈ [t1, t2]
y2(s) for s ∈ [t2, t3] and α̃(s) :=

{
α1(s) for s ∈ [t1, t2]
α2(s) for s ∈ [t2, t3]

belongs to Γt1,t3 [x].

The cost functional. The cost associated to the trajectory (yx, α) ∈ Γt[x] is

(2.5) Jt(x; (yx, α)) =
∫ T

t

[
N∑
i=1

`i(yx(τ), τ)1yx(τ)∈Ji\{O} + `O(τ)1yx(τ)=O

]
dτ

+
∫ T

t

|α(τ)|2

2 dτ + g(yx(T ))

where (recall that g∗ and `∗ are introduced in assumption (H1))

`O(τ) = min{`∗(τ), min
i=1,...,N

`i(O, τ)}

g(y) =
N∑
i=1

gi(y)1y∈Ji\{O} + min{g∗, min
i=1,...,N

gi(O)}1y=O(2.6)

For brevity, we introduce

(2.7) L(x, t) :=
N∑
i=1

`i(x, t)1x∈Ji\{O} + `O(t)1x=O ∀(x, t) ∈ G × [0, T ]

so to write

Jt(x; (yx, α)) =
∫ T

t

(
L(yx(τ), τ) + |α(τ)|2

2

)
dτ + g(yx(T )).

Remark 2.3 Using the same arguments, we can also tackle the case of a cost of the form

Jt(x; (yx, α)) =
∫ T

t

[
N∑
i=1

`i(yx(τ), τ)1yx(τ)∈Ji\{O} +
N∑
i=0

`i(O, τ)1yx(τ)=O,α(τ)∈Ai

]
dτ

+
∫ T

t

|α(τ)|2

2 dτ + g(yx(T ))

where `0(O, τ) = `∗(τ).
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The value function. The value function of the optimal control problem is

(2.8) u(x, t) = inf
(y,α)∈Γt[x]

Jt(x; (y, α)).

We denote

(2.9) Γopt
t [x] = {(y, α) ∈ Γt[x] : Jt(x; (y, α)) = min

(ŷ,α̂)∈Γt[x]
Jt(x; (ŷ, α̂))}

and, for simplicity, when t = 0 we drop the subscript: Γopt[x] = Γopt
t [x].

Remark 2.4 The optimal controls are uniformly bounded in L2 and the value function u
is bounded. Indeed, by the boundedness of the costs `i and of g, testing the cost with the
trajectory given by the control α ≡ 0, we deduce that there exists a constant C such that,
for every (y, α) ∈ Γopt

t [x], there holds ‖α‖2 ≤ C. Again by the boundedness of the costs,
we deduce that u is bounded.

Remark 2.5 The restriction of an optimal trajectory is still an optimal trajectory: for
(y, α) ∈ Γopt

t [x], (y|[t̄,T ], α|[t̄,T ]) ∈ Γopt
t̄

[y(t̄)] for every t̄ ∈ [t, T ]. Indeed, assume by con-
tradiction that there exists a trajectory (ȳ, ᾱ) ∈ Γopt

t̄
[y(t̄)] such that Jt̄(y(t̄); (ȳ, ᾱ)) <

Jt̄(y(t̄); (y|[t̄,T ], α|[t̄,T ])). Then, by Remark 2.2, the concatenation (ỹ, α̃) of (y, α) with (ȳ, ᾱ),
defined by

ỹ(s) =
{
y(s) for s ∈ [t, t̄]
ȳ(s) for s ∈ [t̄, T ] , α̃(s) =

{
α(s) for s ∈ [t, t̄]
ᾱ(s) for s ∈ [t̄, T ]

belongs to Γt[x] and consequently there holds

u(x, t) = Jt(x; (y, α)) =
∫ t̄

t

(
L(y(τ), τ) + |α(τ)|2

2

)
dτ + Jt̄(y(t̄); (y|[t̄,T ], α|[t̄,T ]))

>

∫ t̄

t

(
L(y(τ), τ) + |α(τ)|2

2

)
dτ + Jt̄(y(t̄); (ȳ, ᾱ)) = Jt(x; (ỹ, α̃))

which contradicts the optimality of (y, α).

2.1 Existence of optimal trajectory

Let us now establish that for every starting point (x, t) ∈ G× [0, T ] there exists an optimal
trajectory.

Proposition 2.1 For each point (x, t) ∈ G × [0, T ], there exists an optimal trajectory,
namely there exists (yx, α) ∈ Γt[x] such that u(x, t) = Jt(x; (yx, α)). In particular,
Γopt[x] 6= ∅.

Proof. Fix (x, t) ∈ G× [0, T ] and consider a minimizing sequence (yn, αn) ∈ Γt[x], namely
such that u(x, t) = limn→∞ Jt(x; (yn, αn)). By Remark 2.4, there exists a constant C,
independent of n, such that

(2.10)
∫ T

t

|αn(τ)|2

2 dτ ≤ C.
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Moreover, from

(2.11) yn(s) = x+
∫ s

t

N∑
i=1

1{yn(τ)∈Ji\{O}}ᾱ
n(τ)ei dτ,

we infer that the curves yn are uniformly bounded and uniformly 1/2-Hölder continuous.
Possibly passing to subsequences (that we still denote by αn and yn), there exist a

α ∈ L2([t, T ];Rd) and a curve yx ∈ C1/2([t, T ];Rd) such that:
∑N
i=1 1{yn(·)∈Ji\{O}}ᾱ

n(·)ei
converge to α in the weak topology of L2([t, T ];Rd) and yn uniformly converge to yx. In
particular, letting n→∞ in (2.11), we obtain

(2.12) yx ∈W 1,2([t, T ];Rd) with yx(s) = x+
∫ s

t
α(τ) dτ ∈ G.

We now claim

(2.13) (yx, α) ∈ Γt[x].

In order to prove this property, it suffices to prove that α is an admissible control namely
that (yx(s), α(s)) belongs to M for a.e. s ∈ (t, T ). To this end, we split our arguments
according to the fact that yx(s) coincides or not with O.
Consider s ∈ (t, T ) such that yx(s) ∈ Ji \ {O} for some i = 1, . . . , N . Since the yn are
uniformly 1/2-Holder continuous and uniformly converge to yx, we deduce that, for ε > 0
sufficiently small and for any n sufficiently large, there holds

yn(τ) ∈ Ji \ {O} ∀τ ∈ (s− ε, s+ ε).

In particular, for n sufficiently large, αn(τ) = ᾱn(τ)ei for τ ∈ (s−ε, s+ε). Letting n→∞,
we conclude that α(τ) is parallel to ei for τ ∈ (s− ε, s+ ε).
Consider s ∈ E := {s ∈ (t, T ) : yx(s) = O}. By (2.12), from Stampacchia’s theorem, we
get α = 0 a.e. in s ∈ E. So, for instance, we can write α = 0e1 in E without modifying
the curve yx. Hence, our claim (2.13) is completely proved.

Let us now prove that (yx, α) is an optimal trajectory namely that there holds

(2.14) u(x, t) = Jt(x; (yx, α)).

Indeed, we have

u(x, t) = lim
n→∞

[∫ T

t

|αn(τ)|2

2 dτ +
5∑
i=1

Ii

]
(2.15)

where

I1 =
∫ T

t

N∑
i=1

`i(yn(τ), τ)1yn(τ)∈Ji\{O}1yx(τ)∈Ji\{O}dτ

I2 =
∫ T

t

N∑
i=1

`i(yn(τ), τ)1yn(τ)∈Ji\{O}1yx(τ)∈G\Jidτ

I3 =
∫ T

t

N∑
i=1

`i(yn(τ), τ)1yn(τ)∈Ji\{O}1yx(τ)=Odτ

I4 =
∫ T

t
`O(τ)1yn(τ)=Odτ

I5 = g(yn(T )).
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We shall study separately the contributions in the right hand side of (2.15). By standard
theory, the convergence in the weak topology of L2([t, T ];Rd) entails

(2.16)
∫ T

t

|α(τ)|2

2 dτ ≤ lim inf
n→∞

∫ T

t

|αn(τ)|2

2 dτ.

In I1, the uniform convergence of yn to yx as n→∞ and the continuity of `i ensure that,
for each i, there holds

`i(yn(τ), τ)1yn(τ)∈Ji\{O}1yx(τ)∈Ji\{O} → `i(yx(τ), τ)1yx(τ)∈Ji\{O} as n→∞;

since the `i’s are bounded, the dominated convergence theorem yields

(2.17) I1 →
∫ T

t

N∑
i=1

`i(yx(τ), τ)1yx(τ)∈Ji\{O}dτ as n→∞.

In I2, again the uniform convergence of yn to yx and the continuity of `i ensure that the
integrand tends to zero as n→∞; again by the dominated convergence theorem, we infer:

(2.18) I2 → 0 as n→∞.

Let us now consider the term I5 and we split our arguments according to the fact that
yx(T ) coincides or not coincides with O. If yx(T ) ∈ Ji \ {O} for some i ∈ {1, . . . , N} then,
the uniform convergence of yn to yx and the continuity of gi entail g(yn(T )) = gi(yn(T ))→
gi(yx(T )) = g(yx(T )) as n → ∞. If yx(T ) = O, again by the uniform convergence of yn
to yx and by the definition of g in (2.6), for any ε > 0, we get g(yn(T )) ≥ g(O) − ε =
g(yx(T ))− ε for n sufficiently large. In both cases, we obtain

(2.19) lim inf
n→∞

I5 ≥ g(yx(T )).

On the other hand, we observe

I3 + I4 =
∫ T

t

[
N∑
i=1

`i(yn(τ), τ)1yn(τ)∈Ji\{O} + `O(τ)1yn(τ)=O

]
1yx(τ)=Odτ

+
∫ T

t
`O(τ)1yn(τ)=O1yx(τ)6=Odτ.

We note 1yn(·)=O1yx(·)6=O → 0 a.e. as n → ∞; hence, by the dominated convergence
theorem, we obtain ∫ T

t
`O(τ)1yn(τ)=O1yx(τ)6=Odτ → 0 as n→∞.

Assume for the moment, that

(2.20) lim inf
n→∞

∫ T

t

[
N∑
i=1

`i(yn(τ), τ)1yn(τ)∈Ji\{O} + `O(τ)1yn(τ)=O

]
1yx(τ)=Odτ

≥
∫ T

t
`O(τ)1yx(τ)=Odτ.

9



Replacing the relations (2.16)-(2.20) in (2.15), we obtain

u(x, t) ≥
∫ T

t

[
|α(τ)|2

2 +
N∑
i=1

`i(yx(τ), τ)1yx(τ)∈Ji\{O} + `O(τ)1yx(τ)=O

]
dτ + g(yx(T ))

which is equivalent to our statement (2.14).
It remains to prove inequality (2.20). To this end, we note that the set E is compact.

Consider any ε > 0. Since yn uniformly converge to yx, there holds ‖yn−yx‖L∞(E) ≤ ε for
n sufficiently large. Hence, by the continuity of `i, we have that, for n sufficiently large,
there holds

`i(yn(τ), τ) > `O(τ)− ε ∀τ ∈ E

which easily implies inequality (2.20). 2

2.2 Closed graph property

In this subsection, we establish that Γopt[x], defined in (2.9), verifies the closed graph
property.

Proposition 2.2 Fix x ∈ G and a sequence {xn}n∈N with xn ∈ G and xn → x as n→∞.
Consider (yn, αn) ∈ Γopt[xn] for any n ∈ N. Assume that, as n → ∞, yn uniformly
converge to a curve y. Then, the curve y belongs to Yx,0 (defined in (2.2)). Moreover,
there exists a measurable function α such that (y, α) belongs to Γopt[x], defined in (2.9).

To this end, we first establish a result on the approximation of admissible trajectories
whose proof is postponed at the end of this subsection.

Lemma 2.1 Fix x ∈ G and (y, α) ∈ Γ[x]; consider a sequence {xn}n∈N of points xn ∈ G
such that δn := d(xn, x)→ 0 as n→∞. Then, there exists a sequence {(yn, αn)}n∈N such
that, for any n ∈ N, (yn, αn) ∈ Γ[xn],

(2.21)
(i) sup[0,T ] d(yn(·), y(·)) ≤ δn + ‖α‖2

√
δn with yn(T ) = y(T )

(ii) ‖αn‖22 ≤ ‖α‖22 + δn
(
1 + ‖α‖22

T−δn

)
(iii) lim

n→∞
J0(xn; (yn, αn)) = J0(x; (y, α)).

Proof of Proposition 2.2. Consider x, xn, (y, α) and y as in the statement. We have to
prove that there exists a control α such that

i) (y, α) belongs to Γ[x], namely it is admissible for x,
ii) (y, α) is optimal for J0, namely: J0(x, (y, α)) ≤ J0(x, (ŷ, α̂)) for every (ŷ, α̂) ∈ Γ[x].

Fix any (ŷ, α̂) ∈ Γ[x]. Lemma 2.1 ensures that there exists a sequence {(ŷn, α̂n)}n∈N such
that (ŷn, α̂n) ∈ Γ[xn] and

(2.22)
ŷn → ŷ uniformly in [0, T ] as n→∞, ‖α̂n‖2 ≤ ‖α̂‖2 + on(1),

lim sup
n→∞

J0(xn; (ŷn, α̂n)) ≤ J0(x; (ŷ, α̂))

where on(1) is a sequence such that limn on(1) = 0. On the other hand, the optimality of
(yn, αn) yields

(2.23) J0(xn; (yn, αn)) ≤ J0(xn; (ŷn, α̂n)).
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From the last relations we deduce that J0(xn; (yn, αn)) are uniformly bounded and, in
particular that there exists a constant C, independent of n, such that

∫ T
t |αn(τ)|2 dτ ≤ C.

Hence, repeating the same arguments as those in the proof of Proposition 2.1 (in partic-
ular, those of (2.13)), we deduce that {αn}n∈N converges to some control α in the weak
topology of L2([0, T ],Rd) and (y, α) ∈ Γ[x]. Hence, the proof of point (i) is achieved.
Performing the lim infn in (2.23) and using (2.22), we also deduce J0(x, (y, α)) ≤ J0(x, (ŷ, α̂)).
By the arbitrariness of (ŷ, α̂) ∈ Γ[x], the proof of point (ii) is achieved. 2

Proof of Lemma 2.1. Without any loss of generality (possibly passing to a subsequence
that we still denote {xn}), we assume that, for n sufficiently large, all the points x and xn
belong to the same edge (for simplicity, say the first one J1); indeed, for x = O, we
can argue edge by edge using the fact that the edges incident in O are finite. We write:
x = x̄e1, xn = x̄ne1 for x̄, x̄n ∈ R+. We note δn = d(x, xn) = |x̄− x̄n|. We now introduce
a control αn such that the corresponding curve yn is admissible (namely, it remains in the
network). To this end, we introduce the control

αn(s) =


{
e1 if x̄n ≤ x̄
−e1 if x̄n > x̄

}
for s ∈ [0, δn]

T
T−δnα

(
(s− δn) T

T−δn

)
for s ∈ (δn, T ]

(note that here the structure Ai = {i}×R plays a crucial role) and we denote yn the curve
starting from the point xn and obeying to the control αn, namely

yn(s) = xn +
∫ s

t
αn(τ) dτ.

We observe that, for s ∈ [0, δn] we have

yn(s) = xn + (x− xn)d(x, xn)−1s;

in particular, yn(δn) = x. For s ∈ [δn, T ], by definition of αn and a change of variable, we
get

yn(s) = x+
∫ s

δn

T

T − δn
α

(
(τ − δn) T

T − δn

)
dτ = x+

∫ (s−δn) T
T−δn

0
α(τ) dτ

= y

(
(s− δn) T

T − δn

)
;(2.24)

in particular, (yn, αn) is an admissible trajectory with

(2.25) yn(T ) = y(T ).

Note that yn is the trajectory that starts in xn, moves with speed 1 towards x, reaches
the point x at time δn (clearly, in this time interval it always remains in the edge e1) and,
from time δn follows the trajectory y with a time rescaling such that yn(T ) = y(T ).

Let us now estimate d(y(s), yn(s)). For s ∈ [0, δn], we have

d(y(s), yn(s)) ≤ d(yn(s), x) + d(y(s), x) ≤ (δn − s) +
∫ s

0
|ᾱ(τ)| dτ

≤ (δn − s) + ‖α‖2
√
s

11



where the last inequality is due to Hölder inequality.
For s ∈ [δn, T ], by (2.24), we have

d(y(s), yn(s)) = d

(
y(s), y

(
(s− δn) T

T − δn

))
≤
∫ s

(s−δn) T
T−δn

|ᾱ(τ)| dτ

≤ ‖α‖2
√
δn

√
T − s
T − δn

.

The last two inequalities easily imply the bound in (2.21)-(i).
Let us now prove the bound in (2.21)-(ii). By definition of αn, we have

‖αn‖22 = δn +
∫ s

δn

(
T

T − δn

)2
α

(
(τ − δn) T

T − δn

)2
dτ = δn +

∫ T

0

T

T − δn
α(τ)2 dτ

= δn + ‖α‖22 + δn
T − δn

‖α‖22

which easily implies the bound of (2.21)-(ii).
We now prove (2.21)-(iii). Relation (2.25) entails: g(yn(T )) = g(y(T )); hence, there

holds

(2.26) J0(xn; (yn, αn))− J0(x; (y, α)) =
4∑
i=1

Ii

where

I1 =
∫ δn

0

[
N∑
i=1

`i(yn(τ), τ)1yn(τ)∈Ji\{O} + `O(τ)1yn(τ)=O

]
dτ

I2 = ‖αn‖22 − ‖α‖22
2

I3 =
∫ T

δn

[
N∑
i=1

`i(yn(τ), τ)1yn(τ)∈Ji\{O} + `O(τ)1yn(τ)=O

]
dτ

I4 = −
∫ T

0

[
N∑
i=1

`i(y(τ), τ)1y(τ)∈Ji\{O} + `O(τ)1y(τ)=O

]
dτ.

By the boundedness of `i, for K =
∑N

1 ‖`i‖∞ + ‖`∗‖∞, we have

|I1| ≤ Kδn.

Relation (2.21)-(ii) entails

|I2| ≤
δn
2

(
1 + ‖α‖22

T − δn

)
.

Moreover, taking advantage of relation (2.24) and our choice of αn, we have

I3 =
∫ T

δn

[
N∑
i=1

`i

(
y

(
(τ − δn) T

T − δn

)
, τ

)
1
y
(
(τ−δn) T

T−δn

)
∈Ji\{O}

+`O(τ)1
y
(
(τ−δn) T

T−δn

)
=O

]
dτ.
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Moreover, by a change of variable in the last integral, we obtain

I3 =
∫ T

0

[
N∑
i=1

`i

(
y(ξ), T − δn

T
ξ + δn

)
1y(ξ)∈Ji\{O}

+`O
(
T − δn
T

ξ + δn

)
1y(ξ)=O

](
1− δn

T

)
dξ.

Therefore, let G1 a bounded subset of G such that y(s) belongs to G1 for all s ∈ [0, T ]; let
ω be a common modulus of continuity of the `i in G1. Last relation and definition of I4
yield

|I3 + I4| ≤
∫ T

0
(N + 1)ω

(
δn
T − ξ
T

)
dξ + δn(N + 1)K ≤ (N + 1)Tω(δn).

Replacing all these estimates in (2.26) and passing to the lim sup, we accomplish the proof
of (iii). 2

2.3 Properties of the value function

We can now establish some useful properties of the value function: the dynamic program-
ming principle and the continuity of u. Let us underline that the structure of our control
set (in particular, that α = 0 belongs to every Ai) plays a crucial role.

Proposition 2.3 (Dynamic programming principle) Assume [H0] and [H1]. For
any (x, t) ∈ G × [0, T ] and t̄ ∈ [t, T ], there holds

(2.27) u(x, t) = inf
(y,α)∈Γt,t̄[x]

{
u(y(t̄), t̄) +

∫ t̄

t

(
L(y(τ), τ) + |α(τ)|2

2

)
dτ

}
.

Proof. (i). For any (y, α) ∈ Γt[x], there holds

Jt(x, (y, α)) =
∫ t̄

t

(
L(y(τ), τ) + |α(τ)|2

2

)
dτ + Jt̄(y(t̄), (y|[t̄,T ], α|[t̄,T ]))

≥
∫ t̄

t

(
L(y(τ), τ) + |α(τ)|2

2

)
dτ + u(y(t̄), t̄)

where (y|[t̄,T ], α|[t̄,T ]) is the restriction of the trajectory (y, α) in the interval [t̄, T ]. Passing
to the infumum over (y, α) ∈ Γt[x], we achieve relation (2.27) with the “=” replaced
with “≥”.

We now prove the other inequality. Consider (y, α) ∈ Γt,t̄[x]. For (ȳ, ᾱ) ∈ Γopt
t̄

[y(t̄)]
(whose existence is ensured by Proposition 2.1), we have

u(y(t̄), t̄) +
∫ t̄

t

(
L(y(τ), τ) + |α(τ)|2

2

)
dτ = Jt(x, (ỹ, α̃)) ≥ u(x, t)

where (ỹ, α̃) is the concatenation of the trajectory (y, α) on [t, t̄] and of the trajectory
(ȳ, ᾱ) on [t̄, T ]; we recall from Remark 2.2 that (ỹ, α̃) ∈ Γt[x]. Passing to the infimum over
(ȳ, ᾱ) ∈ Γt̄[y(t̄)], we accomplish the proof. 2
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We can now establish the continuity of u.

Proposition 2.4 (Continuity of the value function) Assume [H0] and [H1]. Then,
the function u is continuous in G × [0, T ).

Proof. Consider (x1, t1), (x2, t2) ∈ G×[0, T1), with T1 < T and δ := d(x1, x2) < (T−T1)/2.
Without any loss of generality, we can assume that both x1 and x2 belong to the same
edge, say e1. Consider (y2, α2) ∈ Γopt

t2 [x2]. Consider the trajectory that starts in x1 at
time t1 and obeying to the control

α1(s) =


{
e1 if x1 ≤ x2
−e1 if x1 > x2

}
for s ∈ [t1, t1 + δ]

T−t2
T−t1−δα2

(
T−t2
T−t1−δs−

T (δ+t1−t2)
T−t1−δ

)
for s ∈ (t1 + δ, T ];

hence, the corresponding curve is

y1(s) =


x1 + x2−x1

δ (s− t1) for s ∈ [t1, t1 + δ)
x2 for s = t1 + δ

x2 +
∫ s
t1+δ

T−t2
T−t1−δα2

(
T−t2
T−t1−δ τ −

T (δ+t1−t2)
T−t1−δ

)
dτ for s ∈ [t1 + δ, T ].

We observe that, for s ∈ [t1 + δ, T ], there holds

y1(s) = x2 +
∫ T−t2

T−t1−δ
s−T (δ+t1−t2)

T−t1−δ

t2
α2(ξ)) dξ = y2

(
T − t2

T − t1 − δ
s− T (δ + t1 − t2)

T − t1 − δ

)
and we deduce that (y1, α1) ∈ Γt1(x1) with y1(T ) = y2(T ). We also estimate

‖α1‖2L2(t1,T ) = δ +
∫ T

t1

(
T − t2

T − t1 − δ

)2 ∣∣∣∣α2

(
T − t2

T − t1 − δ
s− T (δ + t1 − t2)

T − t1 − δ

)∣∣∣∣2 dτ
= δ + T − t2

T − t1 − δ
‖α2‖2L2(t2,T )

= δ + ‖α2‖2L2(t2,T ) + t1 − t2 + δ

T − t1 − δ
‖α2‖2L2(t2,T ).(2.28)

We now estimate (recall y1(T ) = y2(T ))

Jt1(x1; (y1, α1))− Jt2(x2; (y2, α2)) =
4∑
i=1

Ii

where
I1 =

∫ t1+δ
t1

L(y1(τ), τ) dτ I2 =
‖α1‖2

L2(t1,T )
−‖α2‖2

L2(t2,T )
2

I3 =
∫ T
t1+δ L(y1(τ), τ)dτ I4 = −

∫ T
t2
L(y2(τ), τ) dτ.

By the boundedness of the running cost and (2.28), for some constant K, there hold:
|I1| ≤ Kδ and

|I2| ≤
δ

2 +
‖α2‖2L2(t2,T )

2
|t1 − t2|+ δ

T − T1
.

Moreover, we have

I3 =
∫ T
t1+δ L

(
y2
(

T−t2
T−t1−δ τ −

T (δ+t1−t2)
T−t1−δ

)
, τ
)
dτ

= T−t1−δ
T−t2

∫ T
t2
L
(
y2(ξ), T−t1−δT−t2 ξ + T (δ+t1−t2)

T−t2

)
dξ

= T−t1−δ
T−t2

∫ T
t2
L
(
y2(ξ), T−t1−δT−t2 ξ + T (δ+t1−t2)

T−t2

)
dξ
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where the last equality is due to the same arguments used in the proof of Lemma 2.1. We
deduce

|I3 + I4| =
∣∣∣ t2−t1−δT−t2

∫ T
t2
L
(
y2(ξ), T−t1−δT−t2 ξ + T (δ+t1−t2)

T−t2

)
dξ

+
∫ T
t2

[
L
(
y2(ξ), T−t1−δT−t2 ξ + T (δ+t1−t2)

T−t2

)
− L(y2(ξ), ξ)

]
dξ
∣∣∣

≤ |t2−t1|+δT−T1
K + (N + 1)ω

(
|t2−t1|+δ
T−T1

2T
)

where ω is a modulus of continuity as the one in proof of Lemma 2.1. In conclusion, we
have

|Jt1(x1; (y1, α1))− Jt2(x2; (y2, α2))| ≤ K̃(|t2 − t1|+ δ) + ω̃(|t2 − t1|+ δ)

for suitable constant K̃ (depending only on T1) and a suitable modulus of continuity ω̃
(depending on T1, |x1| and |x2|). By the optimality of (y2, α2), we deduce

u(x1, t1) ≤ Jt1(x1; (y1, α1)) ≤ Jt2(x2; (y2, α2)) + K̃(|t2 − t1|+ δ) + ω̃(|t2 − t1|+ δ)
≤ u(x2, t2) + K̃(|t2 − t1|+ δ) + ω̃(|t2 − t1|+ δ).

Reversing the role of (x1, t1) and (x2, t2), we get

|u(x1, t1)− u(x2, t2)| ≤ K̃(|t2 − t1|+ δ) + ω̃(|t2 − t1|+ δ)

which is equivalent to the statement. 2

Remark 2.6 Observe that, when the running costs `i are θ-Hölder continuous with respect
to time, the same arguments of the previous proof establish that the value function is θ-
Hölder continuous.

Let us also establish the next property for future reference which is not used in the rest
of this paper.

Lemma 2.2 Fix (x, t) ∈ G × [0, T ) and (y, α) ∈ Γt[x]; consider a sequence {(xn, tn)}n∈N,
such that (xn, tn) ∈ G × [0, T ), δ′n := d(xn, x) + |tn − t| → 0 as n→∞. Then, there exists
a sequence {(yn, αn)}n∈N, such that (yn, αn) ∈ Γtn [xn]

(2.29)

(i) sup
[tn∨t,T ]

d(yn(·), y(·)) ≤ δn + |tn − t|+ ‖α‖2
√
δ′n, yn(T ) = y(T )

(ii) ‖αn‖22 ≤ ‖α‖22 + δ′n

(
1 + ‖α‖22

T−δ′n

)
(iii) lim

n→∞
Jtn(xn; (yn, αn)) = Jt(x; (y, α)).

Proof of Lemma 2.2. We adapt the arguments of the proof of Lemma 2.1; it suffices to
consider that all the points xn and x belong to the edge e1 and the two cases where all
the tn’s are smaller o greater than t. Set δn = d(xn, x).

Case: tn ≤ t, ∀n ∈ N. We introduce the control

αn(s) =


0 for s ∈ [tn, t]{
e1 if x̄n ≤ x̄
−e1 if x̄n > x̄

}
for s ∈ [t, t+ δn]

T−t
T−t−δnα

(
s T−t
T−t−δn − δn

T
T−t−δn

)
for s ∈ (t+ δn, T ]
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and we denote yn the corresponding curve starting from xn at time tn; clearly, (yn, αn) ∈
Γtn [xn]. We have

yn(s) =


xn for s ∈ [tn, t]
xn + (x− xn)δ−1

n (s− t) for s ∈ [t, t+ δn]
y
(
s T−t
T−t−δn − δn

T
T−t−δn

)
for s ∈ [t+ δn, T ].

By the same arguments as before, we obtain the bounds in (2.29)-(i) and (ii). Moreover,
we have

Jtn(xn; (yn, αn))− Jt(x; (y, α)) =
5∑
i=1

Ii

where, for i = 1, . . . , 4, the Ii’s are analogous to the corresponding ones in (2.26) while
I5 =

∫ t
tn
L(xn, 0, τ) dτ . By the boundedness of the costs `i, for a suitable constant K, we

have |I5| ≤ K|t− tn|. For the same calculations as in the proof of Lemma 2.1, we obtain
the statement.

Case: tn ≥ t, ∀n ∈ N. Note: t+ δ′n = tn + δn. We introduce the control

αn(s) =


{
e1 if x̄n ≤ x̄
−e1 if x̄n > x̄

}
for s ∈ [tn, t+ δ′n]

T−t
T−t−δ′n

α
(
s T−t
T−t−δ′n

− δ′n T
T−t−δ′n

)
for s ∈ (t+ δ′n, T ]

and we denote yn the corresponding curve starting from xn at time tn; clearly, (yn, αn) ∈
Γtn [xn]. We have

yn(s) =
{
xn + (x− xn)δ′−1

n (s− t) for s ∈ [t, t+ δ′n]
y
(
s T−t
T−t−δn − δn

T
T−t−δn

)
for s ∈ [t+ δ′n, T ].

For the same calculations as in the proof of Lemma 2.1, we obtain the statement. 2

2.4 Hamilton-Jacobi problem

We now introduce Hamilton-Jacobi operators on the network and the corresponding def-
inition of viscosity solution and we prove that the value function solves the HJ problem.
We shall following the approach by Imbert and Monneau [17].

HJ operators and HJ problem on the junction. We introduce the Hamilton-Jacobi
operator associated to the optimal control problem: the Hamiltonian has a different for-
mulation according to the fact that the point coincides or not coincides with the junc-
tion O. We also need to introduce the relaxed controls as in [2]. We set: for x ∈ Ji with
i = 1, . . . , N ,

FLi(x, t) := co{(a, a2/2) : a ∈ R}, FL
�
i (x, t) := FLi(x, t) ∩ {(ζ, ξ) ∈ R2 : ζ ≥ 0}

where “co” stands for the convex hull, while, for x = O we also introduce

FL(O, t) :=
N⋃
i=1

FL
�
i (O, t).

16



We easily get

FLi(x, t) = {(ζ, ξ) ∈ R2 : ξ ≥ ζ2/2}, FL
�
i (x, t) := {(ζ, ξ) ∈ R2 : ζ ≥ 0, ξ ≥ ζ2/2}.

We can now introduce our Hamilton-Jacobi operators as: for any x ∈ Ji (i = 1, . . . , N),
t ∈ [0, T ], p̄ ∈ R, p = (p1, . . . , pN ) ∈ RN

Hi(x, t, p̄) := sup
(ζ,ξ)∈FLi(x,t)

{−p̄ζ − ξ − `i(x, t)}

H
�
i (x, t, p̄) := sup

(ζ,ξ)∈FL
�

i (x,t)
{−p̄ζ − ξ − `i(x, t)}

HO(t, p) := max
{
−`∗(t), max

i=1,...,N
{−`i(O, t)} , max

i=1,...,N

{
H

�
i (O, t, pi)

}}
= max

{
−`O(t), max

i=1,...,N

{
H

�
i (O, t, pi)

}}
.

By elementary calculus (see also [2, Remark 4.1] for a similar argument), we have

Hi(x, t, p̄) = sup
a∈R

{
−p̄a− |a|

2

2 − `i(x, t)
}

= |p|
2

2 − `i(x, t) ∀x ∈ Ji

H
�
i (O, t, p̄) = max

ᾱ≥0
{−ᾱp̄− `i(O, t)− |ᾱ|2/2} =

{
|p̄|2
2 − `i(O, t) if p̄ ≤ 0
−`i(O, t) if p̄ > 0.

(2.30)

We introduce our Hamilton-Jacobi problem

(2.31)


−∂tu+Hi(x, t,Du) = 0 if x ∈ Ji \ {O}
−∂tu+HO(t,Du) = 0 if x = O
u(T, x) = g(x) on G

(recall that Du is introduced in (1.1) and it is 1-dimensional if x ∈ Ji \ {O} while it is
N -dimensional when x = O).

Definition of viscosity solution. We introduce the definition of viscosity solution for
the HJ problem (2.31) as follows.

Definition 2.1 We say that a function u ∈ C(G × [0, T ]) is a subsolution (resp., super-
solution) of problem (2.31) if it fulfills: u(T, ·) ≤ g(·) (resp., u(T, ·) ≥ g(·)) and, for every
function ϕ ∈ C1(G × [0, T ]) touching u from above (resp., below) at (x, t) ∈ G × [0, T ], we
have

−∂tϕ(x, t) +Hi(x, t,Dϕ) ≤ 0 (resp., ≥ 0) if x ∈ Ji \ {O}
−∂tϕ+HO(t,Dϕ) ≤ 0 (resp., ≥ 0) if x = O.

We say that a function u ∈ C(G × [0, T ]) is a solution of problem (2.31) if it is both a
subsolution and a supersolution of the problem.

Main result. We can now establish the main result of this section, namely that the
value function is a viscosity solution to the HJ problem.

Theorem 2.3 Assume [H0] and [H1]. Then, the value function u defined in (2.8) is a
solution to problem (2.31).
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Proof. We shall borrow some arguments of the proof of [17, Theorem 6.4]. Clearly, by
standard theory on viscosity solutions, it suffices to prove that u is a supersolution and a
subsolution on the junction O.

Step 1: u is a supersolution at O. Let ϕ ∈ C1(G×[0, T ]) be a function touch-
ing u from below at (O, t̄), for some t̄ ∈ (0, T ); wlog, since u is bounded, we can assume
that u−ϕ attains a global minimum at (O, t̄), namely, ϕ(x, t) ≤ u(x, t) ∀(x, t) ∈ G× [0, T ]
and ϕ(O, t̄) = u(O, t̄). Let (y, α) ∈ Γt̄[O] be an optimal trajectory for u(O, t̄). The
Dynamic Programming Principle in Proposition 3.2-(i) and Remark 2.5 ensure

u(O, t̄) = u(y(s), s) +
∫ s

t̄

[
L(y(τ), τ) + |α(τ)|2

2

]
dτ ∀s ∈ [t̄, T ].

which entails

ϕ(y(s), s)− ϕ(O, t̄) +
∫ s

t̄

[
L(y(τ), τ) + |α(τ)|2

2

]
dτ ≤ 0 ∀s ∈ [t̄, T ].

By the same arguments of [17, Theorem 6.4 (proof)], we deduce

(2.32)
∫ s

t̄

[
∂tϕ(y(τ), τ) +Dϕ(y(τ), τ) · α(τ) + L(y(τ), τ) + |α(τ)|2

2

]
dτ ≤ 0 ∀s ∈ [t̄, T ]

with the convention Dϕ(τ, y(τ)) · α(τ) = 0 for a.e. τ ∈ {τ ∈ [t̄, T ] : y(τ) = O} =: T0
which makes sense because the Stampacchia theorem yields α(τ) = 0 for a.e. τ ∈ T0.
Recall from Remark 2.4 the uniform bound of the optimal control in L2 so there holds

d(y(τ), O) ≤
∫ τ

t̄
|α(s)| ds ≤ C(τ − t̄)1/2 ∀τ ∈ [t̄, T ];

hence, by the regularity of ϕ, there exists a constant K such that

(2.33) |ψ(y(τ), τ)− ψ(O, t̄)| ≤ K(τ − t̄)1/2 ∀τ ∈ [t̄, T ] for ψ = ϕ, ∂tϕ,Dϕ.

It is expedient to introduce the sets of times

T s0 := {τ ∈ (t̄, s) : y(τ) = O}, T si := {τ ∈ (t̄, s) : y(τ) ∈ Ji\{O}} for i = 1, . . . , N.

Note that T sO is a closed set while the T si ’s are open sets with (t̄, s) =
⋃N
i=0 T si so rela-

tion (2.32) can be written as

(2.34)
N∑
i=0

∫
T si
ξ(τ) dτ ≤ 0 ∀s ∈ [t̄, T ]

where
ξ(τ) := ∂tϕ(y(τ), τ) +Dϕ(y(τ), τ) · α(τ) + L(y(τ), τ) + |α(τ)|2

2 .

We shall deal with the contributions of i = 0 and separately with the ones of i = 1, . . . , N
in (2.34).
Consider i = 0. For a.e. τ ∈ T s0 there hold: α = 0 (again by Stampacchia theorem) and
L(y(τ), τ) = `O(τ). Hence, we have∫
T s0
ξ(τ) dτ =

∫
T s0

[∂tϕ(O, τ) + `O(τ)] dτ ≥
∫
T s0

[
∂tϕ(O, t̄) + `O(t̄)

]
dτ − (s− t̄)ω(s− t̄)
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where the inequality is due to (2.33) and to the continuity of `O and ω is a modulus of
continuity which depends on the constant K of (2.33) and on the modulus of continuity
of `O. Moreover, we observe that the definition of HO guarantees

`O(t̄) ≥ −HO(t̄, p) ∀p ∈ RN .

By the last two relations, we deduce

(2.35)
∫
T s0
ξ(τ) dτ ≥ |T s0 |

(
∂tϕ(O, t̄)−HO(t̄, Dϕ(t̄, O))

)
− (s− t̄)ω(s− t̄).

Consider now i ∈ {1, . . . , N}; recall that, for a.e. τ ∈ T si , the control α has the form
α(τ) = ᾱ(τ)ei with ᾱ(τ) ∈ R. By relation (2.33), Remark 2.4 and the continuity of `i,
there exists a modulus of continuity ω such that∫
T si
ξ(τ) dτ =

∫
T si

[
∂tϕ(y(τ), τ) +Dϕ|Ji(y(τ), τ)ᾱ(τ) + `i(y(τ), τ) + |ᾱ(τ)|2

2

]
dτ

≥
∫
T si

[
∂tϕ(O, t̄) +Dϕ|Ji(O, t̄)ᾱ(τ) + `i(O, t̄) + |ᾱ(τ)|2

2

]
dτ − (s− t̄)ω(s− t̄).(2.36)

Exploiting the convexity of the set FLi, by the same arguments as those in [17, eq.(6.22)]
(as a matter of facts, in this case it is enough to use Jensen inequality), we infer that there
exists (ζi, ξi) ∈ FLi(O, t̄) such that∫

T si
Dϕ|Ji(O, t̄)ᾱ(τ) dτ = Dϕ|Ji(O, t̄)

∫
T si
ᾱ(τ) dτ = |T si |Dϕ|Ji(O, t̄)ζi∫

T si
|ᾱ(τ)|2/2 dτ = |T si |ξi.

Moreover, note that the curve y(·) occupies the vertex O at time t̄ and during the inter-
val (t̄, s) may enter, and exit, many edges. However, if y(s) ∈ Ji \ {O} for s ∈ (t1, t2) and
y(t1) = y(t2) = O (namely, it occupies the vertex at times t1 and t2 and is inside edge Ji
in (t1, t2)), then, there holds ∫ t2

t1
ᾱ(τ) dτ = 0

and consequently ∫
T si
ᾱ(τ) dτ =

{
y(s) if y(s) ∈ Ji
0 otherwise

which implies: ζi ≥ 0. We deduce∫
T si

[
Dϕ|Ji(O, t̄)ᾱ(τ) + `i(O, t̄) + |ᾱ(τ)|2

2

]
dτ = |T si |

[
Dϕ|Ji(O, t̄)ζi + `i(O, t̄) + ξi

]
≥ −|T si |H

�
i (O, t̄,Dϕ|Ji(O, t̄)).

Replacing last inequality in (2.36), we obtain∫
T si
ξ(τ) dτ ≥ |T si |

[
∂tϕ(O, t̄)−H

�
i (O, t̄,Dϕ|Ji(O, t̄))

]
− (s− t̄)ω(s− t̄)

≥ |T si |
[
∂tϕ(O, t̄)−HO(t̄, Dϕ(O, t̄))

]
− (s− t̄)ω(s− t̄).
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Replacing last inequality and relation (2.35) in (2.34), we achieve

(N + 1)(s− t̄)ω(s− t̄) ≥
(

N∑
i=0
|T si |

)
|
[
∂tϕ(O, t̄)−HO(t̄, Dϕ(O, t̄))

]
≥ (s− t̄)

[
∂tϕ(O, t̄)−HO(t̄, Dϕ(O, t̄))

]
where the last relation is due to (t̄, s) = ∪Ni=0T si with T si ∩ T sj = ∅ for i 6= j. Dividing last
relation by (s− t̄) and letting s→ t̄+, we conclude

−∂tϕ(O, t̄) +HO(t̄, Dϕ(O, t̄)) ≥ 0

which is equivalent to our statement.
Step 2: u is a subsolution at O. Let ϕ ∈ C1(G × [0, T ]) be a function touch-

ing u from above at (O, t̄), for some t̄ ∈ (0, T ), namely, ϕ(x, t) ≥ u(x, t) ∀(x, t) ∈ G× [0, T ]
and ϕ(O, t̄) = u(O, t̄). The Dynamic Programming Principle in Proposition 2.3 ensures,
for any s ∈ (t̄, T ) and any (y, α) ∈ Γt̄,s[O]:

u(O, t̄) ≤ u(y(s), s) +
∫ s

t̄

(
L(y(τ), τ) + |α(τ)|2

2

)
dτ ;

we deduce that, for any s ∈ (t̄, T ) and any (y, α) ∈ Γt̄,s[O], there holds

(2.37) ϕ(y(s), s)− ϕ(O, t̄) +
∫ s

t̄

(
L(y(τ), τ) + |α(τ)|2

2

)
dτ ≥ 0.

Note that relation (2.37) can be written as: for any s ∈ (t̄, T ) and any (y, α) ∈ Γt̄,s[O],
there holds

(2.38) ϕ(y(s), s)− ϕ(O, t̄) +
N∑
i=0

∫
T si

(
L(y(τ), τ) + |α(τ)|2

2

)
dτ ≥ 0

where, for i ∈ {0, . . . , N}, the sets T si as defined as in the previous step (and depend on
the trajectory (y, α)). We now split our arguments choosing arbitrarily some trajectories
(y, α) ∈ Γt̄,s[O] whose curve y(·) remains in O or enters in some edge Ji.
Case (a): the curve y remains in O. For any s ∈ (t̄, T ], consider the trajectory (y, α) ∈
Γt̄,s[O] with α(·) = 0; clearly, y(·) = O and (t̄, s) = T s0 . Relation (2.38) becomes

ϕ(O, s)− ϕ(O, t̄) +
∫ s

t̄
`O(τ)dτ ≥ 0.

By the continuity of `O with respect to t, for some modulus of continuity ω, we deduce

ϕ(O, s)− ϕ(O, t̄) + (s− t̄)`O(t̄) ≥ −(s− t̄)ω(s− t̄).

Dividing the previous relation by (s − t̄), letting s → t̄+ and taking into account the
regularity of ϕ, we infer

(2.39) ∂tϕ(O, t̄) + `O(t̄) ≥ 0.

Case (b): the curve y enters in an edge Ji. Fix i ∈ {1, . . . , N}. For any m ∈ N \ {0}, fix
ā ∈ (0,m). For any s ∈ (t̄, T ], consider the trajectory (y, α) ∈ Γt̄,s[O] with α(τ) = āei for
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τ ∈ (t̄, s); clearly, α(τ) ∈ Ai and y(τ) ∈ Ji\{O} for τ ∈ (t̄, s) and consequently (t̄, s) = T si .
(Note that here the unboudedness of Ji is not essential; indeed, if Ji has length li, then it
is enough to choose s ≤ t̄+ li/ā). By the same arguments of Step 1 (see equation (2.32)),
inequality (2.38) can be written as∫ s

t̄

[
∂tϕ(y(τ), τ) +Dϕ|Ji(y(τ), τ)ā+ `i(y(τ), τ) + ā2

2

]
dτ ≥ 0 ∀s ∈ [t̄, T ].

As in Step 1, taking into account Remark 2.4, estimate (2.33) and the uniform continuity
of `i in any neighbourhood of O, we get∫ s

t̄

[
∂tϕ(O, t̄) +Dϕ|Ji(O, t̄)ā+ `i(O, t̄) + ā2

2

]
dτ ≥ −(s− t̄)ω(s− t̄) ∀s ∈ [t̄, T ]

for some suitable modulus of continuity ω. Dividing the previous inequality by (s− t̄) and
letting s→ t̄+, we obtain

∂tϕ(O, t̄) +Dϕ|Ji(O, t̄)ā+ `i(O, t̄) + ā2

2 ≥ 0.

By the arbitrariness of ā ∈ (0,m), we deduce

∂tϕ(O, t̄)− sup
ā∈(0,m)

{
−Dϕ|Ji(O, t̄)ā− `i(O, t̄)−

ā2

2

}
≥ 0

and, by arbitrariness of m, also

∂tϕ(O, t̄)− sup
ā≥0

{
−Dϕ|Ji(O, t̄)ā− `i(O, t̄)−

ā2

2

}
≥ 0.

By equation (2.30), we get

∂tϕ(O, t̄)−H
�
i (O, t̄,Dϕ|Ji(O, t̄)) ≥ 0.

By arbitrariness of i in the last relation and by inequality (2.39), we conclude

∂tϕ(O, t̄)−max
{

max
{
−`∗(t̄), max

i=1,...,N

{
−`i(O, t̄)

}}
, max
i=1,...,N

{
H

�
i (x, t,Dϕ|Ji(O, t̄))

}}
≥ 0

which is equivalent to our statement. 2

3 Mean Field Games equilibrium
This section concerns the MFG problem. Taking advantage of the results established in
Section 2, we prove that there exists a MFG equilibrium and that the value function of
the associated optimal control problem is a viscosity solution to a HJ problem.

3.1 Setting and notations

Probability sets and evaluation map. Let P(G) denote the set of probability mea-
sures on G endowed with the narrow topology. For t ∈ [0, T ], the evaluation map et : Γ→ G
is defined by et(yx, α) = yx(t). For any µ ∈ P(Γ) and t ∈ [0, T ], define the Borel probability
measure mµ(t) on G by mµ(t) = et]µ.
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Costs. We introduce the running cost and the terminal cost dependent on the distribu-
tion of the population. We consider costs Li ∈ C(P(G);C(G × [0, T ])), for i = 1, . . . , N ,
and L∗ ∈ C(P(G);C([0, T ]). Similarly, let Gi : P(G) → C(G), i = 1, . . . , N , and
G∗ : P(G) → R be continuous functions. Li[m](·, ·) and Gi[m](·) denote the images of
m ∈ P(G) by Li and respectively by Gi and analogously for L∗ and G∗.

We assume

(HMFG
1 ) K = max

(
sup

m∈P(G)
‖L∗[m]‖L∞ , max

i=1,...,N
sup

m∈P(G)
‖Li[m]‖L∞ , sup

m∈P(G)
‖G∗[m]‖L∞ ,

max
i=1,...,N

sup
m∈P(G)

‖Gi[m]‖L∞
)
∈ R+.

For simplicity of notations, for x ∈ G and t ∈ [0, T ], we shall write

L[m](x, t) =
N∑
i=1

Li[m](x, t)1x∈Ji\{O} + LO[m](t)1x=O

G[m](x) =
N∑
i=1

Gi[m](x)1x∈Ji\{O} + min{G∗[m], min
i=1,...,N

Gi[m](O)}1x=O(3.1)

where
LO[m](τ) = min{L∗[m](τ), min

i=1,...,N
Li[m](O, τ)}.

Admissible curves. We introduce the sets of admissible curves

(3.2) Γ̃C [x] := {y ∈ Yx,0 : d(y(s), O) ≤ C, ∀s ∈ [0, T ], ‖ẏ‖2 ≤ C} , Γ̃C :=
⋃
x∈G

Γ̃C [x]

and we endow Γ̃C with the topology of uniform convergence. Note that a curve is the sole
y ∈ Yy(0),0 while a trajectory is formed by the couple (y, α) ∈ Γ.

Lemma 3.1 For every positive constant C, the set Γ̃C is compact.

Proof. Fix C > 0 and consider a sequence {yn}n∈N, with yn ∈ Γ̃C . Possibly passing to a
subsequence (that we still denote yn), the sequence {ẏn}n converges in the weak topology
of L2([0, T ],Rd) to some α ∈ L2([0, T ],Rd), with ‖α‖2 ≤ C. Then, {yn}n is uniformly
convergent to some curve y ∈ C([0, T ],G). Clearly, α = ẏ. Moreover, arguing as in the
proof of Proposition 2.1 we obtain that the curve y is admissible, namely y ∈ Yy(0),0, and
consequently that y belongs to Γ̃C . 2

The set P(Γ̃C) and the associated costs. Let P(Γ̃C) denote the set of probability
measures on Γ̃C endowed with the narrow topology. For t ∈ [0, T ], the evaluation map
et : Γ̃C → G is defined by et(y) = y(t). For any µ ∈ P(Γ̃C) and t ∈ [0, T ], define the
Borel probability measure mµ(t) on G by mµ(t) = et]µ. Clearly, supp(mµ(t)) ⊂ {x ∈ G :
d(x,O) ≤ C}. It is possible to prove that, if µ ∈ P(Γ̃C), then the map t 7→ mµ(t) belongs
to C1/2([0, T ],P(G)); see Lemma 3.4 below. Hence, for all (y, α) ∈ Γ, the functions t 7→
Fi[mµ(t)](y(t)) are continuous and bounded by the constant K introduced in (HMFG

1 ).
With µ ∈ P(Γ̃C) and (y, α) ∈ Γ[x] we associate the cost

(3.3) Jµ(x; (y, α)) =
∫ T

0

(
L[mµ(τ)](y(τ), τ) + |α(τ)|2

2

)
dτ +G[mµ(T )](y(T )).
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Remark 3.1 We recall from Theorem 2.2 and Remark 2.1 that for each y ∈ Γ̃C [x] there
exists α ∈ L2([0, T ],Rd) such that (y, α) ∈ Γ[x]. Such a control α is unique for a.e.
t ∈ {t ∈ [0, T ] : y(t) 6= O} and it is not unique in {t ∈ [0, T ] : y(t) = O}. However, the
associated cost is independent of the choice of this control, namely: for any y ∈ Γ̃C [x],
there holds

Jµ(x; (y, α1)) = Jµ(x; (y, α2)) ∀(y, α1), (y, α2) ∈ Γ[x].

For every y ∈ Γ̃C [x], we define αy the control such that (y, αy) ∈ Γ[x] and αy(t) = 0 ∈ A0
for a.e. t ∈ {t ∈ [0, T ] : y(t) = O}. Note that this control is uniquely defined up to a set
of null measure.

Optimal trajectories. Fix µ ∈ P(Γ̃C); for any x ∈ G, let us set

(3.4) Γµ,opt[x] =
{

(y, α) ∈ Γ[x] : Jµ(x; (y, α)) = min
(ỹ,α̃)∈Γ[x]

Jµ(x; (ỹ, α̃))
}

where Jµ is defined in (3.3). Proposition 2.1 entails that for each µ ∈ P(Γ̃C) and x ∈ G,
the set Γµ,opt[x] of optimal trajectories starting from x is not empty.

Remark 3.2 By our assumption (HMFG
1 ), there exists a positive constant C̃ such that:

for every µ ∈ P(Γ̃C), x ∈ G and (y, α) ∈ Γµ,opt[x], there holds ‖α‖2 ≤ C̃. In particular,
if m0 ∈ P(G) has compact support, (eventually increasing the constant C̃), for every µ ∈
P(Γ̃C), x ∈ supp(m0) and (y, α) ∈ Γµ,opt[x], there holds y ∈ Γ̃C̃ [x].

The set Pm0(Γ̃C). We assume

(HMFG
2 ) m0 ∈ P(G) has compact support.

Let Pm0(Γ̃C) denote the set of measures µ ∈ P(Γ̃C) such that e0]µ = m0. Clearly, Pm0(Γ̃C)
may be empty; however, we have the following result

Lemma 3.2 Under assumptions (HMFG
1 ) and (HMFG

2 ), for C sufficiently large, Pm0(Γ̃C)
is not empty.

Proof. We argue adapting the arguments of [11, Remark 3.2]. For C ≥ C̃ (where C̃
is the constant introduced in Remark 3.2), we consider the map: j : supp(m0) → Γ̃C ,
j(x)(t) = x for any t ∈ [0, T ]. We denote m̃0 = m0|supp(m0) the restriction of m0 on its
support. We observe e0#(j#m̃0) = m0 so (j#m̃0) ∈ Pm0(Γ̃C). 2

We show an example where the distribution of agents may develop a singularity.

Example 3.1 In a junction with two edges, consider the costs: L1[m] ≡ −1, L2[m] ≡ 1,
L∗[m] = −1 and Gi[m] ≡ 0 (i = ∗, 1, 2) for every m ∈ P(G). Assume that the initial
distribution of agents is uniform on [0, 1/2]e1 ∪ [0, 1/2]e2. Fix x̄ ∈ (0, 1/2]; let (y, α) be an
optimal trajectory starting at x̄e2 at time t = 0. If we prove that (y, α) must reach O before
time tx̄ = 5x̄/4 and stops there, then we have that the distribution of agents develops a
singularity in the vertex O immediately after time t = 0.
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First of all, if the optimal trajectory (y, α) arrives in O it cannot leave O, otherwise taking
t0 := inf{t ∈ [0, T ]; y(t) = O} ∧ T , the trajectory (ỹ, α̃), with

α̃(t) :=
{
α(t) if t ∈ [0, t0]
0 if t ∈ (t0, T ]

does better than (y, α).
Moreover the optimal trajectory must reach O before time tx̄, if x̄ ≤ 4T/5. Indeed, for t0
defined as before, there holds

J0(x̄e2; (y, α)) ≥ −T + 2t0.

On the other hand, for the trajectory (y∗(·), α∗(·)) with α∗(s) :=
{
−e2 if s ∈ [0, x̄]
0 if s ∈ (x̄, T ] ,

the cost is
J0(x̄e2; (y∗, α∗)) = −T + 5x̄

2 .

So for t0 > 5x̄/4 we get a contradiction.
We deduce that, for any t > 0, the distribution of players displays a singularity c(t)δO (δO
is the Dirac delta in O) with c(t) ≥ (4t/5) ∧ (1/2). In particular, for t > 5/8, we have
c ≥ 1/2.
Analogously, for L1 = L2 = 1 and L∗ = −1, a Dirac delta immediately appears in O and
after the time 5/8, the whole population is concentrated in O.

Example 3.2 For another example of development of singular measures, see [1] which
studies a problem arising in macroeconomics. In that case the singularity appears on the
boundary of the domain.

3.2 MFG equilibrium

Fix µ ∈ Pm0(Γ̃C); for any x ∈ G, let us set

(3.5) Γ̃µ,opt
C [x] =

{
y ∈ Γ̃C [x] : Jµ(x; (y, αy)) = min

(ỹ,α̃)∈Γ[x]
Jµ(x; (ỹ, α̃))

}

where Jµ is defined in (3.3) and αy is a control such that (y, αy) ∈ Γ[x] (see Remark 3.1).

Definition 3.1 The probability measure µ ∈ Pm0(Γ̃C) is a constrained mean field game
equilibrium associated with the initial distribution m0 if

(3.6) supp(µ) ⊂
⋃

x∈supp(m0)
Γ̃µ,opt
C [x].

Theorem 3.1 Assume (H0), (HMFG
1 ) and in (HMFG

2 ); consider C ≥ C̃ (where C̃ is the
constant introduced in Remark 3.2). Then, there exists a constrained mean field game
equilibrium µ ∈ Pm0(Γ̃C).

The proof of the previous theorem is postponed to subsection 3.5.
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3.3 Preliminary results

Lemma 3.3 Let a sequence of probability measures {µn}n∈N, µn ∈ P(Γ̃C), be narrowly
convergent to µ ∈ P(Γ̃C) as n → ∞. For all t ∈ [0, T ], the sequence {mµn(t)}n∈N is
narrowly convergent to mµ(t).

Proof. Adapting the arguments of [3, Lemma 3.1], we have that, for all f ∈ C0
b (G;R),

there holds∫
G
f(x)dmµn(t)(x) =

∫
Γ̃C
f(y(t))dµn(y)→

∫
Γ̃C
f(y(t))dµ(y) =

∫
G
f(x)dmµ(t)(x).

2

Lemma 3.4 There holds

sup
µ∈P(Γ̃C)

Wass1(mµ(t),mµ(s)) ≤ C|t− s|
1
2 ∀t, s ∈ [0, T ].

Proof. Consider any µ ∈ P(Γ̃C). For any t, s ∈ [0, T ], there holds

sup
φ

∫
G
φ(x)[dmµ(t)− dmµ(s)](x) = sup

φ

∫
Γ̃C

[φ(y(t))− φ(y(s))] dµ(y)

≤
∫

Γ̃C
|y(t)− y(s)|dµ(y) ≤ |t− s|

1
2 ‖α‖2

where the supremum is performed over all the continuous 1-Lipschitz function. Owing to
the definition of Γ̃C in (3.2) and to the arbitrariness of µ ∈ P(Γ̃C), last relation entails
the statement. 2

It is useful to recall the disintegration theorem:

Theorem 3.2 Let X and Y be Radon metric spaces, π : X → Y be a Borel map, µ be
a probability measure on X. Set ν = π]µ. There exists a ν-almost everywhere uniquely
defined Borel measurable family of probability measures (µy)y∈Y on X such that

µy(X \ π−1(y)) = 0, for ν-almost all y ∈ Y,

and for every Borel function f : X → [0,+∞],∫
X
f(x)dµ(x) =

∫
Y

(∫
X
f(x)dµy(x)

)
dν(y) =

∫
Y

(∫
π−1(y)

f(x)dµy(x)
)
dν(y).

Recall that (µy)y∈Y is a Borel family of probability measures if for any Borel subset B of
X, Y 3 y 7→ µy(B) is a Borel function from Y to [0, 1].

3.4 A closed graph property

Throughout this subsection, we assume C ≥ C̃, where C̃ is the constant introduced in
Remark 3.2. We first establish a closed graph property for the map Γ̃µ,opt

C [x].
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Proposition 3.1 Consider µ ∈ Pm0(Γ̃C) and x ∈ supp(m0). Consider also a sequence of
probability measures {µn}n∈N, with µn ∈ Pm0(Γ̃C), narrowly convergent to µ as n → ∞
and a sequence of points {xn}n∈N, with xn ∈ G and xn → x as n→∞. Let {yn}n∈N be a
sequence of curves such that yn ∈ Γ̃µn,opt

C [xn] and yn uniformly converge to some curve y
as n → ∞. Then, y belongs to Γ̃µ,opt

C [x], namely any trajectory (y, αy) is an optimal
trajectory for Jµ. In other words, the multivalued map (x, µ) ⇒ Γ̃µ,opt

C [x] fulfills the closed
graph property.

Proof of Proposition 3.1. We borrow some arguments from the proof of Proposition 2.2
so we shall only detail the main novelties. We have to prove that

(i) y ∈ Γ̃C [x], (ii) (y, αy) is optimal for Jµ.

By the definition of Γ̃C , the controls αyn are uniformly bounded in L2. Arguing as in the
proof of Proposition 2.2, we deduce that, possibly passing to a subsequence (that we still
denote αyn), the sequence {αyn}n converges in the weak topology of L2((0, T ),Rd) to some
control αy, with ‖αy‖2 ≤ C, that (y, αy) ∈ Γ[x] and y ∈ Γ̃C [x]. The proof of point (i) is
accomplished.
In order to prove (ii), it suffices to prove

Jµ(x; (y, αy)) ≤ Jµ(x; (ŷ, α̂)) ∀(ŷ, α̂) ∈ Γ[x].

Fix any (ŷ, α̂) ∈ Γ[x]. Lemma 2.1 ensures that there exists a sequence {ŷn, α̂n)}n∈N such
that (ŷn, α̂n) ∈ Γ[xn], ŷn(T ) = ŷ(T ) and

ŷn → ŷ uniformly in [0, T ] as n→∞, ‖α̂n‖2 ≤ ‖α̂‖2 + on(1),

where on(1) is a sequence such that limn on(1) = 0. Since yn ∈ Γ̃µn,opt
C [xn], we have

(3.7) Jµn(xn; (yn, αyn)) ≤ Jµn(xn; (ŷn, α̂n)).

We now study separately the two sides of previous inequality. For the right hand side
of (3.7), the construction and the properties of (ŷn, α̂n) entail

Jµn(xn; (ŷn, α̂n)) ≤ Jµ(x; (ŷ, α̂)) +
4∑
i=1

Īi

where, for δn = d(x, xn),

Ī1 =
∫ δn

0 L[mµn(τ)](ŷn(τ), τ)dτ Ī2 = ‖αn‖22−‖α‖
2
2

2 ≤ on(1)
Ī3 =

∫ T
δn
L[mµn(τ)](ŷn(τ), τ)dτ Ī4 = −

∫ T
0 L[mµ(τ)](ŷ(τ), τ)dτ.

By the boundedness of L, we have limn→∞ Ī1 = 0. Moreover, arguing as in the proof of
Lemma 2.1, we have

Ī3 =
∫ T

0

[
N∑
i=1

Li

[
mµn

(
T − δn
T

ξ + δn

)](
ŷ(ξ), T − δn

T
ξ + δn

)
1ŷ(ξ)∈Ji\{O}

+LO
[
mµn

(
T − δn
T

ξ + δn

)](
T − δn
T

ξ + δn

)
1ŷ(ξ)=O

](
1− δn

T

)
dξ

=
∫ T

0
L

[
mµn

(
T − δn
T

ξ + δn

)](
ŷ(ξ), T − δn

T
ξ + δn

)(
1− δn

T

)
dξ
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and consequently,
Ī3 + Ī4 = Ī5 + Ī6 + Ī7 + Ī8

where

Ī5 = − δn
T

∫ T
0 L

[
mµn

(
T−δn
T ξ + δn

)] (
ŷ(ξ), T−δnT ξ + δn

)
dξ

Ī6 =
∫ T

0

(
L
[
mµn

(
T−δn
T ξ + δn

)] (
ŷ(ξ), T−δnT ξ + δn

)
−L

[
mµ

(
T−δn
T ξ + δn

)] (
ŷ(ξ), T−δnT ξ + δn

))
dξ

Ī7 =
∫ T

0

(
L
[
mµ

(
T−δn
T ξ + δn

)] (
ŷ(ξ), T−δnT ξ + δn

)
− L [mµ(ξ)]

(
ŷ(ξ), T−δnT ξ + δn

))
dξ

Ī8 =
∫ T

0

(
L [mµ(ξ)]

(
ŷ(ξ), T−δnT ξ + δn

)
− L [mµ(ξ)] (ŷ(ξ), α̂(ξ), ξ)

)
dξ.

The boundedness of L entails: |Ī5| = on(1). Owing to Lemma 3.3 and to our assumptions
on Li’s, we have that Li[mµn(s)] uniformly converges to Li[mµ(s)] as n → ∞, for every
i ∈ {0, . . . , N} and s ∈ [0, T ]. Hence, by the dominated convergence theorem, we deduce:
|Ī6| = on(1). Moreover, by Lemma 3.4, again our assumptions on Li’s and dominated
convergence theorem, we infer: |Ī7| = on(1). Finally, since ŷ is a bounded curve and Li[m]
are continuous, we also get: |Ī8| = on(1).

In summary, there holds

(3.8) lim sup
n

Jµn(xn; (ŷn, α̂n)) ≤ Jµ(x; (ŷ, α̂)).

For the left hand side of (3.7), we borrow some arguments of the proof of Proposition 2.1.
By definition of cost (3.3), there holds

Jµn(xn; (yn, αyn)) =
∫ T

0

|αyn(τ)|2

2 dτ +
5∑
i=1

Îi(3.9)

where

Î1 =
∫ T

0

N∑
i=1

Li[mµn(τ)](yn(τ), τ)1yn(τ)∈Ji\{O}1y(τ)∈Ji\{O}dτ

Î2 =
∫ T

0

N∑
i=1

Li[mµn(τ)](yn(τ), τ)1yn(τ)∈Ji\{O}1y(τ)∈G\Jidτ

Î3 =
∫ T

0

N∑
i=1

Li[mµn(τ)](yn(τ), τ)1yn(τ)∈Ji\{O}1y(τ)=Odτ

Î4 =
∫ T

0
LO[mµn(τ)](τ)1yn(τ)=Odτ

Î5 = G[mµn(τ)](yn(T )).

By standard theory, the convergence in the weak topology of L2([t, T ];Rd) entails∫ T

0

|α(τ)|2

2 dτ ≤ lim inf
n→∞

∫ T

0

|αn(τ)|2

2 dτ.

Let us recall from Lemma 3.3 that, for each t ∈ [0, T ], the map P(Γ̃C) 3 µ 7→ mµ(t) ∈ P(G)
is continuous; hence, by our assumption, for every i ∈ {1, . . . , N}, Li[mµn(t)](·, ·) and
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Gi[mµn(T )](·) converge uniformly respectively to Li[mµ(t)](·, ·) and to Gi[mµ(T )](·) as
n→∞. Therefore, owing to dominated convergence theorem, we deduce

Î1 →
∫ T

0

N∑
i=1

Li[mµ(τ)](y(τ), τ)1y(τ)∈Ji\{O}dτ and Î2 → 0, as n→∞.

By the same arguments of the proof of Proposition 2.1 and the definition of G[m] in (3.1),
we obtain

lim inf
n→∞

Î5 ≥ G[mµ(T )](y(T )).

Furthermore, we have

Î3 + Î4 =
∫ T

0

[
N∑
i=1

Li[mµn(t)](yn(τ), τ)1yn(τ)∈Ji\{O} + LO[mµn(t)](τ)1yn(τ)=O

]
1y(τ)=Odτ

+
∫ T

0
LO[mµn(t)](τ)1yn(τ)=O1y(τ)6=Odτ.

Again the dominated convergence theorem ensures∫ T

0
LO[mµn(t)](τ)1yn(τ)=O1y(τ)6=Odτ → 0 as n→∞.

Moreover, Fatou’s Lemma and the boundedness of Li yield

lim inf
n→∞

∫ T

0

[
N∑
i=1

Li[mµn(τ)](yn(τ), τ)1yn(τ)∈Ji\{O}

+LO[mµn(τ)](τ)1yn(τ)=O
]
1y(τ)=Odτ ≥

∫ T

0
LO[mµ(τ)](τ)1y(τ)=Odτ.

Replacing all these relations in (3.9), we conclude

lim inf
n→∞

Jµn(xn; (yn, αyn)) ≥
∫ T

0

[
|α(τ)|2

2 +
N∑
i=1

Li[mµ(τ)](y(τ), τ)1y(τ)∈Ji\{O}

+LO[mµ(τ)](τ)1y(τ)=O
]
dτ +G[mµ(T )](y(T ))

= Jµ(x; (y, αy)).(3.10)

In conclusion, relations (3.7), (3.8) and (3.10) entail

Jµ(x; (y, αy)) ≤ Jµ(x; (ŷ, α̂));

by the arbitrariness of (ŷ, α̂) ∈ Γ[x], we get Jµ(x; (y, αy)) = min(ŷ,α̂)∈Γ[x] J
µ(x; (ŷ, α̂))

which is equivalent to (ii). 2

3.5 Proof of Theorem 3.1

This subsection is entirely devoted to the proof of Theorem 3.1. To this end, we follow
the arguments of [11].
Let us first recall some notations. For every µ ∈ Pm0(Γ̃C), let Jµ be the associated cost
as in (3.3); for any x ∈ G, let Γ̃µ,opt

C [x] be the set of optimal curves starting from x for

28



the cost Jµ as in (3.4). Proposition 2.1 ensures: Γ̃µ,opt
C [x] 6= ∅ for every x ∈ G. It is worth

to recall from Lemma 3.1 that the set Γ̃C is compact; by Prokhorov theorem [7, Theorem
5.1.3], also P(Γ̃C) is compact.

We introduce the multivalued map E : Pm0(Γ̃C) ⇒ Pm0(Γ̃C) as

(3.11) E(µ) = {µ̂ ∈ Pm0(Γ̃C) : supp µ̂x ⊂ Γ̃µ,opt
C [x] m0 − a.e. x ∈ G}

where {µ̂x}x∈G is the family of Borel probability measures on Pm0(Γ̃C) obtained applying
the disintegration Theorem 3.2 with µ, X, Y and π replaced respectively by µ̂, Pm0(Γ̃C),
G and e0 (so, clearly, ν coincides with m0). In order to achieve the statement, it suffices to
prove that the map E admits a fixed point. Let us assume for the moment the following
properties

(i) for every µ ∈ Pm0(Γ̃C), the set E(µ) is not empty and convex

(ii) the map E fulfills the closed graph property.

Then, Kakutani fixed point theorem ensures that the map E admits a fixed point. It
remains to prove the above properties.
(i). From Proposition 2.1 and Proposition 2.2, we recall that Γ̃µ,opt

C [x] 6= ∅ for every x ∈ G
and that the map Γ̃µ,opt

C [·] fulfills the closed graph property. Therefore, the result [6,
Theorem 8.1.4] guarantees that the map Γ̃µ,opt

C [·] has a Borel measurable selection that we
denote: x 7→ yµx for every x ∈ G. We introduce a measure µ̂ on Γ̃C as follows:

µ̂(B) =
∫
G
δyµx (B)m0(dx) ∀ Borel B ⊂ Γ̃C ,

where δyµx (·) is the Dirac delta-function centered in yµx . Note that µ̂x = δyµx for m0-a.e.
x ∈ G. Hence, µ̂ belongs to E(µ).
Let us now prove that E(µ) is convex. Fix µ1, µ2 ∈ E(µ) and λ ∈ [0, 1]. By easy
calculation, one obtains λµ1 + (1 − λ)µ2 ∈ Pm0(Γ̃C). On the other hand, for i = 1, 2,
since µi ∈ E(µ), by the disintegration theorem 3.2, there exist a Borel measurable family
{µix}x∈G of probability measures (which is m0-a.e. uniquely defined and “disintegrate” µi
with respect to m0) and a set Ai ⊂ G such that m0(Ai) = 0 and suppµix ⊂ Γ̃µ,opt

C [x] for
every x ∈ G \Ai. Therefore, the measure λµ1 + (1− λ)µ2 can be disintegrated as follows:
for each Borel function f on Γ̃C , we have∫

Γ̃C
f(γ)(λµ1 + (1− λ)µ2) (dγ) =

∫
G

(∫
Γ̃C
f(γ)(λµ1

x + (1− λ)µ2
x) (dγ)

)
m0(dx)

with m0(A1 ∪ A2) = 0 and

supp (λµ1
x + (1− λ)µ2

x) ⊂ Γ̃µ,opt
C [x] ∀x ∈ G \ (A1 ∪ A2).

Hence, λµ1 + (1− λ)µ2 belongs to E(µ), namely E(µ) is convex.
(ii). Consider a sequence {µn}n∈N of probability measures µn ∈ Pm0(Γ̃C) which narrowly
converges to some µ ∈ Pm0(Γ̃C) as n → ∞. Consider also a sequence {µ̂n}n∈N, with
µ̂n ∈ E(µn) for any n ∈ N, which narrowly converges to some µ̂ ∈ Pm0(Γ̃C) as n → ∞.
Our aim is to prove that µ̂ belongs to E(µ).
By the disintegration theorem, there exists a m0-a.e. uniquely defined Borel measurable
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family of measures {µ̂x}x∈G on Γ̃C andA ⊂ G such that: m0(A) = 0, µ̂x(Γ̃C\e−1
0 ({x})) = 0

for every x ∈ G \ A and∫
Γ̃C
f(y)µ̂(dy) =

∫
G

(∫
Γ̃C [x]

f(y)µ̂x(dy)
)
m0(dx).

Consider x ∈ G \ A and ŷ ∈ supp µ̂x. The Kuratowski theorem ([7, Proposition 5.1.8])
ensures that there exists a sequence {yn}n∈N, with yn ∈ supp µ̂n, which converges to ŷ in
the topology of Γ̃C . Let xn = e0(yn). Since µ̂n ∈ E(µn), there holds: yn ∈ Γ̃µn,opt

C [xn].
By Proposition 3.1, we infer ŷ ∈ Γ̃µ,opt

C [x]. By the arbitrariness of ŷ ∈ supp µ̂x, we obtain
supp µ̂x ⊂ Γ̃µ,opt

C [x] and consequently, by the arbitrariness of x ∈ G \ A, that µ̂ belongs
to E(µ). 2

3.6 Mild solutions

Theorem 3.1 ensures the existence of a MFG equilibrium µ ∈ Pm0(Γ). For simplicity of
notations, we write

(3.12) `i(x, t) = Li[mµ(t)](x, t) and gi(x) = Gi[mµ(T )](x) ∀(x, t) ∈ G × [0, T ]

and we shall use the abridged notation of L as in (2.7). By Lemma 3.4, these functions `i
fulfills assumption (H1). Note also that these costs `i are the ones payed by the agents in
our MFG. We can consider the value function naturally associated to this equilibrium µ:

(3.13) u(x, t) = inf
(yx,α)∈Γt[x]

Jµt (x; (yx, α))

where Jµt is the cost defined in (3.3). The purpose of this section is to establish several
properties of the value function using the results of Section 2.

As preliminary step, invoking Proposition 2.3, Proposition 2.4, Remark 2.6 and
Lemma 3.4, we have that the value function verifies the following properties.

Proposition 3.2 The value function u defined in (3.13) fulfills the following properties

(i) (Dynamic programming principle)

u(x, t) = inf
(yx,α)∈Γt,t̄[x]

{
u(yx(t̄), t̄) +

∫ t̄

t

(
L(yx(τ), τ) + |α(τ)|2

2

)
dτ

}

where

Γt,t̄[x] =

 (yx, α) ∈ L2([t, t̄],M) : yx ∈W 1,2([t, t̄];G),
yx(s) = x+

∫ s

t
α(τ)dτ in [t, t̄]

 ;

(ii) the value function is continuous in G × [0, T ).

Applying Theorem 2.3, we can now prove that u solves the HJ problem associated with
the costs `i.

Theorem 3.3 The value function u defined in (3.13) is a solution to problem (2.31) with
the costs `i defined in (3.12) and g = G[mµ(T )].
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Remark 3.3 Under classical monotonicity assumptions for L and G, see e.g. [11, The-
orem 4.1 and Remark 4.1], the mild solution is unique.
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