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Abstract—The next generation of radio telescopes, such as
the Square Kilometer Array (SKA), will need to process an
incredible amount of data in real-time. In addition, the sensitivity
of SKA will require a new generation of calibration and imaging
software to exploit its full potential. The wide-field direction-
dependent spectral deconvolution framework, called DDFacet,
has been successfully used in several existing SKA pathfinders
and precursors like MeerKAT and LOFAR. This imager allows a
multi-core execution based on facets parallelization and a multi-
node execution based on observations parallelization. However,
because of the amount of data to be computed, the data on
a single observation will have to be distributed on several
nodes. This paper proposes the first two-level parallelization
of DDFacet in the case of a single observation. A multi-core
parallelization based on facets and a multi-node parallelization
based on frequency distribution grouped in Measurement Sets.
We show that this multi-core multi-node parallelization has
successfully reduced the total execution time by a factor of 5.7
on a LOFAR dataset.

Index Terms—HPC, DDFacet, Parallelization, Distributed
memory, SKA

I. INTRODUCTION

The Square Kilometer Array (SKA) is one of the World’s
largest science projects [1]. Besides building a radio tele-
scope observatory to make fundamental discoveries about the
universe over the next 50 years with the broadest range of
science of any facility worldwide, it is also the largest Big Data
project and the largest international computing collaboration.
With thousands of dishes and millions of antennas, the SKA
equipment will generate an unprecedented amount of data.
The equipment will be built in South Africa’s Karoo region
and Western Australia’s Murchison Shire. Processing the vast
quantities of data produced by the SKA will require high-
performance central supercomputers capable of more than 100
petaflops of raw processing power. The data computations will
start on-site and be distributed all over the World.

As an intermediate step towards SKA, MeerKAT or LOFAR
are radiotelescopes already operational, delivering real data
to process [2]. The raw data provided by MeerKAT in a
few hours involves the computations unprecedent amount of
data. Compared with previous generation of radio telescopes,
MeerKAT and LOFAR show that this new generation must
consider direction-dependent signal distortions (DDEs), such

as ionospheric distortion or antenna beams, in computing data
to benefit from the telescope sensitivity.

Each antenna’s pair is defined as a baseline (physical
distance between the antennas). Each baseline, at a time ¢ and
frequency v generates a sample by correlating the voltages
of these two antennas. This measurement is called visibility.
These antennas are combined into a single virtual telescope
using a mathematical approach called aperture synthesis [3].
This technique makes images of high resolution and high
sensitivity that a single extremely large receiving element
could not make. However, it is also computationally intensive,
with a complexity dependent on the number of visibilities
generated by the radio interferometer and the quality of the
desired result.

An imaging pipeline is composed of many algorithmic
bricks that are easily differentiated from each other. Those
responsible for the interpolation of data, applying at the
same time direction-dependent corrections, called gridding and
degridding, are the most expensive. Tasse [4] has shown that
they can reach 80% of the total execution time. There is a
lot of literature about how to reduce this computation time.
On the side of the standard methods, we find computation
optimization on CPU parallelization [5], as well as GPU and
multi-GPU parallelization [6], [7]. At the same time, some
methods allow reducing the memory consumption linked to
these methods [8]. The literature also proposes alternative
methods, such as Image Domain Gridding (IDG), allowing
to speed up the computation while keeping a high accuracy
in the results [9]. We also find the implementation of these
methods on accelerator platforms such as the GPU or FPGA
[10], [11].

Because of the large amount of data to be processed by
current radio telescopes, computational methods have to be
integrated on a larger scale by complete imaging pipelines.
The main reference is CASA (Common Astronomy Software
Applications) [12], which was developed to support data post-
processing needs of radio astronomical telescopes such as
ALMA and VLA in the 90’. CASA package is also continu-
ously updated to support the most recent scientific advances
with the third generation of radiotelescope Imaging. WSClean
[13] is another more advanced imager integrating the IDG



algorithm. Both of these pipelines allow a distributed execution
using MPI [14]. We can also find a pipeline, from the data
generation to the image, based on the workflow execution
system DALiuGE [15], allowing large-scale execution [16].
We can also find imaging pipeline based on the Dask' frame-
work, such as Codex-Africanus [17]. Most of these pipelines
and workflows have in common to dispatch computationnaly
intensive jobs such as gridding, degridding and FFT.

A new generation of calibration and imaging algorithms,
also called the 3rd generation of calibration and imaging [18],
is implemented in DDFacet?> (Direction Dependent Facet)
framework to compensate and correct the DDEs. This paper
presents the first two-level parallelization paradigm for the
DDFacet imager to distribute the computation of observation
over multi-core and multi-node. The first level of paralleliza-
tion uses Concurrent Futures for multi-core parallelization on
a shared memory system [4]. The second level allows multi-
node parallelization on a distributed or shared memory system.
The challenge is to distribute data and computations on the
distributed memory architecture of a multi-node HPC system,
especially when addressing the balance between data transfers
between compute nodes and performance.

The layout of this paper is as follows. An overview of
DDFacet and radio interferometry is given in section II. The
shared and distributed memory parallelization scheme we
implemented is described in section III. The experiments we
performed and the associated results are presented in section
IV. Finally, the conclusion and future work is found in section
V.

II. DDFACET AND RADIO INTERFEROMETRY IMAGING

This section describes the mathematical basis of radio in-
terferometric imaging, taking into account direction-dependent
effects. In a second step, we present DDFacet, an imaging
pipeline that considers these effects.

A. Radio Interferometry Imaging

An interferometer array is a network of antennas and dishes
distributed spatially on earth (or space). Each antenna’s pair is
defined as a baseline (physical distance between the antennas).
Each baseline, at a time ¢ and frequency v generates a
sample by correlating the voltages of these two antennas.
This measurement is called visibility. For a non-polarized
interferometer, the number of visibilities generated is:

Ny;is = nb_baseline x t_integ X nb_channel, where t_integ
is the number of sample for one baseline during the integration
time, nb_channel is the number of frequency channel.

The Radio Interferometric Measurement Equation (RIME
[19]) describes the relationship between the sky model and the
various direction-dependent and direction-independent Jones
matrices, map to the measured visibilities as a linear transfor-
mation. For a given antenna pair pq, at time ¢ and frequency
v, the RIME is :

Thttps://dask.org/
Zhttps://github.com/saopicc/DDFacet
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where G, is the 2x2 direction-independent Jones matrix for
the antenna p, D, s is the 2x2 direction-dependent Jones
matrix, K,  is the effect of the array geometry and correlator
and is purely scalar, such as

H _  —2ir(ul+vm+w(n—1))
K, K/, =e 2"

, T is the four-polarization sky contribution for the direction
s = (I,m,n), and € is a 2x2 random matrix following a
normal distribution.

If G,q = GZtu ® Gpu and T pg,s D;tu,s ® Dypty,s
are the direction-independent and direction-dependent 4x4
Mueller matrices for the baseline pg, at time ¢ and frequency
v, then eq (1) can be written :
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where Vec() is the vectorization operator and ® the Kronecker
product. The effects in G,,, describe the direction-independent
effects such as the individual station electronics or their clock
drifts and offsets. The effects in D, , describes the DDE,
which include the ionospheric effect such as the Faraday
rotation or phase shift, and the phased array station’s beam
that depend on time, frequency and antenna.

From eq (2), if the W-term (e~2imw(n=1)y and the DDE
(J pq) are not taken into account, the relation between the
sky and the visibilities becomes a Direct Fourier Transform
(DFT). Since the cost of the DFT, O(NM-SNI?“:), becomes
quickly prohibitive, we rather use the Fast Fourier Transform
(FFT) algorithm (O(Ngmlongim)). However, the visibilities
are not sampled on a uniform grid, which is mandatory to use
the F'FT. In order to generate a sky image, the visibilities
are first gridded on a uniform grid by applying a convolution.
Then a 2D inverse F'F'T is performed on the grid to obtain
the so-called dirty image 7. The w-term and the DDE from eq
(2) are taken into account during the gridding step. Similarly,
we define degridding as the step to obtain visibilities from the
Fourier transform of the discretized sky image.

Usually, a CLEAN major/minor cycle deconvolution algo-
rithm is used to reconstruct the true sky. This kind of algorithm
in the case of DDFacet is described in sec III-A.

B. DDFacet

It is extremely challenging to synthesize high-resolution
images with the new generation of radio telescopes like LO-
FAR or MeerKAT. This latter operates at very low frequency,
observing a wide field of view and combining short and long
baselines.

The estimation of the true sky I, assuming the Jones terms
constant, from Eq (2) is done by the imager DDFacet (Di-
rection Dependant Facet) [4]. The specificity of the DDFacet



framework is to solve the imaging problems due to the DDE
by using the faceting approach. The purpose of faceting is to
approximate a wide field of view with many small narrow-
field images. One independent grid is used per-facet and a
constant DDE D, s (where s, is the direction of the facet
) is applied to each facet. Experience shows that we need to
split the sky model into a few tens of directions to be able to
describe the spatial variation of the direction-dependent Jones
matrices [20]. Moreover, in order to reduce the amount of data
to be processed, an averaging of visibilities is performed using
the BDA algorithm [21], [22]. Depending on the baseline and
a decorrelation factor considered acceptable, the visibilities are
more or less averaged together.

DDFacet incorporates a few deconvolution algorithms na-
tively incorporated and compensated for the DDE. For in-
stance, one can use the standard Multi-Scale Multi-Frequency
(MSMF) CLEAN algorithm. As it is well-known that the
CLEAN:-like algorithms are not robust in deconvolution of
extended emission, the SubSpace Deconvolution algorithm
(SSD) is implemented. As described in [4], one can also find
an extension of SSD using a genetic algorithm (SSDGA). For
the next of this paper, every mention of the deconvolution
algorithm will reference the MSMF algorithm described in [4].

III. PARALLELIZATION

This section describes the parallelization paradigms imple-
mented in DDFacet. First, we will see the simplified sequential
algorithm to introduce notations. Then, we will see the multi-
core parallelization with a modified implementation compared
to the native version to simplify the implementation of the
multi-node parallelization. Finally, we will see the multi-node
parallelization to reduce the latency to generate a reconstructed
sky image.

A. Sequential algorithm

The DDFacet imaging algorithm is described by Alg 1.
For simplicity, the visibilities of a MS file are represented by
Vurs; - The imager is an iterative algorithm going to K major
cycles, using J MS files to reconstruct a hypercube Z divided
into [ facets.

B. Multi-core parallelization

In order to facilitate the implementation of the distributed
memory parallelization, a new implementation of the multi-
core parallelization has been made using Concurrent-Futures?>.
This new implementation, following the same parallelization
paradigm as the native version [4], is illustrated in Fig 1.

In the case of DDFacet, the image is divided into facets
whose calculations are independent of each other. Thus each
loop implying facets of Alg 1 is parallelized. The paralleliza-
tion framework is based on an asynchronous behavior between
the computational and I/O phases. The main process of the
imager manages a bunch of workers, where each worker is
a process, depending on the number of cores available or set
by the user. The main process then dispatches the different

3https://docs.python.org/3/library/concurrent.futures.html

Algorithm 1: DDFacet sequential imaging pipeline.
Data: (z, v, I, J, K, PSF)
Initialization(v);
for k in K_MajorCycles do
for j in J_MS do
for i in I _Facets do
g@inS]‘ = FFT("/B\vi;j);
i'\L,oi,MSj = Degrid(‘/q\@i-,MSj 5 ia .7)’
end

OVais; = VMms; — VMS;s
for i in I _Facets do

| 9e,.ms, = Grid(6vis, i, 5);
end

end
for i in I _Facets do
| by+ = FFT_inv(gy,,i,));
end
Z = Deconvolution(dy, PSF);

end

jobs in a dedicated queue. A compute queue is dedicated for
the computational jobs like gridding, degridding, and FFT for
each facet ¢, and an I/O queue for the I/O relative jobs.

Initialization

| FFT | FFT | | FFT | FFT I
#1 P2 Pr1 Py
~(k ~(k
o } IES
| Degrid | Degrid | ... .. | Degrid | Degrid
P1 P2 Pr1 $r
A
VMSj
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Grid Grid | _______ Grid Grid I
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(k)
g
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(k)
oy
Deconvolution
x|

Fig. 1. Multi-core parallelization

C. Multi-node parallelization with data distribution

The naive multi-node parallelization paradigm used to in-
crease the image production rate is to distribute observation
on each node. However, this method, illustrated by Fig 2, only
increases the throughput of image production. Indeed, in the



case of a large dataset, each image can take several hours/days
to produce. Hence the need to reduce the latency of an image.

Dataset 1 Dataset 2 Dataset N
MS1 ---- msg, MS1 ----/Msg, MS1 ---- Msg,
Node 1 Node 2 Node N
DDFacet DDFacet DDFacet
Image 1 Image 2 Image N
x - x i

* * * * X
y x * e 5

Fig. 2. Existing DDFacet multi-node parallelization. Each node generates an
independent image using different dataset of a specific observation.

Our approach, illustrated by Fig 3, distributes the compu-
tation of a dataset composed of several MS files on several
nodes to generate the corresponding image. The dataset is
equally distributed over a number N of nodes to balance the
computational load. The nodes gather the necessary metadata
after an initialization phase specific to each sub-dataset such
as BDA computation and weight computation. After that,
the computational core of each node is identical, using the
multi-core parallelization described in Sec III-B. The FFT,
degridding, and gridding operators will be applied depending
on the dataset. After the gridding of all MS for each node, the
subgrids g%k)N are transferred and reduced to the master node,
also called rankO, such as

N
g™ =3 g" 3)
=1

Only the master node is in charge of moving into the
spatial domain and applying the deconvolution algorithm to
the residual image dy. The resulting hypercube ¥ is then
broadcast to all nodes, such that each node receives only the
slices whose frequency band is associated with its subset in
order to reduce IO communication.

The software implementation has been done in python
using the Concurrent Futures interface of mpidpy* based on
MPI [23]. The master MPI process is in charge of spawning
MPI processes on one or several nodes.

Thus, this multi-node implementation makes two levels of
parallelism of DDFacet. The first native one is based on facets
parallelization and shared memory. The second one is based on
Measurement Set parallelization, which allows for a distributed
memory system. Moreover, this implementation allows better
use of the computational resources within a node. Indeed,
when the processor has a large number of cores or when we
use few facets to reconstruct an image, such as

I t
_facets <1
nb_cores

“4)

“https://mpidpy.readthedocs.io/en/stable/mpi4py.futures.html

Node 1 Node 1
Initialization |« - =« » o r e Initialization
Sync

For

Fig. 3. Multi-node and multi-node parallelization based on independent MS
files using distributed memory system.

it results in an under-utilization of the computational resources.
Therefore, we can take advantage of this two-level paralleliza-
tion by spawning several MPI processes per compute node. In
this case, each MPI processes share the computation resources
equally and is optimal when

I_facets

Com)

&)

IV. EXPERIMENTS

This experiment aims to show the interest in using a
distributed version of DDFacet to reduce the latency to obtain a
result. A data set from the LOFAR radiotelescope artificially
inflated to obtain 48 MS files for a total of 1.1TB of data
is used. The experiments were performed on a BullSequana
X400 system based on AMD EPYC 7742 64-Core processor.
Each node, a dual-socket, is composed of 256 logical cores.

The purpose of this test case is to reconstruct a 10.000 x
10.000 pixels image after 20000 iterations of MSMF CLEAN,
i.e. three major cycles, and the result is shown by Fig 4. The
image is decomposed into 11 x 11 = 121 facets. The intra-
node multi-core parallelization thus allows using 121 cores
of our dual-socket processor. It results in an under-utilization
of this processor. Our experiment will use 1, 2, and 4 MPI
processes per node to maximize the computational cores’ use
and study each case’s scalability and memory impact. Thus,
in the case of one MPI process per node, 256 logical cores
are allocated for the MPI process. For two MPI processes per



Fig. 4. Left : Dirty Image. Right : Restored image after 20.000 iterations of
MSMF Clean.

node, 128 cores are allocated per MPI process, and in the case
of four MPI processes per node, 64 logical cores are allocated
per MPI process.

100001 m grid/degrid
BN deconv
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o 7500 MPI
8 . Wait
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£ - ] FFT
o 5000 N
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Fig. 5. Profiling of the master MPI process for a complete execution regarding
the number of MPI processes per node (1, 2, and 4), and the number of nodes
used for the parallel execution.

The total execution time and the profiling of the different
steps of the algorithm are illustrated by Fig 5. For the case
of 1 MPI process on one node, the gridding and degridding
steps represent 73%, which confirms the result of [4]. This
result highlights the need to distribute this core computation
to reduce the total execution time. As expected, the total execu-
tion time tends to decrease with distribution on several nodes,
demonstrating the interest of this implementation to reduce the
latency. In this profiling, we find two types of computational
blocks. Blocks with variable computational cost, such as
gridding/degridding and initialization, whose computational
cost decreases with the distribution on several nodes, following
the parallelization scheme presented in Fig 3. And blocks
with a fixed computational cost, such as Deconvolution, or
Others, which gather all non-profiled timing, including some
I/O and saving times. Additionally, the MPI communication
time remains very low but increases with the number of MPI
processes. The MPI communication waiting time varies with
the balanced distribution of MS files among MPI processes.

The scalability factor of the distributed part on several
MPI processes, i.e. the gridding, degridding, and FFT steps
depending on the number of nodes used, is defined as

AN ©)

a(p,n) = ;
P,

where ¢, , is the time of the master for p MPI processes
per node distributed on n nodes. The scalability curves for
1 MPI process per node and 4 MPI processes per nodes are
shown by Fig 6 and Fig 7. In both cases, the experimental
scalability curve follows the theoretical one, showing the good
distribution of the computation on several nodes.
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Fig. 6. Scaling of the gridding/degridding using one MPI process per node.
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Fig. 7. Scaling of the gridding/degridding using four MPI processes per node.

Fig 8 shows the speedup of the total execution time regard-
ing the execution time on one node with 1 MPI process, such
as the speedup is

~

L1 )

tpf”

B(p,n) =

The speedup reaches an asymptote at 5.3 with a peak for
B(1,16) = 5.7. Moreover, on a lower number of nodes, the
higher the number of MPI processes, the higher the speedup.
For instance, on one node (4, 1) reaches 2.01.
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Fig. 8. Total execution time SpeedUp regarding the number of nodes used.

Fig 9 shows the gridding speedup and the total execution
time for each node between 4 MPI processes and 1 MPI
process, such as the speedup is defined as



y(n) = 22 (®)

t4,n

The gridding speedup remains constant with a factor -~y
around 2, which demonstrates an improvement of the multi-
core parallelization. However, the total execution time speedup
decreases. We can therefore conclude that the main limiting
factor for the reduction of the execution time is the fixed cost
times.
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Fig. 9. Speedup of gridding/degridding and total execution time between 4
MPI processes and 1 MPI process regarding the number of nodes.

Finally, We can also observe an increase in memory con-
sumption during gridding and degridding, as indicated by the
Tab I. This increase is expected because we load in memory
the data necessary for the processing of each MPI process.

1 MPI/Node
27.4

2 MPI/Node
34.1

4 MPI/Node
68.1

Mem(GB)

TABLE I
MAXIMUM MEMORY CONSUMPTION DURING GRIDDING/DEGRIDDING.

V. CONCLUSION AND FUTURE WORK

This paper presents the parallelization of DDFacet, a wide-
band wide-field spectral deconvolution framework on a dis-
tributed memory HPC system.

We have presented a two-level parallelization paradigm with
facet-based parallelization for the multi-core shared mem-
ory aspect and MS-based parallelization for the multi-node
distributed-memory aspect. This implementation allowed for
distributing the most expensive computational blocks, such as
gridding and degridding, ensuring perfect scalability. Using
a LOFAR dataset, the total time to generate a reconstructed
image was reduced to a factor up to 5.7. Finally, we showed
that this implementation could also improve the multi-core
parallelization depending on the number of facets and the
processor used. The perspective for the future is to continue
working on ways to reduce the execution time. The first
track is to apply our multi-node framework to distribute
the deconvolution computation on several nodes. Moreover,
to optimize the computational load between several nodes

because of the compression applied by the BDA algorithm.
Finally, to implement optimization for gridding and degridding
on accelerator card for DDFacet.
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