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Abstract. In this paper, we study the problem of task reallocation for load-
balancing in distributed data processing models that tackle vast amount of data.
We propose a strategy based on cooperative agents used to optimize the reschedul-
ing of tasks in multiple jobs which must be executed as soon as possible. It allows
agents to determine locally the next tasks to process, to delegate, possibly to swap
according to their knowledge, their own belief base and their peer modelling. The
novelty lies in the ability of agents to identify opportunities and bottleneck agents,
and afterwards to reassign some bundles of tasks thanks to concurrent bilateral
negotiations. The strategy adopted by the agents allows to warrant a continu-
ous improvement of the flowtime. Our experimentation reveals that our strategy
reaches a flowtime which is better than the one reached by a DCOP resolution,
close to the one reached by the classical heuristic approach, and significantly re-
duces the rescheduling time.

Keywords: Multi-Agents Systems · Distributed Problem Solving · Agent-based
Negotiation.

1 Introduction

The problem of efficient task assignment among executing entities is common to many
real-world applications for logistics [13, 15], collective robotics [7, 22], distributed sys-
tems [20, 12], or more recently Big Data [1]. In particular, Data Science, which involves
the processing of large volumes of data which requires distributed file systems and par-
allel programming, challenges distributed computing with regard to task allocation and
load-balancing. This paper is concerned with a class of practical applications where (a)
some concurrent jobs (sets of tasks) must be performed as soon as possible, (b) the re-
sources (e.g. data) required to successfully execute a task are distributed among nodes.
Here we consider the most prominent distributed data processing model for tackling
vast amount of data on commodity clusters, i.e. the MapReduce design pattern [24].
Jobs are composed of tasks executed by the different nodes where the resources are dis-
tributed. Since several resources are necessary to perform a task, its execution requires
fetching some of these resources from other nodes, thus incurring an extra time cost for
its execution.

Many works adopt the multi-agent paradigm to address the problem of task reallo-
cation and load-balancing in distributed systems [12]. The individual-based approach
allows the decentralization of heuristics to scale-up the resolution of scheduling prob-
lem despite of the combinatory explosion. Furthermore, due to their inherent reactive
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nature, the multi-agent methods for task reallocation are adaptive to the inaccurate es-
timation of task execution time and some disruptive phenomena (task consumption,
job release, slowing down nodes, etc.). Most of these works adopt the market-oriented
approach which models problems as non-cooperative games [23, 7], eventually with
machine learning techniques which assume past experiences [22, 20]. By contrast, we
suppose as [1] that: (a) the agents are cooperative, i.e. they have a partial and local
perception of the task allocation but they share the same goal, and (b) neither general-
izable predictive patterns nor prior model of the data/environment are available since
it is not the case for the class of practical applications we are concerned with. We go
further here by considering several concurrent jobs composed of tasks. Each task can
be executed by a single agent, all of them are competent. Agents want to minimize the
mean flowtime of jobs. The main difficulty lies in the formulation of complex systems
for the reassignment of tasks-workers which are decentralized and adaptive, i.e. the de-
sign of individual and asynchronous behaviours that lead to the emergence of feasible
allocations combining the objectives of the task requesters.

We propose a strategy that decides which bilateral reallocation is suggested or ac-
cepted. Based on peer modelling, the strategy determines the agent behaviour in the
negotiation protocol. The offer strategy selects a potential delegation, i.e. an offer bun-
dle and a respondant. The acceptability rule determines whether the agent accepts or
rejects all or part of this delegation. Specifically, our contributions are as follows:

1. We formalize the multi-agent task allocation problem where concurrent jobs are
composed of situated tasks with different costs depending on the location of the
resources.

2. We propose a strategy that continuously identifies bottleneck agents and opportu-
nities within unbalanced allocations to trigger concurrent and bilateral negotiations
in order to delegate or swap tasks.

3. We conduct extensive experiments that show that our method reaches a flowtime
close to the one reached by the the classical heuristic and significantly reduces the
rescheduling time.

This paper is a extended version of [2].

1. We generalize the notion of delegation to consider any bilateral reallocation (dele-
gation or swap of several tasks).

2. We redefine the acceptability criterion of the bilateral reallocations in order to re-
duce the rescheduling time and the mean flowtime reached by our strategy.

3. We quantitatively compare the performance of our strategy with the performance
of a DCOP resolution method.

After an overview of related works in Section 2, we formalize the multi-agent situ-
ated task allocation problem in Section 3. Section 4 describes the consumption/delegation
operations and the negotiation process. Section 5 specifies how agents choose which
tasks to negotiate and with whom. Our empirical evaluation is described in Section 6.
Section 7 summarizes our contribution and future work.
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Resources Tasks Workers Objective Dynamics Decentralized Approach/
Technique

(Kuhn-Munkres, — n Rn W(
−→
A ) 7 7 LP

1955) [13] single-worker single-task
(SPT, 1967) — n Pm C(

−→
A ) 7 7 Heuristic

[8] single-worker multi-task
(Bruno et al., 1974) — n Rm C(

−→
A ) 7 7 LP

[5] single-worker multi-task

(Shehory et Krause, — n Rm W(
−→
A ) 3 3 Coalition

1998) [21] multi-worker single-task
(GPGP, 2004) consumables n Rm W(

−→
A ) 3 3 Team

[14] or not single-worker multi-task
(Turner et al., 2018) scarce n Rm online W(

−→
A ) 3 3 CBBA +

[22] single-worker multi-task ML
(Li et al., 2014) — n Pm C(

−→
A ) 3 3 DCOP

[15] single-worker multi-task ⊕W(
−→
A )

(Schaerf et al., — n Pm W(
−→
A ) 3 3 MARL

1995) [20] single-worker multi-task
(MASTA, 2021) transferables n Rm Cmax(

−→
A ) 3 3 Team

[1] duplicables single-worker multi-task
(SMASTA+, 2021) transferables n Rm C(

−→
A ) 3 3 Team

[2] duplicables multi-worker multi-task
Table 1: Analysis grid of methods for task assignment (at top) or reassignment (at bot-
tom)

2 Related work

Table 1 summarizes all the works discussed here according to our analysis grid. The
left-hand side of the table shows the problems which are addressed, i.e. their ingredi-
ents (resources, tasks, workers and objectives). The right-hand side reveals the features
of these methods and the techniques used. While the upper part of the table contains
some classical task assignment methods, the lower part presents some dynamic and
decentralized reassignment methods.

Scheduling theory [6] includes off-line methods for solving various problems of
task assignment among workers. For instance, the Kuhn-Munkres algorithm, also called
the Hungarian method, minimizes the total cost (denoted W(

−→
A )) for n tasks and n

workers [13]. Shortest processing time first (SPT) is a very simple method that mini-
mizes the flowtime of n single-worker tasks with one multi-task worker [8]. This result
generalizes to the problem with m multi-task workers if the cost of tasks is identical
from one worker to another (denoted Pm). The scheduling problem, which consists in
minimizing the total delay (denoted C(

−→
A )) with m multi-task workers and n single-

worker tasks whose costs depend on the worker (denoted Rm), can be formalized by a
linear-program (LP). This problem reduces to a weighted matching problem in a bipar-
tite graph with n tasks and n×m positions. This problem is polynomial [11]. Based
on the Ford-Fulkerson algorithm, the complexity of the algorithm described by [5]
is O(max(mn2,n3)). These approaches are not suitable for task reassignment in dis-
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tributed systems where decentralization and adaptability are required. Indeed, global
control is a performance bottleneck, since it must constantly collect information about
the state of the system. By contrast, our agents make local decisions on an existing
allocation with the aim to improve the load-balancing. Moreover, classical scheduling
problems are static. The inaccurate estimation of the task execution time and some dis-
ruptive phenomena (task consumption, job release, slowing down nodes, etc.) may re-
quire major modifications in the existing allocation to stay optimal. Furthermore, agents
can operate in dynamic environments that change over time.

The multi-agent paradigm is particularly suitable for the design and implementation
of distributed and adaptive mechanisms for the reassignment of tasks-workers [12]. The
existing models differ due to the nature of the tasks and the agents, whether they repre-
sent workers or task requesters. Coalition formation is justified if a task requires more
than one worker or if its cost decreases with the number of assigned workers. For in-
stance, Shehory and Kraus propose decentralized, greedy and anytime algorithms for
assigning multi-worker tasks with precedence constraints to some workers with hetero-
geneous capabilities/efficiencies. [21]. Similarly to a coalition, a team aims at maximiz-
ing an overall objective function rather than the individual welfares. However, a team
performs single-worker tasks. For instance, Lesser et al. propose a domain-independent
coordination framework with a hierarchical task network representation for resource al-
location and task assignment/scheduling [14]. The main objective of Generalized Par-
tial Global Planning (GPGP) is the maximization of the combined utility accrued by the
group of agents as a result of successful completion of its high-level goals. GPGP adopts
a planning-oriented approach of coordination which assumes that the effort required
for coordination (reasoning and communication) is negligible compared to the tasks
execution time. Inspired by economic theories, the market-oriented approach models
distributed planning problems as the search of an equilibrium for a non-cooperative
game [23]. The agents delegate/swap tasks. Contrary to a team, a marketplace assumes
that the constraints and objectives are fully distributed. Among the market-oriented
methods, we distinguish three families.

DCOP. The reassignment problems can be formalized as Distributed Constraint
Optimization Problems (DCOP). Many resolution methods have been developed for
finding an optimal solution to a DCOP which is an NP-hard problem (see a recent
survey [9]). The main difficulty in applying these methods for task reassignment lies
in the representation of a real-world problem as a DCOP, or even several COP sub-
problems, since it requires expertise in the resolution method (e.g. [15]).

CBBA. Consensus Based Bundle Algorithm [7] is a multi-agent assignment method
that consists of: (a) selecting the negotiated tasks; (b) determining the winner of these
negotiations. In the same line, Turner et al. study the continuous task assignment for a
multi-robot team in order to maximise the throughput before running out of fuel [22].
Thanks to machine learning (ML), they propose a prediction mechanism that uses past
experience to select which task allocation strategy yields the optimal global task allo-
cation.

MARL. The reassignment problems can also be formalized as Markov decision
processes [4], in particular Decentralized Partially Observed Markov Decision Process
(Dec-POMDP). The optimization of a Dec-POMDP with a finite horizon is a NEXP-
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TIME problem. Approximate resolution methods can only be applied to small problem
instances, they do not scale up. Beyond these off-line planning methods, Multi-Agent
Reinforcement Learning (MARL) requires a perfect knowledge of the environment and
a learning phase [20].

Conversely, we consider neither generalizable predictive patterns nor prior model
of the data/environment are available since it is not the case for the class of practical
applications we are concerned with. For instance, Baert et al. have in [1] an egalitarian
objective which is the minimization of the makespan (denoted Cmax(

−→
A )). We consider

here the problem of coordinating decisions between agents to find a globally optimal
solution for a multi-objective function. Agents want to minimize the mean flowtime of
several concurrent jobs, each consisting of several tasks.

This paper is a extended version of [2].

1. While our previous work only considers delegations of single task, we here gen-
eralize our formal framework to consider any bilateral reallocation (delegation or
swap of several tasks) in order to reduce not only the mean flowtime but also the
rescheduling time.

2. We here redefine the acceptability criterion of the bilateral reallocations by the
agents. Previously, this criterion was based on the local flowtime, i.e. the flowtime
restricted to the two contractors. Since this criterion does not guarantee the termina-
tion of the multi-agent reallocation algorithm, it was combined with the makespan,
the maximum completion of all the jobs. In this paper, a bilateral reallocation is ac-
ceptable for an agent if, according to its beliefs, it reduces the global flowtime. This
acceptability criterion is sufficient to guarantee the convergence of the reallocation
process. Moreover, it allows to reduce the rescheduling time and the mean flowtime
reached by our strategy.

3. We quantitatively compare the performance of our strategy with the performance
of a DCOP resolution method.

3 Multi-agent situated task allocation

In this section, we formalize the multi-agent situated task allocation problem with con-
current jobs.

We consider distributed jobs, each job being a set of independent, non divisible
tasks without precedence order. Tasks are non preemptive, and the execution of each
task requires resources which are distributed across different nodes. These resources
are transferable and non consumable.

Definition 1 (Distributed system). A system is a triple D= 〈N,E,R〉 where:

– N = {ν1, . . . ,νm} is a set of m nodes;
– E is an acquaintance relation, i.e. a binary and symmetric relation over N;
– R = {ρ1, . . . ,ρk} is a set of k resources, each resource ρi having a size |ρi|. The

locations of the resources, which are possibly replicated, are determined by the
function:

l : R→ 2N (1)
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For simplicity, we assume exactly one agent per node (the set of agents is N), and
any agent can access any resource.

Running a job (without a deadline) consists in a set of independent tasks which
require resources to produce an outcome.

Definition 2 (Job/Task). Let D be a distributed system and Res be the space of out-
comes. We consider the set of ` jobs J = {J1, . . . ,J`}. Each job Ji is a set of ki tasks
Ji = {τ1, . . . ,τki} where each task τ is a function which links a set of resources to an
outcome: τ : 2R 7→ Res.

It is worth noticing that we consider in this paper a set of jobs having the same
release date. T =

⋃
1≤i≤` Ji denotes the set of the n tasks of J and Rτ ⊆ R is the set of

the resources required for the task τ. The job containing the task τ is written job(τ).
Each task has a cost for a node, which is its estimated execution time by this node.

As the fetching time of resources is supposed to be significant, the cost function must
verify that the task τ is cheaper for νi than for ν j if the required resources are ”more
local” to νi than to ν j:

Property 1 (Cost). Let D a distributed system and T a set of tasks. The cost function
c : T×N 7→R∗+ is such that:

c(τ,νi) ≤ c(τ,ν j)⇔ (2)
Σρ∈Rτ ,νi∈l(ρ)|ρ|> Σρ∈Rτ ,ν j∈l(ρ)|ρ|

The cost function can be extended to a set of tasks:

∀T⊆ T, c(T,νi) = Στ∈Tc(τ,νi) (3)

Note that in practice, it is difficult to design this function with a good estimation
of the runtime. However the adaptability of our multi-agent system compensates for a
poor estimation of the cost function. It is one of the benefits of our approach.

A multi-agent situated task allocation problem with concurrent jobs consists in as-
signing several jobs to some nodes according to their costs.

Definition 3 (MASTA+). A multi-agent situated task allocation problem with concur-
rent jobs is a quadruple MASTA+ = 〈D,T,J,c〉 where:

– D is a distributed system with m nodes ;
– T = {τ1, . . . ,τn} is a set of n tasks ;
– J= {J1, . . . ,J`} is a partition of T into ` jobs;
– c : T×N 7→R∗+ is the cost function.

A task allocation is an assignation of sorted bundles to different nodes.

Definition 4 (Allocation). Let MASTA+ be a task allocation problem. An allocation−→
A is a vector of m sorted task bundles ((B1,≺1), . . . , (Bm,≺m)). Each bundle (Bi,≺i)
is the set of tasks (Bi ⊆ T) assigned to the node νi associated with a scheduling order,
i.e. a strict and total order (≺i⊆ T×T) such that τ j ≺i τk means that if τ j,τk ∈ Bi then
τ j is performed before τk by νi.
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The allocation
−→
A is such that:

∀τ ∈ T, ∃νi ∈N, τ ∈ Bi (4)
∀νi ∈N,∀ν j ∈N \{νi}, Bi∩B j = /0 (5)

The set T is partionned by an allocation: all the tasks are assigned (Eq. 4) and each
task is assigned to a single node (Eq. 5). To simplify, we use the following notations:

–
−→
B i = (Bi,≺i), the sorted bundle of νi;

– min≺i Bi, the next task to perform by νi:
– jobs(Bi), the set of jobs assigned to νi, i.e. such that at least one task is in Bi;
– ν(τ,

−→
A ), the node whose bundle contains τ in

−→
A ;

– wi(
−→
A ) = c(Bi,νi) = Στ∈Bic(τ,νi), the workload of νi for

−→
A .

We assume that nodes are never idle, so the completion time of a task is its delay before
the task is started, plus its estimated execution time:

Cτ(
−→
A ) = t(τ,ν(τ,

−→
A ))+ c(τ,ν(τ,

−→
A )) (6)

with t(τ,νi) = Στ′∈Bi|τ′≺iτc(τ′,νi)

Unlike the cost, the delay (so the completion time) depends on the scheduling order
over the bundle.

The quality of an allocation is measured by the mean flowtime for all the jobs, where
the flowtime of one job is its completion time. The makespan is the time necessary to
perform all the jobs. Then, the makespan is the maximum completion time of the jobs
and also the maximum workload of the nodes.

Definition 5 (Flowtime/Makespan). Let MASTA+ a task allocation problem and
−→
A

an allocation. We define:

– the completion time of J ∈ J for
−→
A ,

CJ(
−→
A ) = max

τ∈J
{Cτ(

−→
A )} (7)

– the (mean) flowtime of J for
−→
A ,

Cmean(
−→
A ) =

1
`

C(
−→
A ) with C(

−→
A ) = ΣJ∈JCJ(

−→
A ) (8)

– the makespan of J for
−→
A ,

Cmax(
−→
A ) = max

νi∈N
{wi(
−→
A )} (9)

– the local availability ratio of
−→
A ,

L(
−→
A ) = Στ∈T

Σ
ρ∈Rτ , ν(τ,

−→
A )∈l(ρ)|ρ|

Σρ∈Rτ
|ρ|

(10)
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Unlike the makespan, the flowtime depends on the scheduling order. The local avail-
ability ratio of

−→
A measures the proportion of locally processed resources (Eq. 10).

Example 1 (MASTA+). From the distributed system D= 〈N,E,R〉with N= {ν1,ν2,ν3},
E = {(ν1,ν2), (ν1,ν3), (ν2,ν3)} and R = {ρ1, . . . ,ρ9} where resources are replicated
on 2 nodes (cf. Fig. 1a), we consider MASTA+ = 〈D,T,J,c〉 with T = {τ1, . . . ,τ9}
where each task τi needs resource ρi, J = {J1, J2, J3} such that J1 = {τ1,τ2,τ3}, J2 =
{τ4,τ5,τ6} and J3 = {τ7,τ8,τ9} and c is the cost function given in Table 2. We as-
sume the cost of a task is proportional to the resources size, and two times greater
if the resource is distant. We consider here the allocation

−→
A (see Figure 1b) with−→

B 1 = (τ5,τ8,τ3,τ2),
−→
B 2 = (τ4,τ9) and

−→
B 3 = (τ7,τ1,τ6). The makespan and the flow-

time are Cmax(
−→
A ) = 12 and C(

−→
A ) = 8+ 12+ 12 = 32.

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9
c(τ,ν1) 5 3 1 8 2 10 4 2 4
c(τ,ν2) 10 3 2 4 2 5 2 2 8
c(τ,ν3) 5 6 1 4 4 5 2 4 4

Table 2: Cost function

To conclude this section, due to the locality of resources, a task has not the same
cost for every nodes. In this paper, our objective is to minimize the mean flowtime, for
a set of concurrent jobs composed of many tasks.

4 Consumption and reallocation

We describe in this section the operations of consumption and reallocation as well as
the negotation protocol.

A task consumption is the removal by a node of a task from its bundle in order to
process it. This operation modifies not only the current allocation but also the underly-
ing MASTA+ problem since the consumed task is no longer present. The consumption
strategy adopted by an agent specifies the tasks scheduling for the node it is in charge
of. Since we aim at minimizing the mean flowtime of the jobs, we consider here a job-
oriented strategy which sorts first jobs and then the tasks inside the same job (the tasks
of a same job are consecutive in the bundle). More precisely, the less expensive jobs
are prior on the most expensive ones in order to minimize locally the completion time
of the jobs. Thereafter, J1 �i J2 means that the tasks in J1 are prior to the tasks in J2.
τ1 �i τ2 means that the task τ1 is prior to the task τ2. Formally,

∀τ j,τk ∈ Bi τ j ≺i τk⇔
job(τ j)�i job(τk)∨ (job(τ j) = job(τk)∧ τ j �i τk)

(11)

The addition/removal of a list of tasks T in the bundle
−→
B i of the node νi may modify

the tasks execution order since these operations imply a rescheduling of the bundle:
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–
−−−→
Bi⊕T denotes the bundle containing the set of tasks Bi∪T sorted with ≺i ;

–
−−−→
Bi	T denotes the bundle containing Bi \T sorted with ≺i.

–
−−−−−−−−→
Bi	T1⊕T2 denotes the bundle containing Bi \T1∪T2 sorted with ≺i.

A bilateral reallocation is an operation which modifies the current allocation by
exchanging one or several tasks between two agents.

Definition 6 (Bilateral reallocation). Let MASTA+= 〈D,T,J,c〉 be an allocation prob-
lem and

−→
A = (

−→
B 1, . . . ,

−→
B m) an allocation. The bilateral reallocation of the non-empty

list of tasks T1 assigned to the proposer νi in exchange for the list of tasks T2 assigned to
the responder ν j in

−→
A (T1 ⊆ Bi and T2 ⊆ B j) leads to the allocation γ(T1,T2,νi,ν j,

−→
A )

with m bundles γ(T1,T2,νi,ν j,
−→
B k) such that:

γ(T1,T2,νi,ν j,
−→
B k) =


−−−−−−−−→
Bi	T1⊕T2 if k = i,
−−−−−−−−→
B j	T2⊕T1 if k = j,
−→
B k otherwise

(12)

We distinguish two cases:

– a swap where the two lists of tasks are non-empty (T1 6= /0∧ T2 6= /0), denoted
σ(T1,T2,νi,ν j,

−→
A ) ;

– a delegation where an agent gives a part of its tasks to one of its peers without
counterpart (T2 = /0), denoted δ(T1,νi,ν j,

−→
A ). If |T1|= 1, this is an unary delega-

tion. Otherwise, this is an n-ary delegation.

We will see later that the bilateral reallocation of lists of tasks rather than sets allows to
specify the order in which the tasks should be evaluated to validate the interest of all or
part of the transaction.

In order to improve an allocation, we introduce the notion of socially rational bi-
lateral reallocation which verifies if a reallocation reduces the global flowtime, i.e. the
completion time of the jobs for all nodes.

Definition 7 (Socially rational bilateral reallocation). Let MASTA+ = 〈D,T,J,c〉 be
an allocation problem,

−→
A an allocation. The bilateral reallocation γ(T1,T2,νi,ν j,

−→
A ) is

socially rational with respect to the flowtime if and only if the global flowtime decreases,

C(γ(T1,T2,νi,ν j,
−→
A ))< C(

−→
A ) (13)

An allocation is stable if there is no socially rational bilateral delegation.
Contrary to [2], we do not consider as socially rational the reallocations reducing

the local flowtime (the completion time of jobs restricted to the nodes implied in the
reallocation) which does not guarantee the convergence of the reallocation process, nor
even the reallocations reducing the local flowtime and the makespan (the maximum
workload of the agents). The reduction of the global flowtime guarantees the termina-
tion of the process. Hereafter, when it comes to flowtime, it will be, unless specified,
the global flowtime (denoted C(

−→
A ) defined in Eq. 8)
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Property 2 (Termination). Let MASTA+ = 〈D,T,J,c〉 be an allocation problem and
−→
A a non-stable allocation with respect to the flowtime. There exists a finite path of
socially rational bilateral reallocations with respect to the flowtime which leads to a
stable allocation for this criterion.

Proof. Let MASTA+ = 〈D,T,J,c〉 be an allocation problem and
−→
A a non-stable allo-

cation with respect to the flowtime. Let γ be a socially rational reallocation which leads
to the allocation

−→
A ′ from

−→
A . Since γ is socially rational with respect to the flowtime,

the flowtime strictly decreases. Formally, ΣJ∈JCJ(
−→
A ′) < ΣJ∈JCJ(

−→
A ). Since there is a

finite number of allocations and ΣJ∈JCJ(
−→
A ) strictly decreases at each step, there can

only be a finite number of such allocations.

For tasks reallocation, the agents are involved in multiple bilateral single-round ne-
gotiation. Each negotiation is based on the alternating offers protocol [18] and includes
three decision steps : (a) the offer strategy of the proposer which selects a delegation,
i.e. a list of tasks in its bundle and a responder, (b) the counter-offer strategy which
allows the responder to determine wether it declines, accepts or makes a counter-offer
to the delegation, and (c) the eventual reallocation is confirmed or withdrawn by the
proposer according to the consumptions that happen concurrently (cf. figure 2).

Example 2 (Consumption and reallocation). Let us consider the problem MASTA+
from the example 1 and the allocation

−→
A in Figure 1b. According to the consump-

tion strategy adopted by the agents, each bundle is sorted. The less expensive jobs are
prior (e.g. J3 �3 J1 �3 J2). In case of a tie, the natural order over the identifiers ensures a
strict and total order (e.g. J2�1 J3). The tasks among a same job are sorted by increasing
cost (τ3 �1 τ2). The delegation of the task τ9 by the node ν2 to the node ν1 leads to the
allocation

−→
A ′ = δ([τ9],ν2,ν1,

−→
A ). This delegation (cf. Figure 3a) is socially rational

since it decreases the flowtime from 32 to 31. The swap of τ9 ∈B2 and τ5 ∈B1 between
the nodes ν2 and ν1 leads to the allocation

−→
A ′′ = σ([τ9], [τ5],ν2,ν1,

−→
A ). This swap (cf.

Figure 3b) decreases the flowtime from 32 to 29.

5 Negotiation strategy

We describe in this section the different parts of the negotiation strategy and we sketch
the agent behaviour in the negotiation process.

5.1 Peer modelling

The peer modelling is built upon exchanged information through messages between the
agents. Before the negotiation process and between each bilateral reallocation it is im-
plied in, the agent νi informs its peers about the cost of each job J for it (c(J,νi)). Since
the number of jobs is negligible compared to the number of tasks, the messages size is
insignificant compared to the bundle descriptions. The modelling for the target νk by
the subject νi is based on:
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Proposer Responder

alt [The proposer identifies a socially rational delegation]

1 Propose(delegation)

alt [The responder identifies a socially rational swap]

2 Counterpropose(swap)

alt [The swap is deprecated]

3 Withdraw(swap)

[The swap is up to date]

4 Confirm(swap)

[The responder does not identify a socially rational swap]

5 Accept(delegation)

alt [The delegation is deprecated]

6 Withdraw(delegation)

[The delegation is up to date]

7 Confirm(delegation)

[The delegation is not socially rational]

8 Reject(delegation)

Fig. 2: Bilateral negotiation protocol between a proposer and a responder.
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(a) Allocation after the delegation of τ9 from ν2
to ν1

τ3

τ2

τ8

τ9

τ5

τ4

τ7

τ1

τ6

ν1 ν2 ν3Nodes
0
1
2
3
4
5
6
7
8
9

10
11
12

W
or

kl
oa

d

(b) Allocation after the swap of τ9 and τ5 be-
tween ν2 and ν1

Fig. 3: Allocations of the first example resulting from bilateral reallocations
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1. the belief base of the subject, possibly partial or obsolete, which contains the beliefs
about the costs of the jobs for νk (ci(J,νk), ∀J ∈ J) and so the beliefs about the
workload of νk (wi

k(
−→
A ) = ΣJ∈Jci(J,νk));

2. the consumption strategy of the target assumed by the subject, written (J,�i
k).

The subject can then deduce:

– the completion time (C i
J (
−→
B k)) of the job J for a target k, possibly itself (νk = νi),

after the addition (C i
J (
−−−−→
Bk⊕T)), the removal (C i

J (
−−−−→
Bk	T)) and the replacing of

tasks (C i
J (
−−−−−−−−→
Bk	T1⊕T2));

– the completion time of a job J for the allocation,

C i
J (
−→
A ) = max

νk∈N
C i

J (
−→
B k) où C i

J (
−→
B i) = CJ(

−→
B i) (14)

– the bottleneck node for each job J, denoted νi
max(
−→
A ,J), i.e. the node νk for which

the completion time of this job is the maximum completion time in the allocation,

C i
J (
−→
B k) = C i

J (
−→
A ) (15)

– the flowtime of the allocation
−→
A

C i(
−→
A ) = ΣJ∈JC i

J (
−→
A ) (16)

5.2 Acceptability rule

The acceptability rule is a local decision made by an agent which is implied in a
bilateral reallocation. This rule, which is based on the agent knowledge and the peer
modelling, decides to accept or decline a reallocation.

Definition 8 (Acceptability). Let MASTA+ = 〈D,T,J,c〉 be a problem and
−→
A an allo-

cation. The bilateral reallocation γ(T1,T2,νi,ν j,
−→
A ) is acceptable by the agent νk ∈N

with respect to the flowtime if an only if the agent believes that the flowtime decreases,

ΣJ∈J max
∀νo∈N\{νi,ν j}

(C k
J (
−−−−−−−−→
Bi	T1⊕T2),C k

J (
−−−−−−−−→
B j	T2⊕T1),C k

J (Bo)) < C k(
−→
A ) (17)

The acceptability with respect to the flowtime is based on the beliefs about the
completion time of the jobs for all the nodes before and after the reallocation (Eq. 17).

We propose in this paper a process where the agents trigger concurrent bilateral
negotiations leading to socially rational reallocations.

5.3 Offer strategy

The offer strategy of an agent, which is based on its knowledge, its beliefs and its peer
modelling, identifies a delegation in three steps. An agent νi selects an offer bundle, i.e.
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a list of tasks to delegate to a responder in a set N′ in order to reduce the completion
time of a job in a set J′ for which it is a bottleneck. Initially, J′ = J, N′ = N.
1. Job selection. In order to reduce not only the completion time of a job but also the
completion time of the next jobs in its bundle, our heuristic selects the most prior job J∗
for which it is a bottleneck,

J∗ = min
�i
{J ∈ jobs(Bi)∩J′ | νi

max(
−→
A ,J = νi)} (18)

2. Responder selection. The jobs of a responder that are impacted by the delegation
are those after J∗ according to �i

j. Not to increase the completion time of these jobs,
our heuristic selects a responder ν∗ for whom the sum of the differences between the
completion time for the allocation and the completion time for the agent is the greatest
one,

ν∗ = random{argmax
ν j∈N′

ΣJ∗�i
jJ
(C i

J (
−→
A )−C i

J (
−→
B j))} (19)

where random is a random choice function which selects a node from any set of nodes.

3. Offer bundle selection. To determine the offer bundle, we distinguish a strategy
which selects a single task as in [2] and a strategy which selects several tasks.

3.a. Unary delegation selection. In order to reduce the completion time of J∗, the
proposer selects a distant task, i.e. a task whose delegation will reduce its cost. Our
heuristic selects the task in the job J∗ or in the prior jobs in

−→
B i with the best payoff in

terms of cost. In case of a tie, the prior task is chosen,

∀T′ ⊆ T,τ∗ = min
�i
{ argmax

τ∈T′∩Bi∩{J|J=J∗∨(J�iJ∗)}
c(τ,νi)− c(τ,ν∗)}

The delegation δ([τ∗],νi,ν∗,
−→
A ) is triggered if it is acceptable for the proposer (cf

Def. 8).
3.b. N-ary delegation selection. The proposer iteratively builds an offer bundle T∗.
This bundle is a stack of tasks that will be evaluated by the acceptability strategy of the
responder in order to accept all or part of this bundle by unstacking it (cf. Section 5.4).
As illustrated in Algorithm 1, our heuristic considers the tasks in J∗ or in the prior jobs
in
−→
B i (line 2). The proposer νi selects in priority the distant tasks, i.e. the tasks whose

delegation will reduce at most the processing time (lines 3 and 6). According to this
ratchet algorithm, the flowtime strictly decreases during the building of the offer bundle
(line 8). Moreover, the algorithm stops as soon as a task does not improve the flowtime.
If the offer bundle T∗ is non-empty, the delegation δ(T∗,νi,ν∗,

−→
A ), which is acceptable

for the initiator, is triggered.
Whatever the offer bundle selection strategy is (3.a or 3.b), if no delegation is triggered,
the offer strategy returns to step #2 to choose another responder (N′ ← N′ \ {ν∗}).
Otherwise, the offer strategy returns to step #1 to choose another job (J′← J′ \ {J∗}).
In case of failure, no delegation is proposed and the agent goes into pause state until its
belief base is updated and a new opportunity (i.e. a delegation) is found.
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Algorithm 1: Building of the offer bundle by the proposer νi

Data: J∗ the job selected in step #1;
ν∗ the responder selected in step #2;

1 T∗← empty stack ;
2 T = {τ | job(τ) = J∗∨ (job(τ)�i J∗)} ;
3 T′← (. . . ,τk, . . . ,τl , . . .) | τi ∈ T ∧ (k < l⇔ c(τk,νi)− c(τk,ν∗) > c(τl ,νi)− c(τl ,ν∗))

/* the list of tasks by decreasing payoff */

4 bestFlowtime = C i(
−→
A ) ;

5 while T′ 6= /0 do
6 τ∗← head(T′) ;
7 T′← tail(T′) ;

8 if C i(δ(T∗∪{τ∗},νi,ν∗,
−→
A ))< bestFlowtime then

9 T∗.push(τ∗) ;

10 bestFlowtime← C i(δ(T∗,νi,ν∗,
−→
A )) ;

11 end
12 else
13 Return T∗ ;
14 end
15 end
16 Return T∗ ;

Algorithm 2: Selection by the responder ν∗ of a sub-bundle among the re-
ceived offer bundle

Data: T∗ the received offer bundle
1 Tacc← T∗ ;

2 while δ(Tacc,νi,ν∗,
−→
A ) is not acceptable for the agent ν∗ do

3 Tacc.pop ;
4 end
5 Return Tacc ;
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5.4 Acceptation strategy

According to the acceptation strategy, the responder accepts a delegation which is
acceptable for it. Otherwise, it unstacks one by one the tasks in the offer bundle T∗ (cf.
Algo. 2) for possibly accepting a part of it. When the sub-bundle Tacc is empty, the
responder declines the offer.

5.5 Agent behaviour

In our approach, a reallocation is the outcome of the negotiation process between agents
adopting the same behaviour. The agent behaviour is specified in [3] by a deterministic
finite state automaton 1. An agent executes its behaviour according to its knowledge
and its beliefs. In order to avoid deadlock, the proposals are associated with deadlines.
The agent’s belief base is updated by the reception of messages. None proposal is sent
if the agent believes that the allocation is stable.

Example 3 (Negotiation strategy). Let us consider the MASTA+ problem from Ex-
ample 1 and the initial allocation

−→
A (cf. Figure 4a) such that

−→
B 1 = (τ5,τ1),

−→
B 2 =

(τ3,τ2,τ7,τ8,τ9) and
−→
B 3 = (τ4,τ6). The flowtime is C(

−→
A ) = 7 + 9 + 17 = 33. We

consider that the belief bases are up-to-date. The offer strategy of the agent ν2 selects a
delegation as follows:

1. it selects the most prior job for which it is a bottleneck (cf. Eq. 18), J∗ = J3;
2. it selects an agent which is the least bottleneck for the job J3 (cf. Eq. 19). As neither

ν1 nor ν3 have tasks from J3, the agent ν2 randomly chooses, ν∗ = ν1 ;
3. The algorithm 1 allows the agent ν2 to select its offer bundle :

(a) the candidate tasks, i.e. the tasks in J3 or the previous ones in its bundle, are
sorted by decreasing payoff, T′ = [τ9,τ3,τ2,τ8,τ7] ;

(b) the delegation of the task τ9 improves the flowtime (cf. Figure 4b),

C 2(δ([τ9],ν2,ν1,
−→
A )) = 11+ 9+ 9 = 29 < 33 (20)

The task τ9 is added to the offer bundle, T∗ = [τ9],
(c) the delegation of the tasks τ3 and τ9 improves the flowtime (cf. Figure 4c),

C 2(δ([τ9,τ3],ν2,ν1,
−→
A )) = 12+ 9+ 7 = 28 < 29 (21)

The task τ3 is added to the offer bundle, T∗ = [τ9,τ3],
(d) The delegation of the tasks τ2, τ3 and τ9 does not improve the flowtime (cf.

Figure 4c),

C 2(δ([τ9,τ3,τ2],ν2,ν1,
−→
A )) = 15+ 9+ 6 = 30 > 28 (22)

The selected offer bundle is T∗ = [τ9,τ3].

In summary, the agent ν2 proposes the delegation δ([τ9,τ3],ν2,ν1,
−→
A ) to the agent ν1.

1 https://gitlab.univ-lille.fr/maxime.morge/smastaplus/-/tree/master/doc/specification
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(b) After the delegation δ([τ9],ν2,ν1,
−→
A )
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(c) After the delegation δ([τ9,τ3],ν2,ν1,
−→
A )
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(d) After the delegation δ([τ9,τ3,τ2],ν2,ν1,
−→
A )

Fig. 4: Allocations from Example 3

6 Results and discussion

After having presented the experimental context, we empirically compare our approach
with a classic heuristic and with a distributed constraint optimization (DCOP) resolution
method. Moreover, we consider our new acceptability criterion and n-ary delegation.

6.1 Context of experiments

The practical application we consider is the distributed deployment of the MapReduce
design pattern in order to process large datasets on a cluster, as with Spark [24]. We fo-
cus here on the Reduce stage of MapReduce jobs. This can be formalized by a MASTA+
problem where several jobs are concurrently submitted and the cost function is s.t.:

ci(τ,ν j) = ∑
ρ j∈Rτ

ci(ρ j,ν j)

with ci(ρ j,νi) =

{
|ρ j| if νi ∈ l(ρ j)

κ×|ρ j| else

(23)

where we empirically calibrate κ = 2 as a realistic value to capture the overhead due to
remote resource fetching.

Our prototype [3] is implemented with the programming language Scala and Akka [16]
for highly concurrent, distributed, and resilient message-driven applications. We assume
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that: (a) the message transmission delay is arbitrary but not negligible, (b) the message
order per sender-receiver pair is preserved, and (c) the delivery of messages is guaran-
teed. Experiments have been conducted on a blade with 20 CPUs and 512Go RAM.

This work is a first step for evaluating our stategies. Indeed we compare the real-
location process, i.e. a MASTA+ problem solving, without considering the iterations
induced by task consumptions, even if the task consumption strategy is required to sort
the agent’s task bundle. We consider MASTA+ problem instance such that m ∈ [2;16]
nodes/agents, `= 4 jobs, n = 3×`×m tasks, with one resource per task. Each resource
ρi is replicated 3 times and |ρi| ∈ [0;100]. We generate 10 MASTA+ problem instances,
and for each we randomly generate 10 initial allocations. We assess the medians and
the standard deviations of three metrics: (1) the mean flowtime (Eq. 8), (2) the local
availability ratio (Eq. 10), and (3) the rescheduling time.

6.2 Classical heuristic and acceptability criterion

The hypothesis we want to test are: (1) the flowtime reached by our strategy is close
to the one reached by the classical approach and (2) the decentralization significantly
reduces the scheduling time. Moreover, unlike our previous work [2] where we used the
local flowtime and the makespan in our acceptability criterion, here, we only consider
the global flowtime which is sufficient to ensure the negotiation process convergence.
We also want to verify that the acceptability criterion allows to significantly improve
the quality of the outcome.
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Fig. 5: The flowtime and the rescheduling time of our strategy, the strategy in [2] and
an hill climbing algorithm.

Figures 5a and 5b respectively compare the flowtime and rescheduling time of our
unary delegation strategy with the strategy presented in [2] and an hill climbing algo-
rithm. These three algorithms start with the same random initial allocation. At each
step, the hill climbing algorithm selects among all the possible delegations, the one
which minimizes the flowtime.

In Figure 5a, we observe that, while the quality of the solution reached by the strat-
egy proposed in [2] is slightly lower than the one reached with the hill climbing algo-
rithm, our strategy now reaches similar solutions. This is due to the fact that a socially
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rational reallocation according to the global flowtime can only decrease the flowtime,
while it is not the case when the local flowtime is used. Moreover, since the accept-
ability criterion is no more based on the makespan, the number of possible delegations,
which can improve the flowtime, increases.

Figure 5b shows that the rescheduling time of our new strategy remains approxi-
mately the same as the former one. Then, it is much better than the rescheduling time
of the hill climbing algorithm which exponentially grows with the number of nodes.
Thus, the acceptability criterion we proposed in this article significantly improves the
flowtime with a similar rescheduling time. It is worth noticing that the hill climbing al-
gorithm has been used with small MASTA+ instances due to its prohibitive scheduling
time. One can expect to obtain a greater rescheduling time with a local search method,
such as simulated annealing, with no guarantee to have a more qualitative outcome.
As a result, even if the number of agents is small, the gain realized on the flowtime
by the hill climbing algorithm will be penalized and cancelled by the overhead of its
scheduling time. This overhead penalized the time-extented assignment in a distributed
system which should be adaptive to disruptive phenomena (task consumption, job re-
lease, slowing down nodes).
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Fig. 6: Local availibility ratio of the initial allocation, the allocations reached by our
strategy, by the strategy proposed in [2], and by the hill climbing algorithm

Figure 6 compares the local availibility ratio of the initial allocation, the allocations
reached by our strategy, by the strategy proposed in [2] and by the hill climbing algo-
rithm. We observe that the availibility ratios obtained with our stategies or with the hill
climbing algorithm are close. Even if, unlike the latter, our stategy does not consider all
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the possible unary delegations, it turns out to be efficient by selecting the remote tasks
whose delegation decreases the cost.
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Fig. 7: Rescheduling time of our strategy with one or more threads compared with the
rescheduling time of the hill climbing algorithm

Figure 7 compares the rescheduling time of our strategy with one or more threads
and the rescheduling time of the hill climbing algorithm. Since our multi-thread strategy
run on several cores, we observe that the speedup increases with the number of agents.
By example, with a similar flowtime (if the observable non determinism of the exe-
cutions is neglected), the multi-thread version is 10 times faster than the mono-thread
version for 16 agents.

6.3 N-ary delegation

Here, we want to verify that the n-ary delegations allow to reduce the flowtime.
Figures 8a and 8b respectively compare the flowtime and rescheduling time for our

unary strategy with our n-ary strategy. We observe that, if the flowtime of our n-ary
delegation is sligthly not as good as than the one of the unary delegation strategy, the
gain in terms of rescheduling time gain is much more beneficial.

Figure 9 shows the evolution of the flowtime for both offer strategies for a partic-
ular reallocation problem. We observe that the n-ary strategy reduces the number of
delegations (40 versus 66) required to reach a stable allocation with similar flowtime.
Therefore, the n-ary strategy reduces the rescheduling time (0,35 seconds versus 1,8
seconds).
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Fig. 8: Flowtime and rescheduling time for our unary strategy and our n-ary strategy
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Fig. 9: Flowtime of the unary (left) and n-ary (right) delegation strategies by number of
delegations (top) and by time (bottom)
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6.4 Distributed Constraint Optimization Problem (DCOP)

We want to compare our strategy with a DCOP resolution method to show that: (a) our
rescheduling time is much lower, (b) our flowtime is better.

Finding the optimal allocation for a MASTA+ problem with n tasks, m nodes and `
jobs (cf. Section 3) can be formalized with:

1. n decision variables xi such that,

xi = (o−1)×n+ k if τi is the kth task starting from the end on νo (24)

2. n2 constraints ensuring that each task is assigned to a single position

∀i ∈ [1,n] ∀ j ∈ [1,n] \{i} xi 6= x j; (25)

3. the objective function to minimize is C(
−→
A ).

We consider here the MGM2 algorithm [17] – Maximum Gain Message – as the
most suitable DCOP resolution method, since it is a distributed local search algorithm
which is approximate and asynchronous. We used the pyDCOP libray [19]. We consider
100 MASTA+ problems with m = 2 nodes, `= 4 jobs and n = `×m = 8 tasks.
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Fig. 10: Box plot of flowtimes reached by our stategy in 55 millisecondes (mean value)
and by the MGM2 algorithm with a timeout of 2, 5 and 10 seconds, respectively

Figure 10 compares the flowtimes reached by our stategy in 55 millisecondes (mean
value) and by the MGM2 algorithm with a timeout of 2, 5 and 10 seconds, respectively.
It is worth noticing that MGM2 never returns a solution when the timeout is 2 seconds.
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In this case, we consider that the random initial allocation is returned. Beyond the fact
that the rescheduling time can be explained because MGM2 is implemented in Python
whereas our strategy runs on a Java Virtual Machine [10], our experiments show that
even if the timeout is set to 5 seconds, MGM2 provides an allocation whose flowtime
is greater than the one reached by our strategy. Increasing the timeout does not allow to
improve the flowtime of the allocation returned by MGM2. We can notice that MGM2
never returns an allocation with m = 3 nodes, ` = 5 jobs and n = 3× `×m = 45
tasks even with a timeout of 15 minutes. This algorithm does not scale for this kind
of problems.

7 Conclusion

In this paper, we have proposed a multi-agent strategy for the reassignment of tasks-
nodes based on the location of the required resources in order to minimize the mean
flowtime of concurrent jobs. We generalized the notion of delegation to consider any
bilateral reallocation (delegation or swap of several tasks) and we defined an accept-
ability criterion of the bilateral reallocations in order to reduce the rescheduling time
and the mean flowtime reached by our strategy.

Since our negotiation process continuously adapts the allocation by reducing the
completion time of the jobs for the bottleneck agents in order to improve the load-
balancing, the flowtime reached by our strategy is similar to the one reached by a clas-
sical heuristic approach while significantly reducing the rescheduling time. On the one
hand, the consumption strategy performs the cheapest jobs before the most expensive
ones. On the other hand, the offer strategy selects a job which can reduce the completion
times of the proposer by choosing a receiver which is not a bottleneck for the impacted
jobs and by choosing a task whose delegation reduces its cost since it is locally exe-
cuted. This task selection strategy is repeated by the proposer to build an offer bundle
as long as it improves the flowtime. Our experiments show that such n-ary delegations
improve the rescheduling time. We have compared our approach with a DCOP resolu-
tion method, i.e. the MGM2 algorithm for which the rescheduling time and flowtime
are significantly higher.

Beyond the scope of this work, the influence of the replication factor could be in-
vestigated in a sensitivity analysis. Since no negotiation is triggered when the agents
believe that the allocation is stable, the effort required for negotiation (reasoning and
communication) is negligible compared to the benefit of the load-balancing. Due to
the local decisions of agents about the next task to delegate/execute, our multi-agent
strategy can tackle a large number of tasks, so it is scalable.

Since our negotiation framework allows it, we are considering to add a counter-offer
strategy that selects a counterpart for suggesting swaps in order to improve the flowtime.
More generally, future works should extend the task reallocation process toward an
iterated, dynamic and on-going process, which takes place concurrently with the task
execution, allowing the distributed system to be adaptive to disruptive phenomena (task
consumption, job release, slowing down nodes).
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