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Unified Generalized H2 Nonlinear Parameter Varying Observer:
Application to Automotive Suspensions

Gia Quoc Bao Tran, Graduate Student Member, IEEE, Thanh-Phong Pham, and Olivier Sename

Abstract—This paper extends the unified observer design
problem to the class of Nonlinear Parameter Varying (NLPV)
systems with parameter dependence in both the dynamics and the
control input matrices. First, parameterization of the observer
matrices, herein generalized for the NLPV case, allows us to
decouple the input disturbance from the estimation error. Then,
the vanishing disturbance caused by the nonlinearity is bounded
by the Lipschitz property and the effect of measurement noise
on the error is minimized using the generalized H2 condition.
Both objectives are combined into a single framework thanks
to the S-procedure. Furthermore, the asymptotic stability of the
error is tackled using a parameter-dependent Lyapunov function,
then a grid-based Linear Matrix Inequalities (LMIs) solution
is provided, which reduces conservatism. The efficiency of this
observer is illustrated and compared with an LPV observer
through the damper force estimation problem, a crucial topic
in semi-active suspensions.

Index Terms—Nonlinear parameter varying systems, ob-
servers, suspension systems.

I. INTRODUCTION

IT has been known from the literature that under par-
ticular conditions and assumptions, the Linear Parameter

Varying (LPV) representation of a nonlinear system is in-
teresting thanks to its linear-like stability analysis and con-
troller/observer design, including as well the H∞ and/or
generalized H2 (gH2) performance criteria [1].

However, “linearizing” nonlinear systems using the LPV
language, known as the quasi-LPV representation, comes with
the cost of reducing the generality of the system representa-
tion. Recall that to be assigned as a scheduling parameter, a
(nonlinear) function of the state x must be known or estimated
and bounded at least in the region where x remains. This
condition, even if it can be satisfied, would certainly increase
conservatism. Often, by strategically choosing to maintain
a certain level of nonlinearity in the system representation
(rather than render it linear thanks to the LPV technique), we
can benefit from interesting properties of nonlinear functions,
e.g., Lipschitz conditions, which reduce conservatism and lead
to more realistic results.

This idea leads to the so-called Nonlinear Parameter Varying
(NLPV) class of systems that has emerged as a potential
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research trend in the LPV community [2]. In the literature, the
observers of this new class take various structures, from the
classical form [3], the descriptor form [4], [5] to the two-DOF
[6] or the generalized one [7], [8]. The main objective of this
work is to extend the unified formulation of unknown input
observers [9], [10] for NLPV systems. Such unified observers
are indeed interesting since they provide a general parame-
terization of a set of observers while ensuring the decoupling
of the input disturbance or its minimization through the H∞
condition. Here, the effect of the system’s nonlinearity on
the estimation error is still considered and bounded by the
Lipschitz condition, thus decreasing conservatism compared
to merely bounding it by a constant such as in [11]. This
condition has also been well studied for nonlinear observer
design such as [12], [13], [14], [15], or [16].

In this paper, we propose a unified gH2 observer to the state
estimation problem for a class of NLPV systems including a
Lipschitz nonlinearity, where the state and input matrices do
depend on the parameter vector. The solution is obtained by
solving a set of Linear Matrix Inequalities (LMIs). Our main
contributions are as follows:

• Observer parameterization is generalized from the time-
invariant case [10] into a parameter-dependent form (as in
Section III), maximizing the adaptability of the scheduled
observer with respect to the system’s variation. This gen-
eralization also allows us to have parameter dependence
even in the system’s dynamics matrix (as in (1));

• Compared to [8] where the authors assumed the existence
of constant arbitrary matrices satisfying all the rank
conditions and where the problem was solved using a
polytopic approach, which can be overly conservative,
parameter-dependent arbitrary matrices and the grid-
based methodology [17] are used instead throughout this
work, for which these rank conditions are assumed almost
everywhere but verified at the grid points only;

• The gH2 condition is used to minimize the effects of
the measurement noise on the estimation error whereas it
was the H∞ condition in [10]. As sensor noise usually
appears in the high-frequency domain, the gH2 norm is
more effective to handle this issue;

• For illustration, the method is applied for damper force
estimation in vehicle semi-active (SA) suspensions with
the nonlinear model in [18] and compared with the LPV
observer there, in both the frequency and time domains.

This paper is outlined as follows. In Section II, the observer
design problem is formulated. Section III presents the observer
parameterization. The design method is detailed in Section
IV. The application is illustrated in Section V. Finally, the
conclusion is drawn in Section VI.



Notations. Let w (resp. w) denote the minimum (resp.
maximum) value of the variable w. Let W⊤ be the transpose
of the matrix W and W+ be its Moore-Penrose inverse. Last,
let W−1 denote the inverse of the invertible square matrix W .

II. PROBLEM FORMULATION

Consider an NLPV system of the form{
ẋ = A(ρ)x+B(ρ)Φ(x, u) +D1ωr

y = Cx+D2ωn,
(1)

where x ∈ Rnx is the state; u ∈ Rnu is the control input;
ωr ∈ Rnr is the unknown input disturbance; ωn ∈ Rnn is
the measurement noise; y ∈ Rny is the measured output; ρ ∈
Rnρ is the vector of continuous-time varying parameters. As
usually assumed for LPV systems, ρ is known and bounded,
i.e., ρ ∈ [ρ, ρ] element-wise; all matrices A(ρ), B(ρ), D1, C,
and D2 are known and defined (continuous) for any value of
ρ ∈ [ρ, ρ]. As input disturbance and measurement noise usually
enter NLPV systems through constant matrices, without loss
of generality, we consider D1 and D2 to be constant. The
control input is always bounded, i.e., u ∈ [u, u] element-wise.

Assumption 1: The map Φ : Rnx ×Rnu → RnΦ (where nΦ

is the dimension of the codomain of Φ) is globally Lipschitz
over the set of the state vector x [19], [20], i.e.,

∥Φ(x, u)−Φ(x̂, u)∥≤ ∥Γ(x− x̂)∥,∀(x, x̂) ∈ Rnx ×Rnx , (2)

where Γ is the known Lipschitz constant matrix that is defined
and computed assuming a bounded input u ∈ [u, u]. For the
interested readers, the even more general case where Φ is only
locally Lipschitz is analyzed later in Remark 4.

Consider a self-scheduled NLPV observer of the form
ż = N(ρ)z + J(ρ)y +H(ρ)Φ(x̂, u) +M(ρ)v

v̇ = P (ρ)z +Q(ρ)y +G(ρ)v

x̂ = R(ρ)z + S(ρ)y,

(3)

where x̂ ∈ Rnx is the estimated state and z, v ∈ Rnx are the
state and auxiliary vectors of the observer. By designing the
observer, we determine all the parameter-dependent matrices
N(ρ), J(ρ), H(ρ), M(ρ), P (ρ), Q(ρ), G(ρ), R(ρ), and S(ρ)
such that all the conditions related to decoupling the bounded
unknown input disturbance and minimizing the effects of
random measurement noise on the estimation error (under
Assumption 1) detailed later are satisfied.

Define the dynamic error as ϵ = z − T (ρ)x ∈ Rnx , where
T (ρ) ∈ Rnx×nx is a parameter-dependent arbitrary matrix.
Differentiating ϵ with respect to time, using (1) and (3), and
denoting ζ = (ϵ v)⊤ ∈ R2nx , we obtain

ζ̇ =

(
N(ρ) M(ρ)

P (ρ) G(ρ)

)
ζ +

(
H(ρ)− T (ρ)B(ρ)

0

)
Φ(x̂, u)

+

(
T (ρ)D1

0

)
ωr +

(
N(ρ)T (ρ)− T (ρ)A(ρ) + J(ρ)C

P (ρ)T (ρ) +Q(ρ)C

)
x

+

(
−T (ρ)B(ρ)

0

)
∆Φ+

(
J(ρ)D2

Q(ρ)D2

)
ωn

x̂ =
(
R(ρ) 0

)
ζ + (R(ρ)T (ρ) + S(ρ)C)x+ S(ρ)D2ωn,

(4)
where ∆Φ = Φ(x, u)− Φ(x̂, u) satisfies (2).

If the algebraic conditions

N(ρ)T (ρ)− T (ρ)A(ρ) + J(ρ)C = 0, (5)
T (ρ)D1 = 0, (6)

H(ρ)− T (ρ)B(ρ) = 0, (7)
P (ρ)T (ρ) +Q(ρ)C = 0, (8)
R(ρ)T (ρ) + S(ρ)C = I, (9)

are satisfied for all ρ ∈ [ρ, ρ], the system in (4) is reduced to

ζ̇ =

(
N(ρ) M(ρ)

P (ρ) G(ρ)

)
ζ +

(
−T (ρ)B(ρ)

0

)
∆Φ

+

(
J(ρ)D2

Q(ρ)D2

)
ωn

e =
(
R(ρ) 0

)
ζ + S(ρ)D2ωn,

(10)

where e = x̂ − x is the estimation error. It is worth noting
from (10) that the disturbance ωr has been decoupled from
the error e.

The observer design problem is, therefore, under Assump-
tion 1, to find the matrices N(ρ), J(ρ), H(ρ), M(ρ), P (ρ),
Q(ρ), G(ρ), R(ρ), and S(ρ) of the observer (3) such that

• The system (10) is asymptotically stable for ωn(t) = 0;
• ∥e(t)∥∞ < γ∥ωn(t)∥2 for ωn(t) ̸= 0; γ is minimized.

III. OBSERVER PARAMETERIZATION

It is worth noting that solving equations (5)-(9) with pa-
rameter variations is not an easy task. In this Section, the
grid-based methodology is used for observer parameterization,
which means the algebraic and rank conditions are assumed
almost everywhere but checked only at the (high enough
number) of frozen values (detailed in Remark 2). Therefore, ρ
will be considered here only at these grid points. This means,
when there is no confusion, ρ denotes its frozen values at Ng

grid points in a finite set of values in [ρ, ρ].
In order to determine the observer matrices N(ρ), J(ρ),

H(ρ), M(ρ), P (ρ), Q(ρ), G(ρ), R(ρ), and S(ρ) satisfying all
the conditions (5)-(9), parameterization [9], [10] is performed
using the general solution of (5)-(9).

First, (8) and (9) are rewritten as(
P (ρ) Q(ρ)
R(ρ) S(ρ)

)(
T (ρ)
C

)
=

(
0
I

)
. (11)

Note that (11) is solvable if and only if

rank
(
T (ρ) C 0 I

)⊤
=

rank
(
T (ρ) C

)⊤
= nx,∀ρ ∈ [ρ, ρ]. (12)

Let E(ρ) ∈ Rnx×nx be a full row rank parameter-dependent
arbitrary matrix such that

rank
(
E(ρ) C

)⊤
= rank

(
T (ρ) C

)⊤
= nx,∀ρ ∈ [ρ, ρ].

(13)
Then, there always exists a parameter matrix K(ρ) such that(
T (ρ)
C

)
=

(
I −K(ρ)
0 I

)(
E(ρ)
C

)
⇐⇒ T (ρ) = E(ρ)−K(ρ)C. (14)



As a result, (11) becomes(
P (ρ) Q(ρ)
R(ρ) S(ρ)

)(
I −K(ρ)
0 I

)(
E(ρ)
C

)
=

(
0
I

)
,

whose exact solution is(
P (ρ) Q(ρ)
R(ρ) S(ρ)

)
= (

(
0
I

)
Σ+(ρ)

− Ym(ρ)(I − Σ(ρ)Σ+(ρ)))

(
I K(ρ)
0 I

)
,

where Σ(ρ) =

(
E(ρ)
C

)
and Ym(ρ) is a free matrix of

appropriate dimension.
This is equivalent to

P (ρ) = −Ym1(ρ)β1(ρ),
Q(ρ) = −Ym1(ρ)β2(ρ),
R(ρ) = α1(ρ)− Ym2(ρ)β1(ρ),
S(ρ) = α2(ρ)− Ym2(ρ)β2(ρ),

(15)

where Ym1(ρ) =
(
I 0

)
Ym(ρ), Ym2(ρ) =

(
0 I

)
Ym(ρ),

α1(ρ) = Σ+(ρ)

(
I
0

)
, α2(ρ) = Σ+(ρ)

(
K(ρ)
I

)
,

β1(ρ) = (I − Σ(ρ)Σ+(ρ))

(
I
0

)
, and β2(ρ) =

(I − Σ(ρ)Σ+(ρ))

(
K(ρ)
I

)
.

Next, from (6) and (14), we obtain

K(ρ)CD1 = E(ρ)D1, (16)

which is solvable if and only if

rank

(
E(ρ)D1

CD1

)
= rank(

(
E(ρ)
C

)
D1)

= rankD1 = rank(CD1),∀ρ ∈ [ρ, ρ], (17)

and then the exact solution of (16) is

K(ρ) = E(ρ)D1(CD1)
+.

From (7), one obtains

H(ρ) = T (ρ)B(ρ) = (E(ρ)−K(ρ)C)B(ρ)

= (E(ρ)− E(ρ)D1(CD1)
+C)B(ρ). (18)

Then, substituting (14) into (5), we obtain

N(ρ)(E(ρ)−K(ρ)C)−(E(ρ)−K(ρ)C)A(ρ)+J(ρ)C = 0

⇐⇒
(
N(ρ) J(ρ)−N(ρ)K(ρ)

)
Σ(ρ)

= (E(ρ)− E(ρ)D1(CD1)
+C)A(ρ),

which can be parameterized as(
N(ρ) K1(ρ)

)
Σ(ρ) = Θ(ρ), (19)

where

K1(ρ) = J(ρ)−N(ρ)K(ρ),
Θ(ρ) = (E(ρ)− E(ρ)D1(CD1)

+C)A(ρ),
(20)

and the solution of (19) is given by(
N(ρ) K1(ρ)

)
= Θ(ρ)Σ+(ρ)− Ym3(ρ)(I − Σ(ρ)Σ+(ρ)),

which is equivalent to

N(ρ) = α3(ρ)− Ym3(ρ)β1,
K1(ρ) = α4(ρ)− Ym3(ρ)β3(ρ),

(21)

where Ym3(ρ) is a free matrix of appropriate dimension,

α3(ρ) = Θ(ρ)Σ+(ρ)

(
I
0

)
, α4(ρ) = Θ(ρ)Σ+(ρ)

(
0
I

)
, and

β3(ρ) = (I − Σ(ρ)Σ+(ρ))

(
0
I

)
.

Remark 1: If P (ρ), Q(ρ), R(ρ), S(ρ), H(ρ), N(ρ), and
J(ρ) can be chosen according to (15), (18), (21), and (20),
respectively, then all the decoupling conditions (5)-(9) are
satisfied. As a result, the system (4) is rewritten as (10) and
the disturbance ωr is effectively decoupled from the error e.

Remark 2: All the rank conditions in this Section, namely
(12), (13), and (17), are assumed for almost all parameter
values. The set of values of ρ that violate these, if any, must
be strictly finite and isolated. As a result, these conditions are
satisfied for all the grid points used for observer design.

After parameterization, the error system (10) is rewritten as{
ζ̇ = A(ρ)ζ +W(ρ)∆Φ + B(ρ)ωn

e = C(ρ)ζ + D(ρ)ωn,
(22)

where, from the results of the parameterization above:

A(ρ) =
(
N(ρ) M(ρ)
P (ρ) G(ρ)

)
= A1(ρ)− Z(ρ)A2(ρ),

W(ρ) =

(
−T (ρ)B(ρ)

0

)
,

B(ρ) =
(
J(ρ)D2

Q(ρ)D2

)
= B1(ρ)− Z(ρ)B2(ρ),

C(ρ) =
(
R(ρ) 0

)
=
(
α1(ρ)− Ym2(ρ)β1(ρ) 0

)
,

D(ρ) = S(ρ)D2 = (α2(ρ)− Ym2(ρ)β2(ρ))D2,

where A1(ρ) =

(
α3(ρ) 0
0 0

)
, A2(ρ) =

(
β1(ρ) 0
0 −I

)
,

B1(ρ) =

Θ(ρ)Σ+(ρ)

(
K(ρ)
Iny

)
D2

0

, B2(ρ) =

(
β2(ρ)D2

0

)
,

and Z(ρ) =

(
Ym3(ρ) M(ρ)
Ym1(ρ) G(ρ)

)
.

All the matrices A1(ρ), A2(ρ), W(ρ), B1(ρ), B2(ρ), C(ρ),
and D(ρ) are known and computing all the observer matrices
reduces to finding Z(ρ), which is discussed in Section IV.

IV. OBSERVER DESIGN

Following the problem formulation in Section II, with ∆Φ
bounded by Assumption 1, the observer design problem is now
to find Z(ρ) such that

• The system (22) is asymptotically stable for ωn(t) = 0;
• ∥e(t)∥∞ < γ∥ωn(t)∥2 for ωn(t) ̸= 0; γ is minimized.
First, to apply the gH2 condition, the parameterized error

system has to be strictly proper, i.e., D(ρ) = 0,∀ρ ∈ [ρ, ρ].
We can then choose Ym2(ρ) for example as

Ym2(ρ) = (α2(ρ)D2)(β2(ρ)D2)
+. (23)

Consequently, we have C(ρ) =(
α1(ρ)− (α2(ρ)D2)(β2(ρ)D2)

+β1(ρ) 0
)
.



Now, since a parameter-dependent Lyapunov function is
used later in this Section for the stability proof, Assumption
2 is added for the scheduling parameter derivative.

Assumption 2: The scheduling parameter’s time derivative
is bounded, i.e., there are constants νi such that |ρ̇i|≤ νi, i =
1, 2, . . . , nρ.

Based on Theorem 1, the observer design problem is then
solved using LMIs.

Theorem 1: Under Assumptions 1 and 2, the observer design
problem is solved if there exist matrices X(ρ) = X⊤(ρ) > 0,
Y (ρ), and a scalar εl > 0 minimizing γ and satisfying for all
ρ ∈ [ρ, ρ], the set of LMIsΩ11a(ρ) + εlC⊤(ρ)Γ⊤ΓC(ρ) X(ρ)W(ρ) Ω13(ρ)

W⊤(ρ)X(ρ) −εlI 0
Ω⊤

13(ρ) 0 −I

 < 0,

(
X(ρ) I
I γ2I

)
> 0,

where Ω11a(ρ) = A⊤
1 (ρ)X(ρ)+X(ρ)A1(ρ)−A⊤

2 (ρ)Y
⊤(ρ)−

Y (ρ)A2(ρ) ±
∑nρ

i=1 νi
∂X(ρ)
∂ρi

and Ω13(ρ) = X(ρ)B1(ρ) −
Y (ρ)B2(ρ). Then, Z(ρ) = X−1(ρ)Y (ρ).

Proof: Considering the parameter-dependent Lyapunov
function candidate V (e, ρ) = e⊤X(ρ)e where X(ρ) =

X⊤(ρ) > 0, we denote η =
(
e ∆Φ ωn

)⊤
and derive

V̇ (e, ρ) = ė⊤X(ρ)e+ e⊤X(ρ)ė+ e⊤

(
nρ∑
i=1

ρ̇i
∂X(ρ)

∂ρi

)
e

= e⊤
[
A⊤(ρ)X(ρ) +X(ρ)A(ρ) +

nρ∑
i=1

ρ̇i
∂X(ρ)

∂ρi

]
e

+ e⊤X(ρ)W(ρ)∆Φ +∆Φ⊤W⊤(ρ)X(ρ)e

+ e⊤X(ρ)B(ρ)ωn + ω⊤
n B⊤(ρ)X(ρ)e

= η⊤

 Ω11b(ρ) X(ρ)W(ρ) Ω13(ρ)
W⊤(ρ)X(ρ) 0 0

Ω⊤
13(ρ) 0 0

 η

:= η⊤Q1(ρ)η,

where, by using A(ρ) = A1(ρ) − Z(ρ)A2(ρ) and B(ρ) =
B1(ρ)−Z(ρ)B2(ρ) then introducing the intermediate variable
Y (ρ) = X(ρ)Z(ρ), we obtain Ω11b(ρ) = A⊤

1 (ρ)X(ρ) +

X(ρ)A1(ρ)−A⊤
2 (ρ)Y

⊤(ρ)−Y (ρ)A2(ρ)+
∑nρ

i=1 ρ̇i
∂X(ρ)
∂ρi

and
Ω13(ρ) = X(ρ)B1(ρ)− Y (ρ)B2(ρ).

From Assumption 1, the Lipschitz condition (2) gives

∆Φ⊤∆Φ ≤ e⊤C⊤(ρ)Γ⊤ΓC(ρ)e. (24)

This condition (independent of ωn) is then rewritten as

η⊤Q2(ρ)η ≤ 0, (25)

where Q2(ρ) =

−C⊤(ρ)Γ⊤ΓC(ρ) 0 0
0 I 0
0 0 0

.

Now, define the following terms

J1 = −ω⊤
n ωn = η⊤

0 0 0
0 0 0
0 0 −I

 η := η⊤Q3η,

J2(ρ) = γ2
2e

⊤X(ρ)e− e⊤e = e⊤ (γ2X(ρ)− I)︸ ︷︷ ︸
Q4(ρ)

e.

The gH2 condition then gives (note that the system (22) is
now strictly proper){

V̇ (e, ρ) + J1 < 0

J2(ρ) > 0.
(26)

As we apply the S-procedure [21] to the Lipschitz constraint
(25) and the conditions (26), V̇ (e, ρ) < 0 if there exists a
scalar εl > 0 such that{

V̇ (e, ρ)− εlη
⊤Q2(ρ)η + J1 < 0

J2(ρ) > 0

⇐⇒

{
η⊤(Q1(ρ)− εlQ2(ρ) +Q3)η < 0

e⊤Q4(ρ)e > 0

⇐⇒

{
Q1(ρ)− εlQ2(ρ) +Q3 < 0

Q4(ρ) > 0,

which is equivalent toΩ11b(ρ) + εlC⊤(ρ)Γ⊤ΓC(ρ) X(ρ)W(ρ) Ω13(ρ)
W⊤(ρ)X(ρ) −εlI 0

Ω⊤
13(ρ) 0 −I

 < 0,

γ2X(ρ)− I > 0.

Schur’s lemma is then applied to the second condition,
making it an LMI. Under Assumption 2, these resulting LMIs
are satisfied if and only if the ones in Theorem 1 are satisfied
[17]. Finally, (26) implies the gH2 performance, which is
∥e(t)∥2∞ < γ2∥ωn(t)∥22. The proof is completed. □

Remark 3: When the error system (22) has no external
inputs, we get V̇ (e, ρ) < 0, which guarantees the asymptotic
stability of (22). Then, with X(ρ) admitting positive bounds
on the compact set [ρ, ρ], the error e asymptotically converges
to 0 since ∆Φ vanishes as x̂ approaches x.

The LMIs in Theorem 1 must be satisfied for an infinite
number of constraints over the trajectories of ρ. To relax this,
the grid-based methodology [17] is considered here where
these inequalities are solved for a set of a high enough
number Ng of frozen values of ρ assumed belonging to a
gridded domain of the varying parameter under Assumption
2, followed by post-analysis of the asymptotic stability of the
solution using a much denser grid. The observer is designed
by applying Theorem 1 to get Z(ρ) then obtaining the frozen
observers at the grid points. In its implementation, grid-based
gain scheduling is performed using interpolation methods.

Remark 4: When Φ is only locally Lipschitz, we assume that
the system solution x to be estimated remains in a compact
set X ⊂ Rnx (remember that the control input u is always
bounded in [u, u] ⊂ Rnu ) and replace the Φ in the observer
with Φ̃ : Rnx × Rnu → RnΦ such that Φ̃ = Φ on X̃ × [u, u]
where X̃ = X + c for some c > 0 (the set of points lying
within a distance c from all the points in X , which is also
compact) and Φ̃ is bounded outside. This way, there exists
Γ > 0 such that ∥Φ(x, u)− Φ̃(x̂, u)∥≤ ∥Γ(x− x̂)∥,∀(x, x̂) ∈
X × Rnx ,∀u ∈ [u, u]. Therefore, by repeating all the steps
until the system (4) and letting ∆Φ = Φ(x, u)− Φ̃(x̂, u), we
can bound this nonlinearity exactly as above. The assumption
on x is feasible as, in practice, the state is always limited by
operating conditions, e.g., system dimensions and constraints.



Note that using Theorem 1 implies imposing parameterized
forms of X(ρ) and Y (ρ) in terms of ρ, e.g., the polynomial
form as seen later in Section V. Algorithm 1 summarizes the
proposed observer design method.

Algorithm 1 Observer design
Input: The matrices A(ρ), B(ρ), C, D1, and D2, Φ(x, u),
and the Ng gridded values of ρ ∈ [ρ, ρ]
Output: The observer matrices N(ρ), J(ρ), H(ρ), M(ρ),
P (ρ), Q(ρ), G(ρ), R(ρ), and S(ρ) at the grid points
Assumptions: The Lipschitz matrix Γ and the bound ν on |ρ̇|

Step 1: Choose a structure for E(ρ), then grid it and
check (13) at the grid points
Step 2: Find K(ρ), T (ρ), and Θ(ρ) at the grid points,
according to [9], (14), and (20)
Step 3: Find H(ρ) at the grid points using (18)
Step 4: Deduce α1(ρ), α2(ρ), α3(ρ), α4(ρ), β1(ρ), β2(ρ),
β3(ρ), (15), and (21)
Step 5: Deduce Ym2(ρ) according to (23), getting C(ρ),
D(ρ), R(ρ), and S(ρ)
Step 6: Find A1(ρ), A2(ρ), W(ρ), B1(ρ), and B2(ρ)
Step 7: Fix the form of X(ρ) and Y (ρ) and solve for Z(ρ)
using Theorem 1, getting M(ρ), G(ρ), Ym1(ρ), and Ym3(ρ)
Step 8: From Ym1(ρ), get P (ρ) and Q(ρ) using (15); from
Ym3(ρ), get N(ρ) and J(ρ) using (21) and (20)

V. APPLICATION TO AUTOMOTIVE SA SUSPENSIONS

To illustrate the proposed observer design method, we
consider the damper force estimation problem in the SA
suspension. Consider the quarter-car model made of the sprung
and unsprung masses ms and mus [22]. From Newton’s law
of motion, the system dynamics around its equilibrium are{

msz̈s = −Fs − Fd

musz̈us = Fs + Fd − Ft,
(27)

where the spring force Fs = kszdef with zdef = zs − zus
called the suspension deflection and żdef its velocity; the tire
force Ft = kt(zus − zr). The damper force Fd consists of a
passive part Fpassive and a controlled part Fer [10] as

Fd = k0zdef + c0żdef︸ ︷︷ ︸
Fpassive

+Fer

Ḟer = −1
τ(u)Fer +

fc
τ(u) · u · tanh (k1zdef + c1żdef ) ,

(28)
where c0, c1, k0, k1, and fc are constant parameters; u ∈
[u, u] is the PWM control input signal. In the nonlinear damper
model [18], τ(u) depends on the input u as

τ(u) = 0.3643u2 + 0.1124u. (29)

Choosing the state x = (zs − zus, żs, zus − zr, żus, Fer)
⊤,

the measured output y as (z̈s, z̈us)
⊤ (note that measuring

accelerations has cost and mounting advantages over mea-
suring deflections [3]) with measurement noise ωn, the input
disturbance ωr = żr, and ρ = 1

τ(u) ∈ [ 1
τ(u) ,

1
τ(u) ] s−1 where

0 < u < u, we get Φ(x, u) = u · tanh (k1zdef + c1żdef ) =

u · tanh(Λx) where Λ =
(
k1 c1 0 −c1 0

)
. Therefore,

the system can be written in the form (1), Φ being Lipschitz. In
this work, the parameters for observer design and simulation
correspond to a 1/5-scale vehicle [10]. Also, for operation
safety, the control bounds are taken as u = 0.1 and u = 0.5.

A. Application of Algorithm 1
We choose here E(ρ) = E0 + ρE1, whereas more complex

forms can be used in other applications. For LMI solving,
we choose the first-order forms X(ρ) = X0 + ρX1 > 0 and
Y (ρ) = Y0 + ρY1 for the variables, and then solve the LMIs
for the coefficients X0, X1, Y0, and Y1. LMI solution with 14
evenly spaced grid points and parameter variation bound ν =
2600 s−2 using the LMI Lab toolbox has given γ = 0.4230.
Post-analysis using a grid consisting of 140 evenly spaced
points in the same range has shown that the maximum real part
of the poles of the error system varies between −2.7408 ·10−6

at ρ and −1.1049 · 10−6 at ρ. Therefore, we conclude that the
obtained solution guarantees the error’s asymptotic stability.

B. Observer Synthesis Results
Let us compare our observer with the polytopic LPV one

designed in [18]. Figure 1 shows the upper bound σ(e/ωn) on
the singular values of the transfer functions of the error sys-
tems frozen at the grid points, which decreases rapidly in the
region of high-frequency noise, emphasizing the effectiveness
of our observer in terms of noise attenuation.
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Fig. 1. Upper bound σ(e/ωn) on the singular values (blue—LPV observer
at the vertices, red—proposed observer frozen at the grid points).

From Figure 2, it is evident that for each state component,
the proposed observer gives a significantly better maximal
attenuation level of sensor noise than the LPV one.
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C. Damper Force Estimation Results
Both observers are then simulated with the nonlinear

damper model above. We use two simulation scenarios with:
• An ISO road profile of type C (see [3] for a figure) and

then a bump road profile of 2 cm (occurring at 0.5 s);
• A skyhook controller that gives the PWM signal;
• White noise only in the second scenario.
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Fig. 3. Damper force estimation results (ISO road profile).

Damper force estimation results are shown in Figures 3
and 4. In the first scenario, the proposed observer converges
slightly slower than the LPV one. But, with a bump road
profile and realistic measurement noise, the proposed one gives
an estimation error that is smaller and not noisy. Indeed, the
proposed observer can minimize the effect of the measurement
noise, while that of the road input is decoupled from the error.
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Fig. 4. Damper force estimation results (bump road profile).

VI. CONCLUSION

This paper designs a unified observer specifically for a
class of NLPV systems with parameter dependence in both
the dynamics and the input matrices and with a Lipschitz
nonlinearity in the input. Following the grid-based method-
ology, parameterization is extended for the case of parameter
dependence in the system’s dynamics matrix, decoupling the
effects of the input disturbance from the estimation error. The
objectives of bounding the nonlinear disturbance term using
the Lipschitz condition and bounding the measurement noise
using the gH2 condition are combined into a single LMI
framework thanks to the S-procedure. Application to the SA
suspension has illustrated the method in both the frequency
and time domain and compared it with an LPV observer.
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