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We have extended the compressible liquid-drop model (CLDM) with a density-dependent surface
term (eCLDM), which allows for a unified description of both the nuclear ground state energies
and the incompressibility modulus in finite nuclei KA. We analyse the role of the nuclear empirical
parameters, e.g., Ksat, Qsat, Lsym and Ksym, which contribute to the bulk properties, as well as the
role of the finite size contributions. For the bulk properties, the density and isospin dependencies
of the nuclear incompressibility in infinite matter are characterized by introducing new empirical
parameters, and two new constraints for the value of Ksym are suggested. For finite nuclei, we employ
a Bayesian approach coupled to a Markov-Chain Monte-Carlo (MCMC) exploration of the parameter
space to confront the model predictions of KA in Zr, Sn and Pb isotopes to the experimental data.
We show that Qsat ≈ −950 ± 200 MeV describes the experimental measurements of KA in these
isotopes. This value is different from the ones deduced from phenomenological nuclear energy density
functionals, suggesting a possible explanation of their difficulty to accurately describe Zr, Sn and
Pb data all together. In addition we explore the impact of a fictitious measurement of the Giant
Monopole Resonance energy in 132Sn. We show that this measurement, provided it is accurate
enough, will allow to better determine Ksym and Kτ . Finally we explore the properties of the sound
speed around saturation density and show the important role of finite size terms in finite nuclei
since they reduce the sound speed to approximately half compared to nuclear matter.

I. INTRODUCTION

The response of nuclear matter to compression and
expansion plays a very important role in many phe-
nomena in nature, from finite nuclei [1], which can be
viewed as non-uniform pieces of nuclear matter squeezed
by the effects of the surface terms, up to astrophysical nu-
clear systems such as neutron stars, supernovae or kilo-
novae [2], where nuclear matter explores densities and
isospin asymmetries in extreme regimes. In finite nuclei,
the repulsive surface tension and the Coulomb interaction
counter balance the attractive bulk nuclear force and al-
low the exploration of densities close to the saturation
density of nuclear matter (nsat ≈ 0.155 fm−3 [3]), while
in compact stars, the bulk nuclear force resists gravity for
densities corresponding to several times saturation den-
sity. In these examples, the equilibrium states of these
systems represent a balance between the bulk properties
and the action of external forces (finite size terms or grav-
itational force). It is then important to quantify precisely
the response of bulk nuclear matter (incompressibility)
from analyses of finite nuclei properties (giant monopole
resonances), which is the scope of the present study.

At first order, the energy required to compress matter
from its equilibrium state, is given by the incompressibil-
ity modulus Ksat with an isospin asymmetry dependence
driven by the parameter Kτ [4]: Ksat + δ2Kτ . These nu-
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clear empirical parameters could be extracted from the
analysis of the isoscalar giant monopole resonance (IS-
GMR), excited by the scattering of alpha particles, see
for instance Ref. [5] and references therein. The rela-
tion between the energy of the ISGMR, EISGMR, and the
incompressibility in finite nuclei KA is [5],

EISGMR = ~

√
KA

mN 〈r2〉
' ~

√
5KA

3mNRA
, (1)

where mN is the nucleon mass and 〈r2〉 is the mean
square radius of the density distribution in finite nuclei.
The last expression is obtained assuming a flat density
distribution up to RA, as in the compressible liquid-drop
model (CLDM). Considering a leptodermous expansion
as in the liquid-drop model, the incompressibility modu-
lus in finite nuclei KA can be expressed as [4]

KA = Ksat +Kτδ
2 +KCoul

Z2

A4/3
+KsurfA

−1/3 + . . . (2)

where Ksat and Kτ are the bulk contributions which
we aim to extract from experimental data, KCoul is the
Coulomb repulsive contribution and Ksurf the surface at-
tractive contribution. This leptodermous expansion is
however difficult to employ for the determination of Ksat

and Kτ from experimental measurements of EISGMR, as
Eqs. (1) and (2) may suggest, especially since the term
Ksurf is difficult to fix from the few existing experimental
data. The situation is different in the case of the lepto-
dermous expansion of the nuclear mass, since more than
2000 nuclei have been measured [6]. In a recent analy-
sis [7], precise values for Ksat and Kτ have been obtained

ar
X

iv
:2

20
7.

01
88

4v
1 

 [
nu

cl
-t

h]
  5

 J
ul

 2
02

2

https://orcid.org/0000-0002-8635-383X
https://orcid.org/0000-0003-0427-3893
https://orcid.org/0000-0001-8743-3092
https://orcid.org/0000-0002-1343-7805
mailto:guilherme.grams@ulb.be
mailto:r.somasundaram@ip2i.in2p3.fr


2

from Eq. (2), fixing Ksurf = cKsat (with c ≈ −1.2± 0.12
[8]) and KCoul ≈ −5.2±0.7 MeV [9]. This indicates that
the key quantity which would allow the use of such an
empirical relation is the surface term. In this paper, we
investigate the impact of the surface term in the CLDM
framework and its role to reproduce experimental data.

By using the energy density functional approach, the
first precise extraction of Ksat gave Ksat = 210 ±
30 MeV [4], corrected to 240±20 MeV later on as a good
compromise between data in 208Pb and 90Zr [5]. The
isospin dependence of the incompressibility Kτ is more
difficult to determine from experimental data. It has re-
cently been extracted from systematical exploration of
Sn isotopic chain, giving Kτ ≈ −550 ± 100 MeV [5].
However, there are several unsettled questions: by us-
ing non-magic nuclei, the analysis of the data requires
the understanding of many-body correlations (pairing,
deformation, etc.) on the incompressibility of finite nu-
clei. The question of the isoscalar and isovector proper-
ties of the incompressibility is also important since the
density and the isospin asymmetry distributions in finite
nuclei are different from one to another. In addition, a
systematic difference between the incompressibility ex-
tracted from 208Pb and from 120Sn (which tends toward
Ksat ' 205 MeV[10]) remains which origin is still not
well understood. This issue could be of similar origin as
the systematical dispersion for Ksat obtained by using
different models, where Ksat ≈ 220 MeV is preferred by
Gogny forces [11] while non-linear relativistic mean field
models favor Ksat ≈ 250 MeV [12]. It was suggested that
these systematical differences could be related to the dif-
ferent density dependence of the models, encoded in the
nuclear empirical parameter (NEP) Qsat [13, 14]. It is
indeed a general result that a large uncertainty on a high
order NEP impacts the precise determination of lower
order ones [15].

In uniform matter (UM), the incompressibility KUM

is defined as the second derivative of the energy density
εUM = EUM/V as

KUM(n, δ) = 9n
∂2εUM(n, δ)

∂n2
, (3)

=
18

n
PUM(n, δ) + 9n2

∂2eUM(n, δ)

∂n2
, (4)

where n is the isoscalar density n = nn + np and δ the
isovector parameter δ = (nn − np)/n, the energy per
particle is eUM = εUM/n, and the pressure PUM is defined
as

PUM = n2
∂eUM

∂n
. (5)

Note that KUM = Ksat if n = nsat and δ = 0. In finite
nuclei, the isovector parameter is noted δA = (N−Z)/A.

In the absence of external forces, such as gravity for
instance, matter minimizes its energy (mechanical equi-
librium) by imposing PUM = 0. We note nUM

eq the equilib-
rium density in symmetric (SM) and isospin asymmetric
(AM) matter. The latter always deals with small isospin

asymmetries |δA| . 0.3 as expected in finite nuclei. In nu-
clear matter and at equilibrium, the first term in Eq. (4)
vanishes but in finite nuclei however the equilibrium den-
sity nAeq is slightly different from the one in uniform mat-

ter nUM
eq , due to the presence of finite size terms which

contribute to the pressure. This effect shifts nUM
eq by

about 10% at maximum and impacts the value of the
bulk incompressibility in finite nuclei. One could then
view the finite size terms as an ”external” force probing
the response of the bulk. Consequently, there is a con-
tribution of the finite size terms to the incompressibility
in finite nuclei, in addition to the density and isospin
asymmetry dependence of the bulk term [4]. In addition,
the equilibrium density nAeq in finite nuclei varies around

nUM
eq through the nuclear chart, modifying the value of

the energy in the bulk. Since this value is controlled at
first order by the incompressibility modulus, the energy
of finite nuclei in their ground state also contains a contri-
bution originating from the incompressibility of nuclear
matter, in addition to the symmetry energy and to the
finite size terms. This contribution is difficult to extract
from microscopic approaches, e.g., energy density func-
tional, shell model approaches, as well as ab-initio ones,
but it could be more visible in macroscopic models such
the CLDM that we employ in this study. The fact that
the fluctuations in nAeq impact both the energy eA and the
incompressibility KA requires to employ a model which
could describe these two quantities in a unique frame-
work. This is the motivation for the development of the
eCLDM that we present in this paper.

The CLDM has been shown relevant to describe nu-
clear masses [16, 17] and was also employed to study the
clusterized matter present on neutron star crusts [18–22].
Many variations of the model can be found in the liter-
ature, however, it has been argued by Blaizot [4] that
the CLDM is not appropriate to accurately extract the
incompressibility modulus Ksat from finite nuclei. The
reason lies in the contribution of the density dependent
surface term to the incompressibility, which is absent in
most of the macroscopic models. In the present work, we
however construct an extended CLDM (eCLDM) with a
density-dependent surface tension allowing to describe
both nuclear masses and incompressibilities. Further-
more, the bulk term of the present model is described
with the meta-model [3], an energy density functional
in which the parameters of the model are the empirical
parameters of nuclear matter. The meta-model has the
advantage of being flexible enough to allow an indepen-
dent variation of the NEP and can thus be used to easily
perform a sensitivity analysis of the individual impact
of the NEP on the incompressibility KA, as well as ex-
tensive searches of the best parameter sets reproducing
experimental data.

The paper is organized as follow: In Sec. II we ex-
plore the incompressibility modulus in nuclear matter in
terms of the NEP, or equivalently as a function of the
density and the isospin asymmetry. A new constraint
on Ksym is derived and compared to other existing ones.
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Following the line suggested by Blaizot [4], we then ad-
dress finite nuclei in Sec. III as described by our eCLDM
model (with a density dependent surface tension), which
allows to reproduce both finite nuclei and incompress-
ibility modulus from the same approach. In Sect. IV we
compare the predictions of the eCLDM to experimental
data and analyse the role of the NEP Ksat, Qsat, Lsym

and Ksym in a Bayesian framework. Finally, in Sec. V
we discuss the sound speed in both uniform matter and
finite nuclei.

II. UNIFORM MATTER

In this section, we briefly summarize the present un-
derstanding of uniform matter and show how the knowl-
edge of the NEP could be used to explore its properties
around saturation density. We also present an alterna-
tive representation where the reference density is taken
to be nUMeq , the equilibrium density which is a function
of δ, instead of the saturation density nsat in the usual
approach.

A. Representation of the nuclear matter properties
in terms of the nuclear empirical parameters

The NEP, e.g., Esat, Esym, are defined as the coeffi-
cients of the series expansion of the energy per particle
in SM (eSM) and of the symmetry energy (esym) as,

eSM(n) = Esat +
1

2
Ksatx

2 +
1

6
Qsatx

3

+
1

24
Zsatx

4 + . . . , (6)

esym(n) = Esym + Lsymx+
1

2
Ksymx

2 +
1

6
Qsymx

3

+
1

24
Zsymx

4 + . . . , (7)

where x = (n − nsat)/3nsat, with nsat being the satura-
tion density of nuclear matter (nsat = 0.155±0.005 fm−3,
see for instance Ref. [3]). Note that choosing nsat as
the reference density for the parameter x, is arbitrary:
in Sec. II B for instance, we explore another reference
density. It should also be noted that in Eq. (7), the
symmetry energy is defined as the difference between
neutron matter (NM) and SM energies, as esym(n) =
eNM(n) − eSM(n). It can be expanded in terms of δ2

as esym(n) = esym,2(n)δ2 + eNQ, where esym,2 and eNQ

subsume the quadratic and non-quadratic (NQ) contri-
butions respectively.

It was suggested in Ref. [3] to consider the series ex-
pansion up to order 4 in the density parameter x in order
to represent accurately the energy per particle, the pres-
sure and the sound speed of existing models up to about
4nsat. We adopt this prescription here as well, even if we
do not explore such high densities.

Note that since asymmetric matter is mostly quadratic
in δ, as it is expected to be [23], Eqs. (6)-(7) could also
be written in a more compact way,

eUM(x, δ) ≈ eSM(n) + esym(n)δ2 , (8)

≈ E(δ) + Lsymxδ
2 +

1

2
K(δ)x2 +

1

6
Q(δ)x3

+
1

24
Z(δ)x4 + . . . , (9)

where

E(δ) ≡ Esat + Esymδ
2 , K(δ) ≡ Ksat +Ksymδ

2 ,(10)

Q(δ) ≡ Qsat +Qsymδ
2 , Z(δ) ≡ Zsat + Zsymδ

2 . (11)

It should be noted that the above expression of K(δ) is
by no means the true isospin dependence of the incom-
pressibility, as it will be discussed below. In particular,
it neglects the contribution of the pressure which is dif-
ferent from zero as one gets farther from saturation. It
solely represents the second order term in the density
expansion of the energy per particle.

From Eq. (9), one could deduce a similar expression
for the energy density εUM = (1 + 3x)eUMnsat as,

εUM(x, δ)/nsat = E(δ) + Lε(δ)x+
1

2
Kε(δ)x2 + . . . ,(12)

where

Lε(δ) ≡ 3Esat + (3Esym + Lsym)δ2 , (13)

Kε(δ) ≡ Ksat +Kε
symδ

2 , (14)

with

Kε
sym ≡ Ksym + 6Lsym . (15)

The δ-dependence of the energy density curvature Kε(δ)
is different from that of the energy per particle curvature
K(δ). Consequences will be discussed in the following,
especially for the incompressibility modulus in asymmet-
ric matter. It will be shown that Kε(δ) do correspond to
the isospin dependence of the incompressibility around
saturation density, contrarily to Ksym, which is only a
parameter useful in the expansion (9)

The general expressions for the pressure (5) and the
incompressibility modulus (4) in AM could be expressed
in terms of the parameter x as,

PUM(x, δ) =
nsat

3
(1 + 3x)2

∂eUM(x, δ)

∂x
, (16)

KUM(x, δ) = 6(1 + 3x)
∂eUM(x, δ)

∂x
+ (1 + 3x)2

∂2eUM(x, δ)

∂x2
.

(17)

Injecting Eq. (9) into the expression for the pressure
(16), we obtain

PUM(x, δ) =
nsat

3

[
Lsymδ

2 +Kp(δ)x+
1

2
Qp(δ)x2

]
+o(x3) , (18)
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Model BSK14 BSK16 F0 LNS5 RATP SGII SKI2 SKO SLy5

Ref. [24] [25] [26] [27] [28] [29] [30] [31] [32]

Esat (MeV) -15.85 -16.05 -16.03 -15.56 -16.05 -15.59 -15.76 -15.83 -15.98

nsat (fm−3) 0.159 0.159 0.162 0.160 0.160 0.158 0.158 0.161 0.160

Ksat (MeV) 239 242 230 240 240 215 241 223 230

Qsat (MeV) -359 -364 -405 -316 -350 -381 -339 -393 -364

Esym (MeV) 30.00 30.00 32.00 29.15 29.26 26.83 33.37 31.97 32.03

Lsym (MeV) 43.9 34.9 42.4 50.9 32.4 37.6 104.3 79.1 48.3

Ksym (MeV) -152 -187 -113 -119 -191 -146 71 -43 -112

Qsym (MeV) 389 462 658 286 440 330 52 131 501

TABLE I. Nuclear empirical parameters for the Skyrme interactions used in the present work.

where Kp = Kε and Qp reads

Qp(δ) ≡ Qpsat +Qpsymδ
2 , (19)

with

Qpsat ≡ Qsat + 12Ksat (20)

Qpsym ≡ Qsym + 18Lsym + 12Ksym . (21)

Note that in finite nuclei, |δA| < 0.3 and densities are
explored from about 2/3nsat up to nsat, which implies
|xA| . 0.1. In finite nuclei, we could therefore perform
an expansion at the same level in δ2 and in x.

The equilibrium density in AM is given by the den-
sity for which the mechanical stability is satisfied:
∂eUM(x, δ)/∂x = 0. From the expression of the pres-
sure (16) truncated at order x, one can deduce in
AM [33],

xUM
eq ≈ −

Lsym

K(δ)
δ2 ≈ −Lsym

Ksat
δ2 . (22)

The equilibrium density is a function of the isospin asym-
metry parameter δ, and it satisfies the limit nUM

eq → nsat
for δ → 0. At order δ2 and x, one obtains for the
equilibrium density nUM

eq in asymmetric matter, nUM
eq =

nsat[1− 3(Lsym/Ksat)δ
2].

In finite nuclei, the situation is more complex than
previously described since: i) the equilibrium density is
different from nsat, due to the finite size terms and ii)
the density is not uniform allowing for surface contribu-
tions to be sizeable. In uniform matter however, only
isospin asymmetry contributes to the shift of the equi-
librium density from nsat, as shown in Eq. (22). While
neglecting the contribution of the finite-size (FS) terms,
expression (22) provides a good estimation of the average
densities in finite nuclei [34]. In the next section, this den-
sity is named ncl in the CLDM and we have ncl ≈ nUM

eq

for large A.
The pressure could be decomposed into a SM and an

isospin asymmetry terms:

PUM = PSM + Psymδ
2 , (23)

with

PSM(n) =
nsat

3

[
Ksatx+

1

2
Qpsatx

2 + ...
]
, (24)

Psym(n) =
nsat

3

[
Lsym +Kp

symx+
1

2
Qpsymx

2 + ...
]
.(25)

We have for instance Psym(nsat) = nsatLsym/3, as ex-
pected.

Similarly, injecting Eq. (9) into (17), one obtains the
following expression for the incompressibility modulus

KUM(x, δ) = Kk(δ) +Qk(δ)x+
1

2
Zk(δ)x2 + o(x3) ,(26)

with Kk = Kp = Kε and Qk = Qp, and where the
additional coefficient in asymmetric matter reads

Zk(δ) ≡ Zksat + Zksymδ
2 , (27)

with

Zksat ≡ Zsat + 54Ksat + 18Qsat (28)

Zksym ≡ Zsym + 54Ksym + 18Qsym . (29)

Remark that while K(δ) controls the isoscalar and isovec-
tor dependence of the curvature of the energy per par-
ticle in uniform matter (9), the incompressibility (17)
itself is driven by the parameter Kk(δ) for x = 0. The
difference between K(δ) and Kk(δ) reflects the contri-
bution of the pressure, which is non-zero as soon as the
density departs from the equilibrium density nUM

eq , see

Eq. (4). This contribution is unavoidable, making Kk(δ)
the true isospin dependence of the incompressibility [33].
Fixing n = nsat for instance, the parameter which con-
trols the isospin dependence of the incompressibility is
Kk

sym = Ksym + 6Lsym, and not Ksym alone. Consider-
ing Lsym ≈ 50 MeV and Ksym ≈ −100 MeV [35, 36],
with a lower limit provided by the unitary limit [37], the
parameter Kk

sym is even mostly controlled by Lsym, and
only moderately by Ksym.

In SM the incompressibility modulus can be expressed
as a series expansion in x as

KSM(x) = Ksat + (12Ksat +Qsat)x

+ (27Ksat + 9Qsat)x
2 + o(x3) , (30)
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and we introduce a new quantity,

Ksat,eq ≡ KSM(x = xUM
eq )

= Ksat + (12Ksat +Qsat)x
UM
eq + o(x2) , (31)

which represents the incompressibility modulus of SM for
the equilibrium density nUM

eq :
One can show that in AM the incompressibility mod-

ulus at the equilibrium density (26) can be expressed as,

Keq ≡ KUM(xUM
eq , δ) = Ksat,eq +Kk

symδ
2 + o(x2, δ4) .

(32)
In Eq. (32), the isovector term Kk

sym=Kε
sym (15) depends

only on isovector empirical parameters Lsym and Ksym,
while the isoscalar term only depends on isoscalar NEPs
Ksat and Qsat, provided xUM

eq is known (experimentally
for instance). In order to perform comparisons with in-
compressibilities in nuclei KA, it could be relevant to
express the incompressibility modulus in AM at equilib-
rium density x = xUM

eq as,

Keq = Ksat +Kτδ
2 + o(x2, δ4) , (33)

where [33]

Kτ = Ksym − (6 +Qsat/Ksat)Lsym . (34)

We choose nine Skyrme models, BSK14[24],
BSK16[25], F0[26], LNS5[27], RATP[28], SGII[29],
SKI2[30], SKO[31], SLy5[32], which NEP are given in
Table I. For these nine interactions, while the parameter
Kk

sym is positive for actual values of the NEPs, the
parameter Kτ controlling the isovector dependence of
Keq is negative since Qsat/Ksat ≈ −1.5 from Table I.
Note however that the value of Qsat has never been
measured and its actual value is not necessarily in the
range given in Table I. Aside from the finite size contri-
bution, the ISGMR in finite nuclei is mostly correlated
with Keq, whose isospin dependence is given by Kτ [33].
This is the reason why the isovector dependence of the
ISGMR across isotopic chains has been correlated with
the parameter Kτ [38].

It is clear from the definition of Kτ (34) that here also,
a precise experimental determination of Kτ does not nec-
essarily lead to a better value for the NEP Ksym, since
Kτ is mostly correlated with Lsym, which is not precisely
known. In order to extract Ksym from experimental in-
vestigations, one has to precisely know the values of Lsym

andQsat. Note that with about 10% accuracy [13, 14, 39],
the NEP Ksat is sufficiently well known in the present
case.

An illustration of the different points where the in-
compressibility has been introduced is shown in Fig. 1.
It displays the behavior of the equilibrium density as a
function of δ, on the example of the BSk12 functional.
The role of the incompressibility at various densities and
isospin is also displayed on the figure. It shows that sev-
eral incompressibilities at various densities are probed
when the GMR is measured in a given nuclei. For in-
stance, in addition to the saturation density, their typical

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 δ

0.06

0.08

0.1

0.12

0.14

0.16

0.18

n
  

(f
m

-3
)

K
sat

K
eq

K
sat,eq

K
k

sym

K
k

sym

Kτ

n
sat

(1-3L
sym

/K
sat

)

n
eq

Nuclei (mean)

Nuclei (sat)

UM

FIG. 1. Equilibrium points for the BSk12 functional (using
its Lsym and Ksat values in Eq. (22)) in the (density, isospin
asymmetry) map. The corresponding incompressibilities are
schematically indicated. The upper (lower) box are drawn
around saturation (mean) densities of experimentally accessi-
ble nuclei (δ <0.2).

mean density is around 0.11 fm−3 [13, 14]. It should be
noted that Kk

sym drives the isospin dependence of the in-
compressibility, independently of the considered density,
from x = 0 (saturation point) to x = xUM

eq (equilibrium
point).

B. An alternative representation of the nuclear
matter energy and incompressibility modulus

In this section, we explore an alternative representa-
tion of the uniform matter properties, where the equilib-
rium density neq is taken, in place of the saturation den-
sity nsat. This alternative representation is equivalent
to the existing one up to δ2, but generates non-quadratic
terms. In the view of constraining uniform matter param-
eters from measurements of incompressibilities in nuclei,
it may be more relevant to consider such a representa-
tion: the equilibrium density in uniform matter shall be
closer – than the saturation density – to the average one
of the nucleus [13, 14].

In this alternative approach, the associated density pa-
rameter is set to be x̃ = (n− nUM

eq )/(3nUM
eq ), from which

the density n is obtained as n/nUM
eq = 1 + 3x̃.

The alternative density parameter x̃ can be expressed
in term of x as,

x̃ =
x+ (Lsym/Ksat)δ

2

1− 3(Lsym/Ksat)δ2
. (35)

Similarly to Eq. (9) one can expand the energy per
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particle in term of x̃ as

eUM(x̃, δ) = Ẽ(δ)+
1

2
K̃(δ)x̃2+

1

6
Q̃(δ)x̃3+

1

24
Z̃(δ)x̃4+. . . ,

(36)
with

Ẽ(δ) = e(x̃ = 0, δ) = Esat + Eτδ
2 , (37)

K̃(δ) =
∂2e(x̃, δ)

∂x̃2

∣∣∣
x̃=0

= Ksat +Kτδ
2 = Keq , (38)

Q̃(δ) =
∂3e(x̃, δ)

∂x̃3

∣∣∣
x̃=0

= Qsat +Qτδ
2 , (39)

Z̃(δ) =
∂4e(x̃, δ)

∂x̃4

∣∣∣
x̃=0

= Zsat + Zτδ
2 . (40)

It should be noted that Kτ in Eq. (38) corresponds to
(34), because it is the incompressibility at the equilibrium

density, namely K̃(δ)=Keq.
Imposing the equality between the δ2 terms in the se-

ries expansions (9) and (36) orders by orders in x, one
obtains the following relations,

Eτ = Esym, (41)

Kτ = Ksym − Lsym(6Ksat +Qsat)/Ksat, (42)

Qτ = Qsym − Lsym(9Qsat + Zsat)/Ksat, (43)

Zτ = Zsym − Lsym(12Zsat + Ysat)/Ksat, (44)

where Ysat is the fifth order NEP. Note that these equa-
tions are a generalization of Eq. (16) of Ref. [33] up to
the 4th order, and hence, the above equation for Kτ is
the same than the one of the previous subsection.

Eqs. (9) and (36) are identical up to terms in δ2. In
Eq. (36) there are however non-quadratic terms, which
are small even when δ ∼ 1. The contribution of these
non-quadratic terms (because of the denominator in
Eq. (35)) is even more suppressed by the fact that finite
nuclei do not explore large values for δ, since |δA| < 0.3,
as previously discussed. So it is possible to use both
Eq. (9) or Eq. (36) to describe the energy in finite nuclei.

Expressing the incompressibility modulus in asymmet-
ric matter (17) as a function of the density parameter x̃:

KUM (x̃, δ) = 6(1+3x̃)
∂e(x̃, δ)

∂x̃
+(1+3x̃)2

∂2e(x̃, δ)

∂x̃2
, (45)

where we have used (1+3x)∂/∂x = (1+3x̃)∂/∂x̃, allows
to derive the following expression for the incompressibil-
ity:

KUM (x̃, δ) = K̃(δ) + [12K̃(δ) + Q̃(δ)]x̃

+[27K̃(δ) + 9Q̃(δ) +
1

2
Z̃(δ)]x̃2 + o(x̃3) .(46)

Eq. (46) provides a series expansion of the incompress-
ibility modulus in asymmetric matter up to x̃2 and δ2,
which is convenient to use when constraining the uniform
matter incompressibility from measurements in nuclei.

We will use the alternate representation developed in
this section and confront it with the standard expansion
of the nuclear matter energy in Sec. V where we present
our analysis of the speed of sound.

C. Constraints on Ksym

From the existence of a lower bound on the energy
of NM, on the basis of unitary-gas considerations, the
following constraint on Ksym was obtained [37],

Ksym ≈ −306.0 + 3.41Lsym ± 28.3 MeV , (47)

when models with Ksat > 275 MeV are excluded. Con-
sidering Lsym ≈ 50 MeV for instance, this constraint im-
poses Ksym >' −150 MeV (see Table I).

In Eq. (47), the coefficients of the correlation are ob-
tained from a fit to a given set of model realizations.
In the following, we will demonstrate the existence of a
lower limit from purely theoretical considerations.

It is possible to express the equilibrium density from
Ksym, by solving the mechanical stability condition
∂eUM(x, δ)/∂x = 0, with an expansion of the energy to
x3 and beyond δ2 approximation. The physical solution
of this second order equation is

xUM
eq,2(δ) =

K(δ)

Q(δ)

[
−1 +

√
1− 2

LsymQ(δ)

K(δ)2
δ2

]
, (48)

satisfying the limit nUM
eq,2 → nsat as δ → 0. Eq. (48) is

well defined if K(δ)2 ≥ 2LsymQ(δ)δ2 for all values of δ
for which equilibrium density is defined, which is rang-
ing from SM to very asymmetric matter. There is no
equilibrium density in NM, but there is still an equilib-
rium very close to NM. Since Eq. (48) weakly depends
on δ for isospin asymmetries close to NM, we fix δ = 1 in
Eq. (48) for simplicity. We then obtain: Ksym ≥ −Ksat+√

2LsymQ(δ = 1) or Ksym ≤ −Ksat −
√

2LsymQ(δ = 1).
Considering typical values for the NEPs extracted from
Table I,

√
2LsymQ(δ = 1) ∼ 70 − 100 MeV, so the pre-

vious condition gives Ksym & −150 MeV or Ksym .
−350 MeV. Since the second case is excluded by the con-
straint on Ksym given by considerations based on the
unitary-gas [37], we are then left with the first condition
alone:

Ksym ≥ −Ksat +
√

2LsymQ(δ = 1) ∼ −150 MeV . (49)

Note that using the model averaged values of Qsat and
Qsym [3], we have the following condition: Q(δ) > 0 for
all δ, constraining Qsat and Qsym, as Qsym > −Qsat.
However, this relation is not always satisfied, as shown
in table I.

Other estimates of Ksym from neutron stars ob-
servations have been suggested: from X-ray thermal
emission on seven LMXBs, it was found Ksym =

−85+82
−70 MeV [35];from the analysis of GW170817 it was

determined that −259 < Ksym < 32 MeV [40].
Using recent FRDM mass model[41] and the neutron

skin of 48Ca extracted from (p, p′) experiments and fixing
the nuclear incompressibiliity Ksat = 225±20 MeV from
up-to-date experimental data of ISGMR of 208Pb, it was
found that Ksym = −120± 40 MeV [36]. The constraint
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obtained from FRDM mass model leads to fix Esym =
32.3± 0.5 MeV and Lsym = 53.5± 15 MeV. The neutron
skin experiment gives Lsym = 42± 15 MeV.

A compilation of 16 results from independent analyses
of neutron star observational data since GW170817 lead
to the following expectation Ksym ≈ −107±88 MeV [42].
All these data tend to point towards negative values of
Ksym, with a centroid located around −100 MeV. The
uncertainty is difficult to estimate, but a conservative
value may be around −100 MeV. Note that these results
are compatible with the constraint (49) that we derived.

III. THE COMPRESSIBLE LIQUID DROP
MODEL WITH A DENSITY DEPENDENCE OF

THE SURFACE TENSION

The CLDM has been originally developed on top of
the liquid drop model, where the bulk term is a con-
stant [16]. In the CLDM [16, 17], the bulk term is
density-dependent and the density is fixed variationally
by the mechanical stability condition. In the present ap-
proach, we suggest an extension of the CLDM by intro-
ducing a density-dependent surface term. We show that
the present eCLDM could describe accurately both the
energy of finite nuclei in their ground state as well as the
ISGMR energy.

A. Density dependent surface tension

The novelty of the present work is the introduction of
a density dependent surface tension, which is expressed
as,

σsurf(ncl, Icl) = σsurf(Icl)
[
1 + asurff(Acl)x

2
cl

]
, (50)

where xcl = (ncl − nsat)/3nsat and the parameter asurf
controls the density dependence of the surface energy. In
practice, it encodes the deviation from nsat. It is then
larger for nuclei for which ncl is farther from nsat, i.e. for
light and intermediate mass nuclei as well as for exotic
nuclei. In Sec. A 3 we suggest a way to estimate asurf by
using a single microscopic calculation of KA in 100Sn.

In Eq. (50), the function f(Acl) is defined as,

f(Acl) =
1

1 + exp[−(Acl −A0)/Aw]
, (51)

where Acl is the mass number of the considered nucleus.
This function has been introduced to suppress the density
dependence of the surface tension in light nuclei, where it
appears to be unrealistically too large. From a qualitative
study, we suggest the following values for the parameters
of the function f : A0 = 70 and Aw = 10.

Figure 2 shows a comparison of the surface tension
σsurf from the CLDM and eCLDM as function of the
cluster density ncl. The figure shows a bell shape for
the eCLDM due to its quadratic dependence on xcl, in

FIG. 2. Surface tension for 120Sn. Continuous gray line show
the result without density dependence on σsurf . Dashed line
shows the result with density-dependent surface tension given
by Eq. (50).

contrast with the horizontal line of the CLDM which
does not depend on the density. The eCLDM simu-
lates a decrease of the surface tension by about 30% from
ncl ≈ 0.16 fm−3 down to ncl ≈ 0.10 fm−3. So for typical
values of the cluster density, eCLDM reduces the surface
tension to a large amount.

Note that we have also investigated other functionals
of the density. For instance, we have studied a correc-
tion term similar to Eq. (50), replacing xcl by ncl and
fixing asurf as described in Sec. A 3. We found that this
correction changes the pressure to a large amount, shift-
ing up the cluster density ncl to unrealistic values (above
0.25 fm−3 in some cases).

It should be noted that we have chosen the exponent
of the density-dependent term in Eq. (50) to be two.
The reason is twofold: first, it approximately satisfies the
stationarity of the surface tension w.r.t the density, see
Ref. [4] for more details, and second, with such a power,
it directly contributes to the incompressibility modulus
in finite nuclei. Note that a correction proportional to
xcl has been suggested in Ref. [43], and analysed in view
of its impact on the neutron skin. However, such a term
does not satisfies the requested stationary of the surface
tension and does not contribute to the incompressibility
in finite nuclei.

B. Incompressibility in finite nuclei: KA

The incompressibility KA in finite nuclei is defined as,

KA ≡ 9ncl
∂2εA
∂n2cl

∣∣∣
A
, (52)

with the energy density given by εA = eAncl.
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According to Eq. (52) by deriving twice the energy density w.r.t the cluster density, we obtain the incom-
pressibility in a nucleus as,

KA = Ksat +Kτδ
2 + CCoul

3

5

e2

r0

(
8 +

Qsat

Ksat

)
Z2A−4/3

+ Csurf

[
8πr2clσsurf

(
11 +

Qsat

Ksat

)
− 12πnclr

2
cl

∂σsurf
∂ncl

(
10 +

Qsat

Ksat

)
+ 36πn2clr

2
cl

∂2σsurf
∂n2cl

]
A−1/3 . (53)

where CCoul and Csurf are coefficients (close to 1) opti-
mized in order to reproduce nuclear experimental masses.
A detailed derivation of KA is given in App. A. The val-
ues of the parameters used in the present work are given
in Tabel VI. We can identify in the above expression the
incompressibility modulus Ksat, the isospin term Kτ , the
Coulomb and surface terms respectively. We have ar-
ranged this expression to be comparable with Eq. (6.3)
of Blaizot [4]. Note that the terms in the surface con-
tribution which are proportional to the derivative of the
surface tension w.r.t. the cluster density are absent in
usual CLDM while in the eCLDM, these terms become
proportional to the constant asurf introduced in Eq. (50).

C. Definition of the parameter asurf and
incompressibility predictions within the eCLDM

The new parameter asurf controlling the density de-
pendence of the surface tension, is fixed to reproduce the
microscopic prediction for the incompressibility KA in
the doubly magic N = Z nucleus 100Sn. The values asurf
and the microscopic prediction from constrained Hartree-
Fock-Bogoliubov (CHFB), KA,CHFB(100Sn), are shown
in Table II for the nine Skyrme interactions. The accu-
racy with which the microscopic prediction is reproduced
by the eCLDM is fixed to < 1 MeV.

Since the parameter asurf is found to be very stable
and close to ∼ −20, the fit of the eCLDM is made into
two steps: First, the values of the coefficients Csurf,sat,
Csurf,sym, and CCoul are fitted to better reproduce the ex-
perimental nuclear masses, using an initial value asurf =
−20 (see Table VI), then in a second step, the value of
asurf is accurately fixed by fitting KA,CHFB(100Sn) for
each of the Skyrme model (see Table II). For details about
the microscopic CHFB approach, we refer for instance to
Ref. [39].

In Fig. 3, we show as function of A, for Sn and
Pb isotopes, the comparison of the CLDM (solid lines)
and eCLDM (53) (dashed lines) predictions against the
microscopic predictions (circles) for KA, based on the
constrained Hartree-Fock-Bogoliubov (CHFB) approach,
for the set of Skyrme interaction listed in Tab. II (see
Refs. [13, 14] for more details on the microscopic CHFB
approach). We use the microscopic radii calculated by
each interaction, to transform EISGMR into KA using

Eq. (1). For SLy5, our results are identical to the ones
given in Ref. [39]. By comparing CHF (red triangles) and
CHFB (red circles), we see that pairing contributes to re-
duce the shell effects around A ≈ 140 in Sn and makes
the isotopic evolution of KA smoother.

As stated by Blaizot [4], the CLDM predictions are
largely overestimating KA, since the surface energy is
not explicitly density-dependent. By adding the new
term (50) for the surface energy (Eq. (A6)), the eCLDM
reproduces the isotopic dependence of KA as predicted
by the microscopic CHFB approach (note that only one
nucleus (100Sn) has been used for the calibration of asurf).

In Sn isotopes, one can note a marked step for KA

for A & 132, in microscopic predictions, which is not
present in the eCLDM prediction. The eCLDM predicts
instead a continuous decrease of KA over the isotopic
chain. A similar feature, while not as pronounced, is
observed for Pb isotopes for A & 208. Microscopically,
these steps are understood as originating from shell ef-
fects: in 132Sn, they are 12 occupied 1h11/2 states be-
low the Fermi level and 10 unoccupied 1h9/2 states. For
208Pb, the Fermi level is for 1i13/2 and the next orbital is
1i11/2. The ∆L = 0 isoscalar oscillation is therefore en-
hanced for neutron-rich systems belonging to these two

KA,CHFB(100Sn) asurf

MeV

BSK14[24] 153.6 -19.95

BSK16[25] 154.4 -20.00

F0[26] 142.3 -19.90

LNS5[27] 150.7 -20.95

RATP[28] 147.9 -20.85

SGII[29] 133.2 -19.55

SKI2[30] 155.2 -20.00

SKO[31] 139.3 -19.55

SLy5[32] 142.8 -20.05

TABLE II. For a set of Skyrme interactions, microscopic Con-
strained Hartree-Fock-Bogoliubov predictions for KA in 100Sn
used in the calibration of the parameter asurf .
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FIG. 3. Comparison of KA for Pb an Sn isotopic chains. Con-
tinuous (dashed) lines show results with CLDM (eCLDM).
Constrained Hartree-Fock-Bogoliubov (CHFB) calculations
are shown in dots. Red triangles shows CHF calculations for
SLy5, i.e., microscopic calculations for Sn isotopes without
pairing.

isotopic chains. Since shell effects are not present in the
eCLDM, such steps could not be described by our macro-
scopic approach. The decrease of KA as nuclei get more
and more neutron-rich is however well reproduced by the
eCLDM approach. Such a dependence on A depends on
the choice of the NEP, as illustrated in the appendix sec-
tion A 5.

As a first application of the eCLDM, we compute
the binding energies, the incompressibilities KA and IS-
GMR energies for several Sn and Pb isotopes and for
the SLy5 Skyrme interaction (see Tab. III). All these
quantities are given for both the eCLDM and the CLDM
approaches. Experimental data for the binding energies
from AME2020 table [6] are also given. We have also cal-
culated the ratio cA = KA,surf/Ksat for the set of nuclei.
Interestingly, we found cA ≈ −1.3, which is compatible
with the calculations of Ref. [8] deduced from a micro-
scopic approach. Consistently with Fig. 3, the value ob-
tained for KA with the eCLDM is considerably reduced,
compared to the one provided from the CLDM, illustrat-
ing the impact of the density-dependent surface energy
term. Ksurf is also given in Tab. III. The contribution
of the density-dependent surface energy term is large: it
changes the sign of the termKsurf , from positive (CLDM)
to negative (eCLDM). The A dependence of Ksurf is also
strongly modified with the density-dependent surface en-
ergy term. The value for KCoul is not much impacted by
the density-dependent surface energy term. In addition,
KCoul is compatible with the value extracted from the
liquid drop expansion [9] and are rather insensitive to
the nuclear interaction. Finally, we show, in the last col-
umn, the values for ISGMR energies. Since this values
are directly impacted by KA, see Eq. (1), the eCLDM

shows a reduction for the EISGMR energies. Note that
this reduction makes the eCLDM results closer to the
experimental values.

Tab. III illustrates one of the main feature of the
eCLDM approach: the present density-dependent surface
energy term has a small impact on the binding energies,
but a large contribution to the incompressibility modu-
lus KA in finite nuclei. This justifies our fitting protocol
previously described. It also shows that the low order
NEP could be adjusted to the nuclear mass table quite
independently to the higher order NEP which are fitted
to KA.

IV. CONFRONTATION TO THE NUCLEAR
EXPERIMENTAL DATA

In this section, we confront the eCLDM to the nu-
clear data. To do so, we first list the experimental data
used for the analysis. By using the Markov chain Monte
Carlo (MCMC) approach, we then vary a set of NEP all
together in order to extract the best parameters set re-
producing the experimental data. A sensitivity analysis
is shown in the appendix A 5 where we illustrate, in a
complementary way, the individual influence of the NEP
to the prediction of KA.

A. Experimental data for KA

We aim at reproducing together the values of KA in
90,92Zr, 112−124Sn, 204−208Pb from Ref. [5], see Tab. IV
for detailed values. We do not consider here the experi-
mental GMR energy measured for 94Zr and reported in
Ref. [5], since it is very different from the one measured
in 90Zr and 92Zr. It is not possible, for our modeling to
reproduce this data, as it is shown hereafter in Fig. 7. In
addition, we investigate the role of a fictitious measure-
ment of the GMR energy in 132Sn and explore possible
consequences for the determination of NEP.

We first report, in Tab. IV, the experimental data
listed in Ref. [5]. For some nuclei there are different val-
ues obtained from different experiments, see for instance
90Zr, 92Zr, 112Sn and 124Sn (the largest differences be-
tween different experimental measurements are for 112Sn
and 124Sn). In the following, we adopt an agnostic ap-
proach w.r.t. these data and we then equally treat the
measurements. It should be noted that we have then
re-calculated averaged centroids and standard deviations
for nuclei were two experimental values are reported, gen-
erating a new distribution summing the individual ones.
We have then determined the value for KA using Eq. (1),
where the total radius RA is provided by an CHFB cal-
culation [44] using SLy5 [32] Skyrme interaction. The
last column in Tab. IV gives the experimental values for
KA which are used in the confrontation of our eCLDM
to nuclear data.
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A Z eA cA KA K̄surf K̄Coul EISGMR

(MeV) (MeV) (MeV) (MeV) (MeV)

100 50 -8.11 / -8.08 [-8.25] -1.2 / 1.5 143.2 / 278.3 -276.7 / 347.7 -5.0 / -4.9 19.5 / 26.6

106 50 -8.40 / -8.38 [-8.43] -1.3 / 1.5 142.7 / 277.3 -289.6 / 345.2 -5.0 / -4.9 19.1 / 26.0

114 50 -8.55 / -8.53 [-8.52] -1.3 / 1.5 139.5 / 272.2 -305.1 / 336.5 -5.0 / -4.9 18.3 / 25.1 [15.9]

120 50 -8.53 / -8.52 [-8.50] -1.4 / 1.4 136.1 / 266.6 -315.0 / 327.4 -5.0 / -4.9 17.6 / 24.4 [15.5]

180 82 -7.72 / -7.72 [-7.73] -1.6 / 1.5 130.0 / 256.8 -366.7 / 348.2 -4.9 / -4.9 14.9 / 20.8

200 82 -7.87 / -7.88 [-7.88] -1.6 / 1.4 128.6 / 247.9 -367.4 / 329.7 -4.9 / -4.9 14.2 / 19.6

208 82 -7.83 / -7.84 [-7.87] -1.6 / 1.4 127.1 / 243.1 -367.0 / 320.5 -4.8 / -4.8 13.8 / 19.1 [13.5]

TABLE III. Binding energies, ratio cA = K̄A,surf/Ksat, incompressibility KA in finite nuclei and the contributions from the
surface and Coulomb terms, and the ISGMR energies for a set of Sn and Pb isotopes, using the meta-model version of the
SLy5 nuclear interaction. On the two sides of the bar / are compared the values obtained from the eCLDM and the CLDM
approaches. The experimental values for the binding energies and for the EISGMR, when available, given by the 2020 Atomic
Mass Evaluation (AME) table [6] and by Garg et al[5], respectively, are given inside brackets.

EISGMR EISGMR RA KA

(MeV) (MeV) (fm) (MeV)
from Ref. [5] (this work) (SLy5) from Eq. (1)

90Zr 17.58+0.06
−0.04 17.62± 0.07 4.256 135.6± 1.1

17.66+0.07
−0.07

92Zr 17.71+0.09
−0.07 17.62± 0.12 4.293 138.0± 1.9

17.52+0.04
−0.04

94Zr 15.75+0.27
−0.15 15.80± 0.21 4.330 112.9± 3.0

112Sn 15.23+0.26
−0.14 15.69± 0.44 4.556 123.2± 6.9

16.10+0.10
−0.10

114Sn 15.90+0.10
−0.10 15.90± 0.10 4.585 128.2± 1.6

116Sn 15.70+0.10
−0.10 15.70± 0.10 4.614 126.5± 1.6

118Sn 15.60+0.10
−0.10 15.60± 0.10 4.641 126.4± 1.6

120Sn 15.50+0.10
−0.10 15.50± 0.10 4.667 126.2± 1.6

122Sn 15.20+0.10
−0.10 15.20± 0.10 4.691 122.6± 1.6

124Sn 14.33+0.17
−0.14 14.72± 0.40 4.715 116.2± 6.3

15.10+0.10
−0.10

132Sn† 14.80 14.80 4.803 121.8
204Pb 13.70+0.10

−0.10 13.70± 0.10 5.516 137.7± 2.0
206Pb 13.60+0.10

−0.10 13.60± 0.10 5.532 136.5± 2.0
208Pb 13.50+0.10

−0.10 13.50± 0.10 5.548 135.3± 2.0

†Fictitious data.

TABLE IV. Experimental data for EISGMR and KA, consid-
ered in this work.

B. Best parameter set from Markov-chain Monte
Carlo approach

In this subsection, we vary a set of NEP in order to
determine the best parameters reproducing the experi-
mental data. We first present the experimental data and
then the Markov-chain Monte Carlo (MCMC) approach
we adopt.

The confrontation between the experimental data for
the incompressibility KA (see tab. IV), and the model
predictions, is based on the loss functions χKA

, which is

defined as

χ2
KA

=
1

NKA

∑
i

(
Kexp
A,i −KeCLDM

A,i

δKexp
A,i

)2

, (54)

where i runs over the following isotopes: 90,92Zr,
112−124Sn, 204−208Pb. We also explore a fictitious data
for 132Sn, since and experimental value of the GMR cen-
troid is currently under analysis [45].

The eCLDM is also fine-tuned to experimental nuclear
masses. The associated loss function χE is defined as

χ2
E =

1

NE

∑
i

(
Eexp
i − EeCLDM

i

δEexp
i

)2

, (55)

where i runs over a subset of experimental binding energy
extracted from the 2020 AME mass table [6]. To speed-
up the computing time, we do not consider all nuclei in
the mass table, as in Ref. [21] for instance, but instead we
confront the mass model to a subset of it. To do so, we
picked-up one out of hundred data. We have checked that
this selection does not impact our results, as discussed
below.

In the following we fix the NEP Esat, Esym, and nsat
to their empirical expectations, as reported in Tab. V.
We vary the other NEP, Ksat, Qsat, Lsym and Ksym, con-
sidering flat priors inside the boundaries given in Tab. V
and defining the prior loss function χprior. The higher
order NEP Qsym, Zsat and Zsym have no impact on the
present analysis. Hence, they are fixed to values deter-
mined from analyses of model predictions, see Ref. [46].
Their value is also given in Tab. V. Finally, the effective
mass, which is parameterized by M∗sat and ∆M∗sat, is also
fixed in the present study.

The total loss function is obtained as the sum of χKA
,

χE , and χprior. We explore three scenarios in the present
study:
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Esat nsat Ksat Qsat Zsat Esym Lsym Ksym Qsym Zsym

(MeV) (fm−3) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

From Ref. [3] -15.8±0.3 0.155±0.005 230±20 300±400 -500±1000 32± 2 60±15 -100±100 0± 400 -500±1000

dist1f and dist2f -15.8 0.155 [210,250] [-1800,600] -500 32 [40,60] [-300,100] 0 -500

dist3f -15.8 0.155 [210,250] [-1800,600] -500 32 [80,100] [-300,100] 0 -500

TABLE V. Priors for the NEP from Ref. [3] (first raw), and priors considered in the present analysis to set-up dist1f, dist2f and
dist3f. The values given in interval [a, b] imply that a flat prior is considered in the MCMC approach. Other NEP are fixed to
the indicated values. We considered also the following parameters: M∗sat = 0.7, ∆M∗sat = −0.1, bsat = 6.9 and bsym = 0.

• dist1 & dist1f: all known experimental data
are considered for KA (90,92Zr, 112−124Sn and
204−208Pb) and the priors are taken flat, as given
in Tab. V.

• dist2 & dist2f: same as dist1 & dist1f but consid-
ering a fictitious value for KA in 132Sn, as given in
in Tab. IV.

• dist3 & dist3f: same as dist2 & dist2f but consid-
ering a large prior for Lsym, as given in Tab. V.

The difference between the cases disti and distif (i = 1, 2,
3) are that distif includes the fine tuning of the eCLDM
to the experimental nuclear masses while disti does not.
In the following results, we observe that there are very
little differences between disti and distif, since the NEPs
(Esat, Esym and nsat) which play a major role in the
determination of the nuclear masses are not varied in the
present study.

The marginalized distributions for the NEP parame-
ters are shown in Figs. 4 and 5. The corner plot rep-
resentation in Fig. 4 shows the one parameter distribu-
tions on the diagonal and the correlation between the
parameters off the diagonal, while in Fig. 5 we show a
zoom of the one parameter distributions. We compare in
the distributions obtained without the fictitious data for
132Sn (dist1f, blue) and with this fictitious data (dist2f,
red). We also show the marginalized distribution when
the slope of the symmetry energy Lsym is taken to be
large and around 90 MeV (dist3f, green), as suggested
by the analysis of PREX2 experimental data [47]. The
Gaussian distributions in dashed lines represent the ex-
pected distributions for these parameters from Ref. [46].
They are also given in the first raw of Tab. V.

Let us first remark that the value for the parame-
ter Qsat is very different from the expected values given
in Tab. V. The distribution for Qsat is very similar for
the three cases: it is peaked at around ≈ −950 MeV
with an uncertainty of about 150-200 MeV. The value
extracted from an analysis of models predictions, since
there are no direct extraction from experimental data
of this parameter, is expected to be quite different:
≈ 300 ± 400 MeV Ref. [46]. These values are extracted
from an analysis over existing non-relativistic and rela-
tivistic phenomenological approaches. However, it was
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FIG. 4. Marginalized distributions for the NEP parame-
ters in the three cases which are considered here: dist1f
(considering all experimental data), dist2f (adding a ficti-
tious measurement for 132Sn) and dist3f (with a prior for
Lsym = 90 ± 10 MeV). Note that for dist1f and dist2f the
prior is Lsym = 50± 10 MeV.

already noticed that the value of this parameter changes
a lot from a type of nuclear interaction to another: about
-350 MeV in average for Skyrme models, around 0 for rel-
ativistic mean-field (RMF) models and around 390 MeV
for relativistic Hartree-Fock (RHF) ones. There is there-
fore a large model dependence of Qsat, which may be re-
lated to its correlation with Ksat as suggested in Ref. [14].
The value preferred by the GMR data points toward a re-
gion which is orthogonal to any value of existing models.
We can then deduce that in order to reproduce correctly
several isotopic chains from Zr to Pb, including Sn iso-
topes, the required value for Qsat is quite different from
the typical values given in phenomenological approaches.
So the possible origin of the difficulties faced by the usual
phenomenological models in reproducing both the Sn and



12

220 230 240 250
Ksat [MeV]

0.000

0.025

0.050

0.075

0.100

0.125

234+6
6

234+3
4

238+3
5

dist1
dist1f
dist2
dist2f
dist3
dist3f

1500 1000 500
Qsat [MeV]

0.000

0.001

0.002

0.003

0.004

234+66

234+34

238+35

40 60 80 100
Lsym [MeV]

0.00

0.02

0.04

0.06

0.08

983+157
156

903+116
98

1032+140
101

300 200 100 0 100
Ksym [MeV]

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

983+157
156

903+116
98

1032+140
101

FIG. 5. One parameter marginalized distributions for the
NEP parameters Ksat, Qsat, Lsym and Ksym. The distribu-
tions distif are shown in solid lines with same colors as in
Fig. 4. They are compared to the distributions disti (without
fine tuning to experimental nuclear masses) in thin dotted
lines. The differences between distif and disti are small.

Pb isotopes could take its origin in the values of the NEP
Qsat in these models. To reproduce better Sn and Pb iso-
topes, more flexibility shall be given to these models, in
particular the breaking of the correlation between Ksat

and Qsat. For Skyrme models, this could come with an
additional density-dependent term, or the ’t3’ kind, as
suggested in Ref. [26].

The second remark is about the role of a fictitious mea-
surement of the GMR energy in 132Sn. For simplicity, we
assumed an accurate measurement as EISGMR(132Sn) =
14.8 MeV, see dist2f. An uncertainty in EISGMR(132Sn)
will produce a result between the one suggested by dist1f
and dist2f, except if the measurement is lower than the
value we considered. Let us simplify the discussion of
this fictitious data by not considering such a case. The
role of this fictitious data for EISGMR(132Sn) can be seen
from the difference between dist1f (blue) and dist2f (red)
distributions. While the isoscalar NEP are weakly im-
pacted, the isovector NEP Ksym is largely impacted by
the fictitious data: such a new measurement would shift
the expected value for Ksym towards large and negative
values.

Note also that the value of Lsym is not constrained
by the considered experimental values: Lsym fully ex-
plores the flat prior without specific structure and it is
also not correlated to other NEP. There are however cor-
relations between Ksat and Qsat, as well as between Ksat

and Ksym and Qsat and Ksym. The distribution for Ksat
is more peaked than the empirical expectation (with a
width of ±20 MeV). One of the reason is that there is
correlation between the parameter asurf , controlling the
density dependence of the surface energy, and Ksat. In
the present study we have fixed asurf = −20, as result-
ing from the typical value we obtained in the previous
subsection. This parameter is however not fixed by any
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FIG. 6. Marginalized distributions for the parameter Kτ .
Same legend as in Figs. 4 and 5. The centroids for Kτ are
given in the figure for the cases distif.

experimental data and including its uncertainty may con-
tribute to widen the Ksat distribution. Another reason
comes from the better agreement of our model with the
experimental data, in comparison to other phenomeno-
logical approaches, e.g., Skyrme or RMF [39]. Since in
our model we can fix the value of Qsat independently of
Ksat, it results in a better description of the experimental
KA values and the parameters Ksat and Qsat are better
determined, see Figs. 4 and 5. In other words, the un-
certainties in Qsat impacts the one in Ksat, as suggested
in Ref. [15]. Since Qsat is better known from the present
approach, it results that Ksat is also determined with a
better accuracy.

We represent in Fig. 6 the marginalized distribution for
the parameter Kτ , defined from Eq. (34) for the cases
disti (think dotted lines) and distif (thick solid lines).
Without the fictitious GMR energy in 132Sn (dist1 and
dist1f) the Kτ distribution is quite flat, while when the
132Sn fictitious data is considered, the Kτ distribution is
better localized. For the value we considered including
an accurate experimental data, we obtain Kτ ≈ −358±
40 MeV (Kτ ≈ −356±50 MeV) for Lsym ≈ 50±10 MeV
(Lsym ≈ 90 ± 10 MeV). Here also, we note the relative
independence of the Kτ distribution in the parameter
Lsym.

Our results also differ from others if we do not con-
sider the fictitious data in 132Sn. The value Kτ ≈
−550± 100 MeV was extracted from the analysis of the
Sn isotopic chain only (from 112Sn to 124Sn [38]). Note
also the value Kτ ≈ −500± 50 MeV extracted from the
same experimental data, using different Skyrme Hamilto-
nians and RMF Lagrangians [9]. If we apply our analysis
to the same data points as in Ref. [9, 38], then we obtain
Kτ ≈ −330 ± 120 MeV and Kτ ≈ −270 ± 100 MeV if
we impose to reproduce KA in Pb as well. Note how-
ever that when we consider the fictitious data in 132Sn,
the value for Kτ become more peaked. This illustrates
the role of isotopes with large isospin asymmetry in the
determination of Kτ . However, for these data on exotic
nuclei to be effective, they need to be as accurate as the
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FIG. 7. Comparison of the best parameter set against the
experimental data for Zr, Sn and Pb isotopes.

data obtained for stable nuclei.
Finally, we show in Fig. 7 the comparison between the

experimental values for KA and the values obtained with
our best parameter set for each cases disti (thin lines)
and distif (thick lines). Our eCLDM model is able to
well reproduce the experimental points in Zr, Sn and Pb
isotopes with a very good accuracy. Once again, this
is possibly due to the large negative Qsat value, which
points to a hint for solving the so-called Sn softness puz-
zle. Note that the experimental point in 94Zr is out of
reach from our model. The difference between KA in 92Zr
and 94Zr is too large to be reproduced. For this reason,
we decided not to include 94Zr in our fit. We also ad-
vocate for a new measurement in 94Zr, since the present
data is surprising.

In the case dist1 and dist1f, the best parameter sets
provide a consistent description of the experimental value
in Zr, Sn and Pb isotopes. Note however that the data
in 124Sn is not very constraining in our case, since the
uncertainty is large. Therefore, the evolution of KA over
the Sn isotopic chain is quite flat in our model. The
effect of including the fictitious data in 132Sn with small
uncertainty, forces our model to decrease KA as function
of A in Sn isotopes (see dist2 and dist2f). The description
of Pb isotopes, while still good, is slightly deteriorated. It
is however restored with dist3 and dist3f, where a larger
value for Lsym ≈ 90 ± 10 MeV is explored. However,
these results are still exploratory and no conclusion could
be given without an accurate measurement of the GMR
energy in 132Sn.

V. SOUND SPEED IN NUCLEI AND UNIFORM
MATTER

The sound speed is an important property in transport
models [49]. It is interesting to address the effects of
the nuclear properties, e.g., NEPs, on the sound speed
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FIG. 8. Correlation of the sound speed in NM at nsat with
the parameter Ksym for the three cases: dist1f, dist2f and
dist3f. The horizontal red band (Drischler 2021) depicts the
constraint on the sound speed from χEFT Hamiltonians cal-
culated at nsat [48]. The vertical line at Ksym = −150 MeV
separates the excluded values obtained from our Eq. (49) (left
side) from the authorized ones (right side).

in uniform matter and in finite nuclei. Moreover, the
sound speed is an important ingredient in the calculation
of the tidal deformation in binary neutron stars [50–53].
Therefore a connection between the sound speeds in finite
nuclei and infinite matter could help in constraining NS
observables from nuclear experiments.

The sound speed cs in a nuclear fluid is largely deter-
mined from the nuclear incompressibility in asymmetric
matter. It is defined as [4]

c2s =
K(n, δ)

9h(n, δ)
, (56)

where h is the enthalpy per particle h = mc2+e+P/n. In
uniform matter, we determine the sound speed from the
following quantities eUM (9), PUM (5) andKUM (4), while
in finite nuclei, we use eA (A1), PA (A9) and KA (A15).
All these quantities have been defined in previous sections
and in the appendix A.

We show in Fig. 8 the correlation between the speed-
of-sound in NM at nsat and the NEP Ksym. We have used
the posterior distributions corresponding to the three
cases: dist1f, dist2f and dist3f for all the NEP (here Ksat,
Qsat, Ksym and Lsym). The findings of Fig. 8 suggest that
a tight constraint on the value of the sound-speed in NM
at around saturation density, could turn into a constraint
of the value of Ksym. With the advent of ab-initio cal-
culations such as χEFT [48] it is possible to determine a
band for the sound-speed in NM. In Fig. 8, the red band
shows chiral EFT calculations for the sound speed in NM
at nsat obtained in Ref. [48]. At nsat, the intersection of
the red band (χEFT) and blue contour (dist1f) suggests
that −200 . Ksym . 50 MeV. We have performed a sim-
ilar analysis at 2nsat but it does not bring any additional
information on Ksym.
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FIG. 9. Similar to Fig. 8 but at half saturation density and
with δ = 0.5

It should be noted, from Fig. 8, that the inclusion of
a fictitious data in 132Sn (see the contour Dist2f) may
contribute to the reduction of the band width for the
sound speed in NM, reducing the values for Ksym to be
Ksym . −100 MeV and c2s . 0.055c2 (instead of 0.06c2).
The case of dist3f is even more interesting: if only large
values for Lsym ∼ 90± 10 MeV compatible with PREX2
are authorized then the overlap between dist3f and χEFT
occurs in the forbidden region for Ksym. In other word,
there is no overlap between dist3f and χEFT. The sound
speed in NM therefore contributes to exclude large values
for Lsym, as suggested by PREX2.

It is also relevant to explore the correlation between the
sound-speed and Ksym in cases similar to what exists in
heavy ion collisions at the Fermi energy. In Fig. 9, we fix
the density to be nsat/2 and isospin asymmetry param-
eter δ = 0.5. Interestingly we see that, in contrast with
the NM case (δ = 1) shown in Fig. 8, the correlation is
negative (anti-correlation). This is due to the dominant
contribution of the pressure to the enthalpy, for which
Ksym contributes to a large extent: Ksym contributes to
the first power in the density parameter x to the pressure,
while only to the second power to the energy per parti-
cle. The isoscalar contribution to the pressure is small
in the vicinity of saturation density. Since the leading
order impact of Ksym is an odd power in x, it has an op-
posite correlation below saturation density, as compared
to above. As in Fig. 8, we see that the uncertainty in
Lsym plays a large role, as can be inferred by comparing
dist3f with the other cases. The uncertainty induced by
Lsym is of similar magnitude as the one originating from
Ksym. We can thus conclude that tighter constraints on
both Lsym and Ksym will reduce the uncertainty in the
sound speed.

We now come back to finite nuclei, where FS terms
also play a role in sound speed. These FS terms impact
the connection between the sound-speed in finite nuclei
and the sound-speed in nuclear matter. In Fig. 10, we
show the sound-speed in finite nuclei as a function of A
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FIG. 10. The speed of sound in finite nuclei is shown (blue
curve) as a function of A for Sn (top) and Pb (bottom). The
black lines represent nuclear matter results as indicated in the
legend.

for two isotopic chains: Sn and Pb. For this calcula-
tion, we have used the SLy5 interaction. In both panels,
the sound speed in infinite matter at nsat is shown as
black horizontal lines. The solid black line represents
SM. The red dashed line represents AM with δ = 0.2
and for neq = 0.157 fm−3. So the effect of asymmetry it-
self is to slightly increase the sound speed, while shifting
down the equilibrium density from SM to AM reduces
the sound speed. The main differences between the blue
curve and the straight lines, originate from the contribu-
tion of the FS terms in finite nuclei. There is a factor
approximately 2 between uniform matter and finite nu-
clei. The same difference has been observed between Ksat

and KA, see for instance the middle panel of Fig. 11. In-
terestingly, we see that the deviation between the black
and the blue lines increases with A due to the fact that
nuclei get more and more neutron rich, and therefore the
cluster density decreases. At much larger A (above the
values shown in the figures), the FS terms finally decrease
in size and at the limit A→∞ finite nuclei and uniform
matter results do get closer.
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VI. CONCLUSIONS

In this work we have explored various ways to encode
the density and isospin asymmetry dependence of the
incompressibility in nuclear matter. We have discussed
the dominant contribution of Lsym in the determination
of the isospin dependence of the incompressibility mod-
ulus. A better knowledge of the incompressibility mod-
ulus in AM requires therefore an accurate knowledge of
Lsym. In finite nuclei, by introducing an extended CLDM
(eCLDM) adding a density dependence to the surface
tension proportional to x2cl, where xcl = (ncl−nsat)/3nsat,
we were able to provide a unified macroscopic model for
nuclear masses and incompressibility modulus. We have
then rederived KA from the eCLDM framework along the
lines originally suggested by Blaizot [4]. In this way, the
contribution of the new density-dependent term, in the
surface tension to KA, is explicitly shown in the equa-
tions.

We have compared the predictions of the eCLDM for
the nucleus incompressibility KA with microscopic cal-
culations and experimental data. Thanks to the flexibil-
ity of the meta-model, a sensitivity analysis on the im-
pact of individual nuclear empirical parameter is made.
As expected, the isoscalar channel influences the abso-
lute values of the energies while the isoscalar one im-
pact the slope of the KA as function of the isospin
asymmetry. A full exploration in the parameter space
formed by Ksat, Qsat, Lsym and Ksym is also performed,
showing that the parameter Qsat must be approximately
Qsat ≈ 950±200 MeV to reconcile the experimental GMR
energies measured in Zr, SN and Pb isotopes. Since this
suggested value is different from the ones of phenomeno-
logical forces, we then suggest a possible explanation of
the origin of the difficulties these forces faces in repro-
ducing the experimental data on KA, on both Sn and Pb
nuclei.

In addition, we explore the impact of a fictitious ac-
curate measurement for the GMR energy in 132Sn. We
show that with such a measurement, the value of Ksym

and Kτ would be much better determined than they are
with the present data.

We have also derived two new constraints on Ksym:

• From the equilibrium density: Ksym ≥ −Ksat +√
2LsymQ(δ = 1) ∼ −150 MeV and Qsym > −Qsat.

• From the confrontation of our prediction for the
sound speed in NM with the χEFT, we found
−200 . Ksym . 50 MeV. This constraint could
be more accurate if a measurement of the GMR
energy in 132Sn is known.

Let us remark that the constraint on Qsym combined with
the MCMC exploration for Qsat leads to the following
consequence: Qsym & 950± 200 MeV.

In conclusion, the present work suggests a new way
to analyze the experimental KA and to extract the val-
ues of the NEP Ksat, Qsat, Lsym and Ksym, which are

the most influential ones. This method is comparable
to the microscopic Hartree-Fock one, except that it does
not describe shell effects. These shell effects are how-
ever reduced by the treatment of the pairing, as shown
in the microscopic Hartree-Fock Bogoliubov calculations
[5]. The advantage of our method is that we use the
flexible nuclear meta-model to simulate the role of the
nuclear interaction. At variance with phenomenological
forces, the nuclear meta-model is able to freely choose
the best NEP which describe the experimental data. We
found that the data favors a large and negative value for
Qsat which is not possible with phenomenological forces.
We then suggest a possible origin for the observed limi-
tations of these forces.

We note that our ability to extract information on Qsat

and Ksym from finite nuclei, is based on the variation in
density and isospin asymmetry explored by the isotopes
defining the loss function χE . For simplicity we have
based our analysis on the results of an eCLDM where
the densities and isospin asymmetries are taken flat in
finite nuclei. This is clearly an important feature which
has to be improved in the future. One may think for
instance in implementing the meta-model in a modeling
of finite nuclei with better density profiles compared to
the eCLDM. Further works in this direction are therefore
envisioned.
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Appendix A: Derivation of the incompressibility KA

in finite nuclei

In this appendix we derive KA in finite nuclei and
obtain an expression similar to the one obtained by
Blaizot [4], but for the eCLDM approach and where we
have introduced the NEP explicitly. We detail the deriva-
tion step by step, starting with the definition for the nu-
clear binding energy, going to the pressure in the nucleus
to have in the end a clear expression for the incompress-
ibility. In the last section of this appendix we take ad-
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vantage of the present approach to analyse the impact of
the NEP to reproduce KA.

1. Energy per particle: eA

We define the binding energy eA for the nucleus A in
the CLDM as,

eA ≡ eA,UM + eA,FS (A1)

where the uniform matter energy eA,UM is defined
from the symmetric matter and symmetry energy terms
eSM (6) and esym (7) as eA,UM(ncl, δcl) ≡ eSM(ncl) +
esym(ncl)δ

2
cl, where ncl and δcl are the equilibrium den-

sity and isospin asymmetry δcl = (N − Z)/A of a given
nucleus. The density ncl is obtained assuming that the
nucleus is at mechanical equilibrium, i.e. PA = 0, see
discussion in the next subsection.

The finite size contribution is defined as,

eA,FS ≡ eA,surf + eA,Coul (A2)

where we consider only the surface and Coulomb terms
in the present work. The contributions originating from
higher order terms in the leptodermous expansion are dis-
regarded in this analysis, where we present an eCLDM
with a density-dependent surface energy. However, they
shall be studied in a future work. Note also that by con-
sidering only the FS terms as given in Eq. (A2), our equa-
tions are consistent with the seminal paper by Blaizot [4]
(see for example Eq. (2.17)).

Considering the direct Coulomb contribution only, as
well as a uniform charge distribution in the nucleus, the
Coulomb energy reads,

eA,Coul = CCoul
3

5

Z2e2

RA

1

A
, (A3)

where the nucleus radius is RA = rclA
1/3 and rcl =

(3/4πncl)
1/3. The parameter CCoul, which is fitted on

experimental nuclear masses (see Ref. [21] for details on
the fit procedure), represents an effective way to incor-
porate the effect of exchange as well as of the surface, on
the Coulomb energy. In the present fit, the experimental
masses are corrected by the odd-even mass staggering as
Ẽiex = Eiex −∆Eiex, with

∆Eiex =

[
∆sat + ∆sym

(
Ni − Zi
Ai

)2
]
A
−1/3
i δ(N,Z) .

(A4)
where δ(N,Z) = 1 if N and Z are odd, 0 if either N or Z
is odd, and −1 if both N and Z are even [54]. The param-
eters ∆sat and ∆sym are varied together with the CLDM
parameters Ci in the fit to the experimental masses. We
show the optimal CLDM parameters Ci and the odd-even
mass staggering parameters for each Skyrme model in Ta-
ble VI. Note that the values we obtain for ∆sat and ∆sym

are similar to the ones determined in Ref. [55].

The surface energy is given by,

eA,surf = Csurf 4πσsurfR
2
A

1

A
. (A5)

In the CLDM approach the surface tension is usually
approximated by the following formula [56],

σsurf(Icl) ≈ σsurf,sat
2psurf+1 + bsurf

Y −psurfp,cl + bsurf + (1− Yp,cl)−psurf
,

(A6)
where Yp,cl = Zcl/Acl = (1− Icl)/2, Icl = (Ncl −Zcl)/Acl

and σsurf,sat is a parameter that determines the surface
tension of symmetric nuclei. The isospin dependence
is controlled by the parameters bsurf and psurf . Fixing
the parameter σsurf,sat to an average value, see Tab. VII,
the parameters Csurf and bsurf are fitted from the nuclear
chart, while the parameter psurf is usually fixed to a value
close to ∼ 3 [56], since it controls the isospin dependence
of the surface energy for large asymmetries, which are
not reached in finite nuclei.

For small asymmetries we could expand σsurf(Icl) as,

σsurf(Icl) ≈ σsurf,sat − σsurf,symI2cl (A7)

with

σsurf,sym = σsurf,sat
2psurfpsurf(psurf + 1)

2psurf+1 + bsurf
. (A8)

Eq. (A8) relates the parameter bsurf to the surface sym-
metry energy σsurf,sym, see also Ref. [21] for more details.
We fit the isoscalar and isovector surface parameters from
the experimental nuclear masses. The standard surface
parameters in the CLDM approach are given in Table
VII. The optimized parameters CCoul, Csurf and Csurf,sym
are given in Table VI for the different NEP used in the

present work, together with the respective
√
χ2, where

χ2 = 1
N

∑N
i=1(Eiexp − EiA)2. Eiexp are the experimental

masses, EiA are the predictions for the CLDM/eCLDM
models for given nucleus i and N = 3375 is the num-
ber of considered nuclei from the the 2020 Atomic Mass
Evaluation (AME) [6].

The novelty of the present work is the introduction
of a density dependent surface tension, see Eq. (50). It
should be noted that we have chosen the exponent of the
density-dependent term in Eq. (50) to be two. The reason
is twofold: first, it approximately satisfies the stationar-
ity of the surface tension w.r.t the density, see Ref. [4] for
more details, and second, with such a power, it directly
contributes to the incompressibility modulus in finite nu-
clei. Note that a correction proportional to xcl has been
suggested in Ref. [43], and analysed in view of its im-
pact on the neutron skin. However, such a term does not
satisfies the requested stationary of the surface tension
and does not contribute to the incompressibility in finite
nuclei.
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Model BSK14 BSK16 F0 LNS5 RATP SGII SKI2 SKO SLy5

CCoul 0.93/0.94 0.95/0.95 0.93/0.94 0.91/0.91 0.95/0.95 0.92/0.92 0.93/0.93 0.93/0.93 0.94/0.94

Csurf 1.03/1.02 1.07/1.06 1.09/1.08 0.98/0.97 1.07/1.06 0.97/0.96 1.00/1.00 1.03/1.03 1.07/1.06

Csurf,sym 0.98/0.94 0.92/0.87 1.30/1.24 0.93/0.90 0.81/0.76 0.58/0.54 1.40/1.45 1.26/1.25 1.31/1.25

∆sat (MeV) 12.5/12.4 12.1/12.0 12.5/12.4 12.8/12.7 11.9/11.8 12.1/12.0 13.3/13.4 13.0/12.9 12.2/12.1

∆sym (MeV) -37.5/-34.6 -22.1/-19.5 -38.3/-34.8 -51.9/-49.8 -14.8/-12.4 -24.9/-21.7 -73.2/-77.1 -58.0/-57.2 -42.4/-38.9√
χ2 (MeV) 3.3/3.2 3.3/3.1 3.4/3.3 3.6/3.4 3.3/3.1 3.5/3.3 3.7/3.5 3.6/3.3 3.4/3.3

TABLE VI. Optimized finite size parameters and loss function
√
χ2 with eCLDM/CLDM. For eCLDM we use asurf = −20.0.

σsurf,sat σsurf,sym psurf

MeV fm−2 MeV fm−2

1.1 2.3 3.0

TABLE VII. Standard surface parameters for the CLDM con-
sidered in this work. Note the associated value bsurf = 29.9
deduced from Eq.(A8).

2. Pressure in finite nuclei: PA

The pressure PA in finite nuclei is defined as,

PA ≡ n2cl
∂eA
∂ncl

∣∣∣
A
, (A9)

which can be decomposed into a bulk term, originat-
ing from uniform matter and a finite size contribution:
PA = PA,UM +PA,FS. The bulk term is decomposed into
SM and isospin asymmetry contributions, as in Eq. (5):
PA,UM = PA,SM + PA,symδ

2, taking PA,SM = PSM(ncl)
and PA,sym = Psym(ncl).

Note that the functions of RA in the binding energy
also contribute to the pressure as,

PA = −RAncl
3

∂eA
∂RA

∣∣∣
A
, (A10)

since the partial derivative w.r.t. ncl at fixed A is equiv-
alent to a partial derivative w.r.t. RA, with appropriate
factor, see appendix D.

The finite size pressure is PA,FS = PA,surf + PA,Coul,
with the Coulomb pressure term derived as

PA,Coul =
CCoul

5

Z2e2ncl
RA

1

A
. (A11)

The surface term is decomposed into two contributions

PA,surf = PCLDM
A,surf + PDD

A,surf (A12)

where the first term is the usual CLDM contribution,
while the second term originates from the new density-

dependent (DD) term. They are defined as,

PCLDM
A,surf = −Csurf

3
8πσsurfR

2
Ancl

1

A
, (A13)

PDD
A,surf = Csurf 4πR2

An
2
cl

∂σsurf
∂ncl

1

A
. (A14)

Note that since ∂σsurf/∂ncl ∝ xcl ≈ 0, the contribution
of the new DD term to the pressure is small.

Numerically, the cluster density ncl is obtained from
the mechanical stability condition PA = 0, using the
Newton-Raphson algorithm with nUM

eq as starting solu-
tion.

3. Incompressibility in finite nuclei: KA

The incompressibility KA in finite nuclei is defined as,

KA ≡ 9ncl
∂2εA
∂n2cl

∣∣∣
A
, (A15)

with the energy density given by εA = eAncl. Similarly to
the energy and the pressure, the linearity of the derivative
operator allows to decompose the incompressibility KA

in finite nuclei as bulk and FS terms,

KA = KA,UM +KA,FS , (A16)

where KA,UM = KA,SM + KA,symδ
2, KA,SM = KSM(ncl)

and KA,sym = Ksym(ncl).
The finite size contribution to the incompressibility are

given as KA,FS = KA,surf +KA,Coul, where the Coulomb
term reads,

KA,Coul = CCoul
12

5

Z2e2

RA

1

A
, (A17)

and the surface term is expressed as

KA,surf = Csurf
[
− 8πR2

Aσsurf + 24πnclR
2
A

∂σsurf
∂ncl

+36πn2clR
2
A

∂2σsurf
∂n2cl

] 1

A
. (A18)
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4. Re-expression of KA

The first time a CLDM model was used to compute
the incompressibility of nuclei goes back to the seminal
work of Blaizot [4]. In order to compare our expression
for KA with his work, we dedicate this section to re-write
our equations and obtain the equivalent of Eq. (6.3) of
Ref. [4].

In finite nuclei, the density is different from the satu-
ration density due to the contribution of FS and isospin
asymmetry terms. If the density parameter xcl remains
small, Blaizot suggested to express KA as [4],

KA = Ksat + δ2K̄A,sym + K̄A,FS . (A19)

The new terms K̄A,sym and K̄A,FS incorporate, in ad-
dition to the contribution KA,sym and KA,FS , the shift
in density between ncl and nsat, see Appendix B, and
more specifically Eq. (B6). To do so, we consider the
expression for KA,SM up to the linear order in xcl from
Eq. (30), where the expression for xcl in terms of PA,sym
and PA,FS from Eq. (B6) is injected:

KA,SM = Ksat −
3PA,sym
nclKsat

δ2 (12Ksat +Qsat)

− 3PA,FS
nclKsat

(12Ksat +Qsat) . (A20)

Re-ordering the different terms into KA gives Eq. (A19)
where

K̄A,sym = KA,sym −
3PA,sym
nclKsat

(12Ksat +Qsat) ,(A21)

K̄A,FS = KA,FS −
3PA,FS
nclKsat

(12Ksat +Qsat) . (A22)

At order o(xcl), the term K̄A,sym can be expressed as

K̄A,sym ≈ Ksym − Lsym

(
6 +

Qsat

Ksat

)
= Kτ . (A23)

The FS terms could be decomposed into the Coulomb
and surface contributions. The Coulomb term reads,

K̄A,Coul = −3CCoul

5

Z2e2

RA

1

A

(
8 +

Qsat

Ksat

)
= K̄CoulZ

2A−4/3 ,

(A24)
with

K̄Coul = −3CCoul

5

e2

r0

(
8 +

Qsat

Ksat

)
. (A25)

The surface term reads,

K̄A,surf =
(
K̄CLDM

surf + K̄DD,σ̇
surf + K̄DD,σ̈

surf

)
A−1/3 .(A26)

with

K̄CLDM
surf = Csurf8πr2clσsurf

(
11 +

Qsat

Ksat

)
, (A27)

K̄DD,σ̇
surf = −Csurf12πnclr

2
cl

∂σsurf
∂ncl

(
10 +

Qsat

Ksat

)
(A28)

K̄DD,σ̈
surf = Csurf36πn2clr

2
cl

∂2σsurf
∂n2cl

. (A29)

Note that the first derivative term, K̄DD,σ̇
surf , is expected

to be small since ∂σsurf/∂ncl ∝ xcl ≈ 0. In order to
compare the above finite size contributions for Eq. (A19)
with Eq. (6.3) of Blaizot [4], we shown in App. C how to
write K̄A,FS in Blaizot notation.

5. Sensitivity analysis

We analyse the impact of both the isoscalar NEPs
(Esat, nsat, Ksat and Qsat) in Fig. 11, and the isovec-
tor NEPs (Esym, Lsym and Ksym), in Fig. 12. The re-
sults obtained from the microscopic CHFB calculation
based on the Skyrme SLy5 Hamiltonian [32] are shown
in red square for the two figures. The experimental data
of Tab. IV, are shown in black with their error-bars.

In Fig. 11 we show the impact of the isoscalar param-
eters Esat and nsat (top), Ksat and Qsat (bottom). The
effects of Esat and nsat are very small and almost un-
noticeable. However, the incompressibility modulus Ksat

largely impacts KA with a positive correlation: the larger
Ksat the larger KA. The impact of Qsat is also large but
less linear: there is a crossing value for A for which the
impact of Qsat is negligible. On the left of this cross-
ing A, Qsat is correlated with KA and on the right of
it, it is anti-correlated. The red dashed line represents
the eCLDM results using SLy5 Skyrme force. The value
for Ksat which predict KA above the experimental data
in Sn, predict KA below them in Pb. It is then difficult
to fix accurately Ksat to reproduce experimental data in
both Sn and Pb isotopes. The difficulty to reproduce Sn
and Pb isotopes within the same nuclear force is indeed
well know in the literature [57–59]. However, it is possi-
ble to use the NEP Qsat which impact KA, in a different
way compared to Ksat, as previously commented. To rec-
oncile eCLDM with nuclear data, a low value for Qsat is
preferred.

We now analyse the impact of the isovector NEPs. In
Fig. 12 we plot eCLDM predictions assuming the Skyrme
SLy5 Hamiltonian (red dashed lines), and then as for the
isoscalar NEPs, we vary the NEPs one after another. As
expected, these parameters do not impact KA in sym-
metric nuclei, and have an impact which increases as
the isospin asymmetries increase. The impact of Esym

(top panel) is however invisible at the scale of the figure,
while Lsym (middle panel) and Ksym (bottom panel) have
larger impacts: Lsym is anti-correlated with KA, while
Ksym is correlated with KA. As the isospin asymmetry
of the isotopes increases, the impact of these isovector
NEPs gets larger and larger. The larger decrease of KA

as function of A in Sn isotopes, is obtained for large val-
ues of Lsym, but a low value of Ksym could also simulate
the same effect.

None of the variations around the SLy5 Skyrme force
seems to be preferred by the data. It is then difficult,
from this sensitivity analysis, to detect which parameter
set best reproduces the experimental nuclear data: the
role of the different NEP is complex and the values which
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FIG. 11. Incompressibility for Sn and Pb isotopes. Black dots with error bars show the results of experimental data of Garg
et al. [5]. Red dashed lines (squares) shows the predictions from eCLDM (CHFB) with SLy5 interaction. Different line colors
(light grey to black) show variation on isoscalar empirical parameters Esat (top left), nsat (top right), Ksat (bottom left) and
Qsat (bottom right).

suggest a better description of the data, seem far from
the SLy5 ones. In order to search for the best parameter
set, it is then necessary to have a more global approach,
where all the NEPS could be varied together, which is
what we present in Sec. IV B.

Appendix B: Expression for xcl in finite nuclei

We follow the approach of Blaizot [4] and rewrite xcl as
follows. From the definition of the compressibility χ(n),

χ =
1

n

(
dP

dn

)−1
, we have

dP

dn
=

1

nχ
. (B1)

In N = Z nuclei, P = PA,SM , and by integrating (B1)
from saturation (nsat) to equilibrium (ncl),

PA,SM (ncl)− PA,SM (nsat) =

∫ ncl

nsat

1

nχ
dn . (B2)

By definition PA,SM (nsat) = 0, and for xcl is close to
nsat we approximate χ(n) ≈ χ(n0) with n0 ∈ [nsat, ncl],

leading to

PA,SM (ncl) ≈
1

χ(n0)
log

ncl
nsat

≈ 1

χ(n0)

ncl − nsat
nsat

. (B3)

Since K = 9/(nχ), we have

1

χ(n0)
=
n0KA,SM (n0)

9
≈ nclKsat

9
, , (B4)

since KA,SM is an increasing function of the density. Fi-
nally, we obtain

xcl =
ncl − nsat

3nsat
=

3

nclKsat
PA,SM (ncl). (B5)

Eq. (B5) could be interpreted as the following: there is
an equivalence between the density shift xcl which is dif-
ferent from zero for densities different from nsat, as an
effect of an external pressure PA,SM , shifting the equilib-
rium density to a slightly different one. In finite nuclei,
this extra-pressure is originating from the FS and isospin
asymmetry terms, since PA(ncl) = 0. We therefore de-
duce PA,SM (ncl) = −PA,FS(ncl)− δ2PA,sym(ncl), and we
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FIG. 12. Same as Fig. 11 but for variation on the isovec-
tor empirical parameters Esym (top), Lsym (center) and Ksym

(bottom).

can rewrite Eq. (B5) as

xcl = − 3

nclKsat

(
PA,FS(ncl) + δ2PA,sym(ncl)

)
. (B6)

Appendix C: Contributions to the incompressibility
modulus within the Blaizot notations

In the original notations of Blaizot [4], the NEP where
not used, but instead the third derivative of the energy
density ε. Using the original notations, we obtain for the
Coulomb contribution,

K̃A,Coul =
3

5

Z2e2

ARA

(
1− 27n2sat

Ksat

d3ε

dn3

)
, (C1)

and for the surface contribution

K̃CLDM
surf = 16πr2clσsurf

(
1 +

27

2

n2sat
Ksat

d3ε

dn3

∣∣∣
nsat

)
, (C2)

K̃DD,σ̇
surf = −12πnclr

2
cl

∂σsurf
∂ncl

(
1 + 27

n2sat
Ksat

d3ε

dn3

∣∣∣
nsat

)
,(C3)

K̃DD,σ̈
surf = 36πn2clr

2
cl

∂2σsurf
∂n2cl

. (C4)

Where the relation between the NEP and the third
derivative of the energy density can be obtained using,

27n2sat
d3ε

dn3

∣∣∣
nsat

= 9Ksat +Qsat. (C5)

Appendix D: relation between the derivatives in ncl

and the ones in RA in the eCLDM

In this section, we provide the relations between
derivative as function of ncl and as function of RA,
considering the conservation of the mass number A =
4
3πR

3
Ancl. These relations are employed in finite nuclei,

since the FS terms have an explicit dependence on RA
while the bulk terms depend on ncl.

We have the following relations for the first order
derivatives:

∂

∂ncl

∣∣∣
A

= − RA
3ncl

∂

∂RA

∣∣∣
A
, &

∂

∂RA

∣∣∣
A

= −3ncl
RA

∂

∂ncl

∣∣∣
A
,

(D1)
and for the second derivative:

∂2

∂R2
A

∣∣∣
A

= 12
ncl
R2
A

∂

∂ncl

∣∣∣
A

+ 9
n2cl
R2
A

∂2

∂n2cl

∣∣∣
A

(D2)

[1] A. van der Woude and M. Harakeh, Giant Resonances:
Fundamental High-frequency Modes of Nuclear Excita-
tion (Oxford University Press, 2001).

[2] L. Rezzolla, P. A. M. Pizzochero, D. I. Jones, N. Rea,
and I. Vidaña, The Physics and Astrophysics of Neutron
Stars, Vol. 457 (Springer International Publishing, 2018).

[3] J. Margueron, R. Hoffmann Casali, and F. Gulminelli,
Phys. Rev. C 97, 025805 (2018).

[4] J. P. Blaizot, Phys. Rep. 64, 171 (1980).
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[41] P. Möller, W. D. Myers, H. Sagawa, and S. Yoshida,
Phys. Rev. Lett. 108, 052501 (2012).

[42] B.-A. Li, B.-J. Cai, W.-J. Xie, and N.-B. Zhang, Universe
7 (2021), 10.3390/universe7060182.

[43] K. Iida and K. Oyamatsu, Phys. Rev. C 69, 037301
(2004).

[44] K. Bennaceur and J. Dobaczewski, Computer Physics
Communications 168, 96 (2005).

[45] S. Ota et al., Riken Accel. Prog. Rep. 50, 1 (2017).
[46] J. Margueron, R. Hoffmann Casali, and F. Gulminelli,

Phys. Rev. C 97, 025805 (2018), arXiv:1708.06894 [nucl-
th].

[47] B. T. Reed, F. J. Fattoyev, C. J. Horowitz, and
J. Piekarewicz, Phys. Rev. Lett. 126, 172503 (2021).

[48] C. Drischler, R. J. Furnstahl, J. A. Melendez, and
D. R. Phillips, Phys. Rev. Lett. 125, 202702 (2020),
arXiv:2004.07232 [nucl-th].

[49] P. Danielewicz, R. Lacey, and W. G. Lynch, Science 298,
1592 (2002), arXiv:nucl-th/0208016.

[50] T. Hinderer, Astrophys. J. 677, 1216 (2008),
arXiv:0711.2420 [astro-ph].

[51] E. E. Flanagan and T. Hinderer, Phys. Rev. D 77, 021502
(2008), arXiv:0709.1915 [astro-ph].

[52] R. Somasundaram, I. Tews, and J. Margueron, (2021),
arXiv:2112.08157 [nucl-th].

[53] S. Han and A. W. Steiner, Phys. Rev. D 99, 083014
(2019), arXiv:1810.10967 [nucl-th].

[54] A. Bohr and B. R. Mottelson, Nuclear structure vol I
(Addison-Wesley, 1969).

[55] P. Vogel, B. Jonson, and P. Hansen, Physics Letters B
139, 227 (1984).

[56] J. M. Lattimer and D. Swesty, Nuclear Phys. A 535, 331
(1991).

[57] G. Colo‘ and N. Van Giai, Nuclear Physics A 731, 15
(2004).

[58] U. Garg, T. Li, S. Okumura, H. Akimune, M. Fuji-
wara, M. Harakeh, H. Hashimoto, M. Itoh, Y. Iwao,
T. Kawabata, K. Kawase, Y. Liu, R. Marks, T. Mu-
rakami, K. Nakanishi, B. Nayak, P. Madhusudhana Rao,
H. Sakaguchi, Y. Terashima, M. Uchida, Y. Yasuda,
M. Yosoi, and J. Zenihiro, Nuclear Physics A 788, 36
(2007).

[59] D. Patel, U. Garg, M. Fujiwara, H. Akimune, G. Berg,
M. Harakeh, M. Itoh, T. Kawabata, K. Kawase,
B. Nayak, T. Ohta, H. Ouchi, J. Piekarewicz, M. Uchida,
H. Yoshida, and M. Yosoi, Physics Letters B 718, 447
(2012).

http://dx.doi.org/10.1103/PhysRevLett.109.092501
http://dx.doi.org/10.1103/PhysRevLett.109.092501
http://dx.doi.org/10.1103/PhysRevC.88.034319
http://dx.doi.org/10.1103/PhysRevC.88.034319
http://dx.doi.org/10.1103/PhysRevC.99.025806
http://dx.doi.org/10.1103/PhysRevC.99.025806
http://dx.doi.org/10.1103/PhysRevC.103.045803
http://dx.doi.org/10.1103/PhysRevC.79.054311
http://dx.doi.org/10.1103/PhysRevC.79.054311
http://dx.doi.org/10.1103/PhysRevC.88.045805
http://dx.doi.org/ 10.3847/1538-4357/ab4f6c
http://dx.doi.org/ 10.3847/1538-4357/ab4f6c
http://dx.doi.org/10.1063/1.5117792
http://dx.doi.org/10.1063/1.5117792
http://arxiv.org/abs/https://aip.scitation.org/doi/pdf/10.1063/1.5117792
http://dx.doi.org/10.3847/1538-4357/aa8db9
http://dx.doi.org/10.1103/PhysRevC.81.034309
http://dx.doi.org/10.1103/PhysRevD.99.043010
http://dx.doi.org/10.1103/PhysRevD.99.043010
http://dx.doi.org/10.3390/universe7060182
http://dx.doi.org/10.3390/universe7060182
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2005.02.002
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2005.02.002
http://dx.doi.org/10.1103/PhysRevC.97.025805
http://arxiv.org/abs/1708.06894
http://arxiv.org/abs/1708.06894
http://dx.doi.org/10.1103/PhysRevLett.126.172503
http://dx.doi.org/10.1103/PhysRevLett.125.202702
http://arxiv.org/abs/2004.07232
http://dx.doi.org/10.1126/science.1078070
http://dx.doi.org/10.1126/science.1078070
http://arxiv.org/abs/nucl-th/0208016
http://dx.doi.org/10.1086/533487
http://arxiv.org/abs/0711.2420
http://dx.doi.org/10.1103/PhysRevD.77.021502
http://dx.doi.org/10.1103/PhysRevD.77.021502
http://arxiv.org/abs/0709.1915
http://arxiv.org/abs/2112.08157
http://dx.doi.org/10.1103/PhysRevD.99.083014
http://dx.doi.org/10.1103/PhysRevD.99.083014
http://arxiv.org/abs/1810.10967
http://dx.doi.org/https://doi.org/10.1016/0370-2693(84)91068-2
http://dx.doi.org/https://doi.org/10.1016/0370-2693(84)91068-2
http://dx.doi.org/https://doi.org/10.1016/j.nuclphysa.2003.11.014
http://dx.doi.org/https://doi.org/10.1016/j.nuclphysa.2003.11.014
https://www.sciencedirect.com/science/article/pii/S0375947407000814
https://www.sciencedirect.com/science/article/pii/S0375947407000814
http://dx.doi.org/ https://doi.org/10.1016/j.physletb.2012.10.056
http://dx.doi.org/ https://doi.org/10.1016/j.physletb.2012.10.056

	Nuclear incompressibility and sound speed in uniform matter and finite nuclei
	Abstract
	I Introduction
	II Uniform matter
	A Representation of the nuclear matter properties in terms of the nuclear empirical parameters
	B An alternative representation of the nuclear matter energy and incompressibility modulus
	C Constraints on Ksym

	III The compressible liquid drop model with a density dependence of the surface tension
	A Density dependent surface tension
	B Incompressibility in finite nuclei: KA
	C Definition of the parameter asurf and incompressibility predictions within the eCLDM

	IV Confrontation to the nuclear experimental data
	A Experimental data for KA
	B Best parameter set from Markov-chain Monte Carlo approach

	V Sound speed in nuclei and uniform matter
	VI Conclusions
	 Acknowledgments
	A Derivation of the incompressibility KA in finite nuclei
	1 Energy per particle: eA
	2 Pressure in finite nuclei: PA
	3 Incompressibility in finite nuclei: KA
	4 Re-expression of KA
	5 Sensitivity analysis

	B Expression for xcl in finite nuclei
	C Contributions to the incompressibility modulus within the Blaizot notations
	D relation between the derivatives in ncl and the ones in RA in the eCLDM
	 References


