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 Abstract 

In the picture-word interference paradigm, participants name pictures while ignoring a written or 

spoken distractor word. Naming times to the pictures are slowed down by the presence of the 

distractor word. The present study investigates in detail the impact of distractor and target word 

properties on picture naming times, building on the seminal study by Miozzo and Caramazza (2003) 

“When more is less: A counterintuitive effect of distractor frequency in the picture-word interference 

paradigm. Journal of Experimental Psychology. General.” We report the results of several Bayesian 

meta-analyses, based on 26 datasets. These analyses provide estimates of effect sizes and their 

precision for several variables and their interactions. They show the reliability of the distractor 

frequency effect on picture naming latencies (latencies decrease as the frequency of the distractor 

increases) and demonstrate for the first time the impact of distractor length, with longer naming 

latencies for trials with longer distractors. Moreover, distractor frequency interacts with target word 

frequency to predict picture naming latencies. The methodological and theoretical implications of 

these findings are discussed. 
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Introduction 

A primary goal of psycholinguistics is to uncover the cognitive architecture underlying the production 

and comprehension of language. To do so, scientists investigate the representations and processes 

involved in language processing by designing, conducting, and interpreting tightly controlled 

experiments. Such experiments are necessary because of the many parameters that may affect verbal 

performance, and because introspection about the underlying mental processes has only a limited 

ability to reveal the representations and processes of interest.  

In psycholinguistic research on language production, many studies have used the picture-word 

interference paradigm. The task consists in presenting stimuli that will trigger the production of words 

or sentences, in the context of other verbal stimuli, which are to be ignored when performing the task. 

Naming a picture in the context of a spoken or written distractor word creates interference, that is, it 

takes more time than naming a picture in the context of a non-meaningful stimulus. The picture-word 

interference paradigm was first used to study (incidental) reading abilities (e.g., Briggs & Underwood, 

1982; Rayner & Posnansky, 1978; Underwood & Briggs, 1984, see also Alario et al., 2007) and has since 

then been applied to a variety of issues, such as the mechanisms of lexical access during word 

production (e.g., Abdel Rahman & Aristei, 2010; Damian & Bowers, 2003; Roelofs, 1992; Starreveld et 

al., 2013), the involvement of inhibition in language production (e.g., Shao et al., 2015), the scope of 

advanced planning (e.g., Meyer, 1996; Michel Lange & Laganaro, 2014), or the role of emotions in 

language processing (White et al., 2016). On the Web of Science, 541 articles are listed under the key 

word picture-word interference with a total number of citations (excluding self-citations) of 18271 

during the two decades spanning between 1999 and 2018.  

Such popularity of the picture-word interference paradigm is largely due to the assumption that it can 

provide precise information on the cognitive processes underlying word production and their time 

course (e.g., Levelt et al., 1999; Roelofs, 1992; Schriefers et al., 1990). The capability of the picture 

word-interference paradigm to tap into specific processes comes at a cost, however. The task requires 
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the simultaneous processing of two types of stimuli, the picture to be named, and the incidental and 

presumed automatic processing of a written or auditory distractor word that must be ignored by 

instruction. Moreover, the instruction to name one of the stimuli and to ignore the other likely requires 

attentional or inhibition processes (e.g., Carr, 1999; Piai et al., 2011; Piai et al., 2012) that are not 

necessarily present in more ecological language production tasks. Numerous studies have attempted 

to determine how these processes combine and organize in time to generate the experimental 

patterns that we observe. The great enthusiasm generated by the picture-word interference paradigm 

has led to a myriad of empirical studies designed and performed to test increasingly refined theoretical 

questions. Over the years, new empirical results and the discrepancies across studies have been used 

to propose novel accounts or further refine existing ones at various levels of description, including 

computational accounts such as Weaver++ (Roelofs, 2003; Roelofs, 2018). To date however, no 

consensus has been reached (e.g., Miozzo & Caramazza, 2003; Starreveld et al., 2013). In the present 

study, we investigate the impact on picture naming processes of the properties of distractor words, 

most notably the unexpected distractor frequency effect. 

In visual lexical decision or word naming tasks, more frequent words are processed faster (e.g., Ferrand 

et al., 2018). Miozzo and Caramazza (2003) set out to examine whether in a picture-word interference 

task, too, the frequency of the (written) distractor that had to be ignored would influence 

performance, where performance is quantified as the time needed to retrieve and produce the name 

of the picture. Asking this question was deemed an original and important test (see also Burt, 1994 

and Burt, 2002) of the most canonical hypothesis describing lexical retrieval. Under the assumption 

that lexical access is a competitive process, where the time to name a picture depends on the activation 

level of the word’s representation as well as on the activation levels of other lexical representations in 

the system (Levelt et al., 1999; Roelofs, 1992), these authors predicted that high frequency words 

would create more interference. Miozzo and Caramazza (2003) observed the reverse, that is, naming 

times were about 16 to 48 ms longer (depending on the experiment) for trials with distractors of lower 

frequency. This “reverse” distractor frequency effect has been replicated several times by several 
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groups (e.g., Dhooge et al., 2013; Dhooge & Hartsuiker, 2010; Geng et al., 2014; Riès et al., 2015; 

Starreveld et al., 2013; de Zubicaray et al., 2012). The effect appears reliable, but its underlying 

mechanisms are still debated. To shed light on this issue, studies have examined the influence of other 

properties of the distractors on picture naming latencies, such as case alternation (Miozzo & 

Caramazza, 2003) as well as interactions between the frequency of the distractor and other variables, 

including target word frequency and semantic interference. Contrary to the main effect of distractor 

frequency, the results regarding these interactions appear to be inconsistent across studies.  

In the present paper we build on Miozzo and Caramazza’s (2003) seminal study and take advantage of 

data collected in the last three decades. The large quantities of picture-word interference datasets 

available can be (re-)used to perform meta-analyses of previously reported effects, or of effects 

pertaining to novel predictions. The outcome of a meta-analysis is an estimate of the size of an effect 

and of the uncertainty of the effect estimate. In a first meta-analysis, we quantify the size of the 

distractor frequency effect in experiments where this variable was not manipulated. We assess how 

much frequency, treated as a continuous measure, influences the naming times to the target words, 

when the impact of other variables that are often correlated with frequency is considered. We thereby 

obtain information about the size of the distractor frequency effect and of the precision of this 

estimate. In addition, we compute quantitative meta-analytic estimates of several main effects and 

interactions pertaining to other properties of the distractor words, to properties of the target words, 

or to the relationship between distractor and target words. The selection of effects is partly 

constrained by the available experiments’ materials and, in particular, by the variables that were 

manipulated or can be computed in these datasets. In the remainder of this Introduction, we first 

discuss the variables examined in the present work. We articulate how they can contribute to a better 

understanding of the mechanisms underlying the distractor frequency effect and, more generally, to 

the mechanisms involved in picture-word interference tasks. We then briefly discuss the 

methodological implications of these analyses. 
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Variables examined in the present study and their theoretical relevance 

From a theoretical perspective, knowledge about the variables that influence naming times in the 

picture-word interference paradigm may inform the mechanisms underlying participants’ 

performance in this task. Whereas the distractor frequency effect itself appears robust, current 

accounts of this effect often rely on experimental effects and interactions - or the absence thereof- 

whose replicability has not yet been established. The empirical effects examined in the present study 

will not resolve all debates but will shed light on effects and interactions that have been deemed crucial 

to better understand the functional origin of the distractor frequency effect, or the conditions under 

which this effect arises.  

We first examine the role of distractor length, a variable known to influence reading times but whose 

impact on picture naming latencies has seldom been considered. With this variable, we test the 

hypothesis that naming times in the picture-word interference paradigm partly depend on distractor 

processing duration. Miozzo and Caramazza (2003) discussed this hypothesis as a potential explanation 

for the distractor frequency effect, which they termed the input account. In this account, the distractor 

frequency effect arises because the distractor takes up some of the processing resources that would 

normally be used by the word production process. The longer the processing of the distractor, the 

longer the naming times. They reasoned that under such an account, any variable impacting the 

duration of written word processing should impact the picture naming times. Miozzo and Caramazza 

(2003) compared trials with distractors presented in alternating versus non-alternating case, or with 

distractors that had or had not been previously presented in a lexical decision task. None of these 

manipulations influenced naming latencies. Miozzo and Caramazza took these (null) results as absence 

of evidence for an input account of the distractor frequency effect. Subsequent studies adopted this 

conclusion and settled on determining the locus of the distractor frequency effect in the (output) word 

production stream. Clearly, null findings in a small number of experiments are not sufficient to 

definitely reject the input account and more evidence is needed. The manipulations used in Miozzo 
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and Caramazza’s studies (e.g. case alternation) are too specific to be found in studies that did not 

manipulate them purposely. Word length provides us with a new and alternative way of testing an 

independent prediction of the input account. 

Word length has been shown to influence response times to written words in many studies (Brysbaert 

et al., 2016). Most models of reading assume that reading can be achieved with one of two pathways, 

i.e., letter by letter or by mapping the whole word’s orthography directly to its meaning. A word-length 

effect in reading tasks is often taken to suggest that the letters in the words were processed, to some 

extent, in a sequential fashion (for review, see Barton et al., 2014). Some studies further reported an 

interaction between word frequency and length. This interaction was taken to suggest that frequent 

words are more often processed holistically than less frequent words (again, see Barton et al, 2014). 

Other authors have argued that the longer processing times observed for longer words could be a 

consequence of the reduced spatial resolution for these words. In longer words, a subset of letters has 

a higher chance of being less well perceived (Aghababian & Nazir, 2000; Schiepers, 1980). These 

explanations are not necessarily mutually exclusive and word length effects could have different 

sources (Frederiksen & Kroll, 1976). Importantly, and unlike for word frequency, the effect of word 

length has not been theorized to modulate the degree of activation of lexical representations. With 

this variable, we can test whether a variable that impacts the processing duration of printed distractor 

words also impacts picture naming latencies in the picture-word interference task. We further examine 

whether the interaction observed in visual word processing tasks between word length and word 

frequency is also observed on picture naming latencies in the picture-word interference task. This is as 

predicted if all the variables that impact distractor processing duration in turn impact target word 

naming. We note that an effect of distractor length on naming latencies would provide support for the 

hypothesis that distractor processing duration impacts naming latencies (in line with the input account 

of the distractor frequency effect) but would not directly clarify the processes underlying the distractor 

frequency effect itself.  
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Next, we examine the interaction between the distractor frequency effect and semantic interference 

(i.e., whether the target and distractor and target words are of the same semantic category or 

unrelated; more details below). This interaction has been deemed crucial to test another account of 

the distractor frequency, where the effect originates during lexical access for the target word (see 

Starreveld et al, 2013, and the General discussion for more details). Distractors of the same semantic 

category as the target word create more interference than unrelated distractors (e.g., Lupker, 1979; 

Schriefers et al., 1990). This semantic interference effect was and is still often thought to originate 

during semantic-lexical processing. Miozzo and Caramazza (2003) reasoned that if the distractor 

frequency effect interacts with this effect, is influenced by the same variables, or has the same time 

course, this would suggest that the two effects have the same locus. We note right away that an 

interaction between the two variables would not necessarily be incompatible with accounts in which 

the two effects have different sources. To describe just one possible scenario, a distractor of low 

frequency could be processed too late to compete with the target word. If this was the case, only trials 

with frequent distractors would show a semantic interference effect but this would not mean that the 

distractor frequency effect arises during lexical access. Miozzo and Caramazza (2003) tested the 

interaction between distractor frequency and semantic interference in two experiments and did not 

find supporting evidence. In a later study, Starreveld et al. (2013) observed a significant interaction 

between the two variables, which they took to support a lexical locus of the distractor frequency effect. 

With a meta-analysis, we can examine the reliability of this interaction across datasets. 

Finally, we examine whether the frequency of the distractor and that of the target word interact to 

modulate naming latencies. The effect of word frequency in simple picture naming tasks is well 

documented (e.g., Oldfield & Wingfield, 1965;  see also Alario et al., 2004; Barry et al., 1997; Jescheniak 

& Levelt, 1994;  Mousikou & Rastle, 2015). Miozzo and Caramazza (2003) tested the interaction 

between target word and distractor word frequency to determine whether the distractor frequency 

effect could be accounted for by a temporal account. This account is not an explanation of the 

mechanisms underlying the distractor frequency effect but rather an assessment of the conditions 
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under which the effect arises. However, rejecting this account was deemed crucial by the authors to 

further constrain their hypotheses about the functional origin of the effect (see their paper and graphs 

on p. 239 on how a temporal account would be compatible with the competitive account of the 

distractor frequency effect). In the temporal account, the influence of the distractor depends on the 

temporal alignment, or synchronization, between target word and distractor word processing. This 

account implicitly assumes that distractor processing impacts a specific stage of the preparation of the 

vocal response for the picture. The distractor can only impact the preparation of the target word if 

processed at a specific time, relative to the processing of the target word (see also Geng et al., 2014). 

Miozzo and Caramazza reasoned that under this account, the interaction between the properties of 

the distractor and that of the target word should influence picture naming latencies. In their study, the 

estimate of the interaction was 3 ms and was not significant. They further argued that under the 

temporal account, manipulations that should have eased or complicated the recognition of the 

distractor word in their experiments (e.g., case alternation) should have influenced picture naming 

latencies. In the light of these results, Miozzo and Caramazza (2003) dismissed the temporal account. 

Recently, Geng et al. (2014) reached a different conclusion. They observed that when participants were 

made to respond more quickly in the picture-word interference task (e.g., by increasing the number of 

repetitions and decreasing the number of experimental targets), the distractor frequency effect was 

no longer present. By contrast when participants’ response times were slowed (e.g., by increasing the 

number of color targets) in the Stroop task, a distractor frequency effect was found. Geng et al. (2014) 

took these findings to support the temporal account. In their study, Dhooge and Hartuiker (2011) 

reported an effect size of 18 ms for the interaction between distractor frequency and target word 

frequency, significant in the by-participant analysis. In the present study, we seek additional evidence 

in favor of the temporal account by examining again the interaction between distractor and target 

word frequency.  

Methodological motivations 
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The present study will provide information about the properties of the materials that influence naming 

times in the picture-word interference task. From a methodological perspective, such knowledge is 

necessary to determine the variables to be controlled in future experiments (a challenge with a long 

history in psycholinguistics, see Cutler, 1981). This may also prove useful to understand discrepancies 

across picture-word interference studies, given that different studies tend to use different distractor 

lists. Contradictory findings are indeed frequent in this literature (e.g., on the role of response set, see 

Caramazza & Costa, 2000;  2001 or Roelofs, 2001 and  on the influence of semantic distance, see e.g., 

Hutson & Damian, 2014; Mahon et al., 2007; Vieth et al., 2014, to cite a few). In addition, the present 

study will provide information regarding possible interactions between the properties of the distractor 

and the properties of the target word. In many picture-word interference studies the manipulation of 

interest involves the relationship between target and distractor word rather than the properties of the 

distractor alone. In most of these studies, the same distractor list is used across conditions, but 

distractors are mapped onto different pictures. This ensures that the effect of the manipulation of 

interest is not driven by differences in distractor lists across conditions. An interaction between target 

and distractor word frequency would suggest that the mapping between the properties of the target 

words and that of the distractors needs to be controlled as well. 

Finally, the present study will provide precise estimates of several experimental effects. Such estimates 

are necessary to conduct a priori power analyses, to assess the probability that an experimental effect 

is in the wrong direction, or is overestimated (see Gelman & Carlin, 2014). Meta-analytic estimates can 

be used for this purpose. Precise estimates further allow more accurate computational 

implementations of interference effects.  

In summary, we report a series of Bayesian meta-analyses to quantify the distractor frequency effect 

and to assess the reliability of various effects and interactions that have shown seemingly discrepant 

effects in previous research. A Bayesian approach was chosen for two reasons. First, whereas the 

frequentist approach provides point estimates and an estimate of the uncertainty of the estimator, 
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the Bayesian approach provides a direct estimate of the uncertainty of the parameter of interest; this 

has the important advantage that we can focus directly on the uncertainty of the estimate. Second, 

when hypothesis testing becomes necessary (as was the case here), Bayes Factors is superior to 

frequentist null hypothesis significance testing (NHST) because one can quantify the evidence in favour 

of the alternative or the null hypothesis given the data; by contrast, in NHST, we can only report the 

evidence against the null hypothesis.  

Methods 

Dataset 

We used a subset of the datasets recently collected for a meta-analysis targeting the semantic 

interference effect (longer naming times with distractors of the same semantic category than for 

unrelated distractors, Bürki et al., 2020). Bürki et al. (2020) collected a series of datasets corresponding 

to the following criteria. The task was a classical picture-word interference task. Participants were 

presented with pictures of objects that they had to name. The pictures were accompanied by distractor 

nouns. Only the trials where target and distractor were of the same semantic category (e.g., horse-

cat), and the corresponding trials where the same targets were associated with unrelated distractors 

were considered. The distractor was clearly visible and not followed by a mask. Participants were 

instructed to name the picture as soon as possible after its appearance, and to say the target noun out 

loud. Participants were all adult speakers without language disorders and the experiments were 

conducted in the participants’ first language. Finally, the dependent variable was the response time 

for each trial and the raw datasets were available. 

Only a subset of these studies was included in the present analyses. The criteria for including a study 

were: (i) having enough information on the distractors used for each trial, (ii) that the Stimulus Onset 

Asynchrony (SOA, i.e., time interval between the onset of picture presentation and the onset of 

distractor presentation) was 0 ms (simultaneous presentation of picture and distractor word), and (iii) 

that distractors were presented in the written modality (note that all studies with spoken distractors 
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in our database used negative or positive SOAs, so this criterion is subsumed by criterion (ii)). We 

further restricted the list to studies conducted in an Indo-European language. The final dataset 

comprised data from 24 different experiments (two of them unpublished). These experiments were 

further split into 26 separate studies (trials with and without familiarization were treated as separate 

studies in two experiments). Details about the studies included are provided in Appendix 1. As in Bürki 

et al. (2020), we followed the procedure described in the original papers to remove incorrect 

responses, outliers, items, or participants.  

Corpora of film subtitles were used to identify the lexical frequency of each distractor and target word1. 

Note that only two datasets included in the meta-analysis come from studies in which the frequency 

of the distractor was explicitly manipulated, and only five datasets come from studies in which the 

frequency of the target word was manipulated.  Film subtitles were chosen because several studies 

(Brysbaert, Keuleers, et al., 2011; Cuetos et al., 2011; New et al., 2007) have concluded that 

frequencies computed from large corpora of subtitles are the best predictors of lexical decision and 

word naming response times. We used the Subtlex corpora of subtitle frequencies for German 

(190,500 words; Brysbaert, Buchmeier, et al., 2011), Dutch (437,503 words, Keuleers et al., 2010), 

Italian (517,564 words), Spanish (94,338 words, Cuetos et al., 2011), US English (74,286 words, 

Brysbaert & New, 2009), and UK English (160,022 words; Heuven et al., 2014). For French, we used 

lexeme subtitle frequency from the database Lexique (142,694 words, New et al., 2004).  

We further counted the number of letters of each distractor and computed or extracted its 

Orthographic Levensthein Distances (OLD), using the definition in Yarkoni et al. (2008). The OLD 

                                                           
1 Lexical frequency is often correlated with another variable known to impact picture naming latencies, namely 
the age at which a word is acquired. Age of acquisition effects (shorter latencies for words acquired earlier) tend 
to be larger than word frequency effects. Whereas some studies reported no effect of frequency when age of 
acquisition was controlled for (e.g., Bonin et al., 2002) others reported independent effects of both variables 
(e.g., Cuetos et al., 1999; Meschyan & Hernandez, 2002). In the present study we used lexical frequency rather 
than age of acquisition for a practical reason: frequency values were available for all the stimuli in our datasets. 
Importantly, however, the exact origin of the lexical frequency effect, and whether it is partly driven by 
differences in age of acquisition is not relevant for the present analysis. Both variables provide a measure of 
processing speed for the target word.   
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between two strings of letters corresponds to the minimum number of insertions, deletions or 

substitutions required to turn one string into the other. Following standard practice, we computed the 

OLD20 measure. This consists in first computing the OLD from each distractor word to every other 

word in a large database, and to then compute the mean OLD of the distractor to its 20 closest 

orthographic neighbors. Orthographic neighborhood has been shown to influence response times to 

written words in many studies (Brysbaert et al., 2016). In Ferrand et al. (2018), for instance, frequency, 

length, and orthographic neighborhood explained over 40% of the variance of response times in a 

visual lexical decision task. For all languages but Italian, we computed the OLD using the R package 

“vwr” (Keuleers, 2013), making use of the word databases for several languages (including German, 

English, Dutch, French and Spanish) provided with the package. For Italian, we took the OLD20 measure 

provided in the Phonitalia database (Goslin et al., 2014). In the present study, OLD20 is entered as a 

covariate in the model estimating the effect of lexical frequency. This method provides an estimate of 

the lexical frequency effect when other variables known to influence visual word processing times are 

accounted for.  

Descriptive statistics for each variable and dataset are displayed in Appendix 2. A meta-analysis of the 

effect of the OLD20 measure on picture naming times can be found in Appendix 3. 

Word frequency and word length are often correlated (e.g., Piantadosi, 2014). More frequent words 

tend to be shorter (Zipf, 1935). It is therefore important to assess the independent contribution of 

each variable. Because we are interested in the effects of word frequency and word length, we would 

want to report the effects of each of these variables when controlling for the effects of the other one. 

This can be done by including the two variables in the same statistical model. Estimates for the 

different variables then can be understood as the contribution of these variables when the variance 

explained by the other variables has been taken into account. Including all variables in one statistical 

model only works if the correlations between these variables are not so high that they generate 

harmful multicollinearity. Figure 1 shows the distribution of the pairwise correlations and Variance 
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Inflation Factors in the 26 studies. The Variance Inflation Factor (VIF) is computed for each predictor 

as follows. A linear model is run with the predictor as dependent variable and all other predictors as 

independent variables. The coefficient of determination (R2) of that model is computed. The VIF is 

equal to 1/1- R2.  If the value is higher than one, it means that this predictor is collinear with the other 

variables in the model. The criterion to decide whether the Variance Inflation Factor is too high (i.e., 

will create harmful multicollinearity) varies between authors. Values above 10 are considered a real 

problem, but several authors consider that values above 4 or 5 can also be problematic (see Hair et al., 

2010). As can be seen in Figure 1, the correlations between frequency and word length are moderate 

and the Variance Inflation Factors are low. The two variables can therefore be entered in the same 

statistical models. 

 

Figure 1. Distribution of pairwise correlations (Pearson) between distractor frequency and 

distractor length across datasets (left) and distribution of Variance Inflation Factors (VIFs) 

across datasets (right) 

III.3. Meta-analyses  

Extraction of estimates 
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The meta-analysis of an effect interest 𝜃 (e.g., increase in response times with each additional letter) 

takes as input the estimates and standard errors for this effect in a set of individual studies. The output 

of a meta-analysis is an estimate of this effect and of its uncertainty (usually, a 95% credible interval, 

which is an interval in which we are 95% certain that the true value of the parameter lies, e.g., Gelman 

& Carlin, 2014). We conducted several meta-analyses. A summary of these analyses can be found in 

Table 1. For each analysis, we extracted estimates and standard errors for each dataset, using linear 

mixed-effects models, as implemented in the library lme4 in R (Bates et al., 2015). In all models, the 

dependent variable was the untransformed naming time. All models had random intercepts by 

participant and by item (picture), and all the random slopes allowed by the design. Further 

specifications are reported in the Results section. 

Table 1. Summary of meta-analyses performed in the present study 

 Effect of interest 

Meta-analysis 1 Interaction between distractor frequency and semantic relatedness 

Meta-analysis 2 Distractor frequency 

Meta-analysis 3 Distractor length  

Meta-analysis 4 Interaction between distractor frequency and distractor length 

Meta-analysis 5 a. Target word frequency (sanity check) 

b. Interaction between target frequency and distractor frequency (linear) 

c. Interaction between target frequency and distractor frequency (quadratic) 

  

 

In a first meta-analysis, we examined the interaction between distractor frequency and semantic 

category (semantically related vs. unrelated distractors). We also examined the interaction between 

semantic category and distractor length. We started with these analyses to determine whether 

subsequent analyses should include the interaction with semantic category. In the second meta-

analysis, we were interested in the effect of lexical frequency, treated as a continuous measure, when 
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other variables known to also influence processing times for visual words are held constant. In the 

third and fourth analyses, we examined the effect of word length, once the effect of frequency was 

accounted for, as well as the interaction between lexical frequency and distractor length. In the last 

analysis, we focused on the interaction between target word frequency and distractor word frequency.  

All fixed-effects included in the analyses were centered around the mean. 

Statistical modelling 

Two kinds of meta-analyses can be considered: a fixed-effect (e.g., Chen & Peace, 2013) and a random-

effects meta-analysis (e.g., Sutton & Abrams, 2001). Fixed-effects analyses assume the same 

underlying true effect 𝜃 for all studies while random-effects meta-analyses assume a different true 

effect 𝜃  for each study. In the present study, we opted for the latter because it is reasonable to assume 

that experiments conducted in different labs and/or in different conditions (e.g., different trial 

structure, presence or absence of familiarization, different criteria for material selection, experiment 

length, etc.) have different values for the true effect 𝜃 . 

The meta-analyses were performed under the following assumptions. Each study i has an underlying 

true effect 𝜃  that stems from a normal distribution with mean of 𝜃 and standard deviation 𝜏. The 

observed effect of the predictor 𝑦  in each individual study i is assumed to be generated from a normal 

distribution with mean 𝜃  and standard deviation 𝜎  , the true standard error of the study. The model 

specifications are displayed in Equations (1).  

𝑦 |𝜃 , 𝜎 ~ 𝑁(𝜃 , 𝜎 ) 𝑖 = 1, … , 𝑛,  

𝜃 |𝜃, 𝜏~𝑁(𝜃, 𝜏), 

𝜃 ~ 𝑁(0, 100), 

𝜏 ~ 𝑁 (0, 100) 

𝑦  is the observed effect of the predictor (i.e., change in the response latencies to the target picture 

for each unit change in the predictor) in study i; 𝜎  𝑖s the standard deviation of the estimate from study 

(1) 
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i, estimated from the standard error of the effect of the predictor for this study; 𝜃 is the true effect of 

this predictor to be estimated by the model; and 𝜏 is the between-study standard deviation. The “+” 

sign in 𝑁  signals that the normal distribution is truncated to take only positive values. 

For each meta-analysis, we first report the meta-analytic estimate, the 95% credible interval and 

display the posterior distribution computed with weakly informative priors (e.g.,  Gelman et al., 2013), 

namely 𝛮(0,100) for the intercept and 𝑁 (0, 100) (truncated normal) for standard deviations. We 

performed the same analysis with two additional priors for the intercept (sensitivity analysis), a normal 

distribution centered at zero with a standard deviation of 200, and a uniform distribution bounded 

between -100 and 100. An analysis is consistent with the effect being larger than zero if the 95% CrI 

does not contain zero. This criterion does not allow us to decide which of the alternative (i.e., the effect 

is > 0) or null hypothesis (the effect = 0) is more likely given the data. Bayes Factors can provide this 

information. For each meta-analysis we therefore also computed Bayes Factors. Bayes Factors were 

set to quantify the evidence for the alternative hypothesis (i.e., there is an effect) over the null 

hypothesis of no effect. Values larger than one favor the alternative model whereas values below 1 

favor the null model. Bayes Factors that are close to one do not provide any concluding evidence. We 

use Lee and Wagenmakers (2014)’s slightly modified version of Jeffreys' (1961) scale to quantify the 

evidence in favor of the alternative hypothesis. Bayes Factors between 1 and 3 provide anecdotal 

evidence, Bayes Factors between 3 and 10 provide moderate evidence, Bayes Factors between 10 and 

30 provide strong evidence, and Bayes Factors between 30 and 100 and above 100 provide very strong 

and extreme evidence, respectively.  

The priors on the parameter of interest (here the intercept) represent a priori assumptions about the 

size of the effect of interest. Bayes Factors can be very sensitive to the priors (e.g., Schad et al., 2022). 

Weakly informative priors are often not appropriate as they tend to favor the null model (Lee & 

Wagenmakers, 2014). In the present study, we computed Bayes Factors with four informative priors. 

These Bayes Factor thus provide information on the evidence in favor of the alternative (over the null) 
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hypothesis given different assumptions about the size of the effect of interest. The dependent variable 

in the meta-analyses is on the millisecond scale and the properties of the distractors (and target words) 

are measured on a continuous scale. Thus, the estimate of the meta-analytic model (and its associated 

prior) represents the increase in milliseconds for each one-unit increase in the variable of interest. The 

scales of the variables of interest differ and the priors reflect these differences. Distractor word 

frequency and target word frequency are measured in the natural logarithm of number of occurrences 

per million. Word length is measured in number of letters, and the computation of the OLD20 measure 

is reported in the Methods section. For each variable, we selected four different priors, all of which 

follow a normal distribution and are agnostic with respect to the direction of the effect (the prior 

distribution is centered at zero). The different priors differ in their standard deviations, and therefore 

assume a different range of possible effect sizes. To determine appropriate ranges of values for the 

three variables, we sought information about the effect of these variables in a lexical decision task 

(participants are presented with sequences of letters and have to decide, by button press, if the 

sequence forms a real English word or not). We used the data of the English Lexicon Project (ELP, 

https://elexicon.wustl.edu/, Balota et al., 2007). The ELP dataset contains response times of 820 

participants on a total of 40481 words. We restricted the dataset to correct responses to existing words 

and removed extreme data points (below 150ms and above 3000ms). For each word in the dataset, 

we counted the number of letters, we extracted the number of occurrences per million from the 

Subtlex database (Brysbaert & New, 2009) and took the OLD20 measure from the English Lexicon 

Project database. We took the natural logarithm of the frequency measures. We then centered each 

of the variables around the mean. We ran a first linear mixed-effects model to estimate the effect of 

lexical frequency (with OLD20 and number of letters as covariates), a second model to estimate the 

effect of word length (with lexical frequency as covariate), and a third model to estimate the effect of 

OLD20 (with lexical frequency as covariate). These estimates are reported in Appendix 4. We can 

reasonably assume that effects of these same variables on picture naming times in a picture-word 

interference task are smaller than in tasks where participants respond to the written words directly. 
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The estimates from the lexical decision task will therefore be used as upper bounds. For each variable, 

the first informative prior was set to have a standard deviation equivalent to the magnitude of the 

effect of this variable in the lexical decision dataset. For instance, given an effect size of 45ms for lexical 

frequency in the lexical decision task, the first prior was a normal distribution with a mean of 0 and a 

standard deviation of 45. This amounts to assuming that the increase in naming latencies for each one-

unit increase in the log of number of occurrences per million for the distractor has a 95% probability 

of lying between -90ms and 90ms (twice the effect size in the lexical decision task), with small values 

(i.e., around zero) being more likely than larger values. We then computed Bayes factors for three 

additional informative priors each time cutting the value of the standard deviation by half. For 

instance, for lexical frequency we used the additional informative priors 𝑁(0,23), 𝑁(0,12), 𝑁(0,6). For 

the interactions between semantic category and distractor frequency or distractor length, we used the 

same priors as for the main effects of the latter variables. For interactions between two continuous 

variables, we used the priors of the variable with the smallest priors. The priors used for the different 

variables  are listed in Table 2.  

 

Table 2. Priors used in the Bayes Factor analyses 

 Prior 1 Prior 2 Prior 3 Prior 4 

Distractor word frequency  𝑁(0,45) 𝑁(0,23) 𝑁(0,12) 𝑁(0,6) 

Word length 𝑁(0,20) 𝑁(0,10) 𝑁(0,5) 𝑁(0,2.5) 

OLD20 𝑁(0,60) 𝑁(0,30) 𝑁(0,15) 𝑁(0,7.5) 

Target word frequency 𝑁(0,45) 𝑁(0,23) 𝑁(0,12) 𝑁(0,6) 

Semantic interference * Distractor frequency 𝑁(0,45) 𝑁(0,23) 𝑁(0,12) 𝑁(0,6) 

Semantic interference * Distractor length 𝑁(0,20) 𝑁(0,10) 𝑁(0,5) 𝑁(0,2.5) 

Distractor frequency * Target frequency 𝑁(0,45) 𝑁(0,23) 𝑁(0,12) 𝑁(0,6) 

Distractor frequency * Distractor length 𝑁(0,20) 𝑁(0,10) 𝑁(0,5) 𝑁(0,2.5) 
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The analyses were performed in R (R Core Team, 2021) using the package “brms” (Bürkner, 2018). 

Bayes Factors were computed using bridge sampling (Bennett, 1976; Gronau et al., 2017; Schad et al., 

2022) with eight chains, 20000 iterations (2000 of these used as warm-up). The datasets and script to 

reproduce these analyses can be found on OSF (https://osf.io/sjn5b/). 

III. 4. Results 

Interactions between distractor frequency and semantic relatedness. To obtain estimates of the 

interaction between semantic category and distractor frequency, we fit a mixed-effects model with 

semantic category, distractor frequency, and their interaction as fixed-effects. We then used the 

estimates and standard errors of the interaction terms to fit a Bayesian meta-analysis. The meta-

analysis estimate is of 0.3ms with a 95% CrI ranging from -3.4 to 3.8ms. The posterior distribution of 

the between-study standard deviation has a mean of 3.25ms (CrI: 0.2, 8.6). The results of sensitivity 

analyses for the present and following meta-analyses are presented in Appendix 5. The posterior 

distribution of this interaction as well as Bayes Factors are plotted in Figure 2. The 95% Credible interval 

contains zero and Bayes factors provide moderate to strong evidence in favor of the null model.  

 

Figure 2. left: Posterior distribution for the estimate of the interaction between semantic 
category and distractor frequency; right: Bayes Factors 

 

This analysis does not provide support for the hypothesis that semantic category interacts with 

distractor frequency. Rather, there is moderate evidence against this interaction. Following the same 

procedure, we also conducted a meta-analysis of the interaction between semantic category and 
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distractor length. The results of this analysis are similar, they are presented in Appendix 5. In all 

subsequent analyses, we included trials with related and unrelated distractors and did not include 

interactions with semantic relatedness. 

Distractor frequency. To obtain estimates of the distractor frequency effect in individual studies, we 

conducted, for each of them, a mixed-effects model with the logarithm of lexical frequency, the 

number of letters, and the orthographic Levensthein distance (OLD 20) as fixed effects. We then 

performed a meta-analysis with the individual estimates of distractor frequency. The meta-analysis 

reveals that the overall effect of distractor frequency is of -4.4ms with a 95% CrI ranging from -7.2 to -

1.9ms. According to the sign of the estimate, as the frequency of the distractor increases, picture 

naming latencies decrease. Given that the frequency measure is on the natural log scale, adding one 

unit amounts to multiplying the number of occurrences per million by 2.72. This means that two 

distractors whose frequencies in number of occurrences per million differ by a factor of 2.72 (e.g., 10 

vs. 27.2 occurrences per million, or 100 vs. 272 occurrences per million) lead to a naming time 

difference of 4.4 ms). 

The posterior distribution of the between-study standard deviation has a mean of 2.2ms (CrI: 0.1, 5.8). 

The posterior distribution of the distractor frequency estimate and Bayes factors are plotted in Figure 

3a. Bayes factors with informed priors all provide strong evidence in favor of the alternative model. 

Figure 4 displays the posterior distributions of the estimates of the distractor frequency effect for each 

study. 
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Figure 3. Left: Posterior distributions of the estimate of (a) distractor frequency (b) distractor 
length and (c) the interaction between distractor frequency and distractor length with 95% 
Credible Interval (black horizontal line); Right: corresponding Bayes Factors 
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Figure 4. Summary of the random-effects meta-analysis modelling the effect of distractor 
frequency on naming times. For each study, the figure displays, in black, the mean and 
posterior estimate (mean and 95% credible interval). A negative value means that distractors 
with higher frequency result in shorter naming latencies for the picture. The grey vertical line 
represents the grand mean (i.e., the meta-analytic effect) and the dashed vertical lines 
delimit the 95% credible interval of that estimate 

 

Distractor length. To obtain estimates of the distractor length effect in individual studies, we 

conducted a mixed-effects model with number of letters and lexical frequency as fixed-effects, for 

each study. We then used the estimates for the variable number of letters as input for the meta-

analysis. This analysis reveals that the overall effect of distractor length is about 2.8ms (CrI: 0.8 , 4.8). 

Trials with longer distractors are named with longer naming latencies. The posterior distribution of the 

between-study standard deviation has a mean of 1.5ms (CrI: 0.06, 4.3). The posterior distribution of 

the distractor length estimate as well as Bayes Factors are plotted in Figure 3b. Bayes factors with the 

three more constraining priors (standard deviations of 10, 5, or 2.5) provide moderate support for the 

alternative model whereas the Bayes Factor with the less constraining prior is inconclusive. Figure 5 

displays the posterior distributions of the estimates of the distractor length effect for each study. 
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Figure 5. Summary of the random-effects meta-analysis modelling the effect of distractor 
length on naming times. For each study, the figure displays, in black, the mean and posterior 
estimate (mean and 95% credible interval). A positive value means that distractors with more 
letters result in longer picture naming latencies. The grey vertical line represents the grand 
mean (i.e., the meta-analytic effect) and the dashed vertical lines delimit the 95% credible 
interval of that estimate. 

 

Interaction between lexical frequency and distractor length. To obtain estimates of the interaction 

between the frequency of the distractor and the length of that distractor, we conducted, for each 

study, a linear mixed-effects model with main effects of distractor frequency, word length and their 

interaction. The meta-analytic estimate for the interaction term is about -1.5ms (CrI: -3.1, 0.1). The 

sign of the interaction suggests that the effect of distractor length is smaller for high than for low 

frequency words. The posterior distribution of the between-study standard deviation has a mean of 

1.1ms (CrI: 0.04, 3.2). The posterior distribution and Bayes factors are displayed in Figure 3c. A visual 

representation of the posterior distributions of the estimates of this interaction for each study, can be 

found in Appendix 6. With a standard deviation for the prior of 20ms, the Bayes factor provides 

moderate support for the null hypothesis. With standard deviations of 10 or smaller, the evidence does 

not favor either hypothesis.  

Interaction between distractor frequency and target frequency. As a sanity check, we conducted a 

meta-analysis of the main effect of target word frequency. A facilitative effect of target word frequency 

is a staple feature of picture naming performance that has been reported in many previous studies 

(e.g., Oldfield & Wingfield, 1965;  see also Alario et al., 2004; Barry et al., 1997; Ellis & Morrison, 1998; 

Jescheniak & Levelt, 1994;  Mousikou & Rastle, 2015). It was important to show that we could replicate 

this effect with our datasets before testing the interaction between target word frequency and 

distractor word frequency. To extract estimates of this effect in individual studies, we conducted a 

mixed-effects model with the logarithm of target word frequency as fixed-effect. These estimates were 

then used as input for the meta-analysis. The result of this meta-analysis supports the hypothesis that 

more frequent target words are named with shorter naming times. The overall effect is about -7.9ms 

(95% CrI: -11.5, -4.8), Bayes Factors provide very strong to extreme evidence in favor of the alternative 
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hypothesis. The posterior distribution of the target frequency estimate and Bayes Factors are plotted 

in Figure 6a. A visual representation of the posterior distributions of the estimates of the target word 

frequency effect for each study, can be found in Appendix 7. The posterior distribution of the between-

study standard deviation has a mean of 4.1ms (CrI: 0.3, 8.7). 

Interaction term (linear). To obtain estimates of the interaction between the frequency of the 

distractor and the frequency of the target word in the individual studies, we conducted, for each study, 

a linear mixed-effects model with the main effects of target and distractor word frequencies and an 

interaction term. We then used the individual estimates and Standard errors of the interaction to 

perform a meta-analysis. This analysis reveals that the meta-analytic estimate for the interaction term 

is about 2.2ms (95% CrI: 0.5 , 4.1). The sign of the meta-analytic estimate suggests that the effect of 

distractor frequency decreases as the frequency of the target word increases. To better understand 

this interaction, we computed the meta-analytic estimates of the intercept and main effects of target 

word and distractor frequency in the model with the interaction. These are respectively 764 (SE=31.7), 

-7.55 (SE=1.46) and -7.38 (SE=1.61) ms. We then entered these values in the regression equation to 

compute predicted response times at different values of the target and distractor word frequencies, 

taking, for illustration purposes, the target and distractor word frequency distributions from one study 

in our database (Gauvin et al. 2018, no familiarization). In this study, the mean target frequency in 

number of occurrences per million was 6337 (SD = 6638) and the mean distractor frequency was 9681 

(SD = 11483). We log transformed and centered the frequency values and used them to compute the 

predicted effect of distractor frequency (i.e., predicted difference in naming times for two values of 

distractor frequency that differ by one standard deviation) for three values of target word frequency, 

namely the mean, -1 SD and +1 SD. When target frequency is 1 SD below the mean, the distractor 

frequency effect is 12 ms. When target frequency is at its mean, the distractor frequency effect is 9ms, 

and when target frequency is 1 SD above the mean, the distractor frequency effect is 5 ms. 
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The posterior distribution of the between-study standard deviation has a mean of 1.6ms (CrI: 0.07,  

4.2).            The posterior distribution of the meta-analytic estimate for the interaction and Bayes Factors are 

plotted in Figure 6b. Bayes Factors favor the alternative model (with the interaction) when the effect 

size has a prior with SD = 6ms. For larger SDs, Bayes factors are inconclusive. A visual representation 

of the posterior distributions of the estimates of this interaction for each study can be found in 

Appendix 8.  

 

 

 
Figure 6. Posterior distributions of the estimate and Bayes Factors for (a) target word 
frequency, (b) the interaction term between target word frequency and distractor word 
frequency (linear term), (c) the interaction between target word frequency and distractor 
word frequency (quadratic term). 

 

Interaction term (quadratic). For this analysis, we conducted, for each study, a linear mixed-effects 

model with target word frequency, linear and quadratic terms for distractor word frequency, and 

interactions between target word frequency and both the linear and quadratic terms for the variable 

distractor frequency. We then performed a meta-analysis of the interaction between target word 

frequency and the quadratic term. The meta-analytic estimate for the interaction term is about 
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52.5ms. The 95% Credible interval contains zero (-43.8 , 148.9). The posterior distribution of the 

between-study standard deviation has a mean of 61.7ms (CrI: 2.4 , 174.9). The posterior distribution 

of the meta-analytic estimate and Bayes Factors are plotted in Figure 6c. Bayes Factors do not provide 

any conclusive evidence. A visual representation of the posterior distributions of the estimates of this 

interaction for each study, can be found in Appendix 9. 

General Discussion  

The present study investigated the influence of the properties of distractor and target words on picture 

naming times in picture-word interference tasks. We conducted a series of meta-analyses with 

estimates extracted from 26 datasets.  

Our first aim was to quantify the size of the distractor frequency effect in experiments where this 

variable is not manipulated. Previous studies in which this effect was studied compared groups of high 

frequency and low frequency distractors. Our analyses confirmed the reliability of the distractor 

frequency effect (i.e., longer naming times for trials with low frequency distractors) and revealed that 

this effect is also detected when the variable frequency is not dichotomized, nor purposely 

manipulated (all but two datasets in the meta-analysis are from studies in which the frequency of the 

distractor was not manipulated). Our meta-analysis thus provides information on the size of this effect 

in typical picture-word interference experiments. A one-unit increase in frequency (logarithm of 

number of occurrences per million scale) decreases response times to the pictures by about 4.4ms [-

7, -2]. If we use this estimate to compute the predicted response times for frequency values that 

correspond to the mean frequencies of the low and high frequency categories in Miozzo and 

Caramazza (2003), we obtain an effect of about 20ms, a value that is very similar to the value reported 

in their experiments. In the present study, the estimates were computed in models including other 

distractor properties as predictors, namely word length and orthographic neighborhood. As a result, 

our analysis is informative about the size of the effect of distractor frequency when these other 

variables are controlled for.  
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Our second aim was to examine the impact of a novel variable, distractor length, on picture naming 

times, as a test of the hypothesis that distractor processing times impact naming latencies in the 

picture-word interference paradigm. The analysis suggests that pictures accompanied by shorter 

distractors are named more quickly than pictures accompanied by longer distractors. The estimate of 

the meta-analysis suggests that naming times increase by 2.8ms with each additional letter in the 

distractor. Hence, everything else being equal, participants will produce a given target word with the 

distractor word butterfly 17ms slower than the same target word with the distractor word cat. The 

results regarding the interaction between lexical frequency and distractor length are less conclusive. 

The estimate of this interaction has the same sign as the interaction observed in visual word processing 

tasks, with a larger effect of distractor length for low frequency words than for high frequency words. 

The 95% Credible interval overlaps with zero and the Bayes Factor analysis does not provide evidence 

that the alternative hypothesis is more likely than the null hypothesis given the data. 

The third aim of the present study was to examine the interaction between distractor frequency and 

semantic category. This interaction was deemed important by several authors (Miozzo & Caramazza, 

2003; Starreveld et al., 2013) to determine the locus of the distractor frequency effect. Our data do 

not provide support in favor of this interaction. Rather, Bayes Factors favor the null hypothesis.  

The last aim of our study was to test the reliability of the interaction between distractor frequency and 

target word frequency. Previous studies reported inconsistent findings. Our analyses replicate the 

target word frequency effect in picture naming (i.e., faster response times to pictures with more 

frequent nouns) and provide some evidence that word frequency and target word frequency interact. 

The distractor frequency effect decreases when target word frequency increases. Bayes Factor 

analyses provide moderate evidence that the effect is larger than zero when assuming that the effect 

lies between -12 and 12ms. Bayes Factors with less constraining priors are inconclusive. Note that 

because we did not control for the age of acquisition of the target words, a variable often correlated 

with lexical frequency, we do not know whether the target frequency effect is a pure frequency effect 
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or is partly driven by an age of acquisition effect. The exact origin of this effect is however not relevant 

for the present analysis. The frequency variable provides a measure of the speed with which the target 

word can be prepared for production.  

In the remainder of this discussion, we examine the theoretical and methodological implications of 

these findings in the context of the available accounts of the distractor frequency effect and more 

generally, for picture-word interference studies.  

Could the distractor frequency effect result from input processes? 

After Miozzo and Caramazza (2003) found a “reverse” distractor frequency effect, they performed 

several experiments to determine whether this effect was due to input processes alone (i.e., visual 

word recognition of the written word) or whether it reflected the processing of the target word (output 

processes). Based on a series of null effects, they rejected the input account and concluded that the 

distractor frequency effect reflects (and informs on) word production processes. Most subsequent 

studies adopted this assumption and set out to determine the locus of the distractor frequency effect 

within the word production system, without re-considering the input account as a viable account. The 

impact of distractor length provides support for the hypothesis that the duration of distractor 

processing influences naming times. To our knowledge, this is the first demonstration that a variable 

that influences the duration of distractor processing (and not potentially also its activation level) 

impacts picture naming latencies in the picture-word interference paradigm. One possible 

interpretation of this finding is that distractor processing duration modulates picture naming latencies 

in this paradigm. This observation can lead to the generalized hypothesis that any variable that impacts 

visual word recognition processes, including distractor frequency, will influence naming times. The 

results of the present study thus suggest that the input account may have been rejected too hastily. 

Miozzo and Caramazza also rejected the hypothesis that the distractor frequency effect arises because 

of differences in the temporal alignment of target and distractor word processes for frequent and 

infrequent distractors. In this “temporal” account, the distractor can only impact the preparation of 
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the target word if processed at a specific time, relative to the processing of the target word. Miozzo 

and Caramazza reasoned that under this account, the frequency of the target and distractor words 

should interact but there was no such interaction in their data.  The interaction that we observe 

between target word frequency and distractor frequency is in line with the temporal account. It is 

further in line with results reported by Geng et al. (2014), who observed that the distractor frequency 

effect disappeared when participants were made to respond more quickly.  

As discussed in the Introduction, the input and temporal accounts are not orthogonal. Any variable 

that influences the duration of distractor or target word processing will in turn affect the temporal 

alignment of their processing. The interaction between distractor and target word frequencies is 

compatible with an account in which interference effects result from a decrease in available cognitive 

resources, the impact of which depends on how much word production processes overlap with the 

processing of the distractor. Accordingly, if the production processes have already been completed 

when the processing of the distractor begins, the distractor will have less of an impact on picture 

naming latencies.  

Another observation of the present study is the absence of evidence for an interaction between 

distractor frequency and semantic relatedness. This interaction has been used as a test case to 

determine the locus of the distractor frequency effect, and more specifically, to decide between a 

lexical and non-lexical locus of this effect. In competitive models of lexical access, the semantic 

interference effect originates in lexical access. Starreveld et al. (2013), and before them Miozzo and 

Caramazza (2003), reasoned that if the distractor frequency effect also arises during lexical access, the 

two variables should interact. The present meta-analysis does not provide support for this interaction. 

Starreveld et al. (2013) took the absence of interaction in their data to signal a different locus for the 

semantic interference and distractor frequency effects. If we would follow the same logic here, several 

loci remain possible for the distractor frequency effect, including the hypothesis that this effect is an 

input effect.  
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The findings of the present study are thus compatible with the hypothesis that the distractor frequency 

effect is an input effect. Notably, other findings in the literature can easily be explained by an input 

account. Dhooge and Hartsuiker (2011) reported a distractor frequency effect in a delayed version of 

the picture-word interference naming task. The participants were asked to name the picture upon 

seeing the distractor word, which appeared 1000ms after the picture. Dhooge and Hartsuiker (2011) 

observed a distractor frequency in this task but no effect of the frequency of the target word. These 

results are expected under the input account. Recall that this account assumes that the processing of 

the distractor takes some of the resources that would otherwise be used to process the target word. 

Upon seeing the distractor, and for the duration of distractor processing, less resources will be 

available to process the target word. Consequently, processing time for this word will increase and this 

increase will reflect the time needed to process the distractor. In another study, Dhooge & Hartsuiker 

(2010) compared trials where the distractor was masked (i.e., the distractor was presented for a very 

brief period of time, and preceded and followed by a sequence of hash marks or randomly selected 

sequence of consonants) to trials where the distractor was fully visible. The distractor frequency effect 

was only found when the distractor was fully visible. Masking the distractor has been argued to result 

in a more superficial treatment of this word (see for instance Roelofs et al., 2011). If the distractor is 

not fully processed, it is less likely to take up processing resources and delay the processing of the 

target word. Another finding consistent with an input account of the distractor frequency is the 

interaction reported by Miozzo and Caramazza (2003) between distractor frequency and phonological 

relatedness. Distractors that overlap phonologically with the target word generate less interference 

than unrelated distractors (e.g., Bi et al., 2009; Damian & Martin, 1999; Posnansky & Rayner, 1977; 

Rayner & Posnansky, 1978; Starreveld & La Heij, 1996;  de Zubicaray et al. 2002). The phonological 

facilitation effect has been shown to depend on the timing of presentation or processing between 

target and distractor word (Damian & Martin, 1999, Schriefers et al.; 1990; Bürki, 2017). If, as our data 

suggest, the frequency of the distractor modulates the temporal alignment between distractor and 
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target word processing, an interaction between distractor frequency and phonological overlap can be 

expected2.  

Miozzo and Caramazza (2003) rejected the input account of the distractor frequency effect. Many 

other researchers adhered to this conclusion. Given the findings of the present study, we argue that 

this conclusion needs to be reconsidered. To be clear, our conclusion that the estimated effect is 

compatible with an input account does not imply that it is not, or that it is less compatible with other 

accounts of the effect. Moreover, the observation that distractor processing duration impacts naming 

latencies does not allow us to conclude that the distractor frequency is only due to differences in 

processing duration between frequent and infrequent words.  

Alternative explanations of distractor frequency effects? 

Most of the debate on the functional origin of the distractor frequency effect in the last two decades 

involved two opposing views, the post-lexical and the lexical view. According to the post-lexical view, 

also termed the response exclusion hypothesis (e.g., Finkbeiner & Caramazza, 2006; Mahon et al., 

2007), speakers unwillingly prepare the distractor word for production and store  the motor response 

in a pre-articulatory buffer. This account further assumes that only one word can be in the response 

buffer at a given point in time, therefore, to produce the target word, the speaker must first empty 

this buffer (see also Dhooge & Hartsuiker, 2010; 2011). According to this account, the interference 

effect depends on the time at which the distractor enters the buffer. If it enters the buffer earlier, it 

can be suppressed earlier. It follows that the distractor should only create interference if it can enter 

the response buffer before target word processing has reached a certain processing stage. The quicker 

the target word is processed relative to the distractor word, the lower the probability that the 

distractor reaches the response buffer before the target word, yielding a weaker interference effect 

                                                           
2 The same reasoning applies for the semantic interference effect, as this effect also depends on the timing of 
presentation of target and distractor words (e.g., Schriefers et al., 1990). Importantly, however, whether an 
interaction between the semantic (or phonological) effect and distractor frequency is observed will depend on 
the participants processing times for target and distractor words in the experiment (see Bürki & Madec, in 
press). 
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(but see Starreveld et al, 2013, for a different view). Hence, in this account, variables that influence 

the relative timing of distractor and target word processing (and therefore, any variable that influences 

either the speed and/or duration of target word or distractor word processing) are expected to 

modulate naming times.  

According to the alternative lexical view, the distractor frequency effect arises during lexical access 

and is therefore informative of this process. For instance, Starreveld et al. (2013) build on the 

assumption –made  in several models of reading –  that lexical representations for more frequent 

words have lower selection thresholds than more frequent words (see also Besner & Risko, 2016). 

Starreveld et al. (2013) further assume that following recognition, the distractor representation 

returns to its resting activation level, with a decay rate proportional to its activation level. It follows 

that in the picture-word interference task, high frequency distractor words reach lower activation 

levels and, consequently, act as weaker competitors yielding faster response times. In this account, 

distractor frequency impacts naming times because of differences in degrees of activation between 

frequent and less frequent distractors. Our finding that word length impacts naming times shows that 

a variable that does not influence the degree of activation also modulates naming times. Starreveld et 

al. (2013) should thus make the additional hypothesis that the distractor influences naming latencies 

via both processing duration and activation levels. It must be stressed however that an input account 

of the distractor frequency effect is not incompatible with the idea that lexical access is a competitive 

process. For instance, the Weaver++ model assumes that lexical access is a competitive process. It 

further assumes that in the picture-word interference task, the speaker accesses the lexical 

representation associated with the distractor word, which then has to be blocked. Logically, the 

distractor only has to be blocked when the target lexical representation has not yet been selected by 

the time the distractor lexical representation becomes activated. The speed with which the blocking 

mechanism can take place has been argued to depend on the speed with which the distractor is 

processed (Roelofs, 2005; Roelofs et al., 2011).  
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To summarize, the present study provides novel insights regarding the conditions in which interference 

from an unrelated distractor word occurs. Our primary conclusion is that the meta-analytic estimates 

we report challenge the rejection of the input account, without compromising alternative accounts. 

The upshot is that the interpretation of the distractor frequency effects is still uncertain. We argue that 

the available evidence does not suffice to associate the distractor frequency effect with genuinely 

output word production processes, or to determine the mechanisms underlying the distractor 

frequency effect. Subsequent studies will need to consider the input account when designing 

experiments to pinpoint the functional origin of the distractor frequency effect and its general 

consequences for word production processes. 

Methodological implications 

Before concluding, we highlight the methodological implications of the present findings. While the 

majority of picture-word interference studies report comparisons involving the same list of distractors 

counterbalanced across conditions, not all of them do (e.g., Bürki et al., 2019; Finkbeiner & Caramazza, 

2006; Foucart et al., 2010; Mahon et al., 2007;  Rizio et al., 2017). The finding that naming latencies 

are influenced by word length and by orthographic neighborhood (see Appendix 3) calls for a strict 

control of these properties if different distractor lists are to be used. One strategy that is often used to 

“control for” these variables is to make sure that the distractor lists for different conditions do not 

differ statistically. This strategy is not optimal, because differences across lists, even non-significant, 

can have a significant impact on the dependent variable, when tested in a group of participants (see 

Sassenhagen & Alday, 2016, for a detailed discussion). A better strategy might be to control for these 

variables in the statistical model, as we did here.  

More generally the finding that the properties of written words known to influence visual processing 

times also influence naming times in the picture-word interference task could explain part of the 

discrepancies across studies in the picture-word interference literature (e.g., the conditions in which 

the semantic interference effect surfaces, see Bürki et al. 2020 for review; or the differences in the 
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Stimulus Onset Asynchronies at which experimental effects are observed) given that different studies 

usually use different material lists and may involve different languages. The interaction between the 

properties of the distractor and target words further suggests that, even when identical target and 

distractor lists are used across conditions (e.g., in studies on the semantic interference effect or on the 

phonological facilitation effect, e.g., Damian & Martin, 1999; Posnansky & Rayner, 1977; Rayner & 

Posnansky, 1978), differences across conditions can be expected that are not driven by the 

experimental manipulations of interest (i.e. target-distractor relationships) but by differences in the 

temporal alignment between target and distractor word processing.  

Finally, the meta-analytic estimates of the present study can be used to guide future experimental 

studies. Precise estimates of experimental effects are necessary to conduct a priori power analyses, to 

assess the probability that an experimental effect is in the wrong direction, or is overestimated (see 

Gelman & Carlin, 2014). Effect sizes extracted from meta-analyses are particularly valuable given that 

they consider a large sample of the available data. Often, meta-analytic estimates tend to overestimate 

the true effect. This is because papers that end up getting published will tend to not include work from 

experiments where the experimental effect did not reach significance (only significant results tend to 

be published). The estimates of the present study are likely to suffer less from this limitation given 

that, they focus on experimental effects that were not the primary focus of the published papers (two 

datasets come from studies in which distractor frequency was manipulated and five from studies in 

which target word frequency was manipulated; none of the studies manipulated distractor length or 

orthographic neighbourhood). We provide effect sizes and precision estimates for several factors of 

primary interest: distractor frequency, distractor length, target word frequency, as well as for the 

interaction between target word frequency and distractor word frequency, distractor word frequency 

and semantic relatedness, and distractor frequency and distractor length. These estimates might also 

prove useful to guide further specifications of existing accounts in future work, for instance to simulate 

naming times for different target-distractor combinations in the picture-word interference paradigm 

under different scenarios. They will also serve as a useful summary of existing data to further refine 
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computational models that make quantitative predictions about the magnitude and range of effects 

in the picture-word interference paradigm (e.g., Weaver++, Roelofs, 2003) or to implement new 

computational models. To our knowledge, only the distractor frequency effect has been simulated so 

far, a simulation inspired by effect sizes obtained in experiments where the variable frequency was 

dichotomized. Our meta-analytic estimates can be used to extend these models. In Weaver++ 

parameters are set such that trials with high frequency distractors are produced 25msec faster than 

trials with low frequency distractors (Roelofs, 2005; Roelofs et al., 2011). The meta-analytic estimate 

of distractor frequency that we provide informs on the change in naming times with each unit change 

in distractor frequency and can be used to make more nuanced predictions.  

Conclusion 

We conducted a series of meta-analyses of the effects of distractor properties on naming times in the 

picture-word interference paradigm. The results of these analyses suggest that it is too early to reject 

an input account of the distractor frequency effect. More generally, the available data are compatible 

with this as well as with other accounts of the effect. In our view, strong conclusions about the 

mechanism(s) underlying the distractor frequency may have been reached prematurely. 

 

 

Acknowledgements 

The authors would like to thank all the authors who shared their datasets. This research was funded 

by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project number 

317633480 – SFB 1287, Project B05 (Bürki) and project Q (Vasishth/Engbert). F.-Xavier Alario was 

supported by grants ANR-16-CONV-0002 (ILCB) and the Excellence Initiative of Aix-Marseille University 

(A*MIDEX). 

 



36 
 

Declaration of Conflicting Interests 

 The Authors declare that there is no conflict of interest  

 

References 

Abdel Rahman, R., & Aristei, S. (2010). Now you see it ... and now again: Semantic interference 

reflects lexical competition in speech production with and without articulation. Psychonomic 

Bulletin & Review, 17(5), 657‑661. https://doi.org/10.3758/PBR.17.5.657 

Alario, F.-X., De Cara, B., & Ziegler, J. C. (2007). Automatic activation of phonology in silent reading is 

parallel: Evidence from beginning and skilled readers. Journal of Experimental Child Psychology, 

97(3), 205‑219. https://doi.org/10.1016/j.jecp.2007.02.001 

Alario, F.-X., Ferrand, L., Laganaro, M., New, B., Frauenfelder, U. H., & Segui, J. (2004). Predictors of 

picture naming speed. Behavior Research Methods, Instruments, & Computers, 36(1), 140‑155. 

https://doi.org/10.3758/BF03195559 

Balota, D. A., Yap, M. J., Cortese, M. J., Hutchison, K. A., Kessler, B., Loftis, B., Neely, J. H., Nelson, D. 

L., Simpson, G. B., & Treiman, R. (2007). The English Lexicon Project. Behavior Research 

Methods, 39(3), 445‑459. https://doi.org/10.3758/bf03193014 

Barry, C., Morrison, C. M., & Ellis, A. W. (1997). Naming the Snodgrass and Vanderwart Pictures: 

Effects of Age of Acquisition, Frequency, and Name Agreement. The Quarterly Journal of 

Experimental Psychology Section A, 50(3), 560‑585. https://doi.org/10.1080/783663595 

Barton, J. J. S., Hanif, H. M., Björnström, L. E., & Hills, C. (2014). The word-length effect in reading: A 

review. Cognitive neuropsychology, 31(5‑6), 378‑412. 

https://doi.org/10.1080/02643294.2014.895314 



37 
 

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using 

lme4. Journal of Statistical Software, 67(1), 1‑48. https://doi.org/10.18637/jss.v067.i01 

Bennett, C. H. (1976). Efficient estimation of free energy differences from Monte Carlo data Journal 

of Computational Physics, 22 (2) (1976), pp. 245-268, https://doi.org/10.1016/0021-

9991(76)90078-4 

Besner, D., & Risko, E. F. (2016). Thinking outside the box when reading aloud: Between (localist) 

module connection strength as a source of word frequency effects. Psychological Review, 

123(5), 592‑599. https://doi.org/10.1037/rev0000041 

Bi, Y., Xu, Y., & Caramazza, A. (2009). Orthographic and phonological effects in the picture–word 

interference paradigm: Evidence from a logographic language. Applied Psycholinguistics, 

30(04), 637‑658. https://doi.org/10.1017/S0142716409990051 

Bonin, P., Chalard, M., Méot, A., & Fayol, M. (2002). The determinants of spoken and written picture 

naming latencies. British Journal of Psychology, 93(1), 89–114. 

https://doi.org/10.1348/000712602162463 

Briggs, P., & Underwood, G. (1982). Phonological coding in good and poor readers. Journal of 

Experimental Child Psychology, 34(1), 93‑112. https://doi.org/10.1016/0022-0965(82)90033-9 

Brysbaert, M., Buchmeier, M., Conrad, M., Jacobs, A. M., Bölte, J., & Böhl, A. (2011). The word 

frequency effect: A review of recent developments and implications for the choice of frequency 

estimates in German. Experimental Psychology, 58(5), 412‑424. https://doi.org/10.1027/1618-

3169/a000123 

Brysbaert, M., Keuleers, E., & New, B. (2011). Assessing the usefulness of Google books’ word 

frequencies for psycholinguistic research on word processing. Frontiers in Psychology, 2. 

https://doi.org/10.3389/fpsyg.2011.00027 

Brysbaert, M., & New, B. (2009). Moving beyond Kučera and Francis: A critical evaluation of current 

word frequency norms and the introduction of a new and improved word frequency measure 



38 
 

for American English. Behavior Research Methods, 41(4), 977‑990. 

https://doi.org/10.3758/BRM.41.4.977 

Brysbaert, M., Stevens, M., Mandera, P., & Keuleers, E. (2016). The impact of word prevalence on 

lexical decision times: Evidence from the Dutch Lexicon Project 2. Journal of Experimental 

Psychology: Human Perception and Performance, 42(3), 441‑458. 

https://doi.org/10.1037/xhp0000159 

Bürki, A. (2017). Differences in processing times for distractors and pictures modulate the influence 

of distractors in picture–word interference tasks. Language, Cognition and Neuroscience, 

32(6), 709‑723. https://doi.org/10.1080/23273798.2016.1267783 

Bürki, A., Besana, T., Degiorgi, G., Gilbert, R., & Alario, F.-X. (2019). Representation and selection of 

determiners with phonological variants. Journal of Experimental Psychology. Learning, Memory, 

and Cognition, 45(7), 1287‑1315. https://doi.org/10.1037/xlm0000643 

Bürki, A., Elbuy, S., Madec, S., & Vasishth, S. (2020). What did we learn from forty years of research 

on semantic interference? A Bayesian meta-analysis. Journal of Memory and Language. 

https://doi.org/10.1016/j.jml.2020.104125 

Bürki, A., & Madec, S. (in press). Picture-word interference in language production studies: Exploring 

the roles of attention and processing times. Journal of Experimental Psychology: Learning, 

Memory, & Cognition. https://doi.org/10.1037/xlm0001098 

Bürkner, P. (2018). Advanced bayesian multilevel modeling with the R Package brms. The R Journal, 

10(1), 395–411. https://doi.org/10.32614/RJ-2018-017 

Burt, J. S. (1994). Identity primes produce facilitation in a colour naming task. The Quarterly Journal 

of Experimental Psychology Section A, 47(4), 957‑1000. 

https://doi.org/10.1080/14640749408401103 



39 
 

Burt, J. S. (2002). Why do non-color words interfere with color naming? Journal of Experimental 

Psychology: Human Perception and Performance, 28(5), 1019‑1038. 

https://doi.org/10.1037/0096-1523.28.5.1019 

Caramazza, A., & Costa, A. (2000). The semantic interference effect in the picture-word interference 

paradigm: Does the response set matter? Cognition, 75(2), B51‑B64. 

Caramazza, A., & Costa, A. (2001). Set Size and Repetitions Are Not at the Base of the Differential 

Effects of Semantically Related Distractors: Implications for Models of Lexical Access. 

Cognition, 80, 291‑298. 

Carr, T. H. (1999). How does weaver pay attention? Behavioral and Brain Sciences, 22(1), 39‑40. 

https://doi.org/10.1017/S0140525X99231779 

Chen, D.-G., & Peace, K. (2013). Applied Meta-Analysis with R. Biostatistics Faculty Bookshelf, 1‑342. 

https://digitalcommons.georgiasouthern.edu/biostat-facbookshelf/4 

Cuetos, F., Ellis, A. W., & Alvarez, B. (1999). Naming times for the Snodgrass and Vanderwart pictures 

in Spanish. Behavior Research Methods, Instruments, & Computers, 31(4), 650–658. 

https://doi.org/10.3758/BF03200741 

Cuetos, F., Glez-Nosti, M., Barbón, A., & Brysbaert, M. (2011). SUBTLEX-ESP: Spanish word 

frequencies based on film subtitles. Psicológica, 32(2), 133–143. 

Cutler, A. (1981). Making up materials is a confounded nuisance, or: Will we able to run any 

psycholinguistic experiments at all in 1990? Cognition, 10(1), 65–70. 

https://doi.org/10.1016/0010-0277(81)90026-3 

Damian, M. F., & Martin, R. C. (1999). Semantic and phonological codes interact in single word 

production. Journal of Experimental Psychology. Learning, Memory, and Cognition, 25(2), 

345‑361. https://doi.org/10.1037/0278-7393.25.2.345 

Damian, M. F., & Bowers, J. S. (2003). Locus of semantic interference in picture-word interference 

tasks. Psychonomic Bulletin & Review, 10(1), 111‑117. https://doi.org/10.3758/BF03196474 



40 
 

Damian, M. F., & Spalek, K. (2014). Processing different kinds of semantic relations in picture-word 

interference with non-masked and masked distractors. Frontiers in Psychology, 5. 

https://doi.org/10.3389/fpsyg.2014.01183 

de Zubicaray, G. I., McMahon, K. L., Eastburn, M. M., & Wilson, S. J. (2002). 

Orthographic/phonological facilitation of naming responses in the picture-word task: An event-

related fMRI study using overt vocal responding. NeuroImage, 16(4), 1084‑1093. 

de Zubicaray, G. I., Miozzo, M., Johnson, K., Schiller, N. O., & McMahon, K. L. (2012). Independent 

distractor frequency and age-of-acquisition effects in picture-word interference: FMRI evidence 

for post-lexical and lexical accounts according to distractor type. Journal of Cognitive 

Neuroscience, 24(2), 482‑495. https://doi.org/10.1162/jocn_a_00141 

Dhooge, E., De Baene, W., & Hartsuiker, R. J. (2013). A late locus of the distractor frequency effect in 

picture–word interference: Evidence from event-related potentials. Brain and Language, 124(3), 

232‑237. https://doi.org/10.1016/j.bandl.2012.12.005 

Dhooge, E., & Hartsuiker, R. J. (2010). The distractor frequency effect in picture-word interference: 

Evidence for response exclusion. Journal of Experimental Psychology. Learning, Memory, and 

Cognition, 36(4), 878‑891. https://doi.org/10.1037/a0019128 

Dhooge, E., & Hartsuiker, R. J. (2011). The distractor frequency effect in a delayed picture-word 

interference task: Further evidence for a late locus of distractor exclusion. Psychonomic 

Bulletin & Review, 18(1), 116‑122. https://doi.org/10.3758/s13423-010-0026-0 

Ellis, A. W., & Morrison, C. M. (1998). Real age-of-acquisition effects in lexical retrieval. Journal of 

Experimental Psychology. Learning, Memory, and Cognition, 24(2), 515‑523. 

https://doi.org/10.1037/0278-7393.24.2.515 



41 
 

Ferrand, L., Méot, A., Spinelli, E., New, B., Pallier, C., Bonin, P., Dufau, S., Mathôt, S., & Grainger, J. 

(2018). MEGALEX: A megastudy of visual and auditory word recognition. Behavior Research 

Methods, 50(3), 1285‑1307. https://doi.org/10.3758/s13428-017-0943-1 

Finkbeiner, M., & Caramazza, A. (2006). Now you see it, now you don’t: On turning semantic 

interference into facilitation in a Stroop-like task. Cortex, 42(6), 790‑796. 

https://doi.org/10.1016/S0010-9452(08)70419-2 

Finocchiaro, C., & Navarrete, E. (2013). About the locus of the distractor frequency effect: Evidence 

from the production of clitic pronouns. Journal of Cognitive Psychology, 25(7), 861‑872. 

https://doi.org/10.1080/20445911.2013.832254 

Foucart, A., Branigan, H. P., & Bard, E. G. (2010). Determiner selection in Romance languages: 

Evidence from French. Journal of Experimental Psychology. Learning, Memory, and Cognition, 

36(6), 1414‑1421. https://doi.org/10.1037/a0020432 

Frederiksen, J. R., & Kroll, J. F. (1976). Spelling and sound: Approaches to the internal lexicon. Journal 

of Experimental Psychology: Human Perception and Performance, 2(3), 361‑379. 

https://doi.org/10.1037/0096-1523.2.3.361 

Gauvin, H. S., Jonen, M. K., Choi, J., McMahon, K., & Zubicaray, G. I. de. (2018). No lexical competition 

without priming: Evidence from the picture–word interference paradigm: Quarterly Journal of 

Experimental Psychology. https://doi.org/10.1177/1747021817747266 

Gelman, A., & Carlin, J. (2014). Beyond power calculations: Assessing Type S (Sign) and Type M 

(Magnitude) errors. Perspectives on Psychological Science: A Journal of the Association for 

Psychological Science, 9(6), 641‑651. https://doi.org/10.1177/1745691614551642 

Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A., & Rubin, D. (2013). Bayesian Data Analysis 

(3rd Edition). New York: Chapman and Hall/CRC 



42 
 

Geng, J., Schnur, T. T., & Janssen, N. (2014). Relative speed of processing affects interference in 

Stroop and picture–word interference paradigms: Evidence from the distractor frequency effect. 

Language, Cognition and Neuroscience, 29(9), 1100‑1114. 

https://doi.org/10.1080/01690965.2013.846473 

Goslin, J., Galluzzi, C., & Romani, C. (2014). PhonItalia: A phonological lexicon for Italian. Behavior 

Research Methods, 46(3), 872‑886. https://doi.org/10.3758/s13428-013-0400-8 

Hair Jr., J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010) Multivariate Data Analysis: A Global 

Perspective. 7th Edition, Pearson Education, Upper Saddle River. 

Hartendorp, M. O., Van der Stigchel, S., & Postma, A. (2013). To what extent do we process the 

nondominant object in a morphed figure? Evidence from a picture–word interference task. 

Journal of Cognitive Psychology, 25(7), 843–860. 

https://doi.org/10.1080/20445911.2013.832197 

Lee, M. D., & Wagenmakers, E.-J. (2014). Bayesian Cognitive Modeling: A Practical Course. Cambridge 

University Press. 

Heuven, W. J. B. van, Mandera, P., Keuleers, E., & Brysbaert, M. (2014). SUBTLEX-UK: A new and 

improved word frequency database for British English. The Quarterly Journal of Experimental 

Psychology, 67(6), 1176‑1190. https://doi.org/10.1080/17470218.2013.850521 

Hutson, J., & Damian, M. F. (2014). Semantic gradients in picture-word interference tasks: Is the size 

of interference effects affected by the degree of semantic overlap? Frontiers in Psychology, 5. 

https://doi.org/10.3389/fpsyg.2014.00872 

Janssen, N., Schirm, W., Mahon, B. Z., & Caramazza, A. (2008). Semantic interference in a delayed 

naming task: Evidence for the response exclusion hypothesis. Journal of Experimental 

Psychology. Learning, Memory, and Cognition, 34(1), 249‑256. https://doi.org/10.1037/0278-

7393.34.1.249 



43 
 

Jeffreys, H. (1961). Theory of Probability. Oxford, UK: Oxford University Press. 

Jescheniak, J. D., & Levelt, W. J. M. (1994). Word frequency effects in speech production: Retrieval of 

syntactic information and of phonological form. Journal of Experimental Psychology: Learning, 

Memory, and Cognition, 20(4), 824‑843. https://doi.org/10.1037/0278-7393.20.4.824 

Keuleers, E. (2013). Vwr (R package). Useful functions for visual word recognition research 

(https://www.rdocumentation.org/packages/vwr/versions/0.3.0) 

Keuleers, E., Brysbaert, M., & New, B. (2010). SUBTLEX-NL: A new measure for Dutch word frequency 

based on film subtitles. Behavior Research Methods, 42(3), 643‑650. 

https://doi.org/10.3758/BRM.42.3.643 

Levelt, W. J., Roelofs, A., & Meyer, A. S. (1999). A theory of lexical access in speech production. The 

Behavioral and Brain Sciences, 22(1), 1‑38; discussion 38-75. 

Lupker, S. J. (1979). The semantic nature of response competition in the picture-word interference 

task. Memory & Cognition, 7(6), 485‑495. https://doi.org/10.3758/BF03198265 

Mädebach, A., Oppermann, F., Hantsch, A., Curda, C., & Jescheniak, J. D. (2011). Is there semantic 

interference in delayed naming? Journal of Experimental Psychology. Learning, Memory, and 

Cognition, 37(2), 522‑538. https://doi.org/10.1037/a0021970 

Mahon, B. Z., Costa, A., Peterson, R., Vargas, K. A., & Caramazza, A. (2007). Lexical selection is not by 

competition: A reinterpretation of semantic interference and facilitation effects in the picture-

word interference paradigm. Journal of Experimental Psychology: Learning, Memory, and 

Cognition, 33(3), 503‑535. https://doi.org/10.1037/0278-7393.33.3.503 

Meschyan, G., & Hernandez, A. (2002). Age of acquisition and word frequency: Determinants of 

object-naming speed and accuracy. Memory & Cognition, 30(2), 262–269. 

https://doi.org/10.3758/BF03195287 



44 
 

Meyer, A. S. (1996). Lexical access in phrase and sentence production: Results from Picture–Word 

Interference experiments. Journal of Memory and Language, 35(4), 477‑496. 

https://doi.org/10.1006/jmla.1996.0026 

Michel Lange, V., & Laganaro, M. (2014). Inter-subject variability modulates phonological advance 

planning in the production of adjective-noun phrases. Frontiers in Language Sciences, 5, 43. 

https://doi.org/10.3389/fpsyg.2014.00043 

Miozzo, M., & Caramazza, A. (2003). When more is less: A counterintuitive effect of distractor 

frequency in the picture-word interference paradigm. Journal of Experimental Psychology. 

General, 132(2), 228‑252. 

Mousikou, P., & Rastle, K. (2015). Lexical frequency effects on articulation: A comparison of picture 

naming and reading aloud. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.01571 

New, B., Brysbaert, M., Veronis, J., & Pallier, C. (2007). The use of film subtitles to estimate word 

frequencies. Applied Psycholinguistics, 28(4), 661‑677. 

https://doi.org/10.1017/S014271640707035X 

New, B., Pallier, C., Brysbaert, M., & Ferrand, L. (2004). Lexique 2: A new French lexical database. 

Behavior Research Methods, Instruments, & Computers, 36(3), 516‑524. 

https://doi.org/10.3758/BF03195598 

Oldfield, R. C., & Wingfield, A. (1965). Response latencies in naming objects. Quarterly Journal of 

Experimental Psychology, 17(4), 273‑281. https://doi.org/10.1080/17470216508416445 

Piai, V., Roelofs, A., Jensen, O., Schoffelen, J.-M., & Bonnefond, M. (2014). Distinct patterns of brain 

activity characterise lexical activation and competition in spoken word production. PLOS ONE, 

9(2), e88674. https://doi.org/10.1371/journal.pone.0088674 

Piai, V., Roelofs, A., & Schriefers, H. (2011). Semantic interference in immediate and delayed naming 

and reading: Attention and task decisions. Journal of Memory and Language, 64(4), 404‑423. 



45 
 

Piai, V., Roelofs, A., & Schriefers, H. (2012). Distractor strength and selective attention in picture-

naming performance. Memory & Cognition, 40(4), 614‑627. https://doi.org/10.3758/s13421-

011-0171-3 

Piantadosi, S. T. (2014). Zipf’s word frequency law in natural language: A critical review and future 

directions. Psychonomic Bulletin & Review, 21(5), 1112‑1130. https://doi.org/10.3758/s13423-

014-0585-6 

Posnansky, C. J., & Rayner, K. (1977). Visual-feature and response components in a picture-word 

interference task with beginning and skilled readers. Journal of Experimental Child Psychology, 

24(3), 440‑460. https://doi.org/10.1016/0022-0965(77)90090-X 

R Core Team (2021). R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. https://www.R-project.org/ 

Rayner, K., & Posnansky, C. (1978). Stages of processing in word identification. Journal of 

Experimental Psychology: General, 107(1), 64‑80. https://doi.org/10.1037/0096-3445.107.1.64 

Riès, S. K., Fraser, D., McMahon, K. L., & de Zubicaray, G. I. (2015). Early and late electrophysiological 

effects of distractor frequency in picture naming: Reconciling input and output accounts. Journal 

of Cognitive Neuroscience, 27(10), 1936‑1947. https://doi.org/10.1162/jocn_a_00831 

Rizio, A. A., Moyer, K. J., & Diaz, M. T. (2017). Neural evidence for phonologically based language 

production deficits in older adults: An fMRI investigation of age-related differences in picture-

word interference. Brain and Behavior, 7(4), e00660. https://doi.org/10.1002/brb3.660 

Rodríguez-Ferreiro, J., Davies, R., & Cuetos, F. (2014). Semantic domain and grammatical class effects 

in the picture–word interference paradigm. Language, Cognition and Neuroscience, 29(1), 

125‑135. https://doi.org/10.1080/01690965.2013.788195 

Roelofs, A. (1992). A spreading-activation theory of lemma retrieval in speaking. Cognition, 42(1‑3), 

107‑142. https://doi.org/10.1016/0010-0277(92)90041-f 



46 
 

Roelofs, A. (2001). Set size and repetition matter: Comment on Caramazza and Costa (2000). 

Cognition, 80(3), 283‑290. https://doi.org/10.1016/S0010-0277(01)00134-2 

Roelofs, A. (2003). Goal-referenced selection of verbal action: Modeling attentional control in the 

Stroop task. Psychological Review, 110(1), 88‑125. https://doi.org/10.1037/0033-295x.110.1.88 

Roelofs, A. (2005). From Popper to Lakatos: A Case for Cumulative Computational Modeling. In 

Twenty-first century psycholinguistics: Four cornerstones (p. 313‑330). Lawrence Erlbaum 

Associates Publishers. 

Roelofs, A. (2008). Tracing attention and the activation flow of spoken word planning using eye 

movements. Journal of Experimental Psychology. Learning, Memory, and Cognition, 34(2), 

353‑368. https://doi.org/10.1037/0278-7393.34.2.353 

Roelofs, A. (2018). A unified computational account of cumulative semantic, semantic blocking, and 

semantic distractor effects in picture naming. Cognition, 172, 59‑72. 

https://doi.org/10.1016/j.cognition.2017.12.007 

Roelofs, A., Piai, V., & Schriefers, H. (2011). Selective attention and distractor frequency in naming 

performance: Comment on Dhooge and Hartsuiker (2010). Journal of Experimental Psychology. 

Learning, Memory, and Cognition, 37(4), 1032‑1038. https://doi.org/10.1037/a0023328 

Sailor, K., Brooks, P. J., Bruening, P. R., Seiger-Gardner, L., & Guterman, M. (2009). Exploring the time 

course of semantic interference and associative priming in the picture–word interference task: 

Quarterly Journal of Experimental Psychology. https://doi.org/10.1080/17470210802254383 

Sassenhagen, J., & Alday, P. M. (2016). A common misapplication of statistical inference: Nuisance 

control with null-hypothesis significance tests. Brain and Language, 162, 42‑45. 

https://doi.org/10.1016/j.bandl.2016.08.001 

Scaltritti, M., Navarrete, E., & Peressotti, F. (2015). Distributional analyses in the picture–word 

interference paradigm: Exploring the semantic interference and the distractor frequency effects. 



47 
 

The Quarterly Journal of Experimental Psychology, 68(7), 1348‑1369. 

https://doi.org/10.1080/17470218.2014.981196 

Schad, D.J., Nicenboim, B., Bürkner, P.-C., Betancourt, M., & Vasishth, S. (2022). Workflow techniques 

for the robust use of Bayes factors. Psychological Methods. 

Schiepers, C. (1980). Response latency and accuracy in visual word recogniton. Perception & 

psychophysics, 27, 71-81. https://doi.org/10.3758/BF03199908 

Schriefers, H., Meyer, A. S., & Levelt, W. J. M. (1990). Exploring the time course of lexical access in 

language production: Picture-word interference studies. Journal of Memory and Language, 

29(1), 86‑102. https://doi.org/10.1016/0749-596X(90)90011-N 

Shao, Z., Roelofs, A., Martin, R. C., & Meyer, A. S. (2015). Selective inhibition and naming 

performance in semantic blocking, picture-word interference, and color–word Stroop tasks. 

Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(6), 1806‑1820. 

https://doi.org/10.1037/a0039363 

Starreveld, P. A., Heij, W. L., & Verdonschot, R. (2013). Time course analysis of the effects of 

distractor frequency and categorical relatedness in picture naming: An evaluation of the 

response exclusion account. Language and Cognitive Processes, 28(5), 633‑654. 

https://doi.org/10.1080/01690965.2011.608026 

Starreveld, P. A., & La Heij, W. (1996). Time-course analysis of semantic and orthographic context 

effects in picture naming. Journal of Experimental Psychology: Learning, Memory, and Cognition, 

22(4), 896‑918. https://doi.org/10.1037/0278-7393.22.4.896 

Sutton, A. J., & Abrams, K. R. (2001). Bayesian methods in meta-analysis and evidence synthesis. 

Statistical Methods in Medical Research, 10(4), 277–303. 

https://doi.org/10.1177/096228020101000404 



48 
 

Underwood, G., & Briggs, P. (1984). The development of word recognition processes. British Journal 

of Psychology, 75(2), 243‑255. https://doi.org/10.1111/j.2044-8295.1984.tb01896.x 

Vieth, H. E., McMahon, K. L., & de Zubicaray, G. I. (2014). The roles of shared vs. distinctive 

conceptual features in lexical access. Frontiers in Psychology, 5. 

https://doi.org/10.3389/fpsyg.2014.01014 

White, K. K., Abrams, L., LaBat, L. R., & Rhynes, A. M. (2016). Competing influences of emotion and 

phonology during picture-word interference. Language, Cognition and Neuroscience, 31(2), 

265‑283. https://doi.org/10.1080/23273798.2015.1101144 

Yarkoni, T., Balota, D. & Yap, M. (2008). Moving beyond Coltheart’s N: A new measure of 

orthographic similarity. Psychonomic Bulletin & Review, 15, 971–979. 

https://doi.org/10.3758/PBR.15.5.971 

Zipf, G. K. (1935). (reprinted 1965). The psycho-biology of language. Cambridge MA: MIT Press. 

 

  



49 
 

Appendix 1. Datasets included in meta-analyses 

Study ID (graphs) Experiment n° in paper Reference 

Mädebach 2011 Exp. 2 Experiment 2 

Mädebach et al. (2011) 

 

Mädebach 2011 Exp. 4 Experiment 4 

Mädebach 2011 Exp. 5a Experiment 5a 

Mädebach 2011 Exp. 6 Experiment 6 

Janssen 2008 Exp. 1a Experiment 1a 
Janssen et al. (2008) 

Janssen 2008 Exp. 2a Experiment 2a 

Scaltritti 2015 Exp. 1 Experiment 1 
Scaltritti et al. (2015) 

Scaltritti 2015 Exp. 3 Experiment 3 

Piai unpublished - - 

Damian 2014 - Damian & Spalek (2014) 

Gauvin 2018 Exp. 1 Familiarization Experiment 1 

Gauvin et al. (2018) 
Gauvin 2018 Exp. 1 No familiarization Experiment 1 

Gauvin 2018 Exp. 2 Familiarization Experiment 2 

Gauvin 2018 Exp. 2 No familiarization Experiment 2 

Damian 2003 SOA0 - Damian & Bowers (2003) 

Piai 2014 - Piai et al. (2014) 

Vieth 2014 SOA 0  Vieth et al. (2014) 

Hartendorp 2013 Exp. 1 Experiment 1 
Hartendorp et al. (2013) 

Hartendorp 2013 Exp. 2 Experiment 2 

Hutson 2014 Exp. 1 Experiment 1 
Hutson & Damian, (2014) 

Hutson 2014 Exp. 2 Experiment 2 

Roelofs 2008 Exp. 3 Experiment 3 Roelofs (2008) 

vanRijn unpublished - - 
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Rodriguez 2014 - Rodríguez-Ferreiro et al. (2014) 

Sailor 2009 Exp.2 SOA0 Experiment 2 Sailor et al. (2009) 

Finocchiaro 2013 Exp. 1 Experiment 1 Finocchiaro & Navarrete (2013) 
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Appendix 2. Descriptive statistics (Mean, Standard Deviation and Range) for the variables distractor frequency, length, OLD20 in each individual study 

Study Frequency Length OLD20 
 Mean SD Min Max Mean SD Min Max Mean SD Min Max 

Damian 2003 SOA0 25.93 22.24 2.52 68.40 4.56 1.17 3 6 1.45 0.40 1 2.45 
Damian 2014 31.81 70.30 0.55 321.82 5.24 1.37 3 9 1.82 0.23 1.3 2.5 
Finocchiaro 2013 Exp. 1 5770.96 6263.46 583.00 25238.00 5.61 1.10 4 8 1.59 0.24 1 1.95 
Gauvin 2018 Exp. 1 Familiarization 9281.16 10908.99 384.00 55649.00 4.98 1.75 3 10 1.78 0.76 1 3.8 
Gauvin 2018 Exp. 1 No familiarization 9681.16 11482.61 384.00 55649.00 4.90 1.76 3 10 1.75 0.74 1 3.8 
Gauvin 2018 Exp. 2 Familiarization 4675.00 5675.20 284.00 32275.00 5.27 1.41 3 9 1.78 0.49 1 3.35 
Gauvin 2018 Exp. 2 No familiarization 4756.63 6011.74 284.00 32275.00 5.22 1.47 3 9 1.77 0.51 1 3.35 
Hartendorp 2013 Exp. 1 111.87 418.50 0.21 2465.94 5.46 1.64 2 8 1.77 0.62 1 2.85 
Hartendorp 2013 Exp. 2 81.96 126.20 0.96 458.00 5.78 2.56 3 11 1.90 0.80 1 3.8 
Hutson 2014 Exp. 1 3271.98 3644.02 63.00 22361.00 5.19 1.58 3 10 1.79 0.60 1 3.85 
Hutson 2014 Exp. 2 2908.65 3442.10 31.00 11628.00 5.13 0.86 3 7 1.84 0.39 1 2.5 
Janssen 2008 Exp. 1a 594.45 690.91 57.00 3716.00 5.48 1.27 3 9 1.95 0.48 1.3 3.45 
Janssen 2008 Exp. 2a 38.24 58.12 0.83 255.28 5.98 1.15 3 8 1.94 0.35 1 2.75 
Mädebach 2011 Exp. 2 14.37 32.00 0.24 162.41 5.45 1.29 4 8 1.75 0.37 1.05 2.7 
Mädebach 2011 Exp. 4 10.83 14.71 0.24 70.79 5.33 1.11 3 8 1.69 0.37 1 2.5 
Mädebach 2011 Exp. 5a 2023.86 1864.20 128.00 8886.00 5.48 1.33 3 10 1.95 0.48 1.3 3.45 
Mädebach 2011 Exp. 6 2024.01 1876.48 128.00 8886.00 5.48 1.32 3 10 1.95 0.47 1.3 3.45 
Piai 2014 159.33 652.86 1.99 4025.85 4.55 1.19 3 7 1.49 0.48 1 2.7 
Piai unpublished 179.69 691.18 1.99 4025.85 4.81 1.59 3 9 1.58 0.58 1 3.1 
Rodriguez 2014 20.31 28.46 0.05 129.42 5.72 1.29 4 8 1.89 0.46 1 2.95 
Roelofs 2008 Exp. 3 40.96 102.06 0.02 458.00 6.19 1.29 4 9 2.03 0.56 1.05 3.1 
Sailor 2009 Exp. 2 SOA 0 1571.74 3164.75 21.00 16831.00 5.29 1.22 3 8 1.91 0.70 1 3.75 
Scaltritti 2015 Exp. 1 1705.10 2425.42 32.00 13494.00 6.81 1.75 4 11 2.05 0.62 1 3.8 
Scaltritti 2015 Exp. 3 1685.59 2393.16 32.00 13494.00 6.82 1.75 4 11 2.05 0.62 1 3.8 
vanRijn unpublished 41.03 101.02 0.02 458.00 6.31 1.42 4 9 2.04 0.56 1.05 3.1 
Vieth 2014 SOA 0 1758.88 2294.19 25.00 11117.00 5.89 1.49 3 9 2.00 0.67 1 3.5 
     5.50 1.43 3.23 8.89 1.83 0.52 1.05 3.17 
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Appendix 3. Results of meta-analysis of distractor orthographic Levensthein distance (OLD20) 

 

Prior Estimate CrI (95%) 

Normal (0,100) 11.6 [5.4 , 17.4] 

Normal (0,200) 11.6 [5.4 , 17.4] 

Uniform (-100,100) 11.6 [5.4 , 17.4] 
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Appendix 4. Effects of word frequency, number of letters and OLD20 on lexical decision times in the English Lexicon Project 

 

Independent variable Estimate SE 

Lexical frequency (log number of occurrences per million) -45 1.06 

Word length (Number of letters) 21 0.64 

OLD20 58 1.54 
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Appendix 5. Sensitivity analyses. Meta-analytic estimates and 95% Credible Intervals with different priors for the effects of 
distractor frequency, distractor length, target word frequency, the interaction between distractor frequency and target word 
frequency (linear and quadratic terms), and the interaction between distractor frequency and distractor length 

 

Effect of distractor frequency  Effect of distractor length 

Prior Estimate CrI (95%)  Prior Estimate CrI (95%) 

Normal (0,100) -4.45 [-7.20 , -1.96 ]  Normal (0,100) 2.81 [0.75 , 4.81] 

Normal (0,200) -4.45 [-7.20 , -1.96]  Normal (0,200) 2.81 [0.75 , 4.82] 

Uniform (-100,100) -4.01 [-6.41 , -1.87]  Uniform (-
100,100) 

2.81 [0.73 , 4.83] 

 

Effect of target word frequency  Interaction target word * distractor frequency 
(linear) 

Prior Estimate CrI (95%)  Prior Estimate CrI (95%) 

Normal (0,100) -7.94 [-11.54 , -4.78]  Normal (0,100) 2.22 [0.46 , 4.07] 

Normal (0,200) -7.93 [-11.50 , -4.80]  Normal (0,200) 2.22 [0.46 , 4.06] 

Uniform (-100,100) -7.94 [-11.54 , -4.78]  Uniform (-
100,100) 

2.22 [0.45 , 4.06] 

 

Interaction target word * distractor frequency 
(quadratic) 

Prior Estimate CrI (95%) 

Normal (0,100) 52.47 [-43.75 , 148.93] 

Normal (0,200) 64.34 [ -41.58, 170.72] 

Uniform (-100,100) 42.18 [ -46.87, 97.06] 
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Interaction distractor frequency *distractor length 
Prior Estimate CrI (95%) 

Normal (0,100) -1.49 [-3.07 , 0.14] 

Normal (0,200) -1.49 [-3.07 , 0.15] 

Uniform (-100,100) -1.49 [-3.08 , 0.15] 

 

Interaction semantic category * distractor 
frequency 

 Interaction semantic category * distractor length 

Prior Estimate CrI (95%)  Prior Estimate CrI (95%) 

Normal (0,100) 0.28 [-3.46 , 3.83]  Normal (0,100) 1.21 [-2.9 , 5.43] 

Normal (0,200) 0.29 [-3.42 , 3.83]  Normal (0,200) 1.22 [-2.89 , 5.48] 

Uniform (-100,100) 0.29 [-3.46 , 3.89]  Uniform (-
100,100) 

1.22 [-2.89 , 5.44] 
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Appendix 6. Forest plot, meta-analysis of the interaction between Distractor frequency and Distractor length 

 

 

Summary of the random-effects meta-analysis modelling the interaction between distractor word frequency and distractor 

length on naming times. For each study, the figure displays, in black, the mean and posterior estimate (mean and 95% 

credible interval). A negative value means that the influence of word length is smaller for high frequency words. The black 

vertical line represents the grand mean (i.e., the meta-analytic effect) and the dashed vertical lines delimit the 95% credible 

interval of that estimate. 
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Appendix 7. Forest plot, meta-analysis of the main effect of target word frequency 

 

 

Summary of the random-effects meta-analysis modelling the effect of target word 

frequency on naming times. For each study, the figure displays, in black, the mean and 

posterior estimate (mean and 95% credible interval). A negative value means that 

distractors with a greater frequency value result in shorter naming latencies for the 

picture. The grey vertical line represents the grand mean (i.e., the meta-analytic effect) 

and the dashed vertical lines delimit the 95% credible interval of that estimate. 
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Appendix 8. Forest plot, meta-analysis of the interaction between Distractor frequency (linear term) and Target word 

frequency 

 

 

Summary of the random-effects meta-analysis modelling the interaction between target 

word frequency and distractor word frequency on naming times. For each study, the 

figure displays, in black, the mean and posterior estimate (mean and 95% credible 

interval). A positive value means that target words with a higher frequency value show 

less of a facilitative effect of distractor frequency. The grey vertical line represents the 

grand mean (i.e., the meta-analytic effect) and the dashed vertical lines delimit the 95% 

credible interval of that estimate. 
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Appendix 9. Forest plot, meta-analysis of the interaction between Distractor frequency (quadratic term) and Target word 

frequency 

 

 

Summary of the random-effects meta-analysis modelling the interaction between target 

word frequency and distractor word frequency (quadratic term) on naming times. For 

each study, the figure displays, in black, the mean and posterior estimate (mean and 95% 

credible interval). The grey vertical line represents the grand mean (i.e., the meta-

analytic effect) and the dashed vertical lines delimit the 95% credible interval of that 

estimate. 

 

 


