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des plantes, Montpellier, France

* jos.kafer@cnrs.fr

Suppression of recombination along the Y chromosome leads to its
degeneration, so why does a process with such potentially deleterious
consequences arise? In this issue of PLOS Biology, a new model
reveals how and why this might be.

Sex chromosomes, like those in humans with a large X and small Y, have a long evolutionary

history. Their difference is a dramatic consequence of the total absence of recombination of a

portion of the Y chromosome, which is present in a single copy in males (and absent in

females). The Y chromosome will therefore inevitably accumulate deleterious mutations,

which cause it to degrade and lose genes, and maybe even to disappear [1]. While the effects of

recombination suppression are well understood, it is not clear how it actually arises. Genes

with sex-antagonistic effects could be responsible for this. An allele could, for example, have

positive effects on male fitness and negative effects on female fitness; selection would favor

linkage to the sex-determining gene on the Y. While this hypothesis is attractive, empirical

support for it is weak or absent [2] and is sometimes even contradicted. For example, in fungi,

where there is no sexual dimorphism, large nonrecombining regions have been found [3]. Jay

and colleagues, in this issue of PLOS Biology [4], present a model for recombination suppres-

sion with minimal ingredients. They show that recombination suppression can arise because

initially, fragments of chromosomes with fewer deleterious mutations than the population

average exist, and these are thus favored. It’s somewhat ironic that this advantage rapidly turns

into a trap with the precise contrary effect: the accumulation of deleterious mutations.

Recombination is essential for selection by creating new combinations of alleles and thus

achieves the double task of keeping beneficial mutations while getting rid of the deleterious ones

[5]. Without recombination, a beneficial allele that becomes fixed just drags all the deleterious

mutations it is linked to along or it is lost if the cumulative effect of all deleterious mutations is too

strong. The absence of recombination leads to a ratchet-like mechanism (“Muller’s ratchet”): As

soon as there is no mutation-free strand of DNA anymore, it’s impossible to restore the original

strand; in a next step, there will be at least 2 mutations on each strand, then 3, etc., in a never-end-

ing process. With recombination, the average number of mutations on a strand of DNA will stabi-

lize due to an equilibrium between mutation (which is inevitable) and selection.

In a population, stretches of DNA with more or less mutations exist. It is actually beneficial,

on the short term, to preserve “lucky” stretches of DNA by preventing them from recombining
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with more mutation-laden counterparts. The most likely mechanism of recombination sup-

pression is inversion of a part of the chromosome, which prevents DNA to pair properly dur-

ing meiosis. As most deleterious mutations cause loss of function, they are largely recessive

and have much stronger effects when homozygous. Thus, individuals carrying “lucky” inver-

sions are favored as long as the frequency of the inversion in the population is low and homo-

zygotes for it are very rare. However, as the frequency increases, homozygosity results in

strong counterselection, which prevents such inversions to become fixed on autosomes.

However, as Jay and colleagues show, in the vicinity of a sex-determining locus, the result is

quite different (Fig 1). Such loci are particular, because heterozygous individuals (XY) repro-

duce with homozygous individuals (XX), and the sex-determining locus on the Y never occurs

as homozygote. Thus, a “lucky” inversion that encompasses this locus only experiences the

positive effects related to heterozygote advantage and not the counterselection due to homozy-

gosity. It can thus be fixed on the Y chromosome. Of course, it will experience the well-known

disadvantages of recombination suppression, which lead inevitably to degeneration. But once

the inversion is fixed, it’s too late: The only way out would be to restore recombination by the

exact reversal of the inversion, which Jay and colleagues show to be very unlikely in most

cases.

Surely, the selection of the inversion and the accumulation of deleterious mutations on it

occur simultaneously, and the exact outcome (fixation or loss of the inversion) depends on the

balance of these, and on chance. But, although the probability of fixation might be small, the

Fig 1. Schematic representation of the processes modeled by Jay and colleagues. Consider chromosomes with a sex-determining locus (yellow) and several deleterious

mutations (gray bars). For the sake of simplicity, only 1 pair of chromosomes of 3 individuals of the heterogametic sex (XY males or ZW females) is shown. (a) The

chromosomes all carry some deleterious mutations. (b) A “lucky” inversion (pink) captures fewer mutations than the population average and also includes the sex-

determining locus. (c) This inversion gets fixed in the population and starts accumulating mutations. (d) As recombination is completely impossible in this region, it

accumulates mutations and carries more than other regions in the genome. However, adjacent or (partially) overlapping, a new “lucky” inversion can arise (cyan). (e)

This lucky inversion can become fixed as well, thereby creating a new evolutionary stratum.

https://doi.org/10.1371/journal.pbio.3001718.g001
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result is irreversible. And it can occur repeatedly, leading to so-called evolutionary strata [6].

The model is applicable to other so-called “supergenes,” including ZW sex chromosomes and

mating type loci.

Two other convincing models have been published recently, in which the suppression of

recombination initially evolves without selection for sexual specialization. Jeffries and col-

leagues [7] consider that the accumulation of sequence divergence, possible when the recombi-

nation rates are lower around the sex-determining locus, can by itself reduce the probability of

recombination, creating a positive feedback loop leading to the complete loss of recombina-

tion. This model is attractive because it doesn’t require inversions to happen, but it is not clear

if the process can occur in reality. Lenormand and Roze [8] also considered fixation of recom-

bination suppression (e.g., inversions) around a sex-determining locus due to less mutational

load, as in the model of Jay and colleagues (Fig 1). However, they identify an entirely different

mechanism that prevents the restoration of recombination: This happens through the evolu-

tion of dosage compensation, even in the absence of sex-specific optima for gene expression.

The processes described in these models can occur together, and none forbid sex-antagonistic

selection, which could thus also interfere.

There are important differences between nonrecombining regions; for example, in plant

sex chromosomes, large nonrecombining regions can evolve quite quickly in some species,

leading to very different X and Y chromosomes, while other, much older sex chromosomes

have only small nonrecombining regions [9]. The reasons for these differences are not yet

understood. Could these new models shed new light on this enigma? According to Jay and col-

leagues, selection during a haploid phase in the life cycle (plants), as well as the turnover of

degenerated alleles in multiallelic systems (e.g., genetic self-incompatibility), could limit the

expansion of the nonrecombining region. Furthermore, population size, the degree of out-

crossing, and sexual dimorphism could play a role. Finally, inherently genomic features such

as the distribution of recombination events along the genome, or the frequency and size of

inversions, certainly influence the dynamics of recombination suppression, but these features

have only been quantified in a few model species. A clear-cut answer is unlikely to emerge as

the observed variation is large, even within clades, so the characterization of recombination

suppression in more species is necessary to understand the interaction of the multiple factors

involved.
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