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We investigate different geometrical properties of the inhomogeneous Poisson point process Λ µ associated to a positive, locally finite, σ-finite measure µ on the unit disk. In particular, we characterize the processes Λ µ such that almost surely: 1) Λ µ is a Carleson-Newman sequence; 2) Λ µ is the union of a given number M of separated sequences. We use these results to discuss the measures µ such that the associated process Λ µ is almost surely an interpolating sequence for the Hardy, Bloch or weighted Dirichlet spaces.

INTRODUCTION AND MAIN RESULTS

Important notions in spaces of analytic functions include zero-sets, Carleson measures, interpolation, sampling, frames, etc. Such properties have been studied for many well-known spaces of analytic functions in a deterministic setting. A canonical example is the Hardy space, where all these properties are well established, see [START_REF] Garnett | Bounded analytic functions[END_REF]. In other spaces such properties admit theoretical characterizations which are not checkable in general (e.g. interpolation in Dirichlet spaces), see e.g. [START_REF] Seip | Interpolation and Sampling in Spaces of Analytic Functions[END_REF] for a general reference. There also exist situations where a general characterization is not available. In these circumstances it is useful to consider a random setting, which allows to see whether certain properties are "generic" in a sense. The random model we are interested in here is the Poisson point process.

A Poisson point process in the unit disk D is a random sequence Λ defined in the following way: for any Borel set A ⊂ D the counting random variable N A = #(A ∩ Λ) is well defined and (a) N A is a Poisson random variable, i.e., there exists µ(A) ≥ 0 such that the probability distribution of N A is

P(N A = k) = e -µ(A) (µ(A)) k k! , k ≥ 0.
In It turns out that these two properties uniquely characterize the point process. Also, the values µ(A) define a σ-finite Borel measure on D, which is called the intensity of the process.

The Poisson process is a well-known statistical model for point distributions with no (or weak) interactions, and it has multiple applications in a great variety of fields [START_REF]Wikipedia contributors[END_REF]. Because of property (b), it is clearly not adequate to describe distributions in which each point is not statistically independent of the other points of the process. For such situations other models have been proposed (e.g. determinantal processes or zeros of Gaussian analytic functions for random sequences with repulsion, or Cox processes for situations with positive correlations and clumping [START_REF] Hough | Zeros of Gaussian analytic functions and determinantal point processes[END_REF]).

It is also possible to create a Poisson process from a given, σ-finite, locally finite, positive Borel measure µ in D, in the sense that there exists a point process Λ µ with intensity µ, i.e, whose counting functions satisfy properties (a) and (b) above. This is a well-known, non-trivial fact that can be found, for example, in [START_REF] Last | Lectures on the Poisson process[END_REF]Theorem 3.6]. Such a Poisson process Λ µ is sometimes called inhomogeneous, or non-stationary.

In this paper, given a positive Borel measure µ on D, we study elementary geometric properties of the inhomogeneous Poisson process of intensity µ, specifically in relation to conditions used to describe interpolating sequences for various spaces of analytic functions in D. We shall always assume that µ(D) = +∞, since otherwise Λ µ would be finite almost surely.

The probabilistic point of view has already been explored before in connection with interpolation. Here we mention Cochran [START_REF] Cochran | Random Blaschke products[END_REF] and Rudowicz [START_REF] Rudowicz | Random sequences interpolating with probability one[END_REF] who considered the probabilistic model Λ = {r n e iθn } n in which the radii r n ⊂ (0, 1) are fixed a priori and the arguments θ n are chosen uniformly and independently in [0, 2π] (a so-called Steinhaus sequence). For this model they established a zero-one condition on {r n } n so that the resulting random sequence is almost surely interpolating for the Hardy spaces. In [START_REF] Chalmoukis | Random Interpolating Sequences in Dirichlet Spaces[END_REF] similar results, for the same probabilistic model, were proven for the scale of weighted Dirichlet spaces between the Hardy space and the classical Dirichlet space. See also [START_REF] Dayan | Random Interpolating Sequences in the Polydisc and the Unit Ball[END_REF] for related results in the unit ball and the polydisk.

We express our results in terms of a dyadic discretization of µ. Consider first the dyadic annuli

A n = {z ∈ D : 2 -(n+1) < 1 -|z| ≤ 2 -n }, n ≥ 0.
Each A n can be split into 2 n boxes of the same size 2 -n :

T n,k = z = re it ∈ A n : k 2 n ≤ t 2π < k + 1 2 n , k = 0, 1, . . . , 2 n -1.
These boxes can be viewed as the top halves of the Carleson windows

Q(I n,k ) = z = re iθ ∈ D : r > 1 -2 -n , e iθ ∈ I n,k
associated to the dyadic intervals

(1) 

I n,k = e it ∈ T : k 2 n ≤ t 2π < k + 1 2 n , n ≥ 0 , k = 0, 1, . . . , 2 n -1. I n,k Q(I n,k ) T n,k FIGURE 1.
µ n,k := E[X n,k ] = Var[X n,k ] = µ(T n,k ).
In these terms, the assumption µ(D) = +∞ is just

µ(D) = n∈N 2 n -1 k=0 µ n.k = n,k µ n,k = +∞.
A first geometric property on random sequences we are interested in is separation. For this, we recall that the pseudo-hyperbolic distance in D is given by

ρ(z, w) = z -w 1 -wz z, w ∈ D. Definition 1.1. A sequence Λ = {λ k } k≥1 ⊂ D is separated if there exists δ > 0 such that ρ(λ k , λ l ) ≥ δ, k = l.
When we need to specify the separation constant we say that Λ is δ-separated.

We are now in a position to state our result characterizing those Λ µ which can (almost surely) be expressed as finite unions of separated sequences. Theorem 1.2. Let Λ µ be the Poisson process associated to a positive, σ-finite, locally finite measure µ and let M ≥ 1 be an integer. Then

P Λ µ union of M separated sequences =        1 if n,k µ M +1 n,k < ∞ 0 if n,k µ M +1 n,k = ∞.
In particular,

P Λ µ separated =        1 if n,k µ 2 n,k < ∞ 0 if n,k µ 2 n,k = ∞.
The characterization of a.s. separated sequences was first obtained, with a different proof, in [2, Teorema 3.2.1].

Our second result deals with so-called α-Carleson sequences. Given any arc I ⊂ T = ∂D let |I| denote its normalized length and consider the associated Carleson window

Q(I) = z = re iθ ∈ D : r > 1 -|I|, e iθ ∈ I . Definition 1.3. Let α ∈ (0, 1]. The sequence Λ satisfies the α-Carleson condition if there exists C > 0 such that for all arcs I ⊂ T λ∈Q(I) (1 -|λ|) α ≤ C|I| α .
Such sequences will also be called α-Carleson sequences.

Observe that to check the α-Carleson condition it is enough to test on the dyadic intervals I n,k given in [START_REF] Aleman | Interpolating Sequences in Spaces with the Complete Pick Property[END_REF].

The sequences Λ satisfying the 1-Carleson condition are by far the most studied, because of their rôle in the famous characterization of the interpolating sequences for the algebra H ∞ of bounded holomorphic functions, given by L. Carleson [START_REF] Carleson | An interpolation problem for bounded analytic functions[END_REF] (see Section 3). They are sometimes found in the literature under the name of Carleson-Newman sequences.

The α-Carleson property above is a special case of a more general condition: a finite, positive Borel measure σ on D is a Carleson-measure of order α ∈ (0, 1] if σ(Q(I)) ≤ C|I| α for some C > 0 and all intervals I. As shown by L. Carleson (see e.g. [START_REF] Garnett | Bounded analytic functions[END_REF]), Carleson measures (of order 1) are precisely those for which the embedding H 2 ⊂ L 2 (D, σ) holds; here H 2 is the classical Hardy space (see the definition in Subsection 3.1 below). Carleson measures of order α < 1 have been used, for example, in providing sufficient conditions for solvability of the ∂b -equation in L p , L p,∞ and in Lipschitz spaces of the boundary of strictly pseudoconvex domains [START_REF] Amar | Mesures de Carleson d'ordre α et solutions au bord de l'équation ∂b[END_REF].

Theorem 1.4. Let Λ µ be the Poisson process associated to a positive, σ-finite, locally finite measure µ. Then (a)

P Λ µ is a 1-Carleson sequence =        1 if there exists γ > 1 such that n,k µ γ n,k < ∞ 0 if for all γ > 1 n,k µ γ n,k = ∞. (b) Let α ∈ (0, 1). If there exists 1 < γ < 1 1-α such that n,k µ γ n,k < +∞, then P Λ µ is α-Carleson = 1
(c) There exists a positive, σ-finite, locally finite measure µ such that

n,k µ 1/(1-α) n,k
< +∞ and

P Λ µ is α-Carleson = 0.
(d) For every γ > 1 there exists a positive, σ-finite, locally finite measure µ such that

n,k µ γ n,k = +∞ but P Λ µ is α-Carleson = 1 for all α ∈ (0, 1).
Remarks. 1) The first statement in part (a) is connected with the first part of the statement in Theorem 1.2, since it is a well-known fact that every 1-Carleson (or Carleson-Newman) sequence can be split into a finite number of separated sequences, each of which being of course 1-Carleson [START_REF] Mcdonald | Toeplitz operators on the disc[END_REF]Lemma 21] (obviously a finite number of arbitrary separated sequences may not be Carleson-Newman). However Theorem 1.4(a) does not give a precise information on the number of separated sequences involved. It is also mentionable that the condition for a.s. separation from Theorem 1.2 implies automatically the Carleson condition (picking γ = 2 > 1). This is perhaps more surprising and may be explained by the nature of the process: the independence of the different points allows for big fluctuations, so the probability of finding pairs of points arbitrarily close is quite big unless the number of points in the process is restricted severely (up to n,k µ 2 n,k < ∞).

2) It is interesting to point out that for the inhomogeneous Poisson process we have a characterization of 1-Carleson sequences, while in the a priori simpler random model with fixed radii and random arguments there is only a sufficient -still optimal -condition (see [START_REF] Chalmoukis | Random Interpolating Sequences in Dirichlet Spaces[END_REF]Theorem 1.4]).

3) In the case α ∈ (0, 1) the results are less precise than when α = 1. The value 1/(1 -α) turns out to be an optimal breakpoint, but nothing specific can be said beyond this value without additional conditions on the distribution of µ. The example given in (c) is part of a certain parameter dependent scale of measures which will be discussed in Section 4.1, and for which the α-Carleson condition is characterized in terms of the parameter. 4) Our conditions, both here and in Theorem 1.2, are expressed in terms of µ n,k , thus redistributing continuously µ on T n,k if necessary, we can always assume that µ is absolutely continuous with respect to the Lebesgue measure.

The structure of the paper is as follows. In Section 2 we prove the main Theorems 1.2 and 1.4. Section 3 deals with the consequences of these results in the study of interpolating sequences for various spaces of holomorphic functions. In particular, we find precise conditions so that a Poisson process Λ µ is almost surely an interpolating sequence for the Hardy spaces H p , 0 < p ≤ ∞, the Bloch space B, or the Dirichlet spaces D α , α ∈ (1/2, 1). A final section is devoted to provide examples of Poisson processes associated to some simple measures and to give integral conditions (non-discrete) on µ which are in some cases equivalent to the discrete versions used in the statements.

We finish this introduction recalling the Borel-Cantelli lemma, which is a central tool in this paper. We refer to [START_REF] Billingsley | Probability and measure[END_REF] for a general source on probability theory. Given a sequence of events A k let lim sup A k = {ω : ω ∈ A k for infinitely many k}.

Lemma 1.5. Let (A k ) k be a sequence of events in a probability space. Then

(1) If P(A k ) < ∞, then P(lim sup A k ) = 0, (2) If the events A k are independent and P(A k ) = ∞, then P(lim sup A k ) = 1.
Acknowledgements: The authors would like to thank Joaquim Ortega-Cerdà for suggesting the consideration of Poisson processes and for helpful discussions.

2. PROOF OF THEOREMS 1.2 AND 1.4.

2.1. Proof of Theorem 1.2. Assume first that n,k µ M +1
n,k < +∞, and define the events

A n,k = {X n,k > M } = {X n,k ≥ M + 1}. Then P(A n,k ) = 1 - M j=0 P(X n,k = j) = 1 -e -µ n,k M j=0 µ j n,k j! .
By hypothesis lim n (sup k µ n,k ) = 0, so we can use Taylor's formula

(2)

1 -e -x ( M j=0 x j j! ) = x M +1 (M + 1)! + o(x M +1 ) x → 0 to deduce that n,k P(A n,k ) n,k µ M +1 n,k (M + 1)! < +∞.
By the Borel-Cantelli lemma X n,k ≤ M for all but at most a finite number of T n,k .

In principle this does not imply that Λ µ can be split into M separated sequences, because it might happen that points of two neighboring T n,k come arbitrarily close. This possibility is excluded by repeating the above arguments to a new dyadic partition, made of shifted boxes Tn,k having the "lower vertices" (those closer to T) at the center of the T n,k 's (see Figure 2 below); let

Tn,k = z = re it : 3 2 2 -(n+2) < 1 -r ≤ 3 2 2 -(n+1) ; k + 1/4 2 n ≤ t 2π < k + 3/4 2 n .
Since each Tn,k is included in the union of at most four T m,j , we still have n,k μM+1 n,k < ∞, and therefore, as before, Xn,k = N Tn,k is at most M , except for maybe a finite number of indices (n, k). This prevents that two adjacent T n,k have more than M points getting arbitrarily close. In conclusion, for all but a finite number of indices X n,k ≤ M , hence the part of Λ µ in these boxes can be split into M separated sequences. Adding the remaining finite number of points to any of these sequences may change the separation constant, but not the fact that they are separated.

I n,k T n,k Tn,k FIGURE 2. Dyadic partitions: {T n,k } n,k in blue, { Tn,k } n,k in red. Assume now that n,k µ M +1
n,k = +∞. We shall prove that for every

δ l 0 = 2 -l 0 , l 0 ∈ N, P Λ union of M δ l 0 -separated sequences = 0.
Split each side of T n,k into 2 l 0 segments of the same length. This defines a partition of T n,k in 2 2l 0 small boxes of side length 2 -n 2 -l 0 , which we denote by

T l 0 ,j n,k j = 1, . . . , 2 2l 0 . Let X l 0 ,j n,k = N T l 0 ,j n,k
denote the corresponding counting variable, which follows a Poisson law of parameter µ n,k,l 0 ,j = µ(T l 0 ,j n,k ). It is enough to show that for any l 0 , P(X l 0 ,j n,k > M for infinitely many n, k, j) = 1. By the second part of the Borel-Cantelli lemma, since the X l 0 ,j n,k are independent, we shall be done as soon as we see that

(3) n,k 2 2l 0 j=1 P X l 0 ,j n,k ≥ M + 1 = +∞.
For any Poisson variable X of parameter λ, the probability

P(X ≥ M + 1) = e -λ ∞ m=M +1 λ m m! = 1 -e -λ M m=0 λ m m! increases in λ.
Hence there is no restriction in assuming that 0 ≤ µ n,k,l 0 ,j ≤ µ n,k ≤ 1/2 for all n, k, j. Then we can use Taylor's formula (2) to deduce that

P X l 0 ,j n,k ≥ M + 1 µ M +1 n,k,l 0 ,j (M + 1)! .,
and therefore ( 3) is equivalent to n,k

2 2l 0 j=1 µ M +1 n,k,l 0 ,j = +∞.
That this sum in infinite is just a consequence of the hypothesis and the elementary estimate

µ M +1 n,k = 2 2l 0 j=1 µ n,k,l 0 ,j M +1 ≤ 2 2l 0 (M +1) 2 2l 0 j=1 µ M +1 n,k,l 0 ,j . 2.2. Proof of Theorem 1.4. (a) Assume first that n µ γ n,k < +∞ for some γ > 1. It is enough to check the Carleson condition λ∈Q(I) (1 -|λ|) ≤ C|I| on the dyadic intervals I n,k . Let Q n,k = Q(I n,k ).
Decomposing the sum on the different layers A m , it is enough to show that almost surely there exists C > 0 such that for all n ≥ 0, k = 0, . . . ,

2 n-1 λ∈Q n,k (1 -|λ|) m≥n j:T m,j ⊂Q n,k 2 -m X m,j ≤ C2 -n . This is equivalent to (4) sup n,k 2 n m≥n j:T m,j ⊂Q n,k 2 -m X m,j < ∞ Denote X n,m,k = N Q n,k ∩Am = #(Λ ∩ Q n,k ∩ A m ) = j:T m,j ⊂Q n,k X m,j ,
which is a Poisson variable of parameter

µ n,m,k = µ(Q n,k ∩ A m ) = j:T m,j ⊂Q n,k µ m,j . Set Y n,k = 2 n m≥n 2 -m X n,k,m = m≥n 2 n-m X n,k,m , so that (4) becomes sup n,k Y n,k < +∞.
Let A > 0 be a big constant to be fixed later on. Again by the Borel-Cantelli Lemma, it is enough to show that ( 5)

n,k P Y n,k > A < +∞, since then Y n,k ≤ A for all but maybe a finite number of n, k; in particular sup n,k Y n,k < ∞.
The first step of the following reasoning is an adaptation to the Poisson process of the proof given in [9, Theorem 1.1] and which allowed to improve the result on Carleson sequences for the probabilistic model with fixed radii and random arguments. However, while in the original proof the Carleson boxes Recall that the probability generating function of a Poisson variable X of parameter λ is E(s X ) = e λ(s-1) . By the independence of the different

Q n,k are decomposed into layers Q n,k ∩ A m (m ≥ n),
X n,k,m , m ≥ n, E(s Y n,k ) = m≥n E((s 2 n-m ) X n,m,k ) = m≥n e µ n,m,k (s 2 n-m -1) .
Thus for any s > 1, by Markov's inequality

P(Y n,k > A) = P(s Y n,k > s A ) ≤ 1 s A E(s Y n,k ) = 1 s A m≥n e µ n,m,k (s 2 n-m -1) .
Using the estimate x(a 1/x -1) ≤ a, for a, x > 1, with a = s and x = 2 m-n ,

log P(Y n,k > A) ≤ -A log s + m≥n (s 2 n-m -1) µ n,m,k ≤ -A log s + m≥n s2 n-m µ n,m,k = -A log s + s m≥n 2 n-m j:T m,j ⊂Q n,k µ m,j .
We want to optimize this estimate for s > 1. Set

B n,k = m≥n 2 -(m-n) j:T m,j ⊂Q n,k µ m,j
and define φ(s) = -A log s + sB n,k . Let us observe first that the B n,k are uniformly bounded (they actually tend to 0). Indeed, let β denote the conjugate exponent of γ ( 1 γ + 1 β = 1). Since for m ≥ n there are 2 m-n boxes T m,j in Q n,k , by Hölder's inequality on the sum in the index j we deduce that

B n,k ≤ m≥n 2 -(m-n) j:T m,j ⊂Q n,k µ γ m,j 1/γ 2 (m-n)/β = m≥n 2 -(m-n)/γ j:T m,j ⊂Q n,k µ γ m,j 1/γ < +∞.
Taking A big enough we see that the minimum of φ is attained at

s 0 = A/B n,k > 1. Hence log P(Y n,k > A) ≤ φ(s 0 ) = -A log A B n,k + A. Therefore P Y n,k > A ≤ B n,k A A e A ,
and

n,k P(Y n,k > A) ≤ e A A n,k B A n,k .
The estimate on B n,k obtained previously is not enough to prove that this last sum converges. In order to obtain a better estimate take p > 1, to be chosen later on, its conjugate exponent q (i.e.

1 p + 1 q = 1), and apply Hölder's inequality in the following way:

B n,k = m≥n j:T m,j ⊂Q n,k 2 -(m-n) µ m,j = 2 n m≥n j:T m,j ⊂Q n,k 2 -m p 2 -m q µ m,j ≤ 2 n m≥n j:T m,j ⊂Q n,k 2 -mβ p 1/β × m≥n j:T m,j ⊂Q n,k 2 -mγ q µ γ m,j 1/γ 
.

Choose now p so that 1 < p < β; then

m≥n j:T m,j ⊂Q n,k 2 -mβ p = ∞ m=n 2 -mβ p 2 m-n = 2 -n ∞ m=n 2 -m( β p -1) 2 -n 2 -n( β p -1) = 2 -n β p .
Thus, from the above estimate,

B n,k ≤ 2 n q m≥n j:T m,j ⊂Q n,k 2 -mγ q µ γ m,j 1/γ 
.

Choosing A = γ yields n,k B γ n,k ≤ n,k 2 nγ q m≥n j:T m,j ⊂Q n,k 2 -mγ q µ γ m,j .
We now apply Fubini's theorem to exchange the sums. The important observation here is that each T m,j has only one ancestor at each level n ≤ m (i.e, one T n,k containing T m,j ). Hence

n,k B γ n,k ≤ m,j 2 -mγ q µ γ m,j n≤m k:Q n,k ⊇T m,j 2 nγ p = m,j 2 -mγ q µ γ m,j n≤m 2 nγ q ≤ 2 m,j 2 -mγ q µ γ m,j 2 mγ q = 2 m,j µ γ m,j .
This finishes the proof of ( 5), hence of this part of the theorem.

Let us now assume that n,k µ γ n,k = +∞ for every γ > 1. Suppose M ≥ 1 is an integer. Since the sum diverges for γ = M + 1, Theorem 1.2 implies that the sequence Λ µ is almost surely not a union of M separated sequences. In particular, a.s. there is λ 0 ∈ Λ µ such that D λ 0 = {z ∈ D : ρ(λ 0 , z) < 1/2} contains at least M + 1 points of Λ µ . Then, letting I λ 0 be the interval centered at λ 0 /|λ 0 | with length 1 -|λ 0 |, we have λ∈Q(I λ 0 ) (1 -|λ|) M |I λ 0 |, where the underlying constant does not depend on M or λ 0 . This being true for every integer M ≥ 1, the sequence cannot be 1-Carleson.

(b) Proceeding as in the first implication of (a) we see that it is enough to prove that almost surely [START_REF] Bogdan | On the zeros of functions with finite Dirichlet integral[END_REF] sup

n,k Y n,k < +∞ ,
where now

(7) Y n,k = 2 nα m≥n 2 -mα j:T m,j ⊂Q n,k X m,j .
The same estimates as in (a) based on the probability generating function yield, for s > 1,

log P Y n,k ≥ A ≤ φ(s) = -A log s + B n,k ,
where now

B n,k = m≥n 2 -(m-n)α j:T m,j ⊂Q n,k µ m,j .
As in (a), the hypotheses imply that B n,k is uniformly bounded: letting β denote the conjugate exponent to γ ( 1 γ + 1 β = 1) and noticing that α -

1/β = 1/γ -(1 -α) > 0, B n,k ≤ m≥n 2 -(m-n)α j:T m,j ⊂Q n,k µ γ m,j 1/γ 2 (m-n)/β = m≥n 2 -(m-n)(α-1/β) j:T m,j ⊂Q n,k µ γ m,j 1/γ .
Therefore, optimizing the estimate for s > 1 exactly as we did in (a), we obtain P Y n,k ≥ A B A n,k , and we are lead to prove that for some A > 0

(8) n,k P Y n,k ≥ A n,k B A n,k < ∞.
Again, we introduce an auxiliary weight p -to be determined later -and its conjugate exponent q. Split 2 -mα = 2 -mα p 2 -mα q and use Hölder's inequality to obtain

B n,k ≤ 2 nα m≥n j:T m,j ⊂Q n,k 2 -mαβ p 1/β × m≥n j:T m,j ⊂Q n,k 2 -mαγ q µ γ m,j 1/γ .
The first sum is finite: since by hypothesis αβ = αγ γ-1 > 1 there exists 1 < p < αγ γ-1 and,

m≥n j:T m,j ⊂Q n,k 2 -mαβ p = m≥n 2 -mαβ p 2 m-n = 2 -n m≥n 2 -m( αβ p -1) 2 -n αβ p .
This implies that B γ n,k

2 nα γ q m≥n j:T m,j ⊂Q n,k 2 -mαγ q µ γ m,j
and we can conlude the proof of (8) as before:

n,k B γ n,k n,k 2 nα γ q m≥n j:T m,j ⊂Q n,k 2 -mαγ q µ γ m,j = m,j µ γ m,j 2 -mα γ q n≤m k:Q n,k ⊇T m,j 2 nα γ q = m,j µ γ m,j 2 -mα γ q n≤m 2 -nα γ q m,j µ γ m,j < +∞.
(c) Here we give a measure µ for which n,k µ

1/(1-α) n,k < +∞ but P(Λ µ is α-Carleson) = 0. Let dµ(z) = dm(z) (1 -|z| 2 ) 1+α log e 1-|z| 2
, which is the measure µ = µ(1+α, 1) given in the family of examples of Section 4.1. By a simple computation (see [START_REF] Cochran | Random Blaschke products[END_REF])

µ n,k 2 -n(1-α) n n ≥ 1, k = 0, . . . , 2 n -1
and therefore, since k ranges over 2 n terms,

n,k µ 1/(1-α) n,k n≥1 1 n 1/(1-α) < +∞.
On the other hand, letting Y n,k be as in the proof of part (b) (see [START_REF] Bomash | A Blaschke-type product and random zero sets for Bergman spaces[END_REF]) we get

E(Y n,k ) = 2 nα m≥n 2 -mα j:T m,j ⊂Q n,k µ m,j 2 nα m≥n 2 -mα 2 m-n 2 -(1-α)m n = 2 -(1-α)n m≥n 1 n = +∞
Thus the expected weight of any single Carleson window Q n,k is infinite and Λ µ cannot be α-Carleson.

(d) One could think of considering a divergent series n,k µ γ n,k = +∞ such that n,k µ γ n,k < +∞ for every γ > γ, and then apply (b), showing that Λ µ is α-Carleson when γ < 1 1-α , i.e. when α > 1 -1 γ = γ -1 γ . However, this does not yield the whole range α ∈ (0, 1) for a fixed measure, as required by the statement.

In order to construct an example working for all α ∈ (0, 1), we pick a measure µ supported in a Stolz angle of vertex 1, i.e. let, for n ≥ 1,

µ n,k =    1 n 1/γ if k = 0 0 if k > 1.
(We could equivalently take the measure τ (2, 1/γ) given in Subsection 4.1, Example 3). Then ( 9)

n,k µ γ n,k = n 1 n = ∞ but for every γ > γ, n,k µ γ n,k = n 1 n γ /γ < +∞.
To prove that Λ µ is almost surely α-Carleson we will argue as before. Set Y n,k as in the proof of (b) (see [START_REF] Bomash | A Blaschke-type product and random zero sets for Bergman spaces[END_REF]) and follow the same steps to prove that

P(Y n,k ≥ A) B A n,k ,
where

B n,k = m≥n j:T m,j ⊂Q n,k µ m,j 2 -(m-n)α .
By construction B n,k = 0 for all k > 0. On the other hand

B n,0 = 2 nα m≥n 2 -mα µ m,0 = 2 nα m≥n 2 -mα m 1/γ ≤ 1 n 1/γ .
(Observe that this last expression is independent of α.) Hence

n,k B γ n,k = n B γ n,0 ≤ n 1 n γ /γ < +∞,
and as in the proof of (b) the Borel-Cantelli lemma allows to conclude that Λ is almost surely α-Carleson.

RANDOM INTERPOLATING SEQUENCES

In this section we discuss several consequences of Theorems 1.2 and 1.4 on random interpolating sequences Λ µ for various spaces of holomorphic functions in D. The results are rather straightforward consequences of the aforementioned theorems and the known conditions for such sequences.

3.1. Hardy (and Bergman) spaces. In this section we completely characterize the measures µ for which the associated Poisson process Λ µ is almost surely an interpolating sequence for the Hardy spaces.

Recall that a sequence Λ = {λ n } n∈N ⊂ D is interpolating for

H ∞ = f ∈ H(D) : f ∞ = sup z∈D |f (z)| < ∞ whenever for every sequence of bounded values {w n } n∈N ⊂ C there exists f ∈ H ∞ such that f (λ n ) = w n , n ∈ N.
According to a famous theorem by L. Carleson, Λ is H ∞ -interpolating if and only if it is separated and 1-Carleson [START_REF] Carleson | An interpolation problem for bounded analytic functions[END_REF]. This characterization extends to all Hardy spaces

H p = f ∈ H(D) : f p = sup r<1 2π 0 |f (re it )| p dt 2π 1/p < +∞ 0 < p < ∞,
for which the interpolation problem is defined in a similar manner (the data w n to be interpolated should satisfy n (1 [START_REF] Duren | Theory of H p spaces[END_REF]Chapter 9]).

-|λ n | 2 )|w n | p < +∞, see e.g.
The separation condition given in Theorem 1.2 implies immediately that Λ µ is 1-Carleson, by Theorem 1.4, hence the following result follows.

Theorem 3.1. Let Λ µ be the Poisson process associated to a positive, σ-finite, locally finite measure µ. Then, for any 0 < p ≤ ∞,

P Λ µ is H p -interpolating =        1 if n,k µ 2 n,k < ∞ 0 if n,k µ 2 n,k = ∞.
To complete the picture we discuss zero sequences Λ for H p , 0 < p ≤ ∞. These are deterministically characterized by the Blaschke condition λ∈Λ (1 -|λ|) < ∞. Noticing that { λ∈Λµ (1 -|λ|) < ∞} is a tail event and using Kolmogorov's 0-1 law we get: Proposition 3.2. Let Λ µ be the Poisson process associated to a positive, σ-finite, locally finite measure µ. Then, for any 0 < p ≤ ∞,

P Λ µ is a zero set for H p =        1 if n,k 2 -n µ n,k < ∞ 0 if n,k 2 -n µ n,k = ∞.
Observe that the condition is just

E λ∈Λµ (1 -|λ|) = E n,k λ∈T n,k (1 -|λ|) n,k 2 -n E X n,k = n,k 2 -n µ n,k < ∞.
Observe also that

2 n -1 k=0 µ n,k = µ(A n ) for all n ∈ N, hence n,k 2 -n µ n,k = n 2 -n µ(A n ). Proof of Proposition 3.2. Denote X n = N An = 2 n -1 k=0 X n,k and denote µ n = E[X n ] = µ(A n ). Assume first that n 2 -n µ n < +∞. Set Y = n 2 -n X n and observe that, by the indepen- dence of the different X n , E[Y ] = n 2 -n µ n < +∞ , Var(Y ) = n 2 -2n µ n < +∞.
Then, by Markov's inequality

P(Y ≥ 2E(Y )) ≤ 1 2 .
Since {Y = ∞} is a tail event, Kolmogorov's 0-1 law implies that P(Y = +∞) = 0, and in particular the Blaschke sum is finite almost surely.

Assume now that n 2 -n µ n = +∞. Split the sum in two parts:

n 2 -n µ n = n:µn≤2 n /n 2 2 -n µ n + n:µn>2 n /n 2 2 -n µ n .
It is enough to consider the second sum, since the first one obviously converges. Since Var[X n ] = µ n , Chebyshev's inequality yields,

P(X n ≤ 1 2 µ n ) = P(X n ≤ µ n - µ n 2 ) ≤ P(|X n -µ n | ≥ µ n 2 ) ≤ 4 µ n .
Hence

n:µn>2 n /n 2 P(X n ≤ 1 2 µ n ) ≤ n:µn>2 n /n 2 4 µ n ≤ n:µn>2 n /n 2 4n 2 2 n < +∞.
Now, by the Borel-Cantelli lemma, X n > 1 2 µ n for all but maybe a finite number of the n with µ n > 2 n /n 2 ; hence

n:µn>2 n /n 2 2 -n X n 1 2 n:µn>2 n /n 2 2 -n µ n ,
which diverges, by hypothesis. 

B p α = f ∈ H(D) : f p α,p = D |f (z)| p (1 -|z| 2 ) αp-1 dm(z) < ∞ ,
with 0 < α, 0 < p ≤ ∞ are characterized by the separation together with the upper density condition

D + (Λ) := lim sup r→1 - sup z∈D 1/2<ρ(z,λ)≤r log 1 ρ(z,λ) log( 1 1-r ) < α
(see [START_REF] Seip | Beurling type density theorems in the unit disk[END_REF] and [START_REF] Hedenmalm | Theory of Bergman spaces[END_REF]Chapter 5] for both the definitions and the results).

Since every 1-Carleson sequence has density D + (Λ) = 0, the same conditions of Theorem 3.1 also characterize a.s. Bergman interpolating sequences, regardless of the indices α and p. Again, because of the big fluctuations of the Poisson process, the conditions required to have separation a.s. are so strong that they can only produce sequences of zero upper density.

Another indication of the big fluctuations of the Poisson process is the following. For the invariant measure dν(z) = dm(z)

(1-|z| 2 ) 2 , which obviously satisfies ν n,k 1 for all n, k, it is not difficult to see that almost surely,

D + (Λ ν ) = +∞ and D -(Λ ν ) := lim inf r→1 -inf z∈D 1/2<ρ(z,λ)≤r log 1 ρ(z,λ) log( 1 1-r ) = 0.
Therefore there are way too many points for Λ ν to be interpolating for any B p α , but there are too few for it to be sampling, since these sets must have strictly positive lower density D -(Λ) (see [START_REF] Hedenmalm | Theory of Bergman spaces[END_REF]Chapter 5]).

3.2.

Interpolation in the Bloch space. We consider now interpolation in the Bloch space B, consisting of functions f holomorphic in D such that

f B := |f (0)| + sup z∈D |f (z)|(1 -|z| 2 ) < +∞.
Since Bloch functions satisfy the Lipschitz condition |f (z) -f (w)| ≤ f B δ(z, w), where δ(z, w) = 1 2 log 1+ρ(z,w) 1-ρ(z,w) denotes the hyperbolic distance, A. Nicolau and B. Bøe defined interpolating sequences for B as those Λ = {λ n } n∈N such that for every sequence of values {v n } n∈N with sup

n =m |vn-vm| δ(λn,λm) < ∞ there exists f ∈ B with f (λ n ) = v n , n ∈ N [5].
Theorem ([5, pag.172], [START_REF] Seip | Interpolation and Sampling in Spaces of Analytic Functions[END_REF]Theorem 7]). A sequence Λ of distinct points in D is an interpolating sequence for B if and only if:

(a) Λ can be expressed as the union of at most two separated sequences, (b) for some 0 < γ < 1 and C > 0,

# λ ∈ Λ : ρ(z, λ) < r ≤ C (1 -r) γ independently on z ∈ D.
As explained in [START_REF] Bøe | Interpolation by functions in the Bloch space[END_REF], condition (b) can be replaced by: (b)' for some 0 < γ < 1 and C > 0, and for all Carleson windows Q(I),

# λ ∈ Q(I) : 2 -(l+1) |I| < 1 -|λ| < 2 -l |I| ≤ C2 γl , l ≥ 0.
In [START_REF] Seip | Interpolation and Sampling in Spaces of Analytic Functions[END_REF]Corollary 2] it is mentioned that it can also be replaced by: (b)" there exist 0 < γ < 1 and such that Λ is γ-Carleson.

In view of conditions (a) and (b)" the following characterization of Poisson processes which are a.s. Bloch interpolating sequences follows from Theorems 1.2 and 1.4(b) (with γ ∈ (2/3, 1)).

Theorem 3.3. Let Λ µ be the Poisson process associated to a positive, σ-finite, locally finite measure µ. Then,

P Λ µ is B-interpolating =        1 if n,k µ 3 n,k < ∞ 0 if n,k µ 3 n,k = ∞.
Note. In case n,k µ 3 n,k < ∞ it is also possible to prove (b)' directly, with the same methods employed in the proof of Theorem 1.4. It is enough to prove the estimate for dyadic arcs I n,k , and for those

# λ ∈ Q(I n,k ) : 2 -(l+1) |I n,k | < 1 -|λ| < 2 -l |I n,k | j:T n+l,j ⊂Q n,k X n+l,j .
In the above, the left hand side corresponds essentially to the number of points in the layer

Q(I n,k ) ∩ A n+l . Thus, with m = n + l, (b)' is equivalent to sup n,k sup m≥n 2 -γ(m-n) j:T m,j ⊂Q n,k X m,j < +∞. Letting Y n,k,m = 2 -γ(m-n) j:T m,j ⊂Q n,k X m,j , E[Y n,k,m ] = 2 -γ(m-n) j:T m,j ⊂Q n,k µ m,j
and proceeding as in the first part of the proof of Theorem 1.4(a) we get (taking A = 3):

n,k m≥n P Y n,k,m ≥ 3 n,k m≥n 2 -γ(m-n) j:T m,j ⊂Q n,k µ m,j 3 ≤ n,k m≥n 2 -3γ(m-n) j:T m,j ⊂Q n,k µ 3 m,j 2 2(m-n) = m,j µ 3 m,j n≤m k:Q n,k ⊇T m,j 2 -(3γ-2)(m-n) .
For any γ > 2/3 this sum is bounded by m,j µ 3 m,j , so we can conclude with the Borel-Cantelli lemma.

3.3. Interpolation in Dirichlet spaces. Our last set of results concerns interpolation in the Dirichlet spaces,

D α = f ∈ H(D) : f 2 Dα = |f (0)| 2 + D |f (z)| 2 (1 -|z| 2 ) α dm(z) < ∞ ,
with α ∈ (0, 1). The limiting case α = 1 can be identified with the Hardy space H 2 .

In these spaces, interpolating sequences are characterized by the separation and a Carleson type condition. This was initially considered by W.S. Cohn, see [11]; we refer also to the general result [START_REF] Aleman | Interpolating Sequences in Spaces with the Complete Pick Property[END_REF]. While separation is a simple condition, that in our random setting is completely characterized by Theorem 1.2, the characterization of Carleson measures in these spaces is much more delicate. This was achieved by D. Stegenga using the so-called α-capacity [START_REF] Stegenga | Multipliers of the Dirichlet space[END_REF]. In our setting it is however possible to use an easier sufficient one-box condition that can be found in K. Seip's book, see [START_REF] Seip | Interpolation and Sampling in Spaces of Analytic Functions[END_REF]Theorem 4,p.38], which we recall here for the reader's convenience.

Theorem 3.4 (Seip). A separated sequence Λ in D is interpolating for D α , 0 < α < 1 if there exist 0 < α < α such that Λ is α -Carleson.
The reader should be alerted that in Seip's book the space D α is defined in a slightly different way, and that the above statement is adapted to our definition.

For these spaces Theorems 1.2 and 1.4 lead to less precise conclusions. Indeed, in view of Theorem 1.4(c),(d) we cannot hope for complete characterizations if we do not impose additional conditions on the measure µ. Theorem 3.5. Let Λ µ be the Poisson process associated to a positive, σ-finite, locally finite measure µ.

(a) If 1/2 < α < 1, then P Λ µ is interpolating for D α =        1 if n,k µ 2 n,k < +∞ 0 if n,k µ 2 n,k = +∞. (b) If 0 ≤ α < 1/2 and there exists 1 < γ < 1 1-α such that n,k µ γ n,k < +∞, then P Λ µ is interpolating for D α = 1.
Clearly, the condition n,k µ 2 n,k < +∞ is also necessary in the case (b) (if the sum diverges, then Λ µ is almost surely not separated).

Proof. (a) If n,k µ 2 n,k = +∞, then Λ µ is almost surely not separated by Theorem 1.2, hence it is almost surely not interpolating.

If n,k µ 2 n,k < +∞, Theorem 1.2 shows again that the sequence Λ µ is almost surely separated. By Seip's theorem, it remains to show that Λ µ is almost surely α -Carleson for some α < α.

Pick 1/2 < α < α < 1, so that 1/(1 -α ) > 2. Choosing γ ∈ (2, 1/(1 -α )) we get n,k µ γ n,k n,k µ 2 n,k < +∞,
and by Theorem 1.4(b) we conclude that Λ µ is almost surely α -Carleson.

(b) If α < 1/2 then 1/(1 -α) < 2 and the value γ given by the hypothesis satisfies

1 < γ < 2. Therefore n,k µ 2 n,k n,k µ γ n,k < +∞,
which allows to deduce from Theorem 1.2 that Λ µ is almost surely separated.

Since the inequality γ < 1/(1 -α) is strict, we also have γ < 1/(1 -α ) for some α < α sufficiently close to α. Again, Theorem 1.4(b) shows that Λ µ is almost surely α -Carleson, and Seip's theorem implies that Λ µ is almost surely interpolating.

3.4.

Additional remarks and comments. The above results show several applications of our Theorems 1.2 and 1.4, but they also give rise to many challenging questions. Is it possible to get a necessary counterpart of Theorem 1.4(b) under reasonable conditions on µ (more general than the class considered in Section 4.1 below)? Is it possible to get precise statements when α = 1/2? Also, the case of the classical Dirichlet space seems to be largely unexplored for Poisson point processes, while the situation regarding interpolation, separation and zero-sets for the radial probabilistic model is completely known for all α ∈ [0, 1] (see [START_REF] Chalmoukis | Random Interpolating Sequences in Dirichlet Spaces[END_REF][START_REF] Bogdan | On the zeros of functions with finite Dirichlet integral[END_REF]).

EXAMPLES AND INTEGRAL CONDITIONS FOR THE MEASURE µ

In the first part of this final section we illustrate the above results with three simple families of measures on D. In the second part we briefly discuss alternative, non-discrete, formulations of the conditions given in the previous statements. On the other hand, if a < 2 there exists γ such that (2 -a)γ -1 > 0 (i.e, such that γ > 1 2-a ). For that γ the series in [START_REF] Cochran | Random Blaschke products[END_REF] converges, and we can conclude again by Theorem 1.4(a).

(d) Suppose first that a < 1 + α. As in the previous case, since 2 -a > 1 -α there exists γ ∈ ( 1 2-a , 1 1-α ). For this γ the series in (10) converges and we can apply Theorem 1.4(b). If a > 1 + α and b ∈ R, then Λ µ(a,b) contains in the mean more points than Λ µ(1+α,1) for which we have shown in Theorem 1.4(c) that it is almost surely not α-Carleson.

It thus remains the case a = 1 + α. Again, when b = 1 -and thus also when b < 1 since then we have more points in the mean -the proof of Theorem 1.4(c) shows that the corresponding sequence is almost surely not α-Carleson.

Finally, suppose that a = 1 + α and b > 1. Recall from [START_REF] Bomash | A Blaschke-type product and random zero sets for Bergman spaces[END_REF] the notation

Y n,k = 2 nα m≥n 2 -mα j:T m,j ⊂Q n,k X m,j .
In the proof of Theorem 1.4(b) we have shown that

P (Y n,k ≥ A) ≤ B A n,k , where B n,k = m≥n 2 -(m-n)α j:T m,j ⊂Q n,k µ m,j .
From the explicit form of µ m,j we get

B n,k m≥n 2 -(m-n)α × 2 m-n × 2 -m(2-a) m b = 2 n(α-1) m≥n 2 -m(α+1-a) m b
which converges exactly when a < 1 + α or when a = 1 + α and b > 1 which is the case we are interested in here. In this situation, we get 

B n,k 2 -n(2-a) n b Clearly, when A ≥ 1/(2 -a) = 1/(1 -α), then n,k B A n,
n,k = σ(a, b)(T n,k ) 2 -2n [(k + 1)2 -n ] a log b e (k+1)2 -n , n ∈ N, k = 0, . . . , 2 n-1 . Hence for γ > 1, (11) n,k σ(a, b) γ n,k n 2 -nγ(2-a) 2 n k=1 1 k a log b e k2 -n γ .
Let us examine the growth of the sum in k. For that, set

S n (a, b, γ) = 2 n k=1 1 k aγ log bγ e k2 -n 2 n 1 dx x aγ log bγ e x2 -n
The change of variable t = log e x2 -n leads to S n (a, b, γ) 

n,k σ(a, b) γ n,k n 2 -nγ(2-a) × 1 n γb = n 2 -nγ(2-a) n γb .
We are now in a position to prove the following result. 

b > 1 M +1 , (ii) α-Carleson for α ∈ (0, 1) if b > 1 -α.
Proof. (a) is immediate from Theorems 1.2 and 1.4, since [START_REF] Daley | An introduction to the theory of point processes[END_REF] diverges for all γ > 0.

(b) In this case the series ( 12) is just n 1/n bγ .

The case (i) follows from Theorem 1.2 with γ = M + 1.

For (ii), by the hypothesis 1/b < 1/(1 -α), there exists 1/b < γ < 1/(1 -α), for which the series (12) converges. We can conclude by Theorem 1.4. 

4.2.

Integral conditions on µ. Given a locally finite, σ-finite measure µ, a natural question is whether the discretized conditions appearing in Theorems 1.2 and 1.4 can be reformulated in terms of integrals. Let us assume that µ is absolutely continuous with respect to the Lebesgue (or the invariant) measure on D. In view of the aforementioned discrete conditions this is not really restrictive, since in case µ had a singular part we could just redistribute its mass continuously on each T n,k . Assume thus that dµ = h dν, where dν = dm(z)

(1-|z| 2 ) 2 is the invariant measure, h ≥ 0 and h ∈ L 1 loc (D; ν) (but h / ∈ L 1 (D; ν), so that µ(D) = ∞).

As a result of Jensen's inequality applied to ν on T n,k , we deduce the following general observation. Of course without additional conditions on h the conditions on the sum and on the integral cannot be equivalent, and there are standard construction methods to find measures for which the sum is convergent while the integral diverges. We do not go into details of that here.

One is obviously more interested in situations where the sum and the integral conditions are equivalent. This is for instance the case when h is radial with some regularity conditions (as in the first class of examples in the previous section) or when h is subharmonic (as in the second class of examples). Another mildly regular case in which an equivalent reformulation in terms of integrals is possible is when µ is doubling, meaning that there exists C > 0 such that µ(2D) ≤ Cµ(D) for all open disc D ⊂ D. Here 2D denotes the disk with the same center as D but with double radious (in the pseudohyperbolic metric). Fixing any c ∈ (0, 1) and defining F µ (z) = µ(D(z, c)) one immediately sees that for any γ > 1 

  particular E[N A ] = Var[N A ] = µ(A). (b) If A, B ⊂ D are disjoint Borel sets then the variables N A , N B are independent.

  in this new situation (as well as for (b)), Carleson boxes are decomposed into top-halves T m,j ⊂ Q n,k , which requires more delicate arguments to reach the convergence needed in the Borel-Cantelli lemma.
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 11 Remark. Interpolation in Bergman spaces. Interpolating sequences Λ for the (weighted) Bergman spaces

4. 1 .1-|z| 2 =1-|z| 2 ,Proposition 4 . 1 .

 12241 Examples. 1. Radial measures. Let dm denote the normalized Lebesgue measure and let dν(z) = dm(z) (1-|z| 2 ) 2 be the invariant measure in D. Define dµ(a, b)(z) = dm(z) (1 -|z| 2 ) a log b e dν(z) (1 -|z| 2 ) a-2 log b ewhere either a > 1, b ∈ R, or a = 1 and b ≤ 1 (so that µ(a, b)(D) = +∞).Observe thatµ(a, b) n,k 2 -n(2-a) n b n ≥ 1, k = 0, . . . , 2 n -1,and therefore, for γ > 0, Consider the Poisson process Λ a,b associated to the masure µ(a, b), with either a > 1 or a = 1 and b ≤ 1. (a) Λ a,b can a.s. be expressed as a union of M separated sequences if and only if either a < 2 -1 M +1 and b ∈ R, or a = 2 -1 M +1 and b > 1 M +1 . (b) In particular, Λ a,b is a.s. separated if and only if either a < 3/2 and b ∈ R, or a = 3/2 and b > 1/2. (c) Λ a,b is a.s. a 1-Carleson sequence if and only if a < 2, b ∈ R. (d) Let α ∈ (0, 1). Then Λ a,b is a.s. an α-Carleson sequence if and only if a < 1 + α or a = 1 + α and b > 1. Proof. (a) is immediate from Theorem 1.2 and (10) with γ = M + 1. (c) If a ≥ 2 the series in (10) diverges for all γ > 1, thus by Theorem 1.4(a) Λ a,b is a.s. not 1-Carleson.

  k converges, and the Borel-Cantelli lemma shows that Y n,k ≥ A can happen for an at most finite number of Carleson windows Q n,k . Hence Λ µ(a,b) is a.s. α-Carleson. 2. Measures with a singularity on T. Define now dσ(a, b)(z) = dm(z) |1 -z| a log b e |1-z| , where either a > 2, b ∈ R, or a = 2 and b ≤ 1 (so that σ(a, b)(D) = +∞). Here σ(a, b)

Proposition 4 . 2 .

 42 Consider the Poisson process Λa,b associated to the measure σ(a, b), with either a > 2 or a = 2 and b ≤ 1. (a) For a > 2 the process Λa,b is a.s. neither a finite union of separated sequences nor an α-Carleson, for any α ∈ (0, 1]. (b) For a = 2 the process Λ2,b is (i) the union of M separated sequences if and only if

3 . 2 .1-|z| 2 ,

 322 Measures in a cone. Given a point ζ ∈ T, consider a Stolz region Γ(ζ) = z ∈ D : |ζ -z| 1 -|z| < We discuss the previous measures restricted to Γ(ζ). With no restriction of generality we can assume that ζ = 1. Let thus dτ (a, b)(z) = χ Γ(1) (z)dµ(a, b)(z) = χ Γ(1) (z) dm(z) (1 -|z| 2 ) a log b e where now either a > 2, b ∈ R, or a = 2 and b ≤ 1 (so that ν(a, b)(D) = +∞). Since in Γ the measures dµ(a, b) and dσ(a, b) behave similarly, we could replace dµ(a, b) by dσ(a, b) in the definition of dτ (a, b). Observe that ν(a, b) n,k is non-zero only for a finite number N of k at each level n, and that for those k τ (a, b) n,k 2 -n(2-a) n b n ≥ 1, k = 0, . . . , N. the same estimate as in (12) and thus immediately leads to the same result as Proposition 4.2. This might look surprising since σ(a, b) (and a fortiori µ(a, b)) puts infinite mass outside Γ(ζ) (actually outside Stolz angles at ζ with arbitrary opening). Proposition 4.3. Consider the Poisson process Λa,b associated to the masure τ (a, b), with either a > 2 or a = 2 and b ≤ 1.

( a )

 a For a > 2 the process Λa,b is a.s. not a finite union of separated sequences separated or α-Carleson for any α ∈ (0, 1]. (b) For a = 2 the process Λ2,b is (1) the union of M separated sequences if and only if b > 1 M +1 , (2) α-Carleson for α ∈ (0, 1) if b > 1 -α.

Proposition 4 . 4 .

 44 Let µ = h dν, where h ≥ 0 and h ∈ L 1 loc (D). For every γ > 1 there exists C > 0 such that z) dν(z).

  dν(z).

  Carleson window Q(I n,k ) associated to the dyadic interval I n,k and its top half T n,k .

Denote X n,k = N T n,k , which by hypothesis is a Poisson random variable of parameter

  Our standing assumption being a > 2 or a = 2 and b ≤ 1, we only need to consider these two cases. In both cases, e t(aγ-1) /t bγ → +∞ when t → +∞, and the last integral behaves essentially as the value in the upper bound of the integration interval

	1 log(2 n e)	e t e2 n	aγ-1 -dt t bγ =	2 -n(aγ-1) e aγ-1	1	log(2 n e)	e t(aγ-1) dt t bγ
	1	log(2 n e)	e t(aγ-1) dt t bγ		2 n(aγ-1) n bγ .		
	Hence	S n (a, b, γ)	1 n bγ ,		
	and						
	(12)						
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