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Home Chemotherapy Planning: An Integrated
Production Scheduling and Multi-Trip Vehicle

Routing Problem

Yasemin Arda, Diego Cattaruzza, Véronique François, Maxime Ogier

Abstract

Home chemotherapy systems allow the administration of cancer treat-
ments at a patient’s residence, avoiding an admission to inpatient care fa-
cilities. This innovative health care model is interesting both economically
and on a human level. It also raises several logistical challenges. This paper
focuses on one of the optimization problems arising in the context of home
chemotherapy services, where a complex scheduling problem underlies the
operational planning process. Indeed, some injectable chemotherapy drugs
may remain stable only during a few hours after being produced. Conse-
quently, their production has to be carefully scheduled jointly with their
administration, which takes place at the patients homes during a predefined
time window. This gives rise to an integrated production scheduling and
vehicle routing problem, that we address using a large neighborhood search
approach. Production and administration sequences are iteratively modi-
fied, while a linear program is used to determine optimal production and
administration start times for the candidate sequences. We analyze the im-
pact of the linear program and establish that it is a crucial component of the
proposed method. We then provide insights about the cost of taking into
consideration time-related aspects of the problem, i.e., integrated planning
horizons, drug stability times, and administration time windows.

Keywords Production scheduling and vehicle routing problem; Multi-trip ve-
hicle routing; Large neighborhood search; Chemotherapy planning

1 Introduction
In many developed countries, home chemotherapy is a rising trend. Home chemother-
apy services aim to assist cancer patients to remain safe and comfortable at home
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while continuing to receive their treatment, avoiding hospitalization or admis-
sion to outpatient chemotherapy facilities. Home chemotherapy also contributes
to the employability of patients, enabling them to remain active for longer peri-
ods and in better health. Besides increasing the comfort of the patients, home
chemotherapy may help relieve congestion in outpatient chemotherapy services.
In the nineties, an Australian case study [Lowenthal et al., 1996] demonstrated
that home chemotherapy was at the same time safe and cost effective. A report of
the European Commission [European Commission, 2016] states that institutional
care systems typically have higher costs than home care systems, which should
be encouraged when the patient’s condition allows it to favor at the same time
independent living and cost-effectiveness. Thus, shifting from a hospital-centered
to a home-based care system can clearly be seen as a possible direction to reinforce
the financial stability of health systems. For all those reasons, home chemotherapy
sparks the interest of healthcare authorities, as does hospital at home in general.

At the operational level, a complex scheduling problem underlies the daily
home chemotherapy process. It calls for the determination of an integrated drug
production and administration schedule. Indeed, injectable preparations for cancer
treatment sometimes have a short stability time, i.e., they may expire within a few
hours after their production start time. Consequently, they may not be produced
ahead of time and then stored before being administered. The resulting absence
of inventories implies that the production of drugs has to be carefully scheduled
jointly with their administration. Moreover, when chronotherapy is used in cancer
treatment, the timing of drug administration takes into account biological rhythms
of patients. This may result in a short recommended time window to administer
a given drug. Since the patients comfort is essential for a quick recovery, their
preferences need also to be taken into account to determine the time window of the
treatment administration. Doing so also allows patients to remain professionally
active when possible. For all the above mentioned reasons, establishing a schedule
for the production and administration of home chemotherapy drugs is a complex
task which may be a turn-off for medical teams. If handled properly, however, it
may contribute to improve the quality of service for the patients and to relieve the
work of the medical staff inside the hospital.

The operational problem described in this work stems from an envisioned home
chemotherapy system based on the current emerging practice observed in several
Belgian and French healthcare institutions. Our first contribution is to propose
a solution method based on the strong interdependence of the vehicle routing
and production scheduling subproblems. A linear program, which usefulness is
clearly demonstrated through computational experiments, is embedded in a large
neighborhood search framework and several algorithmic components specifically
address the temporal connection between the two subproblems. We propose a set
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of test instances that encompass realistic features of home chemotherapy systems.
Since several algorithmic parameters are required, we use the irace package to
configure the proposed solution method. As a second contribution, we provide
insights about the impact of several instance parameters, and about their influence
on the integration of the two subproblems. In particular, we analyze the cost of
integration, i.e., we investigate to which extend the absence of inventories due to
short stability times increases the cost of the routing and production schedules.

The remainder of this paper is organized as follows. Section 2 provides a
description of the home chemotherapy planning problem under consideration. A
literature review is then given in Section 3. Section 4 presents the proposed solution
approach, which combines large neighborhood search (LNS) with mathematical
programming operators. Section 5 provides numerical results. Conclusions and
some prospects are drawn in Section 6.

2 Problem description
In the considered problem, a set of patients must receive their chemotherapy treat-
ment at home on a given day. A single personalized drug must be produced for
each patient. In the following, we consider a set J of patients, where each pa-
tient is associated with two operations: a drug production operation and a drug
administration operation. Thus, each patient i ∈ J is characterized by:

• a processing time Pi, which is the time needed to produce the personalized
drug at the hospital pharmacy,

• a stability time STi, which denotes the maximum delay between the start
time of the production operation and the start time of the administration
operation,

• an administration time Si, which is the time needed to administer the drug
at the patient’s home,

• an administration time window [Ei, Li], within which the administration
operation can start.

The drugs are produced at the hospital pharmacy by a set P of pharmacists.
Each drug must be processed without preemption by a single pharmacist and each
pharmacist can produce any one drug at a time. We assume that pharmacists have
homogeneous production skills, i.e., the processing time Pi of a given drug i does
not depend on the pharmacist that produces the drug. Given these assumptions,
we model pharmacists as identical parallel machines and drugs as jobs composed
of a single operation analogously to the production scheduling literature.
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The drug administration planning can be modelled as a multi-trip vehicle rout-
ing problem. A set N of specialized nurses administer the drugs to patients at
home. Each nurse performs an administration journey that starts and ends at
the hospital, denoted by 0. During the journey, recently produced drugs may be
loaded at the hospital between patient visits. A set of consecutive patient visits
that starts and ends at the hospital forms a trip. The time required for loading
operations at the hospital, S0, is supposed constant for each trip, i.e., independent
of the specific subset of drugs to be loaded. Thus, without loss of generality, we
assume S0 = 0. The traveling time between two patients i and j is Tij, while T0i
(resp. Ti0) denotes the traveling time between the hospital and patient i (resp.
between patient i and the hospital). Each patient i must be visited within a given
hard time window [Ei, Li]. A nurse arriving early has to wait, and being late is
prohibited.

Pharmacists and nurses have a limited working duration Dmax. They must
start and end their working shift within the planning horizon, defined by the time
window [E0, L0]. We suppose, without loss of generality, that E0 = 0.

The problem calls for the determination of a complete production and admin-
istration schedule while ensuring that the drug administration for each patient
starts during the corresponding time window, each drug is stable at the time of its
administration, the production process of each drug is completed before the start
time of the trip to which the corresponding patient is assigned, and the working
duration of none of the pharmacists and nurses exceeds its maximum limit. Under
those constraints, the following decisions have to be taken:

• the production of each drug must be assigned to a pharmacist,

• a production schedule has to be determined for each pharmacist,

• the administration of each drug must be assigned to a nurse,

• a routing schedule composed of one or more trips that do not overlap in time
has to be determined for each nurse.

Consequently, the problem under consideration includes two integrated sub-
problems: a production scheduling problem with identical parallel machines, and
a multi-trip vehicle routing problem with time windows. The two subproblems
are strongly integrated because of 1) stability constraints, i.e., after the effective
start of its production process, each drug administration should start before the
stability time expires, and 2) trip start time constraints, i.e., the production of all
drugs to be administered during a given trip should be completed before the start
time of this trip.

Let ePp be the start time and lPp the end time of the working shift of pharma-
cist p ∈ P . The shift start time ePp is determined by the start time of the first
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production operation executed by pharmacist p, while the shift end time lPp is the
completion time of the last production operation. Similarly, let eRn be the start
time and lRn the end time of the working shift of nurse n ∈ N , where eRn is the
start time of the first trip and lRn the completion time of the last trip performed
by nurse n. The objective is to minimize the total working duration of the nurses
and pharmacists:

∑
p∈P(lPp − ePp ) +

∑
n∈N (lRn − eRn ).

The total working duration takes into account the drug production and ad-
ministration times, the traveling and waiting times of nurses, and the idle times
of pharmacists. Such an objective function is very relevant since pharmacists and
nurses are highly skilled and may execute other value added operations at the hos-
pital before or after their assigned home chemotherapy operations. Keeping them
idle may increase significantly the opportunity costs of the system.

3 Literature Review
The problem we consider relates to well-studied fields of operations research: pro-
duction scheduling and vehicle routing. In practice, even if the two subproblems
are strongly interconnected, they are often solved sequentially. The production
schedule is established first, serving as a basis to compute the routing plan. If the
production schedule is known, then the routing component of the problem con-
sidered in this work may be modeled as a nurse routing problem, which concerns
routing decisions for nurses that provide care at the patients’ homes. The nurse
routing problem has been studied for more than 20 years [e.g., Rasmussen et al.,
2012, Braekers et al., 2016]. Most nurse routing problems studied in the litera-
ture are vehicle routing problems which encompass preoccupations related to the
home healthcare sector such as workload balance, patient preferences with respect
to nurses, or staff qualifications. In the problem studied in this work, the drug
availability depends on its production completion time, implying a release date on
each drug to be administered. Since the nurses are allowed to perform multiple
trips, this gives rise to a multi-trip vehicle routing problem with time windows and
release dates similar to the one studied in Cattaruzza et al. [2016].

However, in the literature, in situations where keeping inventories can not be
considered, several authors have obtained substantial cost decreases by integrating
the optimization of the production scheduling and the vehicle routing problems
instead of solving them sequentially [Moons et al., 2017]. In the following, we
concentrate on studies that treat the production and the routing problems jointly.

As mentioned before, the problem we consider integrates production schedul-
ing and vehicle routing decisions. However, it should not be mistaken for the
production-routing problem (PRP) surveyed by Adulyasak et al. [2015]. Indeed,
the PRP combines lot-sizing and routing decisions on a multi-period basis. On
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the production side, the question is not to determine a precise production schedule
for one period, but rather to decide in which periods to produce. Since multiple
periods are considered, inventories may be built up in the PRP. On the contrary,
our work falls into a different category, surveyed by Chen [2010] and more recently
by Moons et al. [2017], referred to as the production scheduling and vehicle routing
problem (PS-VRP), which focuses on single-period integrated production schedul-
ing and vehicle routing problems. In a PS-VRP, a detailed production schedule
must be established in coordination with vehicle routes and delivery schedules.
The related literature is quite scarce in contrast with the extreme diversity of con-
texts and problems. As noted by Ullrich [2013], PS-VRPs are relevant in situations
where the size of inventories is too small to act as a buffer between production
and distribution. Keeping inventories makes no sense when products have a short
lifespan as the drugs considered in this work. Other examples may be found in
several industries as hot meal, newspaper, or ready-mix concrete. For example,
Garcia et al. [2004] study the distribution of concrete that must be swiftly de-
livered in order to avoid solidification. They consider the problem of scheduling
concrete orders with a no-wait policy: orders are manufactured and immediately
delivered to clients using a homogeneous fleet of vehicles. They must be served
exactly at their due dates. Even for products with a longer lifespan, supply chain
management strategies may imply that few or no inventories are kept between
the production and the distribution activities, as it is the case in just-in-time or
make-to-order contexts. For example in computer production, each customer can
choose among several options for each component. As a consequence, the number
of possible combinations is huge and making a stock for each final product is not
sustainable for the company. Thus, computers are produced and then immediately
delivered (see Chen and Vairaktarakis [2005]), in an assemble-to-order context.

There is no commonly accepted version of the PS-VRP. Different variants arose
based on customer and product characteristics, and depending on the considered
production and distribution environments. In our work, we consider a parallel
machine environment in conjunction with a fleet of vehicles allowed to perform
multiple trips as in Ullrich [2013], Lee et al. [2014], Kergosien et al. [2017], Wang
et al. [2019], and Robbes et al. [2021]. Even if those five works share some simi-
larities with ours, they are still very different in terms of problem characteristics
as detailed below. Ullrich [2013] studies a PS-VRP motivated by the automotive
industry, where each customer orders one or more personalized items (with no
lifespan consideration). Parallel machines with machine-dependent ready times
produce items that have to be delivered to customers within a given hard time
window by heterogeneous vehicles. The objective is to minimize the total tar-
diness. The authors use a genetic algorithm to solve the integrated problem up
to 100 jobs. Their numerical experiments show large improvements when solv-
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ing the integrated problem compared to a decomposed approach that treats the
production and the routing parts sequentially. Lee et al. [2014] consider an inte-
grated production and delivery problem in the context of nuclear medicine, where
an isotope with a 110 minutes half-life needs to be delivered to several medical
end-users. Each customer orders a given quantity of isotope to be delivered within
a specified time window. Production batches are launched in parallel cyclotrons
at predetermined start times. On the production side, orders have to be assigned
to production batches. Also, the quantities to be produced must be determined
taking into account the deterioration of the isotope over time. Instances with up to
100 customers are solved using a large neighborhood search. Kergosien et al. [2017]
consider a problem motivated, like ours, by the case of home chemotherapy. There
are no time windows for the drug administration but an administration due date
is fixed by the doctor. The objective is to minimize the maximum tardiness with
respect to those drug administration due dates. The authors develop a heuristic
method based on Benders decomposition to solve instances with a single vehicle
and up to 40 patients. Wang et al. [2019] study a problem with machine-dependant
ready times, time windows, and uncertain travel times. The objective is to mini-
mize the travel cost, and a penalty is incurred for the cost due to tardiness. The
proposed memetic algorithm allows to take into account the risk preferences of
the decision maker in managing uncertainties. Numerical results are reported for
instances containing up to 50 customers. Robbes et al. [2021] study the problem of
producing and delivering chemotherapy drugs from a production site to different
oncology units of an hospital where injections are performed. Drug production is
associated with a release date corresponding to the final doctor check and valida-
tion, and with a due date that represents the desirable delivery time of the drug
to the assigned unit. The production process is modelled as a three-stage hybrid
flow shop scheduling problem. The objective is to minimize the total tardiness.
Instances with up to 180 drugs and three delivery points are tackled with several
heuristics.

In Kergosien et al. [2017], like in this work, the product has a limited lifespan
and batching is not considered. Several other different PS-VRP versions have
been devoted to products with a short lifespan. Most of the time, batching is
used in the following way: goods to be delivered within a same trip are produced
sequentially without interruption as a production batch. The product lifetime
starts as the batch production starts or ends. For example, in Geismar et al. [2008],
customers are served by a single truck allowed to perform multiple trips. There is
a single plant, with a specified production rate, that may be considered as a single
machine. Each trip delivers the products of a production batch and the lifetime
of the products begins when the production batch is completed. The authors use
an evolutionary algorithm to solve instances with up to 50 customers. Devapriya
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et al. [2017] consider an extension where the fleet size is a decision variable. They
solve instances with up to 40 customers, again using an evolutionary algorithm.
Lacomme et al. [2018] propose another extension with a given fleet size and use a
hybridized metaheuristic to solve large-scale instances with up to 200 customers. A
branch-and-cut exact algorithm has also been proposed recently by Karaoğlan and
Kesen [2017] to solve the problem introduced in Geismar et al. [2008]. Chen et al.
[2009] develop a model for fresh food distribution where the products deteriorate in
time. A fleet of vehicles serves customers with stochastic demands. Each product
starts to deteriorate at the production start time of the batch to be delivered in the
same vehicle. On the contrary, in Armstrong et al. [2008] and Viergutz and Knust
[2014], the end of the lifetime of each product is determined by its production start
time, as it is the case in this work. However, these two works consider a problem
where all perishable products must be produced before being served by a single
vehicle in a single trip, and the delivery sequence of customers is known a priori.
The objective is to maximize the quantity of goods delivered.

We consider that both production and routing costs are functions of the work-
ing time. Moons et al. [2017] note that production costs are not usually considered
in the integrated production-routing literature, since all products need to be pro-
duced. However, in the case of home chemotherapy, pharmacists have to don
a special outfit. This costs time and sterilization material, implying that phar-
macists will wait between production operations in case of idle time, instead of
removing their outfit to perform other tasks in the pharmacy. Thus, the potential
resulting waiting time may be viewed as an opportunity cost. As for the routing
costs, François et al. [2019] showed that, in presence of time windows, considering
the total duration instead of the total travel time leads to much more realistic
solutions, avoiding large amounts of waiting time. This is especially relevant in
this case, since specialized nurses can perform duties at the hospital before or after
their journey instead of waiting in the vehicle.

4 A large neighborhood search heuristic
To solve the problem described in Section 2, we propose to use an LNS [Shaw,
1998] that iteratively removes and reinserts drug production and administration
operations to create new solutions.

4.1 Solution representation

A solution to the studied integrated problem is composed of a production schedule
and an administration schedule. They both rely on a set of sequences for phar-
macists or for nurses, respectively. In the following, the distinction between a set
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of sequences and a schedule is important, because several algorithmic components
modify one or more sequences without recomputing an associated schedule.

For the routing subproblem, in particular, the sequence of visits performed by
a nurse is represented as a giant tour. The journey of a nurse is a sequence of op-
erations that starts with a first loading operation at the hospital, continues with
the administration operations of the assigned patients and ends with a last visit
at the hospital. Additional reloading operations may occur within the sequence
between administration operations. They are the trip delimiters inside the jour-
ney. The multi-trip operators detailed in François et al. [2016], which are designed
to modify journeys without decomposing them into their constituting trips, are
employed to remove and reinsert administration and reloading operations within
the routing solutions. Using these multi-trip operators, the insertion of an admin-
istration operation may be accompanied by the insertion of a reloading operation
at the hospital. When an administration operation is removed, the concerned trip
may be merged together with one or both adjacent trips.

4.2 Search space

During the execution of the LNS algorithm, we allow visiting infeasible solutions
obtained by relaxing stability, trip start time, time window, and maximum work-
ing duration constraints. In the following, we denote a solution of this relaxed
version of the problem by S = SP ∪ SR, where SP is the corresponding solution
of the production subproblem, i.e., the production schedule of S, and SR is the
corresponding solution of the routing subproblem, i.e., the routing schedule of S.

Nagata et al. [2010] initially introduced the concept of time warp to allow late
arrivals in the context of vehicle routing problems with time windows. The time
warp allows, when a task is overdue in a given schedule, to fictively start the task
execution at the end of its time window, i.e., just on time. The quantity of time
units that are traveled back in time this way is called the time warp usage. In
this work, we use the time warp concept in three different situations: (i) to allow
violation of patients’ time windows, (ii) to allow violation of stability times, and
(iii) to allow producing a drug late w.r.t. the start time of the corresponding trip.
When a nurse arrives late at a patient’s home in case (i) or (ii), or when a phar-
macist starts a drug production late in case (iii), we pretend that the concerned
worker is allowed to travel back in time to start to execute the operation just on
time. That is, the production and administration start times of the drugs fictively
never violate the relaxed constraints due to the use of a time warp mechanism.
The total time warp of a given solution S, i.e., the total quantity of time units
that have to be traveled back in time by all the workers, is recorded as δ(S).

In order to take into account the violations of the maximum working duration
constraints, we define an overtime value for each pharmacist and each nurse. For
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each pharmacist p ∈ P , the overtime is calculated as γPp = max{0, (lPp − ePp ) −
Dmax}, while for each nurse n ∈ N , it is computed as γRn = max{0, (lRn − eRn ) −
Dmax}. The total overtime of S is defined as γ(S) =

∑
p∈P γ

P
p +

∑
n∈N γ

R
n .

The cost of a candidate solution S is denoted by C(S,M) =
∑

p∈P(lPp − ePp ) +∑
n∈N (lRn − eRn ) +M(δ(S) + γ(S)), where M is a very large number. This implies

that, for the purpose of detecting new best solutions, the total amount of infeasi-
bilities is the first criterion, while the duration comes second if compared solutions
are both feasible or if they have the same amount of infeasibilities.

However, when guiding the search, for the purpose of accepting or rejecting
moves, an alternate cost function is used in order to ease exploring infeasible
solutions: C(S, α) =

∑
p∈P(lPp − ePp ) +

∑
n∈N (lRn − eRn ) + α(δ(S) + γ(S)), where

α ∈ [αmin, αmax] is an adaptive parameter. The value of α is initialized to αmin
and a parameter µ ≥ 1 controls its variation as described in Olivera and Viera
[2007]. Whenever an accepted solution contains overtime or time warp, the value
of α is set to min{αµ, αmax} to focus on reducing infeasibility. Else, the value
of α is set to max{α/µ, αmin} to encourage visiting infeasible solutions. After ξ
iterations with α set to αmax, the value of α is reset to αmin to prevent it from
remaining stuck at its maximum value αmax. The values of αmin, αmax, µ, and ξ
are determined during the algorithm configuration phase.

4.3 Evaluation subproblem

In heuristic approaches, being able to evaluate moves efficiently is crucial to ensure
the overall speed of the method. In this problem, however, performing a move that
modifies the schedule of any nurse or pharmacist leads to a chain of reactions that
impacts the complete solution schedule. This is due to the interdependence be-
tween the operations to be performed by pharmacists and nurses. Let us consider,
for example, a move that inserts a patient inside a given trip. Such an insertion
affects the administration start times during the nurse’s journey. Consequently,
the production start times of the drugs administered by the concerned nurse are
impacted due to the linking constraints between production and routing: drug
stability constraints and trip start time constraints. Thus, all the pharmacists
producing these drugs see their respective production schedule affected. Similarly,
each change in the production schedule impacts the administration schedule. Such
interdependencies are usually encountered in vehicle routing problems with syn-
chronization, surveyed in Drexl [2012], and tend to complicate the evaluation of
candidate solutions.

Given a removal or insertion move to evaluate, the production and adminis-
tration sequences of the candidate solution are known but the optimal values of
all the start time variables need to be computed: the complete production and
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administration schedules have to be determined. We call this issue the evaluation
subproblem. As explained further in this section, this evaluation subproblem can
be solved using a linear programming (LP) model.

Very few recent studies have tried to evaluate efficiently moves in problems that
include interdependencies. In Masson et al. [2014], handicapped persons must be
transported from their origin location to their destination through a dedicated
fleet. These persons may have to be transferred from one vehicle to another at
so-called transfer locations, implying precedence constraints, and hence interde-
pendence, between vehicle journeys. The authors model the evaluation of the
feasibility of a move as a simple temporal problem (STP), whose constraints im-
pose bounds on time intervals separating pairs of events. In Masson et al. [2013],
the concept of forward time slack of Savelsbergh [1992] is extended to evaluate
efficiently the feasibility of moves for the same problem. The complexity of eval-
uating the feasibility of inserting a customer inside a vehicle journey is cubic in
the number of customers in the case of Masson et al. [2014] and it is performed
in constant time with quadratic updates when a solution is modified in Masson
et al. [2013]. Lehuédé et al. [2015] extend the technique presented in Masson et al.
[2013] for two more variants of vehicle routing with synchronization constraints.

However, in this work, those techniques are not straightforward to adapt for
the following reasons.

• We are not only interested in evaluating the feasibility of the moves, but also
the change in the objective function value. Indeed, in our case, changing the
schedule of the solution also implies a change in the total working duration.

• Since feasible schedules may be difficult to obtain, and because we want to
allow visiting, during the search, solutions that are infeasible w.r.t. time-
related constraints, we need to evaluate the new working duration of a can-
didate solution as well as its amount of infeasibility.

Les us now present the evaluation subproblem considered in this work. Let X
be a set of production and drug administration sequences which include all the
operations to be executed. Given this set X , the evaluation subproblem is to de-
termine the optimal start and completion times of the production, administration,
and loading operations. The obtained schedule is denoted Sopt(X ). We model this
problem as a linear program. The sets, parameters, and decision variables of this
model are provided in Table 1.

Even though there are no time windows directly imposed on the start times
of the production operations in the studied problem, the earliest production start
time of a drug i is clearly constrained due to its earliest administration start time
and its stability time. Moreover, the latest production start time of a drug i has
to permit starting the drug administration before the end of the corresponding
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Sets

J , indexed by i and j Set of patients
Jp Set of production operations executed by pharmacist p ∈ P
Jn Set of patients visited by nurse n ∈ N
R, indexed by r and s Set of non empty trips
AP = {(i, j) ∈ J 2

|i is produced right before j}
Set of consecutive production operations executed by a same pharma-
cist

AR = {(i, j) ∈ J 2

|i is administered right before j}
Set of consecutive patients visited by a same nurse in a same trip

AN = {(r, s) ∈ R2

|r is executed right before s}
Set of consecutive trips performed by a same nurse

Parameters

Pi Processing time of drug i ∈ J
STi Stability time of drug i ∈ J
Si Time necessary to administrate drug i ∈ J
Ei Earliest start time of administration operation i ∈ J
Li Latest start time of administration operation i ∈ J
EP

i Earliest start time of production operation i ∈ J
LP
i Latest start time of production operation i ∈ J

Tij Travel time between patient i and j ∈ J
T0i (resp. Ti0) Travel time between the hospital and patient i ∈ J (resp. patient i

and the hospital)
Dmax Maximum length of a shift
firstPp First production operation executed by pharmacist p ∈ P
lastPp Last production operation executed by pharmacist p ∈ P
firstTn First trip performed by nurse n ∈ N
lastTn Last trip performed by nurse n ∈ N
firstRr First patient visited in trip r ∈ R
lastRr Last patient visited in trip r ∈ R
tripi Trip that visits patient i ∈ J
M A very large number

Decision variables

tPi Start time of production operation i ∈ J
tRi Start time of administration operation i ∈ J
ePp Start time of the working shift of pharmacist p ∈ P
lPp End time of the working shift of pharmacist p ∈ P
eRr Start time of trip r ∈ R
lRr End time of trip r ∈ R
δPi Time warp on the start time of production operation i ∈ J
δRi Time warp on the start time of administration operation i ∈ J
γPp Overtime of pharmacist p ∈ P
γRn Overtime of nurse n ∈ N

Table 1: Notations for the LP formulation of the evaluation subproblem.
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time window. Taking those dependencies into account, we deduce a time window
[EP

i , L
P
i ] that is valid on the start time of each production operation i ∈ J :

EP
i = Ei − STi,

LPi = Li − T0i − Pi.

With the aim of determining the amount of infeasibility related to these bounds,
we impose time window constraints on the production start times in the models
provided here after. Below, we first give the LP formulation of the evaluation
subproblem if infeasibilities are not allowed.

min
∑
p∈P

(lPp − ePp ) +
∑
n∈N

(lRlastTn − e
R
firstTn

) (1)

s.t. tPi + Pi ≤ tPj ∀(i, j) ∈ AP (2)

tRi + Si + Tij ≤ tRj ∀(i, j) ∈ AR (3)

EP
i ≤ tPi ≤ LP

i ∀i ∈ J (4)

Ei ≤ tRi ≤ Li ∀i ∈ J (5)

tRi − tPi ≤ STi ∀i ∈ J (6)

tPi + Pi ≤ eRtripi
∀i ∈ J (7)

ePp ≤ tPfirstPp ∀p ∈ P (8)

tPlastPp + PlastPp
≤ lPp ∀p ∈ P (9)

eRr + T0,firstRr ≤ t
R
firstRr

∀r ∈ R (10)

tRlastRr + SlastRr
+ TlastRr ,0 ≤ lRr ∀r ∈ R (11)

lRr ≤ eRs ∀(r, s) ∈ AN (12)

lPp − ePp ≤ Dmax ∀p ∈ P (13)

lRlastTn − e
R
firstTn

≤ Dmax ∀n ∈ N (14)

tPi , t
R
i ≥ 0 ∀i ∈ J (15)

ePp , l
P
p ≥ 0 ∀p ∈ P (16)

eRr , l
R
r ≥ 0 ∀r ∈ R (17)

The objective function to be minimized (1) is the total working time of phar-
macists and nurses. Constraints (2) and (3) respectively ensure the consistency
of production and administration start times. Constraints (4) and (5) are time
windows constraints. Constraints (6) and (7) are the synchronization constraints
that link production and administration operations: the stability of each drug
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must be respected and each trip may start only if all the concerned drugs are
produced. Constraints (8) and (9) respectively determine the start and end time
of the working shift of each pharmacist. Similarly, Constraints (10) and (11) re-
spectively determine the start and end time of each trip. Constraints (12) state
that a trip may not start before the end of the preceding trip performed by the
same nurse. Constraints (13) and (14) impose a maximum working duration for
the pharmacists and nurses. Finally, Constraints (15) to (17) define the variable
domains.

In order to evaluate the amount of infeasibility of a given solution, we first
define non-negative time warp variables for the start times of production and
administration operations. The time warp δRi (resp. δPi ) of the administration
start time (resp. production start time) of drug i is the quantity of time units that
the concerned nurse (resp. pharmacist) would need to travel back in time in order
to start the operation just on time. That is, the fictive administration start time,
fRi = tRi − δRi , and the fictive production start time, fPi = tPi − δPi , of a drug i ∈ J
always satisfy Constraints (4)-(7). Every pharmacist and nurse continue their
sequence according to the fictive start times of the already executed operations.
In order to integrate the time warp variables into the model, Constraints (2)-(11)
are replaced by the following:

tPi − δPi + Pi ≤ tPj ∀(i, j) ∈ AP (18)

tRi − δRi + Si + Tij ≤ tRj ∀(i, j) ∈ AR (19)

EP
i ≤ tPi − δPi ≤ LP

i ∀i ∈ J (20)

Ei ≤ tRi − δRi ≤ Li ∀i ∈ J (21)

tRi − δRi − STi ≤ tPi ∀i ∈ J (22)

tPi − δPi + Pi ≤ eRtripi
∀i ∈ J (23)

tPlastPp − δ
P
lastPp

+ PlastPp
≤ lPp ∀p ∈ P (24)

tRlastRr − δ
R
lastRr

+ SlastRr
+ TlastRr ,0 ≤ lRr ∀r ∈ R (25)

In order to allow each nurse or pharmacist to fictively work more than the
maximum authorized duration Dmax, non-negative overtime variables are intro-
duced into the model. The overtime of each pharmacist p ∈ P (resp. each nurse
n ∈ N ) is represented by γPp (resp. γRn ). The overtime variables are added in
Constraints (13) and (14) as follows:

lPp − ePp +
∑
i∈Jp

δPi ≤ Dmax + γPp ∀p ∈ P (26)

lRlastTn − e
R
firstTn

+
∑
i∈Jn

δRi ≤ Dmax + γRn ∀n ∈ N (27)
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The aim here is to obtain the production and routing schedules that have
the least amount of infeasibility. The objective function of the model is modified
accordingly, i.e., the total amount of infeasibility is penalized by M , a very large
number, in (1):

min
∑
p∈P

(lPp − ePp ) +
∑
n∈N

(lRlastTn − e
R
firstTn

)

+M
∑
i∈J

(δPi + δRi ) +M(
∑
p∈P

γPp +
∑
n∈N

γRn ) (28)

In our LNS algorithm, the LP model that allows infeasible schedules is solved
whenever the optimal schedule Sopt(X ) of a given set X of production and admin-
istration sequences needs to be computed.

4.4 Heuristic evaluation

In the evaluation subproblem presented above, the complete schedule of a can-
didate solution needs to be computed to determine the exact objective function
value of this solution. However, this value may be approximated by fixing some
parts of the schedule in order to avoid incessant resolutions of the above LP. If
the production schedule is considered as fixed, i.e., the start times of all the pro-
duction operations are fixed, then moves on the administration schedule may be
evaluated in constant time using the concatenation equations described in Vidal
et al. [2015], only slightly adapted as explained later in this section. Likewise, if
the administration schedule is considered as fixed, i.e., the start times of the trips
and the drug administration operations are fixed, then moves on the production
schedule may be evaluated in constant time. Of course, as already mentioned,
fixing a part of the schedule leads to obtaining a suboptimal objective function
value for the given production and administration sequences.

Dynamic time windows. Given a production schedule SP , the fictive produc-
tion start time f̂Pi is known for all i ∈ J , implying time bounds on the drug
administration operations.

• The administration start time of drug i is bounded from above because of
the stability time: tRi ≤ min {f̂Pi + STi;Li}.

• The administration start time of drug i is bounded from below because of
the processing and traveling times: tRi ≥ max {f̂Pi + Pi + T0i;Ei}.
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Thus, whenever a production schedule is given, the administration time win-
dows [Ei, Li] may be strengthened. We refer to these induced time windows as
dynamic time windows. The dynamic time window [ÊR

i , L̂
R
i ] of an administration

operation i ∈ J is calculated as follows:

ÊR
i = max {f̂Pi + Pi + T0i;Ei},

L̂Ri = min {f̂Pi + STi;Li}.

Similarly, given a routing schedule SR, the administration start time f̂Ri of drug
i and the start time êRtripi of the trip visiting patient i are known for all i ∈ J ,
implying time bounds on the production operations.

• The production start time of drug i is bounded from below because of the
stability time: tPi ≥ f̂Ri − STi.

• The production start time of drug i is bounded from above by the start time
of the trip that visits patient i: tPi ≤ êRtripi − Pi.

Consequently, the dynamic time window [ÊP
i , L̂

P
i ] of a production operation

i ∈ J is determined as follows:

ÊP
i = f̂Ri − STi,

L̂Pi = êRtripi − Pi.

Concatenation equations. We use the concatenation equations proposed by
Vidal et al. [2015] in order to evaluate moves of one subproblem given time windows
- dynamic or not - imposed on its operations. Vidal et al. [2015] describe each move
as a series of path concatenations, which allows evaluating vertex-based or edge-
based moves in O(1), even though infeasible solutions are considered. A path is
defined as a sequence of vertices, where each vertex represents a single operation.
An implicit timing of a path τ is described through four measures: the minimum
duration D(τ), the minimum time warp usage TW (τ), the earliest start time E(τ)
of the first operation τ(1), and the latest start time L(τ) of the first operation
τ(1): for τ(1), any start time in the interval [E(τ), L(τ)] results in obtaining the
minimum duration and the minimum time warp usage for path τ .

Let τ1 and τ2 be two paths. Define Λij as the minimum delay between the
completion of operation i ∈ J and the start of operation j ∈ J . The four

16



measures for τ1 ⊕ τ2, i.e., the concatenation of τ1 and τ2, can be computed using
the concatenation equations of Vidal et al. [2015] reported below.

∆ = D(τ1)− TW (τ1) + Λτ1(|τ1|),τ2(1) (29)

∆WT = max{E(τ2)−∆− L(τ1), 0} (30)

∆TW = max{E(τ1) + ∆− L(τ2), 0} (31)

D(τ1 ⊕ τ2) = D(τ1) +D(τ2) + Λτ1(|τ1|),τ2(1) + ∆WT (32)

E(τ1 ⊕ τ2) = max{E(τ2)−∆, E(τ1)} −∆WT (33)

L(τ1 ⊕ τ2) = min{L(τ2)−∆, L(τ1)}+ ∆TW (34)

TW (τ1 ⊕ τ2) = TW (τ1) + TW (τ2) + ∆TW (35)

Concatenations for production moves. When considering the production
subproblem, a path represents a sequence of production operations performed by
the same pharmacist. For a path τ containing the production operation of a single
drug i, D(τ) and TW (τ) are respectively equal to Pi and 0. Depending if the
production time window of i considered during the concatenation operation is
dynamic or not, E(τ) and L(τ) are respectively equal either to ÊP

i and L̂Pi , or to
EP
i and LPi . Note that Λij = 0 for all i ∈ J and j ∈ J \ {i}.

Concatenations for routing moves. When considering the routing subprob-
lem, a path represents a sequence of administration and loading operations per-
formed by the same nurse. In this study, concatenations of administration se-
quences are always performed given a production schedule SP . Consequently,
only dynamic time windows are used. The vertex set J̄ = J ∪ {0} represents all
the administration operations to be executed together with the loading operations
at the hospital. For all i ∈ J̄ and j ∈ J̄ \ {i}, the minimum delays are defined
as Λij = Tij. For a path τ containing a single patient i, the four measures D(τ),
TW (τ), E(τ), and L(τ) are respectively equal to Si, 0, ÊR

i , and L̂Ri . However,
when concatenating a path τ1 that only contains a loading operation with a path
τ2 starting with one or more patient visits, we have to consider those patients to
determine the earliest start time of path τ1. The start time of a trip r is bounded
from below by the production completion times of the drugs administered during
the trip: eRr ≥ maxi∈Jr {f̂Pi + Pi}, where Jr ⊆ J is the subset of drugs adminis-
tered in trip r. Thus, the earliest start time ÊT

r of a trip r depends on the subset
of patients visited and is defined as follows:

ÊT
r = max

i∈Jr
{f̂Pi + Pi}
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Consequently, the four measures D(τ), TW (τ), E(τ), and L(τ) of a path τ
containing only a loading operation at the hospital, which is followed by trip r in
the considered concatenation, are respectively 0, 0, ÊT

r , and L0.
In order to maintain the values needed to evaluate moves in O(1) when using

multi-trip operators with trip-dependent earliest loading start times, we employ
the path concatenations proposed by François et al. [2019]. Let T be a journey
consisting of one or more trips. Let o be the first loading operation of T and o′ be its
final visit at the hospital. For each vertex i in T , let Oi and O′i denote respectively
the visits at the hospital which initiate and terminate the trip containing i. Note
that o is equivalent to Oi if vertex i belongs to the first trip of T . Similarly, o′ is
equivalent to O′i if i belongs to the last trip of T . When updating T , for each i in
T , we maintain the previously defined four measures for four different paths:

• τ[o,i], from the first loading operation of T included to vertex i included,

• τ[i,o′], from vertex i included to the last loading operation of T included,

• τ(Oi,i], from the last visit at the hospital preceding vertex i excluded to vertex
i included,

• τ[i,O′
i)
, from vertex i included to the first visit at the hospital following vertex

i excluded.

The earliest start time ÊT
r of trip r that starts at Oi and ends at i is also

maintained. The first three path types are used to evaluate insertion and removal
moves. The fourth one is needed for merging consecutive trips. When inserting
or removing an administration operation, the earliest start time of the preceding
visit at the hospital changes. Maintaining the four measures of those four different
paths for each i in T permits evaluating any insertion or removal move in O(1).
We refer the reader to François et al. [2019] for an in-depth explanation regarding
move executions.

In the following, we denote by CR(XR,M) or CR(XR, α) the minimum cost of
a set of administration sequences XR obtained by summing the minimum possible
duration of each sequence, and penalizing with a factorM or α the total associated
overtime and time warp.

4.5 Structure of the LNS algorithm

The proposed LNS is a destroy & repair heuristic composed of two embedded
loops. The outer loop perturbs the incumbent solution by modifying its produc-
tion sequences. Then, the production sequences are fixed while the inner loop
concentrates on improving the administration sequences. Within the inner loop, a
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production schedule is known at all times and dynamic administration time win-
dows are imposed. Below, the creation of the initial solution is described, as well
as the details of the two embedded loops. Algorithm 1 then presents the outline
of the proposed LNS algorithm.

Initial solution. The initial solution is created in three phases: first, the pro-
duction schedule is initialized, second, the administration sequences are created,
and third, the optimal schedule of production and administration sequences is
determined using the LP procedure described in Section 4.3.

To create the production schedule, we proceed in two steps: an assignment step,
where drugs are assigned to pharmacists, and a scheduling step, where production
tasks of each pharmacist are scheduled.

In the assignment step, the drugs to produce are first sorted in increasing order
of their tightness defined as STi−Pi−T0i. The tightness represents the maximum
slack of the administration start time with respect to the drug production start
time. The sorted list of drugs is split into |P| segments, each of size b(|J |/|P|)c or
d(|J |/|P|)e. The drugs in each segment are then sorted by decreasing processing
times, and segments are concatenated in a single list starting from the first segment
up to the last one. Finally, drug in position i = 0, . . . , |J |−1 of the list is assigned
to the pharmacist i mod |P |.

This first step is designed to create an even assignment of the drugs to the
pharmacists with respect to the tightness, while taking into account at the same
time the balance of the processing times.

After performing the assignment, the scheduling step begins. The drugs to be
processed by each pharmacist are sorted in increasing order of the center of their
static production time window, i.e., (EP

i + LPi )/2. This produces a production
sequence for each pharmacist. The production of each drug is then scheduled at the
latest possible start time that minimizes the working duration of each pharmacist
while satisfying the static production time windows. Those computations are
straightforward using the concatenation equations described in Section 4.4.

The dynamic time windows of the administration operations are set according
to those schedules. Then, a vehicle-based regret insertion heuristic, as defined in
François et al. [2019], creates the administration sequences. The LP procedure
described in Section 4.3 is then used to determine the optimal schedule of the
initial production and administration sequences.

Outer loop. While many different sets of production sequences may yield the
same minimum production cost, routing costs are highly dependent on the ad-
ministration sequences. This is the main reason why the algorithm perturbs the
production sequences from time to time before evaluating many routing moves
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given a fixed production sequence. In the following, we call perturbation the pro-
cess of creating new schedules as a basis for the inner loop iterations.

In each outer loop iteration, one out of four perturbation schemes is used, with
a dynamic parameter k. These four schemes all follow the same steps.

Step 1: Remove k production operations.

Step 2: Remove either the corresponding k administration operations, or all of
them (depending on the perturbation scheme used).

Step 3: Reinsert the removed production operations.

Step 4: Compute a temporary production schedule and deduce the dynamic
administration time windows.

Step 5: Reinsert the removed administration operations.

Step 6: Compute the optimal (production and administration) schedule of the
new set of sequences.

In Step 1, those drugs, whose dynamic administration time window width is
short compared to the width of their original time window, are more likely to be
removed. The removal criteria are mathematically described in Section 4.6. In
Step 2, the administration sequences are destroyed. Depending on the perturba-
tion scheme, either the k drugs removed from the production sequences are also
removed from the administration sequences (perturbation schemes 1 and 2), or all
administration sequences are completely emptied (perturbation schemes 3 and 4).

For the purpose of reinserting the removed drug production operations into
the production sequences during Step 3, production time windows should be con-
sidered. In perturbation schemes 1 and 2, since only the k drugs removed from
the production sequences are also removed from the administration sequences, the
dynamic production time windows of the removed drugs are reset to their original
production time window value [EP

i , L
P
i ], while the dynamic production time win-

dows [ÊP
i , L̂

P
i ] of the other drugs are kept unchanged. This ensures that the new

production sequences will be compatible with the partial administration sequences
that were not destroyed. On the contrary, in schemes 3 and 4, since all the admin-
istration sequences are reinitialized, all the dynamic production time windows are
reset to their original production time window values [EP

i , L
P
i ]. The reinsertion

of the k removed drugs in the production sequences is performed with a greedy
heuristic, which aims at widening the dynamic administration time windows com-
pared to those of the last incumbent solution. This insertion heuristic is detailed
in Section 4.6.
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In order to reinsert the removed administration operations consistently with
the production sequences, a temporary production schedule is computed in Step 4.
Indeed, this allows the calculation of dynamic administration time windows that
will favour coherence between the production and the administration sequences.
Two options are considered. In schemes 1 and 3, we select the earliest possible start
time within the start time interval that minimizes the makespan of the sequence.
In schemes 2 and 4, the latest start time in the same interval is chosen. Once the
production schedule is fixed, dynamic administration time windows [ÊR

i , L̂
R
i ] are

updated for all drugs. In Step 5, insertion of unadministered drugs (either k or all
drugs) is performed using a greedy routing heuristic.

Finally, in Step 6, the optimal schedule of the new set of sequences is com-
puted thanks to the dedicated LP procedure. The new perturbed solution created
through this process is the initial solution of the inner loop described below.

At the beginning of the algorithm, k and the perturbation scheme are equal
to 1. The perturbation schemes are used in a cyclic fashion (1, 2, 3, 4, 1, etc.).
After the fourth perturbation scheme has been used, the value of k is increased
by one unit or it is set to 1 if the new value would exceed kmax. Whenever a new
best solution is detected, it becomes the new incumbent of the outer loop, and
the value of k is reset to 1 as well as the perturbation scheme. The value of kmax
is determined during the configuration phase as a fraction of the instance size:
kmax = bλouter × |J |c, where λouter ∈ ]0, 1].

The stopping criterion of the outer loop is the maximum run time of the algo-
rithm.

Inner loop. During an outer loop iteration, after a perturbation has been ap-
plied to the incumbent solution using the six steps detailed above, the inner loop
iteratively performs constrained routing moves, i.e., moves that modify only the
administration sequences while keeping the production schedule unchanged. That
is, a production schedule SP is provided at all times, and the dynamic time win-
dows imposed by SP on the administration start times are those that will be taken
into account to evaluate the routing moves. As stated in Section 4.2, infeasible
routing moves may be considered for acceptance. The feasibility of administration
sequences is evaluated relatively to the dynamic administration time windows.

At each iteration of the inner loop, q drug administration operations are re-
moved and reinserted using randomly selected removal and insertion heuristics
described in Section 4.6. Note that all removal (resp. insertion) heuristics have
the same probability to be chosen. Indeed, as shown in François et al. [2016] and
Turkeš et al. [2021], adaptive heuristic selection is not necessarily an important
algorithmic component, especially if offline parameter configuration is used, which
is the case here. In the first iteration, and each time a solution is accepted, the
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value of q is set to 1. If the candidate solution is rejected, the value of q is increased
by one unit, as long as it does not exceed qmax, in which case it is set to qlow. The
values of qmax and qlow are determined during the configuration phase as functions
of the instance size: qmax = bλinner × |J |c and qlow = bλinner × |J |/δc, where
λinner ∈ ]0, 1] and δ ∈ N+

0 .
In a given inner loop iteration, the selected heuristics modify XR

inner, the set
of administration sequences of Sinner, to obtain a candidate set of administration
sequences X ′Rinner. A simulated annealing framework is used to decide whether
to accept X ′Rinner. The acceptance probability is equal to exp[−(CR(X ′Rinner, α) −
CR(XR

inner, α))/(θCR(XR
inner, α))], where θ is the temperature. If the candidate set

of administration sequences is accepted, then Sopt(X ′inner) is computed thanks to
the LP procedure, and it becomes the inner loop incumbent. At each iteration,
θ is set to max{ηθ, θmin}, where η ∈ [0, 1] is the cooling factor. The minimum
temperature is defined as θmin = κθ0 with κ ∈ [0, 1]. The configuration phase
determines the respective value of θ0, κ, and η.

In order to detect new best solutions, the cost measure of a solution S becomes
C(S,M). Indeed, the value returned by C(S, α) does not depend only on the
characteristics of the solution S but also on the value of the adaptive parameter
α during a given iteration. On the contrary, the value returned by C(S,M) stays
consistent throughout the course of the algorithm. Thus, once a solution has
been accepted in the inner loop and recorded as the new Sinner, C(Sinner,M) is
compared to C(Souter,M), which is always the best cost found so far.

The stopping criterion of the inner loop is met if the maximum run time of the
algorithm is reached, if the consecutive number of infeasible solutions exceeds ω,
or if the consecutive number of non improving solutions exceeds ω′. The respective
values of ω and ω′ are determined during the configuration phase.

4.6 Removal and insertion heuristics

Several types of heuristic moves are used in the above described algorithm.

• Removal of production operations (outer loop).

• Insertion of production operations (outer loop).

• Removal of administration operations (inner loop).

• Insertion of administration operations (inner loop).

Removal heuristic for production sequences. The first step of the outer
loop perturbation is to remove k production operations from the production se-
quences. For each patient, the value (L̂Ri −ÊR

i )/(Li−Ei) is computed. It measures
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Algorithm 1 Large neighborhood search heuristic.
1: Construct an initial set of production and administration sequences Xinit
2: Compute the optimal schedule Sinit ← Sopt(Xinit)
3: Update ÊP

i , L̂Pi , ÊR
i , and L̂Ri for all i ∈ J

4: Set k ← 1; set Souter ← Sinit
5: while the stopping criterion is not met (outer loop) do
6: Apply perturbation to Souter (Steps 1 to 6) to obtain Sinner
7: Update k and perturbation scheme
8: if C(Sinner,M) < C(Souter,M) then
9: Set Souter ← Sinner; reset k and perturbation scheme

10: end if
11: Set q ← 1
12: while the stopping criterion is not met (inner loop) do
13: Select hrem and hins randomly
14: Obtain X ′Rinner by using hrem and hins on XR

inner

15: if C(X ′Rinner, α) satisfies the SA acceptance criteria then
16: Set Sinner ← Sopt(X ′inner)
17: Update ÊP

i , L̂Pi , ÊR
i , and L̂Ri for all i ∈ J

18: Reset q; update α
19: if C(Sinner,M) < C(Souter,M) then
20: Set Souter ← Sinner; reset k and perturbation scheme
21: end if
22: else
23: Update q
24: end if
25: end while
26: end while
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the narrowing of the administration time window imposed by the start time of the
production operation. Patients are sorted in a ranked list in increasing order of
those values. The randomized selection mechanism proposed in Ropke and Pisinger
[2006] is applied such that patients with small ranks have a higher probability to
be removed (see Algorithm 2). The value of υP is set during the configuration
phase. If it is equal to 1, all the patients have the same probability to be selected.
The probability of selecting a patient at the beginning of the ranked list increases
when υP is large.

Algorithm 2 Randomized selection
1: Create a ranked list V containing all the patients
2: while the number of selected patients is strictly smaller than k do
3: Set the value of ρ ∼ U [0, 1[
4: Select the patient whose index in V is equal to bρυP × |V|c, where υP ≥ 1 is

a parameter.
5: Remove the selected patient from V
6: end while

Insertion heuristic for production sequences. In the outer loop, an in-
sertion heuristic reconstructs the production sequences after they have been de-
stroyed. Drugs are inserted one by one following a greedy mechanism. As already
mentioned, many different sets of production sequences may yield the same cost.
This is why the greedy criterion takes into account the potential impact of the
insertion of a production operation on the administration sequences, rather than
simply considering the duration increase of the production sequences.

The measure CP (X P
p ) related to the production sequence X P

p of pharmacist p
is used as an indicator of the size of the dynamic routing time windows that result
from X P

p . Let CP (X P
p ) be defined as

∑
i∈XP

p
((l

R

i −eRi )×(lRi −eRi ))/(Li−Ei), where

l
R

i −eRi (resp. lRi −eRi ) is the size of the dynamic administration time window when
production start times are fixed at their latest (resp. earliest) possible values which
minimize the duration of X P

p . The larger the size of the dynamic routing time
windows, the higher the value of CP (X P

p ). Let CP (X P ) be equal to
∑

p∈P C
P (X P

p ),
and let ∆CP

j (X P ) be the variation of CP (X P ) if drug j is inserted in X P at the
position resulting in the highest CP (X P ) value after insertion. The drug to select at
each iteration of the greedy production insertion heuristic is the one that globally
decreases the less the size of the time windows, i.e., argmaxj∈J P {∆CP

j (X P )},
where J P denotes the set of drugs that need to be inserted in production sequences.
Indeed, ∆CP

j (X P ) is negative for all j, since inserting a customer in a production
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sequence may never result in increasing the quantities (l
R

i − eRi ) and (lRi − eRi ).
Thus, ∆CP

j (X P ) should be maximized.

Removal and insertion heuristics for administration sequences. Admin-
istration moves modify only the administration sequences without modifying the
production schedule. That is, a given production schedule SP is considered as fixed
and administration operations are removed and reinserted taking into account the
dynamic time windows imposed by SP on the administration start times.

As stated before, the multi-trip operators proposed in François et al. [2016] are
employed for that purpose. When inserting an administration task in a nurse’s
journey, we consider the following four multi-trip insertion schemes and choose the
least costly:

1. Insert the administration task.

2. Insert a reloading operation at the hospital and then the administration task.

3. Insert the administration task and then a reloading operation at the hospital.

4. Insert a new trip, which contains only the considered administration task
between two reloading operations.

In removal heuristics, when removing an administration task would cause a
journey to contain two consecutive reloading operations, one of these is also re-
moved. A merge operator, which is included by default within all removal heuris-
tics, allows merging two consecutive trips of a journey by removing the reloading
operation between them. Merges are recursively performed if needed. The in-
sertion and removal moves are evaluated in O(1) using path concatenations as
explained in Section 4.4. The heuristics selected in the inner loop are those that
have proven useful in the ALNS algorithm of François et al. [2019] when the consid-
ered objective is the minimization of the working duration, i.e., random removal,
worst removal - versions (a) and (b), Shaw removal - versions (b) and (c), greedy
insertion, vehicle-based regret insertion, and position-based regret insertion.

As it was the case for the removal heuristic dedicated to production sequences,
a randomization factor, named υR is used in several removal heuristics cited above.
Its value is determined during the configuration phase.

5 Numerical Results
In this section, the instances created to perform numerical analyses are detailed.
Then, the numerical value of the algorithmic parameters are given and we explain
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how they are obtained. Afterwards, algorithmic and managerial insights obtained
from numerical experiments are provided.

5.1 Instances

Each instance is composed of a graph containing the geographic characteristics
of the patients and of the hospital, and of additional information about the pa-
tients, the pharmacists, and the nurses. With the objective of creating realistic
instances, interviews have been carried out in healthcare institutions in Belgium
and France. The instance characteristics detailed below take into account the
information gathered through those contacts.

For each graph, patient locations are generated as X-Y coordinates on a plan.
The distance matrix is built using Euclidean distances rounded up to the first
decimal. In each graph, 25% of the patients are concentrated in a small zone that
represents a city center, 50% are located around the city center in a zone that can
be seen as an urban area, and the 25% remaining are situated further away in a
regional area. The hospital location is located in the urban area, outside of the
city center, as it is often the case in practice.

We consider several settings for the following instance parameters: the number
of patients, the length of the planning horizon, the stability times, and the time
windows. The number of patients |J | is equal to either 25, 50, or 100. The length
of the planning horizon (L0 − E0) is either 10 or 14 hours. The stability times
are either short or long. Short (resp. long) stability times are generated randomly
as a multiple of 30 minutes ranging from 120 to 240 minutes (resp. 300 to 480
minutes). Instances have either one of two settings: 25% of short and 75% of long
stability times, or 50%-50%. Time windows are either equal to 120 minutes (short)
or to 240 minutes (long). Instances have either one of two settings: 25% of short
and 75% of long time windows, or 75%-25%. For all instances, the processing time
of a drug is randomly generated in {20, 30, 40, 60, 70, 80} minutes. Finally, the
administration time is randomly generated in {20, 30, 40, 50, 60, 70, 80} minutes.
Table 2 summarizes the possible instance settings.

Parameter Values # Settings

Number of patients {25, 50, 100} 3
Length of the planning horizon (hours) {10, 14} 2
Percentage of short stability times {25, 50} 2
Percentage of short time windows {25, 75} 2

Table 2: Instance parameters.
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In total, there exist 24 combinations of those four parameter values, eight
for each size of the patient list. One graph was created for each one of those
combinations. For each one of the 24 graphs, several worker configurations have
been systematically generated, i.e., the number of pharmacists, the number of
nurses, and the length of the working shift. The algorithm proposed in this work
has been slightly modified to generate judicious values for the number of nurses
and the number of pharmacists, provided a shift size (Dmax) of 6 or 8 hours.
The resulting set of test instances contains 93 instances based on 24 different
graphs. These instances are designed to be relatively difficult to solve: decreasing
by one the number of pharmacists or the number of nurses may lead to infeasible
instances. A folder containing the 93 instances is available at the following address:
https://hdl.handle.net/2268/292474.

5.2 Algorithm configuration

The automatic configuration tool irace [López-Ibáñez et al., 2016] is used to
configure the proposed algorithm. For this purpose, ten training instances different
from the test instances, but generated according to the same principles, are used.
For each algorithmic parameter, we define an initial range of possible values. Based
on the list of parameters and their respective ranges, irace returns the final set
of parameter values, called configuration, that performed best on the training
instances among a large number of configurations tested through statistical races.

Table 3 summarizes the algorithmic parameters introduced in former sections
by categorizing them according to the algorithmic component they belong to. For
each parameter, the initial range is provided as well as the final value recommended
by irace.

5.3 Experiments on test instances

The computer used for the numerical experiments is an Intel(R) Core(TM) i7-
8665U CPU @1.90GHz. Five runs are performed for each instance, with a time
limit per run in seconds equal to twenty times the number of customers, that is,
500, 1000, and 2000 seconds for instances of 25, 50, and 100 patients respectively.

Table 4 is divided into four groups of columns. The instance characteristics
are reported in the eight first columns. The next four columns relate to the global
schedule, which includes the production and administration schedules, while two
additional groups of two columns are dedicated to the production schedule and to
the administration schedule respectively.

For each instance, Table 4 reports the number of feasible solutions obtained
over five runs, as well as the average solution value, the best solution value C∗,
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Algorithmic component Parameter Type Authorized range Final value

Objective function αmin integer, step 10 [10,50] 20
(4.2) αmax integer, step 10 [αmin,1000] 60

µ real, 1 digit [1,2] 1.4
ξ integer, step 10 [10,100] 80

Simulated annealing θ0 real, 3 digits [0.010,0.050] 0.019
(4.5) κ real, 2 digits [0.01,0.50] 0.03

η real, 3 digits [0.950,0.999] 0.965

Stopping criteria ω integer, step 50 [50,500] 350
(4.5) ω′ integer, step 50 [50,2000] 900

Bounds on k and q λinner real, 2 digits, step 0.05 [0.10,0.40] 0.30
(4.5) δ integer [2,15] 11

λouter real, 2 digits, step 0.05 [0.10,0.40] 0.20

Randomization factors υP real, 1 digit, step 0.5 [1,5] 3.0
(4.6) υR real, 1 digit, step 0.5 [1,5] 4.0

Table 3: Algorithmic parameters values.

and the difference between the best and the worst solution values computed as a
percentage of C∗.

The average duration of the production and of the administration schedules are
shown in separate sections, both in absolute terms and as a percentage of the total
available working time, which is equal to the length of the shift Dmax multiplied
by the number of pharmacists or nurses.

Instance characteristics Global solution Production Administration
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Graph 01 25 10 25 25 8 3 5 5 3055.52 3032.9 1.7% 1240.00 86.11% 1815.52 75.65%
8 4 4 5 3001.60 2971.8 1.6% 1240.00 64.58% 1761.60 91.75%
6 4 5 5 2976.28 2952.5 1.5% 1240.18 86.12% 1736.10 96.45%

Graph 02 25 10 25 75 8 3 6 5 3313.32 3257.7 3.1% 1300.00 90.28% 2013.32 69.91%
8 4 5 5 3183.64 3178.8 0.4% 1300.00 67.71% 1883.64 78.49%
6 4 6 5 3171.80 3163.8 0.7% 1300.00 90.28% 1871.80 86.66%

Graph 03 25 10 50 25 8 3 6 4 3689.25 3648.5 2.9% 1410.00 97.92% 2279.25 79.14%
8 5 5 5 3526.66 3482.4 2.4% 1411.86 58.83% 2114.80 88.12%
6 4 7 5 3524.38 3492.3 2.0% 1410.00 97.92% 2114.38 83.90%

Graph 04 25 10 50 75 8 3 6 5 3514.78 3476.1 2.2% 1310.00 90.97% 2204.78 76.55%
8 4 5 5 3312.48 3287.1 1.5% 1310.00 68.23% 2002.48 83.44%
6 4 6 5 3324.38 3279.9 2.7% 1310.00 90.97% 2014.38 93.26%

Continued on next page
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Graph 05 25 14 25 25 8 3 5 5 3336.72 3324.3 1.0% 1260.00 87.50% 2076.72 86.53%
6 4 6 5 3329.54 3316.9 1.0% 1260.00 87.50% 2069.54 95.81%

Graph 06 25 14 25 75 8 3 5 5 3014.50 2997.9 1.1% 1050.00 72.92% 1964.50 81.85%
6 3 6 5 3022.42 3004.5 1.3% 1052.14 97.42% 1970.28 91.22%

Graph 07 25 14 50 25 8 3 5 5 3488.34 3477.9 0.7% 1370.00 95.14% 2118.34 88.26%
6 4 7 5 3478.78 3433.1 2.1% 1370.20 95.15% 2108.58 83.67%

Graph 08 25 14 50 75 8 3 5 5 3163.24 3145.1 2.1% 1222.28 84.88% 1940.96 80.87%
6 4 6 5 3159.86 3140.7 1.5% 1223.46 84.96% 1936.40 89.65%

Graph 09 50 10 25 25 8 6 11 3 7272.97 7117.4 3.4% 2660.00 92.36% 4612.97 87.37%
8 7 11 5 6944.18 6865.0 3.4% 2660.22 79.17% 4283.96 81.14%
8 8 10 5 6864.76 6823.8 1.6% 2660.00 69.27% 4204.76 87.60%
8 10 9 5 6839.12 6809.3 1.2% 2666.84 55.56% 4172.28 96.58%
6 8 13 5 6797.56 6749.9 1.5% 2660.00 92.36% 4137.56 88.41%
6 9 13 5 6758.86 6720.6 1.2% 2660.00 82.10% 4098.86 87.58%
6 10 12 5 6735.68 6686.6 1.4% 2660.00 73.89% 4075.68 94.34%

Graph 10 50 10 25 75 8 7 8 5 6311.08 6276.7 1.2% 2730.00 81.25% 3581.08 93.26%
6 9 10 5 6162.52 6133.3 1.2% 2730.00 84.26% 3432.52 95.35%

Graph 11 50 10 50 25 8 6 10 5 6723.62 6649.6 3.0% 2499.50 86.79% 4224.12 88.00%
8 7 10 5 6472.50 6443.6 0.9% 2493.32 74.21% 3979.18 82.90%
8 8 9 5 6591.22 6574.7 0.4% 2532.64 65.95% 4058.58 93.95%
6 7 12 3 6499.90 6449.6 1.3% 2490.00 98.81% 4009.90 92.82%
6 8 12 5 6445.72 6391.3 1.8% 2496.52 86.68% 3949.20 91.42%

Graph 12 50 10 50 75 8 6 9 5 6317.40 6239.9 2.4% 2450.00 85.07% 3867.40 89.52%
8 7 9 5 6155.98 6101.2 2.1% 2450.04 72.92% 3705.94 85.79%
8 9 8 5 6061.40 6006.8 1.6% 2454.16 56.81% 3607.24 93.94%
6 7 11 5 6212.64 6171.8 1.5% 2450.00 97.22% 3762.64 95.02%
6 8 11 5 6115.14 6064.4 1.4% 2450.00 85.07% 3665.14 92.55%

Graph 13 50 14 25 25 8 6 8 5 6287.18 6254.9 1.2% 2610.92 90.66% 3676.26 95.74%
6 8 11 5 6301.22 6254.9 1.2% 2616.92 90.87% 3684.30 93.04%
6 9 11 5 6250.62 6216.0 1.2% 2610.02 80.56% 3640.60 91.93%

Graph 14 50 14 25 75 8 6 8 5 6309.14 6289.8 0.7% 2641.96 91.73% 3667.18 95.50%
6 8 11 5 6301.50 6252.7 1.5% 2640.56 91.69% 3660.94 92.45%
6 9 11 5 6325.78 6246.0 2.0% 2665.32 82.26% 3660.46 92.44%

Graph 15 50 14 50 25 8 5 9 5 6176.24 6145.6 0.8% 2350.00 97.92% 3826.24 88.57%
8 6 9 5 6176.50 6132.9 1.6% 2350.28 81.61% 3826.22 88.57%
6 7 11 4 6146.55 6108.5 1.1% 2350.00 93.25% 3796.55 95.87%
6 8 11 4 6166.03 6136.8 0.8% 2350.00 81.60% 3816.03 96.36%

Graph 16 50 14 50 75 8 6 9 5 6398.64 6383.2 0.7% 2591.84 89.99% 3806.80 88.12%
8 7 9 5 6414.90 6337.0 2.5% 2611.10 77.71% 3803.80 88.05%
6 8 12 5 6306.12 6230.7 2.0% 2593.14 90.04% 3712.98 85.95%
6 9 11 4 6456.33 6402.0 1.2% 2617.73 80.79% 3838.60 96.93%

Graph 17 100 10 25 25 8 12 17 5 11947.68 11892.9 1.0% 4620.00 80.21% 7327.68 89.80%
8 14 16 4 11921.83 11821.6 2.0% 4648.98 69.18% 7272.85 94.70%
6 14 28 5 11552.78 11527.4 0.3% 4620.00 91.67% 6932.78 68.78%

Continued on next page
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6 16 21 5 11507.62 11423.0 1.1% 4620.00 80.21% 6887.62 91.11%
6 23 20 5 11415.34 11392.4 0.5% 4620.00 55.80% 6795.34 94.38%

Graph 18 100 10 25 75 8 14 18 4 11861.00 11827.7 0.6% 5010.00 74.55% 6851.00 79.29%
8 15 18 1 11842.70 11842.7 0.0% 5010.00 69.58% 6832.70 79.08%
8 17 15 4 11876.33 11803.9 1.3% 5010.93 61.41% 6865.40 95.35%
6 16 35 2 11712.50 11642.5 1.2% 5010.00 86.98% 6702.50 53.19%
6 18 32 4 11588.03 11571.8 0.4% 5010.00 77.31% 6578.03 57.10%
6 31 19 3 11647.67 11538.3 1.5% 5020.80 44.99% 6626.87 96.88%

Graph 19 100 10 50 25 8 13 20 5 12447.82 12411.9 0.7% 4900.08 78.53% 7547.74 78.62%
8 14 19 5 12402.20 12333.9 1.3% 4903.90 72.97% 7498.30 82.22%
6 16 22 5 12386.20 12317.7 1.6% 4900.00 85.07% 7486.20 94.52%
6 17 22 5 12215.82 12110.7 1.6% 4900.24 80.07% 7315.58 92.37%

Graph 20 100 10 50 75 8 14 18 4 12652.05 12588.0 0.8% 5178.45 77.06% 7473.60 86.50%
8 15 17 5 12446.46 12373.1 0.9% 5141.96 71.42% 7304.50 89.52%
6 16 32 4 12213.30 12185.4 0.4% 5120.03 88.89% 7093.28 61.57%
6 17 32 5 12267.20 12206.8 1.0% 5131.36 83.85% 7135.84 61.94%
6 18 22 5 12321.56 12225.0 1.5% 5134.78 79.24% 7186.78 90.74%

Graph 21 100 14 25 25 8 11 17 5 12372.10 12203.9 3.2% 4982.16 94.36% 7389.94 90.56%
8 12 17 5 12279.94 12228.7 1.2% 4984.22 86.53% 7295.72 89.41%
6 19 22 5 12223.80 12171.5 1.1% 4997.96 73.07% 7225.84 91.24%
6 20 21 4 12175.50 12085.4 1.2% 5005.50 69.52% 7170.00 94.84%

Graph 22 100 14 25 75 8 11 16 4 11468.75 11420.7 0.8% 4946.05 93.68% 6522.70 84.93%
8 12 16 5 11348.88 11302.6 0.9% 4951.70 85.97% 6397.18 83.30%
8 13 14 4 11486.53 11324.2 2.3% 4991.18 79.99% 6495.35 96.66%
8 14 14 4 11612.03 11448.5 3.5% 5053.23 75.20% 6558.80 97.60%
6 16 26 5 11524.28 11452.0 1.0% 5003.78 86.87% 6520.50 69.66%
6 17 20 5 11507.74 11345.0 3.0% 5027.00 82.14% 6480.74 90.01%
6 18 19 3 11536.63 11460.2 1.2% 5005.47 77.24% 6531.17 95.48%

Graph 23 100 14 50 25 8 12 17 5 13125.34 12858.0 3.7% 5283.78 91.73% 7841.56 96.10%
8 13 17 5 13061.90 13013.5 1.2% 5274.06 84.52% 7787.84 95.44%
6 16 23 5 12905.26 12861.5 0.7% 5269.46 91.48% 7635.80 92.22%
6 17 23 5 12800.42 12769.0 0.6% 5251.88 85.82% 7548.54 91.17%

Graph 24 100 14 50 75 8 11 18 5 12694.04 12604.2 1.6% 4836.72 91.60% 7857.32 90.94%
8 12 18 5 12839.56 12736.3 1.7% 4838.86 84.01% 8000.70 92.60%
8 16 17 1 12884.90 12884.9 0.0% 5051.50 65.77% 7833.40 96.00%
6 24 29 3 13265.03 13125.8 3.0% 5162.90 59.76% 8102.13 77.61%
6 25 29 4 13040.90 12896.6 2.0% 5224.05 58.05% 7816.85 74.87%

Table 4: Results for benchmark instances.
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5.4 The importance of the LP component

As explained in Section 4.4, the proposed solution method relies on an LP proce-
dure to determine optimal start times for both the production and administration
sequences. This computation takes place each time a solution is accepted in the
inner loop (See Algorithm 1, Line 17).

The usefulness of this LP component has been challenged by running experi-
ments with different triggers. The results are found in Table 5. They are aggre-
gated by instance size and show the average number of feasible solutions found
over five runs as well as the percentage time spent in the LP procedure.

The original trigger, "when a solution is accepted in the inner loop", is denoted
Accept. The considered alternatives are described below.

• Shaking : After each shaking (on the initial solution of the inner loop), and
whenever a new best solution is found.

• New best : Whenever a new best solution is found.

• Post-opt : Only as a post-optimization step on the final solution.

• Threshold : If an accepted solution does not deteriorate excessively the ob-
jective function value compared to the one of the incumbent solution of the
inner loop. A threshold deterioration ν ∈ {0%, 1%, 2%} is set. Note that, as
it is the case to detect improvements, the original objective function is used.

• Time slack : Considering an accepted solution, when maxr∈R(L(r)−E(r)) is
relatively large (≥ ψ minutes). If this criteria is met, it indicates that the op-
portunity for timing optimization is non negligible. We carried experiments
for ψ ∈ {2, 5, 10}.

The Threshold and Time slack triggers restrain the set of accepted solutions
that are reoptimized using the LP procedure. Threshold focuses on reoptimizing
those candidate solutions that are more likely to become the new incumbent of the
inner loop. Time slack concentrates on candidate solutions whose current schedule
might be very different from the optimal one. Both the Threshold and the Time
slack triggers must be parameterized. In both cases, three settings were considered
as can be seen above in the trigger descriptions. Only the option yielding the best
results in terms of feasibility is shown in Table 5.

It can be observed that the time spent in the LP component for the original
trigger is considerable for small instances while it becomes more reasonable as the
instance size increases. When comparing the results for the Accept and Post-opt
trigger, it is clear that the LP procedure increases the number of feasible solutions
found over five runs by the proposed algorithm.
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Average # 25 4.95 4.95 5.00 4.70 4.90 4.90
feasible 50 4.79 4.60 4.58 3.39 4.76 4.79
solutions 100 4.30 4.05 3.98 3.03 4.28 3.13

Time spent 25 77.87% 49.78% 0.38% 0.00% 77.41% 1.82%
in LP (%) 50 46.27% 12.48% 0.32% 0.00% 47.06% 0.33%

100 28.71% 4.99% 0.23% 0.00% 28.59% 0.01%

Table 5: Comparison of different triggers for the LP component.

For instances with 25 customers, the New best trigger slightly outperforms
the Accept trigger both in terms of feasibility and average cost of the obtained
solutions. Also, the time spent by the LP is extremely small for the New best
trigger. Unfortunately, the quality of the results decrease very significantly with
the instance size. Conclusions are the same regarding the Shaking trigger, even if
the time spent in the LP procedure is more important than the one of the New
best trigger.

For the Threshold trigger, the best results were obtained with a 2% deteriora-
tion threshold, which is in fact nearly equivalent to the Accept trigger, since very
few accepted solutions exceed this threshold. This explains the similarity of the
results for those two triggers. Since decreasing the threshold decreases the quality
of the results, especially on large instances, this trigger is not a valid alternative.

The case of the Time slack trigger is not straightforward. The best results were
obtained on small instances with a 5′ time slack, and the quality of the results was
even slightly improved: −0.38% and −0.11% on the objective function value for
instances with 25 and 50 customers respectively. However, for instances with 100
customers, the quality of the results decrease drastically. Nine instances could not
be solved at all after five runs. This was due to the fact that very few solutions
satisfied the trigger, resulting in a case that is very similar to the Post-opt trigger.
In fact, for many large instances, even a very small value of ψ would not result in
an improvement since the trigger is difficult to satisfy. Consequently, more work
would be required to determine if there exists an interesting time-related trigger.
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5.5 The cost of integration

Table 6 compares the duration obtained for the integrated problem under consid-
eration with the duration that would be obtained when production and adminis-
tration operations are planned sequentially.

Two conditions must mandatorily be met to ensure that the production and
administration subproblems can be considered independently. First, stability con-
straints must be relaxed, and second, planning horizons must not overlap. The
first condition alone is not sufficient since trip earliest start times are bounded by
production completion times.

Clearly, having to integrate the production and administration subproblems
comes at a cost, but it is a necessary condition to be able to take stability con-
straints into account and to suppress the drug inventories between production and
administration operations. In Table 6, this cost of integration is expressed as a
percentage increase of the duration of the non-integrated schedules. For the pro-
duction schedule without any integration, the obtained duration is always equal to
the optimum solution, that is, the sum of the processing times. For the adminis-
tration schedule, the average duration obtained over five runs is considered as the
reference value. Note that, in order to obtain those values, experiments have been
sped up by dividing the running time by five since the algorithm converges much
faster when the production and the administration subproblems are disconnected.

The results are aggregated based on different values of the instance parameters.
It can clearly be seen that, for all groups of instances, the production duration of
the integrated solution is very close to the sum of the processing times. Indeed, the
production schedules obtained for the integrated problem contain nearly no idle
time. However, the total duration of the administration operations increases on
average by approximately 15%. The multi-trips participate to this cost increase.
For the integrated problem, solutions contain around two trips per nurse on aver-
age over all instances, while they never occur when the subproblems are treated
sequentially. Increasing the length of the planning horizon reduces the magnitude
of the cost increase, and so does increasing the proportion of long stability times.
This can easily be explained by the fact that those two factors influence the level
of integration of the two subproblems. Note that the stability constraints may
narrow dynamic time windows more substantially if static time windows are large.
This may explain that instances with 25% of short time windows yield a slightly
more important cost of integration than instances with 75% of short time windows.

5.6 The impact of stability

Experiments were conducted on instances with 25 and 50 patients to compare
the solutions with and without stability constraints. In practice, the stability of
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Global Production Administration
duration incr. duration incr. duration incr.

All instances +8.39% +0.49% +14.47%

Planning horizon 10 hours +8.94% +0.12% +16.90%
14 hours +7.72% +0.19% +11.43%

Stability 25% short +7.23% +0.07% +13.21%
50% short +9.56% +0.19% +15.89%

Time windows 25% short +8.69% +0.11% +15.36%
75% short +8.08% +0.17% +13.74%

Table 6: The cost of integration.

some drugs may be larger than the planning horizon and hospitals may prefer to
administer only these at home in order to ease the planning process. However,
providing hospitals with suitable decision-making tools is necessary to enlarge the
set of patients that can benefit from home hospitalization.

Global Production Administration
duration incr. duration incr. duration incr.

All instances +4.07% +0.14% +6.89%

Stability 25% short +3.06% +0.07% +5.23%
50% short +4.97% +0.19% +8.37%

Planning horizon 10 hours +2.73% +0.10% +4.55%
14 hours +5.96% +0.19% +10.18%

Table 7: The cost of stability.

Table 7 shows the duration increase when stability is taken into account. Note
that in our experiments, the solutions obtained when stability is relaxed contain
no production idle time. This is expected since the optimal solutions of this re-
laxed problem never contain idle time. Indeed, any feasible solution containing
production idle time may be transformed into a solution that does not have any,
by pushing all production operations backward in time. In the absence of stabil-
ity times, such a strategy may only enlarge the dynamic routing time windows,
possibly resulting in a decrease of the routing cost. Consequently, the produc-
tion duration increase reported in Table 7 can also be interpreted as the total
production idle time as a percentage of the total processing time.

Table 7 also shows a significant increase of the total administration time in
the presence of stability constraints. As shown in Section 4.4, a drug with a short
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stability time may shrink the corresponding dynamic administration time window,
and significantly impact the administration schedule. The cost increase is higher
for instances that have originally a larger number of short stability times (120
to 240 minutes) and for instances with a longer planning horizon, since stability
constraints amplify the level of integration more significantly in those cases.

5.7 The impact of time windows

Experiments were performed on instances with 25 and 50 patients by setting all
time window lengths to identical values, with the objective of evaluating the rela-
tion between time window lengths and the total cost. First, all time windows have
been relaxed, i.e., considered to have a duration equal to the planning horizon.
Second, the following values have been set as time window size for all the patients:
480, 360, 240, and 120 minutes. The time window centers are kept unchanged
compared to those of the original instances. The total duration as well as the
production and administration duration values are reported in Table 8 in terms of
their increase compared to the case where time windows are relaxed. The two last
columns show the administration duration increase separately for instances having
25% and 50% of short stability times.

Administration
TW Global Production Administration duration
size duration incr. duration incr. duration incr. 25% short 50% short

stability stability

480 +0.55% +0.00% +0.95% +0.88% +1.02%
360 +1.23% +0.00% +2.08% +1.68% +2.47%
240 +2.16% +0.03% +3.66% +3.04% +4.29%
120 +5.73% +0.20% +9.61% +7.77% +11.45%

Table 8: Cost increase compared to instances with relaxed time windows.

Note that, when time windows are relaxed, an optimal solution without idle
production time is not guaranteed, contrarily to the case of relaxed stability times.
We illustrate this point using a toy example where two patients need a similar drug
with ST1 = ST2 = 150, P1 = P2 = 40, and S1 = S2 = 30. Travel times are such
that T01 = T02 = T10 = T20 = 80. There is one pharmacist and one nurse available.
Clearly, it is not possible to produce the two drugs and then travel to any of
those two patients before the stability time of the first produced drug expires
(P1 + P2 + T01 = 40 + 40 + 80 > 150). The only possible solution is to administer
each drug in a specif trip. Without loss of generality, say that the production of
the first drug starts at time 0. The second patient may be reached the earliest at
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P1 + T01 + S1 + T10 + T02 = 310. Consequently, the production start time of the
second drug may not start before 160, resulting in a minimum idle time of 120
time units.

In the considered instances, the production idle times are anecdotal but not
necessarily equal to zero when time windows are relaxed. It can be observed
that the decrease of the time window size only results in a very small amount
of supplementary production idle time, while the administration time gradually
increases with the reduction of the time window size. The increase is strongly
amplified as time window sizes become more restrictive. The cost increase is more
important for instances with short stability times as can be seen in the last two
columns on Table 8.

6 Conclusion
In this work, we presented an integrated production scheduling and vehicle routing
problem encountered in the context of home chemotherapy. The problem is com-
posed of two subproblems: the scheduling of drug production operations, which
are performed by pharmacists in the hospital, and the routing and scheduling of
drug administration operations, which are performed by a set of nurses and take
place at the patients’ homes.

The studied problem includes several constraints related to the timing of the
production and administration operations. Firstly, a drug stability time limits the
time span allowed between the drug production and administration. Secondly, the
administration of drugs are subject to time windows. We showed how those timing
constraints, as well as the presence of a joint planning horizon, causes the two sub-
problems to be closely interwined. We elaborated heuristic and exact algorithmic
components that specifically take into consideration this interdependence.

We created realistic test instances for the studied problem and configured the
proposed solution method using irace, an automatic configuration tool.

A linear program was repeatedly used inside the large neighborhood search in
order to reoptimize the schedules, provided sequences obtained using large neigh-
borhood search moves. We demonstrated that this component was crucial to ob-
tain feasible solutions, especially for larger instances, and we believe that further
work on the criteria that trigger the call to this linear program may benefit the
effectiveness and efficiency of solution methods.

We performed numerical experiments and evaluated the cost of having to in-
tegrate the production and administration operations as opposed to a situation
where the two plannings would be established separately. Our focus here was to
provide insights about the effects of problem characteristics that are not compat-
ible with a sequential planning approach.
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Finally, we evaluated the impact of time windows and stability constraints. The
provided insights may be useful when setting up a home chemotherapy process,
in order to raise awareness about the impact of patient-related characteristics on
operational decisions.
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