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Abstract. Diagonally dominant lattices have already been used in cryp-
tography, notably in the GGH and DRS schemes. This paper further
studies the possibility of using diagonally dominant matrices in the con-
text of lattice-based cryptography. To this end we study geometrical and
algorithmic properties of lattices generated by such matrices. We prove
novel bounds for the first minimum and the covering radius with respect
to the maz norm and study the quality reached by a specific solver for
the Approximate Closest Vector Problem. Using these new results, we
propose an decryption failure free encryption scheme using diagonally
dominant matrices. We then propose solutions to patch the DRS signa-
ture scheme, in particular using matrices with negative noise.

Keywords: Diagonally dominance - Euclidean lattices - Algorithmic -
Statistical attacks.

1 Introduction

1.1 Context and motivation

Diagonally dominant matrices. Diagonally dominant matrices have been an in-
teresting object of study for over a century, starting at least from the Lévy-
Desplanques theorem (1881) 4, with several links to general matrix theory with
research spanning up to today [31,12,56]. Numerous applications of diagonal
dominance can be found in various fields such as numerical linear algebra [39],
Markov chains, graphs Laplacians, perturbation theory®. On the other hand, lat-
tices generated by diagonally dominant matrices fitting the Lévy-Desplanques
theorem was not investigated. Such lattices seemed to have found some applica-
tion in cryptography on few specific instances [53,59] where in both papers the
focus was more in the matrix generation than a study of the resulting lattice.
On the other hand, when strict dominance is not required (i.e not fitting the
Lévy-Desplanques theorem), “large diagonals” saw some uses in cryptography
[32,43,54] as well as in modular arithmetic [6].

4 A history of this theorem through the ages can be seen in [61]
5 [20] lists some applications.



Euclidean lattices. The study of computational problems on lattices in general is
also an old and very studied topic [48,14,5]. Classical problems such as computing
a shortest vecor — named the Shortest Vector Problem (SVP) — and computing
the closest lattice vector from a target vector — the Closest Vector Problem
(CVP) — can be proven to be NP-hard in the general case [1,42]. As a matter of
fact, relaxed version of these problems stay hard. Notably, even if we authorise
exponential preprocessing computations, the CVP is also NP-hard for small
approximation factors [3]. The hardness of these problems over Euclidean lattices
motivated cryptographers to consider them as building blocks for cryptographic
schemes [33,55], which led to extensive study of Euclidean lattices in the past
decades.

Lattice-based cryptography. The first example of schemes using Euclidean lat-
tices were using generic lattices and use a trapdoor one-way function whose
hardness to invert is based on the CVP. One can cite the Goldreich-Goldwasser-
Halevi (GGH) scheme [33] or constructions using the plain Learning With Er-
rors (LWE) problem such as FRODO [11]. Note that their security can also be
linked to the hardness of the SVP. For efficiency reasons one tends to consider
algebraic lattices, meaning lattices which can be described by means of polyno-
mial rings. Some of the noticeable constructions are NTRU [35] or the schemes
based on the Ring Learning With Errors (RING-LWE) or the Module Learning
With Errors (MODULE-LWE) problems. Their security can be linked to the SVP
on the restricted classes of ideal lattices — also called the Ideal Shortest Vector
Problem (IDEAL-SVP) — or module lattices — also called the Module Short-
est Vector Problem (MODULE-SVP). One may wonder whether the additional
algebraic structure can be used to solve the SVP more efficiently. Thus, the
study of the IDEAL-SVP has gathered sustained attention in the past few years.
First it was shown that the intermediate problem of recovering short generators
of principal ideals can be solved in quantum polynomial time over cyclotomic
fields [15] and even classical polynomial time over multiquadratic [8] or mul-
ticubic fields [38]. Then Cramer, Ducas and Wesolowski extended the analysis
of [15] to the IDEAL-SVP and showed that one could obtain a subexponential
approximation factor in quantum polynomial time [16]. With a slightly different
approach, this result can be generalized to all number fields provided an expo-
nential pre-processing phase [52], which might be an artifact of the proof if we
refer to experimental results obtained in [9,10]. Thus the IDEAL-SVP seems to be
strictly weaker than the SVP. Even though the RING-LWE or MODULE-LWE
problems are harder than the IDEAL-SVP, there is no guarantee that algebraic
attacks mentioned previously cannot be used to tackle them.

Thus, studying other types of trapdoors or constructions is still an interesting
and important research direction, recently explored in [28] or [23,25] for example.

Digital signatures with lattices. In order to build digital signatures schemes with
lattices, one can follow the hash-then-sign paradigm. In this setting, the hash
of the message H(m) is a random vector of the space and a valid signature is
then a lattice vector close to H(m). The security of the scheme is guaranteed



as soon as solving the CVP is hard. The original GGH and NTRU signature
schemes were originally following a naive version of this paradigm, using the so-
called Babai round-off algorithm to produce the signature. However Nguyen and
Regev successfully used the observation that the difference between the message
and a valid signature lie within the fundamental parallelepiped of the secret basis
to recover the latter [49]. Ducas and Nguyen showed that this statistical attack
could be extended to more complex structures than bases which allowed them to
break potential counter-measures in practice [22]. The same kind of attack [40]
has recently been applied to break the PEREGRINE signature scheme [57].

In order to prevent the attack, Plantard, Win and Susilo [54] described how
to produce a hash-then-sign scheme based on the max norm in the hope that
the signatures lie in a space independent of the secret basis. Their work rely on
matrices of the form B = D + N where D and N are such that the spectral
radius p(D~!-N) < 1. Then this work has been adapted for DRS, a candidate of
the first round of the NIST call for standardization [53], relying on the fact that
the matrices used as lattice bases are diagonally dominant. This allows the ~-
Guaranteed Distance Decoding (GDD,) to be solved with an algorithm adapted
from [54]. This scheme has known a learning attack by Ducas and Yu [24]. One
has to note that this attack differs from the previous ones and that it does not
break completely the second version of the scheme [60]. However, it remains a
serious attack with around 30 bits of security loss for the first set of parameters,
using 230 signatures only.

1.2 Our Contributions
This work is composed of three parts.

1. In Section 3 we improve our theoretical knowledge of diagonally dominant

lattices by giving two new bounds on the key lattice invariants in the context
of cryptography for the maz norm, one for the covering radius and one for
the first minimum.
More precisely, we start by giving a lower bound on the size of the short-
est vector in infinity norm. Guessing the size of the shortest vector or even
an approximation is known to be NP-hard [19], thus we believe providing a
tighter upper bound for any specific family of lattices is an interesting result
in itself. Then we give an improved study of the reduction algorithm of [54]
for diagonally dominant matrices and prove a stronger reduction capability
than previously proven for such lattices [59]. We also prove that our afore-
mentioned algorithms operate at most a polynomial (in the dimension and
the size of its entries) amount of vector additions or multiplications by a
scalar. Consequently, both results give novel upper and lower bounds on the
size of the covering radius for such lattices

2. Secondly, using this new results, we are able to provide a decryption fail-
ure free cryptosystem relying on diagonally dominant matrices. It follows
a framework close the GGH encryption schemes [33,7]. We discuss formal
security and the steps to take towards IND-CCA security, using standard



techniques or transformations [30,18]. We also evaluate the practical security
of the scheme using common cryptanalytic techniques to assess lattice-based
constructions. We show that it is asymptotically secure.

3. Finally, building upon our results of Section 3 again, we explore solutions
for patching the DRS signature scheme against Ducas and Yu’s statistical
attack [24]. In particular, our experiments tend to show that using secret
keys with negative noise only mitigate the impact of the leak.

We deem that the asymptotical security of GGH-like schemed using diago-
nally dominant matrices can be achieved, however our work tends to show that
the practical security at a level comparable to other schemes like SQUIRRELS
or [25] is difficult to achieve for suitable dimensions. Thus, we deem that trying
to achieve such a goal is still an interesting and challenging research direction.
Another option that we plan to explore is to use the good decoding properties of
such matrices in other framework such as the Lattice Isomorphism Problem [23].

2 Background

We assume the readers know what is the set of integers Z, the set of integral
matrices with n rows and m columns M, ,,(Z), the determinant, norms and
other basics of linear algebra. We refer readers to [45,46] for a more complete
background of lattice theory.

Definition 1 (Lattice).

We define an integral lattice L as a subgroup of Z™. A basis B of an integral
lattice L is a basis of L as a Z-module, and denote by L(B) the lattice generated
by the rows of a basis B. We write the volume (or determinant) of the lattice

and compute it as det(L) = /det(B - BT).

While an integral lattice can potentially have an infinity of basis, a lattice
only admits an unique basis in Hermite Normal Form (HNF).

Definition 2 (HNF).
Let L be a full-rank integral lattice of dimension n and H € M, o(Z) a basis of
L. H is said to be in HNF if, and only if,

=0 ifi>jg

V1<i,j<d Hy; >0 ifi<j

< H §.j Zf 1<J

In this paper we only consider full-rank integral lattices
Lattices have some important invariant with strong computational property.

Definition 3 (Minima of a lattice). We denote by )\,(cl)([l) the smallest value
r such that a ball centered in zero and of radius r in norm | contains k linearly
independent vectors of L.



Definition 4 (Covering radius). Given a lattice L, we define its covering
radius M (L) as the smallest value such that for any x € R", there exists v € L
such that ||x — v|l; < pO(L).

There is some relation between all those invariants. For example, for any
lattice %,\52)(5) <pP(L) < @,\ﬁf’ (L) (See [45]).

While many computational problems on lattices exist, we define only the
lattice problems useful for the comprehension of the paper.

Definition 5 (Approximate Shortest Vector Problem (SVP,)). Given a
basis of a lattice L of dimension n and an approximation factor v € Ry, find
v € L\ {0} such that ||[v Vert < - Ai(L).

Definition 6 (Approximate Closest Vector Problem (CVP,)). Given a
basis of a lattice L of dimension n, a target vector t € R™ and an approximation
factor y e Ry, find v € L such thatVw € L, ||t —v|| < v- ||t — w].

The first minimum )\gl)(L‘) and the covering radius u)(L) offers some nat-
ural bounds which transform the generic problem CVP in some useful variant,
especially for cryptographic applications.

Definition 7 (GDD,). Given a lattice L, and a bound v > 1, for any target
t € R" find a lattice vector v € L such that ||t — v| < - u®(L).

There exists another variant of CVP; if the first variant, GDD,, is key for
lattice based signature scheme, the second variant, Bounded Distance Decoding
(BDD), us key for lattice based encryption scheme.

Definition 8 (BDD). Given a lattice L, and a bound o < 1, for any target
t € R™ such there exist a vector v € L with ||t —v| < a- )\gl)(ﬁ), find v.

Those problems are usually tackled with the combination of a “good” basis,
e.g. LLL-reduced [37] or BKZ-reduced [13], together with an appropriate algo-
rithm such as Babai’s round-off or nearest plane algorithms [5]. For example,
that is the approach proposed by Klein [36] for solving BDD for some a.

Remark 1. Note that a CVP, algorithm can be used as a GDD,, solver as long
as the approximation factor « ensures that any target has a solution. Remark also
that solving the GDD, is equivalent to computing a short coset representative
of t mod £. We will often consider algorithms solving this “short coset repre-
sentative” problem, that we will call reduction algorithms and write Reduce for
a generic algorithm. In this context the approximation factor «y of Definition 7
will be called the reduction radius.

In this paper, we consider a specific family of “good” lattice bases, allowing
us to tackle the above problems more easily. Thus, we can use them as secret
trapdoors for cryptographic constructions.



Definition 9 (Diagonally Dominant Matrix).
Let a matriz B € M,(Z), we write §;(B),

5;(B)=Bi; — > [Bil
=

and we will call B Diagonally Dominant if, and only if,
Vi e [1,n], 6&;(B)>0.
Furthermore, we will note the dominance level
A(B) = min §;(B).

It follows from the Lévy-Desplanques theorem that a diagonally dominant
matrix is always full-rank.

For clarity reasons, we will mainly consider diagonally dominant matrices
such that for any ¢ € [1,n], B;; = D for some fixed D € Z and N;; =0 .
However, all results and their proofs can be modified easily to the case where
B = D + N with D a general diagonal matrix and N with non-zero diagonal
matrix.

3 Results on fundamental values for diagonally dominant
lattices

In this section we analyze diagonally dominant lattices with respect to the maz
norm. We improve our knowledge on both the covering radius and the first
minimum which are cryptographically relevant lattice invariants. We present
those results in Theorem 1 and Theorem 2. We also lower the bound for the
covering radius for matrices with negative noise N, see Section 3.3.

3.1 Tighter bound on Diagonally Dominant Lattice Covering
Radius

The results proven in this section will prove the following theorem.

Theorem 1. Consider B € M,,(Z) a matriz and L = L(B). There is an algo-
rithm PSW (Alg. 1) such that for any vector v € R™, it returns in polynomial
time a vector w respecting

A(B
w=vmod L, |W]e < —%

i.e.
p(®)(L) < D — @



The proof of this theorem is done by proving an upper bound on the conver-
gence radius of a reduction algorithm which we will prove to terminate within a
polynomial number of arithmetic operations.

The PSW reduction algorithm was first introduced in [54] and is a known
approximation of Babai’s Round-off algorithm [5] in the case of matrices of the
form D — N where N- D! have a spectral radius lower than 1. It was then used
a second time in cryptography [53] within the DRS scheme. The algorithm was
proven to finish for with |w||c < D in [53], but did not take into account the
leeway A(B) A slight modification of the reduction proof given in [59] gives us
a tighter bound by changing the loop condition in line 2 of the algorithm to a
comparison with a value R; > D — §(B,¢)/2 for every index 4. This gives us the
modified version, described in Algorithm 1.

Algorithm 1 PSW reduction

Require: v € R",B a diagonally dominant matrix, a bound vector R € N”.
Ensure: w = v mod £(B) and Vi € [1,n],w; < R;.

1: wev

2: while V7_, (Iw;| > R;) do

3: i< any index such that |w;| > R;

4:  if |w;| > D then

5 q < sign(w:) - [|ws| /D]

6 else

7 q « sign(w;)

8: end if

90 w«w-—gq-B; {Reduce |w;|}
0: end while

1: return w

Correctness. The following lemma states that for a given R, the algorithm ter-
minates given that values R; are above a certain bound which varies for each
index.

Lemma 1 (Tighther bound in PSW-reduction algorithm). For input v €
Z", a diagonally dominant matriz B and R € RY such that Vi € [1,n],R; >
D—4,(B)/2, the PSW reduction (alg. 1) terminates and outputs w = v mod L(B)
where Vi, |w;| < R;.

Proof. Let S(v,R) o {i € [1,n] | |vi| > R;} and f be the function defined
on Z™ x [1,n] by f: (w,i) = w —sign(|w;|) - | % | - B;. In order to show that
Algorithm 1 ends and outputs a correct vector, we will prove the following:

V (Iwjl > R;) = Vi€ S(w,R),[|f(w, )l < [w]1. (1)

Jj=1



First remark that if the left side of (1) is verified, then f modifies w. Now
let us show that (1) is true. First assume that there exists ¢ € S(w, R) such
that |w;| > D. Then f(w,i); has the same sign than w;, therefore |f(w,i)| =
|w;| — ||ws| /D] - D. Moreover we have

i € I\ {ihbwl < il + |72 Bl

which gives

FEOI MU SECO NI A B P15 wi e R

D D
J#3 J#i
This leads to
. w, o
15wl < Il + | T |68 < vl = |5 | < oo

Now consider ¢ € S(w, R) such that |w;| < D. Then the signs of w; and f(w,%);
are different. Moreover if we write |w;| = R; +t with ¢ € [1, D — R;[, we obtain
|f(w,i);| = |R;i — D +t| = D — R; — t. Therefore we have

|f(w, )| = [wi| — 2(Ri +t) + D.
Following the same reasoning as before to bound || f(w,?)||1, we have
If(w, )]l < [wllx = 2(R: +t) + D + D — 6:(B)
and noting that R; > D — §;(B)/2 we obtain
If(w, )2 < [lwlly = 2(Ri + ) + 2R; < [|w]1.
O

Algorithm 1 uses a linear memory and does not need to store much more
than the size of the target and the matrix. This is an advantage compared to
Babai’s nearest plane algorithm which needs the GSO or Babai’s rounding-off
algorithm which requires a matrix inverse. ¢

Worst-case complexity. The average-case time-complexity of Algorithm 1 was
briefly experimented in [54], however a proper worst-case analysis was not pro-
vided and does not seem to have been done in the literature.

Lemma 2. Let B € M,(Z) be a diagonally dominant matriz and v € Z™, and
denote by b the value %. An upper bound on the complezity of vector

operations done by Algorithm 1 is in

D
0 (o (141 + 22).

5 maybe add that one does not require to use floats, we can do everything with integral
arithmetic.




Proof. Let us consider the reduction of |w||; to count the number of reduction
steps, using the results and the reasoning of Lemma 1.

First assume ||w|[; > nD which guarantees |W|o > D. Thus the coeffi-
cient g is greater 1. Denote by w’ the value of the vector after the update in f
Algorithm 1. Then ||w||; is updated as

Iw'[l < [Iwlls — g - A(B).

From ||W|oo < ||W]l1 < n||W||co We obtain g > (D +11).
D +1) - A(B)
T Y2 |
Il < il = s - A) = fwlh - (P S

If we use this inequality and we write k the number of steps necessary to reach the
condition |jw|; < nD, i.e to reach the second case, using the worst assumptions

we obtain:
n(D+1) — AB)\”
il = ("EED ) vl <

This gives a O (logb (n(”mﬁ))) number of vectors operations to reach ||w||; <
n

We can now focus on the case ||w||; < nD. Note that ||w|; < nD still do not
give us much information about ||w||, S0 we continue our analysis using ||w||;.
We proceed by counting the least untactful possible reduction of ||w|; < nD
per step until |w|j; = 0: each step reduces ||w||; of at least 2¢ (2 with ¢ = 1).

Therefore, we upper-bound the amount of loop iterations left by ||w||1 < "D ]

By approximating log(b) = —log(l — -55) =~ A(B) (AB) s close to 0 so

the approximation holds) and setting ||v||; = nD™ (1 e each coefficient to an
approximate of the determinant), we can obtain the simpler formula ignoring

constants:
log(D)
2
o (g

In addition, if we set D = n and A(B) = 1 as in the different versions of the
DRS scheme [53,59,60], we obtain O(n?logn).

Remark 2. This complexity bound obtained in Lemma, 2 is not tight and does not
reflect at all the significantly faster experimental results reported in [54,59,53],
which is understandable: the probability to trigger a single least-impactful iter-
ation is 2~(®~1) | i.e as probable as solving a {0, 1}-knapsack problem with n —1
entries randomly. However, our result still proves polynomial operation complex-
ity and constant memory (besides input memory) as far as vector operations (i.e.
fixed dimension) are concerned.



3.2 Result on Diagonally Dominant Lattice First Minimum

The importance of A(B) for the quality of the lattice have been exposed in the
previous section. In this section, we present a second result linking once again
A(B) with an invariant of the lattice. However, this time we are able to bound
the first minima of the lattice. This is the first result in this direction which
alleviate the complexity of using diagonally dominant matrix for encryption,
especially if one wants to avoid any probability of decryption failure.

Theorem 2. Let B € M, (Z) be a diagonally dominant matriz of diagonal D.
Then A (£(B)) > A(B).

Proof. Consider [ € Z™ and write v = [ - B. Then write I = (|/;]);c[1,n]. There
exists B’ € M,(Z) a matrix such that | B} ;| = |B; ;| for any pair (4,7) € [1,n]?,
and for all ¢ € [1,n],B}, = D and v; = (I’ - B’);. Thus B’ is a d1agonally
dominant matrix such that 0;(B’) = 6;(B) for all i € [1,n]. Now let us show
that ||[v||ec = A(B). We will first bound the taxicab norm, and then use the
classic norm inequality

[Vlleo < [[Vllx < 7f|V]loo- (2)

First remark that we have the following:
Iv|l: = Z| @-B|= > > LB,
j=11i=1

Moreover for any ¢ € [1,n], I} > 0 and §;(B) > 0, so we have

S>3 B, =YY 1;B); > Zn:lé&(B
; ; ; i=1

Therefore, if k = |{i € [1,n] | l; # 0}| we obtain ||v||; > kA(B).
If £ = n then Equation (2) gives

[V]loo = A(B).

Now consider the case with & < n. Without any loss of generality, assume Vi €
[1,k],l; # 0. Denote by " the tuple (li,...,l}) and B” the top left k x k
submatrix of B’. Then B” is diagonally dominant and Vi € [1,%],d;(B"”) >
4;(B’) = 6;(B). We have

Vi € [1,k],(1-B); = ("-B'); = (I"-B"),.
Then, since |{z € [1,k] | I}/ # 0}| = k, we can apply the previous result to I and
B”, therefore ||I” - B"|lc = A(B”) and Jip € [1,k], |(I"” - B");y| = [|I” - B”||co-
Finally we get

(- B)ig| = (1" - B)io | = (17 - B")o| = AB") > A(B) = A(B).

10



3.3 Diagonally Dominant with negative noise

One can obtain better results when considering more specific structures. In this
section we consider diagonally dominant matrices B = D + N where the noise
matrix N is such that V(i, j) € [1,n],N;; <O0.

Lemma 3. The bound on X$° (L) is tight, i.e. there is B such that A°(L(B)) =
A(B).

Proof. Consider B = D-1d,,+N such that N; ;41 = 1—D and N; ; = 0 whenever
j # i+ 1. Then the vector v = [1,---,1] - B satisfies the desired equality. O

Lemma 4. Consider B a diagonally dominant matriz with negative noise. Then
there is an algorithm — that we will denote by neg-PSW — that reduces any vector
v € R} to an equivalent vector w = v mod L(B) such that w € [0, D[".

Proof. Let v be a vector and w Lfy - q - B; for some i € [1,n]. Then remark
that if v; > ¢D, we have 0 < w; < D and w; > v; for all j # i. Moreover it is
clear that ||wl||; = ||v]l1 — ¢A(B). Thus it is clear that the algorithm will stop
and that the outputted vector will lie in the claimed space. O

Remark 3. Note that one can easily shift the result to the centered hypercube
[-D/2,D/2[™ so that for any v € N” there is w = v mod £L(B) with w €
[-D/2,D/2[".

One can note that the reduction radius is smaller (by a factor up to 2) that
for generic diagonally dominant matrices. Moreover, the covering radius does no
depends anymore of A(B). An advantage which can be passed when diagonally
dominant matrices are used for cryptography.

4 Diagonally Dominant Matrix Encryption

In this section we will describe an encryption scheme using diagonally dominant
matrices, the we call DRE as a callback to DRS. First we describe in Section 4.1
the general framework of our construction based on a GDD,, solver. We provide
conditions on the matrices used as private keys to ensure the correctness of the
scheme within this framework in Section 4.2. To this end we use the results on
,\§°°> and p(°°) proven in Section 3 and summed-up in Theorem 1. Then we give
an instantiation of this general framework in Section 4.3 and discuss security
in Section 4.4.

4.1 General framework

Let us now describe the framework for the encryption scheme we are considering.
As mentioned previously, it is based on the max norm [.,. We fix as parameters
(D,n, M) € N2. Let us denote L the lattice generated by a diagonally dominant
matrix B = D - Id,, + N. Let R be the radius in which we can find for any

11



c € Z™ avector m = ¢ € L s.t. ||m|lec < R. Algorithms 1 and 6 offers us
parametrisable radii R directly from a parametrisable B. Evidently, B is kept
as a secret trapdoor as it allows for decryption. Let M be the upper bound of
the max norm of the vector messages we wish to recover, such that if the vectors
associated to the valid messages belong to a set M, then M C [-M, M]".
Here, we consider that each message is associated to a vector m € Z™ we wish
to recover, and that the encryption of m is associated to a ciphertext vector
¢ =m+ v where v € £(B). In summary we consider the following framework:

— The secret key Sk = B € M,(Z) is a diagonally dominant matrix with
diagonal coefficient D, and the public key Pg is H = HNF(B).

— The message space is M C [-M, M]".

— The encryption function will be Encrypt(m,Px) = s- H + m, for some
sez".

— The decryption function will be Decrypt(c,Sk) = Reduce(c,B), where
Reduce is a GDD, solver. Its convergence radius will be denoted by R.

With a similar approach to [32], we first show how one can use our results
to guarantee correctness of decryption. Second, we discuss potential security
concerns.

4.2 Guaranteeing decryption of valid messages (i.e. correctness)

In order to obtain a correct scheme we need to determine parameters ensuring
the correctness of the decryption. The first condition that they need to satisfy
is M < R so that Reduce(c,B) is indeed a valid message. Then one needs to
ensure unicity, meaning Reduce(Encrypt(m, P x)) = m. This is satisfied as soon
as

R+ M < \™(L). (3)

In particular for diagonally dominant matrices, we can use Algorithm 1 for
Reduce and Theorem 1 ensures that Equation (3) can be simply satisfied for B
such that

A(B) > (D + M), ()

which are straightforward to construct.

If we focus on matrices with negative noise only, then we can obtain larger
bounds. Indeed, in this case R = D/2 so (3) becomes A°(L) > D/2 4+ M which
gives A(B) > D/2+ M.

Thus, we could use smaller dominance levels for a fixed M or larger message
spaces for the same value A(B).

4.3 Instantiation of the encryption scheme

To instantiate our encryption scheme, we first need to fix some public parameters
as the diagonal coefficient D and the dimension n. We assume the message space
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is composed of vectors over M = {—1,0,1}", but we showed earlier that could
also be subject to change.

From an external point of view, our scheme is is close to knapsack problem,
such as the first proposition of Merkle-Hellman [41]. The major difference is
within the setup and the decryption, which are details that are hidden to the
messages senders.

Setup The setup is composed of two steps. For the secret key, we generate
a diagonally dominant matrix with our chosen parameters (D,n). Since the
message space is [—1, 1], following Equation (4), we will fix A(B) = 2(D +1).

For the public key, we compute the HNF of the secret key, assuming it has
perfect form, i.e. £(B) is a co-cyclic lattice. If the HNF does not hold a perfect

form, we can choose to discard the key or use a permutation to attempt obtaining
a perfect HNF as reported in [58].

The public key is then the resulting HNF, with a small advantage: since the
HNF holds a perfect form, only the last column vector needs to be sent.

Algorithm 2 DRE-Setup

Require: (D,n) € N2,

Ensure: (Pg,Sk) the public and secret keys

: AB) « 2(D+1)

B <+ RDDgen(D, n, A(B))

H « HNF(B)

while IsPerfect(H) = false do
B « RDDgen(D, n, A(B))
H + HNF(B)

end while

h « H[l..n,n]

return (B,h)

Encryption For the encryption, we just sum or substract the corresponding
values of the public key P g according to our message m. The resulting integer
is our ciphertext c.

Because the keys (B, H) are chosen such that H = HNF(B) is perfect and h
is the last column of H, the output of DRE-Encrypt as described in Algorithm 3
is the last coefficient of a vector of the form [0,...,0,¢] = m+v with v € £L(B).
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Algorithm 3 DRE-Encrypt

Require: A plaintext m € [—1,1]™ and the public key Px =h € 2",
Ensure: A ciphertext ¢
1l: c+0

2: fori=1ton—1do
3 c—c—m;-h;

4: end for
5
6

rc—c+my
: return c

Indeed, if one reduces the vector m with H, as follows

-ml ...... mp—1 My i
1 0 0 hy

0 1 :

: . 0 :
0...0 1 hp—1
[0 ...... 0 det(B)|

using the first n — 1 rows of H we can remark that the first vector will be
transformed into

n—1
[O,...,O,mn—Zmihi] =m-m-H+m,-[0,...,0,det(B)].
i=1
Note that this approach is very similar to the one chose in the SQUIRRELS

scheme [28] recently submitted to the NIST call for proposals for quantum-
resistant digital signature algorithms [51].

Decryption We can use the reduction algorithms studied earlier to recover m
from c. From our study, Algorithm 4 will output the correct plaintext m.

Algorithm 4 DRE-Decrypt

Require: A ciphertext ¢ = DRE-Encrypt(m, h) € Z and the secret key Sk = B.
Ensure: The plaintext m

A(B) « 2(D+1)

R+ D-AB)/2-]1,...,1]

m < ¢ mod det(B)

m <+ [0,...,0,m]

m < RSR(m, B, R)

return m
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4.4 Security concerns

Formal security. The scheme defined by the algorithms presented in Algo-
rithm 2 is guaranteed to be correct but is not secure. Since it is deterministic,
it is not even IND-CPA. In the following, we discuss the necessary milestones to
reach in the path towards IND-CCA security. Note that, for example, the key
encapsulation mechanism BAT [29] follows essentially the same steps.

One-wayness. The first level of security to achieve is one-wayness, i.e. that one
cannot recover a message m given only the public key Px and a random cipher-
text ¢ = DRE_Encrypt(P g, m). Obviously, an adversary is allowed to produce as
many pairs of plaintext-ciphertext as he wants.

IND-CPA from one-wayness. Assume that the scheme achieve OW-CPA secu-
rity. Then, following [26,29] one can be made IND-CPA security in the Random
Oracle Model (ROM) with the following transformations of the encryption and
decryption functions :

(m,s,Pg,H) — [m @ H(s)||DRE-Encrypt(Pk,s)]

and
(c1,¢2,Sk) — H(DRE-Decrypt(Sk,cz)) ® c1,

where s is a random vector and H a hash function modelised as a random oracle.

IND-CPA to IND-CCA Finally, famous transformations permit to reach IND-
CCA security such as the Fujisaki-Okamoto (F.-O.) transform [30,18].

In the end, we see that the main difficulty is to obtain a OW-CPA version
of DRE. One option could be to adapt the proof from [29, Theorem 2] by con-
sidering a class of random co-cyclic lattices whose HNF' are hard to distinguish
from the ones of diagonally dominant matrices.

We believe that this could be achieved through more extensive study of the
determinant, which can be an easy sorting criterion.

We could also choose to hide the determinant, i.e. remove the last coeffeficient
from the sent vector h before sharing it. In order to construct a setting where
the public key is indistinguishable from random co-cyclic lattices, one could also
randomize the public key by adding multiples of det(B) to its entries, so that it
is close to uniform in a certain range [2!71,2!].

Note that it has been over 20 years that a similar structure, the GGH en-
cryption of Micciancio [43] remains unbroken. We conjecture that the problem
of distinguishing co-cyclic lattices with diagonally dominant bases (with similar
parameters otherwise) from generic co-cyclic lattices is hard.

Concrete security. There are several security concerns that one needs to ad-
dress if planning to build a cryptosystem. One of them is to ensure that deci-
phering c into m is not trivial without the secret key. Heuristically, if c is large
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enough, the problem of recovering m from c can be seen as a specific instance
of the CVP, which is known to be hard. With that in mind, what is left is the
security of the public key. Since [43], it makes sense to provide a basis of £(B)
as a Hermite Normal Form for the public key, however other choices might be
possible. It might not even be necessary to provide a basis of £(B) in the first
place. Let us assume the public key is chosen as another basis of the same lat-
tice: in the last decades, it seemed that pure key recovery attacks on diagonally
dominant matrices [53,58] or close structures [32,47] are rather unsuccessful. The
weaknesses were mostly on signature scheme instances [49,22,24] which do not
concern this section. Note that [49] also consider that the encryption approach
of [32] is still secure, and to the extent of our knowledge this claim has not been
challenged yet.

Key recovery

Naive attack. The most naive attack is to reduce the public key in order to
recover the secret key or a basis with an equivalent quality. As a matter of fact,
we will consider only the complexity of computing one short vector. In the case
of DRS, it amounts to solve the SVP,, for a small constant approximation fac-
tor. Note also that diagonally dominant lattices have unusually short vectors.
Indeed, the secret key B is composed of vectors such that D < ||B;|l2 < v/2D
which is smaller than what is predicted by the Gaussian heuristic by a fac-
tor in O(y/n). Thus, the situation is similar to what happens for the Hawk
cryptosystem based on the Z"-LIP. Following the analysis done in [25], the re-
quired blocksize to recover a secret vector should satisfy 1/3/n ~ 525 "1 with

6 ~ (B/(2me)) /2(B—1) which gives B € O(n/2) + o(n).

Attack by BDD-uSVP. Apart from reducing the public key, one can use the
fact that B is diagonally dominant. Indeed, each vector of the secret basis is
then of the form D - e; + n; with ||n;||l; < D. Then solving a BDD instance
with respect to £(B) and the target vector D - e; would yield the secret vector
B;. The cost of such an attack — without any additional knowledge — can be
estimated following [4,2]. It is mentioned in [24] that recovering B; can be done
with BKZ-8 when

VB/(n+1)-|B; — D-ejf| = 53771 pr/(n D), (5)

If the dominance level is - D then ||B; — D - €;|| = +/(1 — @) - D, which gives
the broad condition /(1 — ) - 8 ~ (5[2,/3 el pn/ (1) considering that D = n.
This ensures asymptotical security.

4.5 Message recovery

For message recovery, one needs to compute m from ¢, where c corresponds
to a vector ¢ = m mod £(B). Thus v = ¢ — m is a lattice vector such that
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d(c,v) = ||m]||. Since m is particularly short, this amounts to solving a BDD
instance with |m|| = y/n/2.

As for the key recovery, we can use estimation on BKZ to evaluate the cost
of such type of attack,

VB/(n+1)- |m| ~ 657"~ D/, (6)

Therefore, we can extract a block size for BKZ to recover the message, g =
Jgﬁ—n—l . nn/(n+1).

5 Heuristic patch of the DRS scheme

In this section we will study possible patches for the DRS signature scheme [53,59)
against Ducas and Yu statistical attacks [24]. Exploiting the new reduction radii
that we obtained in Sections 3.1 and 3.3, we first explore in Section 5.2 how
changing this radius in the DRS scheme impacts the practical efficiency of the
attack. Then in Section 3.3 we study a new version of the DRS scheme based on
diagonally dominant matrices with negative noise that we call NEGATIVE-DRS.
We analyse its security under statistical attacks. Finally, as an extra layer of
security, we look into the possibility of adding a mask to the signature, see Sec-
tion 5.4.

5.1 Quick recap of the DRS scheme and attacks

The signature scheme called DRS was a submission to the first round of the
NIST standardization process for signature scheme [50] using diagonally domi-
nant lattices. The main idea of DRS is to follow a framework close the one of
GGH [33] but using the diagonal dominance property to sign within an hyper-
cube independent of the secret key, hoping to prevent leaking the secret key as
in [49] for example. This was first presented by Plantard et al. in [54]. How-
ever the original DRS scheme has been subject to a learning attack from Ducas
and Yu [63], which was then extended to the second version of the scheme (the
so-called DRSv2 [60]) [24].

The main idea behind this learning attack is that a signature s obtained
from the signature algorithm is of the form s = s’ + B;, where B is the secret
diagonally dominant matrix and s’ is the vector we have just before the algorithm
stops. This relation introduces a correlation between the coefficients of the row
B; and the ones of s. Then by collecting lots of signatures and using learning
techniques, one can make an educated guess on a key. Typically, for the ith basis
vector, one guess B} which is close to the secret B;.

One direction to counter this learning attack would be to remove the link
between the signatures and the secret key; typically one can think that the
signatures are not good enough, i.e., the signature s is too large. Indeed, a
perfect signature would be s = m mod £ such that s — m is a lattice vector
closest to m, or equivalently such that s has minimal norm.
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Remark that one could obtain a signature scheme with a security proof within
the GPV framework by restraining to co-cyclic lattices, similarly to what is done
in the SQUIRRELS scheme recently submitted to the additional call for standard-
ization for signature schemes [28]. It is unclear however whether the structure
of diagonally dominant matrices would allow for improvements compared to ex-
isting schemes.

5.2 Changing the reduction radius

From Section 3, we know that the reduction radius of D as taken in the DRS
schemes [53,60] can be lowered to D — A(B)/2. Remark that this modification
alone would not change much. Indeed, for DRS the noise is such that A(B) =1,
which gives a reduction radius of D —1 instead of D. Thus, one needs to increase
A(B) as well to have a potential impact.

Impact of the dominance level We study how the dominance level A(B)
associated with a reduction radius D—A(B)/2 impact the efficiency of the attack
described in [24]. One can find in Figure 1 the data recovered in our experiments.

Figure la corresponds to the setting of the original DRSv2 scheme and the
attack reported by Ducas and Yu [24]. Remark that we obtain smaller factors
r(n, N) that they did, which is certainly due to the fact that we slightly mod-
ified their code, notably the key generation algorithm (for simplicity reasons).
However, since we are interested in worsening the best attack possible on the
scheme, we can safely take our results as reference. Our goal is then to obtain
larger factors than the ones plotted in Figure 1a.

Note that decreasing the A(B) tends to slightly flatten the curves, especially
for higher dimensions. Consequently the factors tend to converge to higher val-
ues. However this modification is clearly not sufficient to obtain a factor r(n, N)
sufficiently large for the attack to be deemed patched.

The special case of negative noise We mentioned previously that if the noise
matrix N contains only negative values then one can go beyond the convergence
radius D — A(B)/2. We proved in Section 3.3 that it is possible to reduce any
vector v to a coset representative w = v mod £(B) such that w € [0, D[".
Experimentally, one can obtain signed coefficients with a reduction in the hy-
percube [—D/2, D/2[™ which we consider a better choice since it fits the setting
of the original attack. Let us look into the impact that negative noises have on
the learning attack by Ducas and Yu [24]. Data from our experiments can be
found in Figure 2.

The attack is clearly less efficient than with signed noises, and the noise level
seems to have more impact. However, while it seems that the attack stabilizes
quickly for A(B) = 1 it is unclear how the different curves would evolve for
larger sample sizes and noise levels.

Interestingly, one can remark that different curves never cross each other in
this negative setting. This tends to show that the attack does not become more
efficient as the dimension grows as it is the case in the signed setting.
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Fig. 1: Experimental measures of r(n, N) for smaller reduction radius and differ-
ent noise levels, when the noise is negative.

5.3 Negative DRS

In this section, we consider a modified version of the DRS scheme, tweaked to
use negative noise matrices. Since this is the only major modification, we will
not describe the different algorithms in detail nor will we prove correctness. In
the following we focus on analysing its security. The basic strategies for the key
recovery problem are the same as for DRE so we refer to Section 4.4. Thus, we
only consider more advanced techniques through statistical analysis. Since the
dominance level A(B) is an important parameter, we do not fiz it at first and
discuss its impact on security. Thus, we consider that A(B) = « - D for some
a€]0,1].

Original attack. The first statistical attack from Nguyen and Regev [49] and
its improvements [22,40] assume at some point that signatures are of the form
s = [s1,...,8,] - B where the coordinates s; are independent one to each other.
There is no evidence that this condition is satisfied by DRS signatures. However,
their distribution may be close to this ideal setting to the point where one can
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Fig. 2: Experimental measures of r(n, N) for smaller reduction radius and differ-
ent noise levels, for negative noises.

still apply the gradient descent with success. Moreover, remark that we know
broad directions for the secret vectors B;. Thus, as mentioned by Nguyen and
Regev for the GGH scheme in [49], one can start the descent with well-chosen
initial vectors instead of drawing them uniformly on the unitary sphere. However,
our experiments show that this strategy is asymptotically unsuccessful. Indeed,
if s is a vector recovered by a descent, our experiments show that its distance to
the secret key min;cpy ] [|s — Bil|2 is typically around n/2, see Table 1. Thus,
the best strategy remains the BDD-uSVP attack on D - e;.
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N10‘11‘12‘13‘14‘15‘16

n

37 119.23|19.34 | 19.24 | 19.22 | 19.10 | 19.19 | 19.15
71 | 38.04|36.80 | 36.28 | 36.19 | 36.51 | 36.26 | 36.36
211 |208.91|120.25|109.56|106.95(106.67|106.42|106.21

Table 1: Minimal distance between the secret key and vectors recovered by 16
descents for several dimensions n and sample sizes N.

Learning attack from Ducas and Yu. [24] The data gathered by our experiments
tend to show that the learning attack from Ducas and Yu is mitigated and that
we can asymptotically assume that the key recovery can be done by replacing the
target vector D-e; by a vector t; such that ||t; — B;||2 > r-||D - e; — B2, where
r €]0.7,0.95] depending on the noise level. For example when « =~ 0, Figure 1a
shows that we can assume that r > 0.7 while a lower noise such as o =~ 0.8 could
reach r > 0.9. Without further thinking, one could jump on the counter-intuitive
conclusion that a more orthogonal basis provides better security. However, one
should not forget that the attack deeply relies on the distance between the target
and the secret basis, i.e. the term ||B; — D - ;|| in Equation (5). Thus, one can
get a larger r factor but a smaller term 7 - ||B; — D - e;||. For example, as soon as
A(B) > D/2 this norm will be lower than the one obtained for A(B) = 1 and
taking the attack into account. Thus, choosing A(B) = 1 seems to be the safer
option. Equation (5) is then replaced by

B/(n+1)-7(n,N) - |B; — D ey ~ 82" . D/ (nD), (7)

which gives 0.7+ /(1 — @) - B~ 657 "1 . pn/(n+D),

This ensures an asymptotical security, even though the corresponding 3 for
a given dimension would be significantly lower than for other schemes such as
SQUIRRELS (28] or HAWK [25] for example.

Extending the learning attack. However one can wonder whether signing with
very close vector reveals other information, such as (potentially approximate)
Voronoi cells. This lead us to consider the setting of the Closest Vector Problem
with Preprocessing (CVPP).

Assume that a learning attack d la Nguyen and Regev [49,22,40] allows us
to recover vectors from a hidden parallelotop close to the Voronoi cell. First one
may wonder if this structure is complex enough to hide the secret basis. Indeed,
diagonally dominant matrices have a strong structure allowing for an efficient
CVP solver. We first verified that a trivial attack through enumeration could
not be done. To this end we computed the set of relevant Voronoi vectors for
diagonally dominant matrices of small degree. The average size of such sets for
a selected range of dimensions are gathered in Table 2.
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n|D—-—AB)=2D-AB)=3|D-AB)=5

6 (122.6 118.0 72.6

8 1500.8 497.6 430.4
10{2011.2 1975.6 1657.4
16{130458. 130319.2 125477.2
20]2094084. 2089558.6 2080385.4

Table 2: Average number of Voronoi relevant vectors for diagonally dominant
lattices.

It evolves exponentially as expected. Thus, one cannot just go through these
sets to recover the secret basis even if given the Voronoi cell for free.

Then we considered the possibility that the recovered vector could help in
solving CVP., more efliciently, to the point where one could forge a signature in
polynomial time. As mentioned earlier, this setting is close to the one of CVPP
algorithms. We established in Appendix A that the average approximation factor
reached by Algorithm 1, both for signed or negative noises, is a small constant.
Following [21] the query phase for solving such an instance of the Approximate
Closest Vector Problem with Preprocessing (CVPP,,) is exponential for arbi-
trary lattices. Note that the size of the preprocessed list of lattice vectors should
be (at least) subexponential as well and requires to compute the shortest vec-
tors (up to some approximation factor) of the lattice, among which are the
vectors of the secret basis. Thus, one would certainly recover the secret basis as
a byproduct of the query phase. Thus, we deem that forging a signature using
(approximate) Voronoi cells or classical algorithms solving the CVPP, [21] is
as hard as recovering the secret key.

Conclusion. From our study, we deem that the DRS scheme should be asymp-
totically secure, with the most secure noise level being D — 1 or equivalently
0(B) = 1. We also deem diagonally dominant matrices with negative noise an
interesting direction to pursue. Indeed, they offer good decoding properties which
seem to mitigate the statistical attack from Ducas and Yu [24].

5.4 One mask to loose them all ?

In this section, we explore a counter-measure to statistical attacks linking sig-
natures to the secret key. We use a mask to “drown” the information leaked by
the signature, to the cost of increasing them. More formally, if m is a vector to
sign and Sign is our base signing algorithm, our masked signing algorithm will
be MaskedSign : m — Sign(m+ e) — e, where e is drawn following a public dis-
tribution which is independent of the secret basis. Then the produced signature
s = MaskedSign(m) is still congruent to m module the lattice £(B). The idea
is that s will lie in a space still dependent of the basis but where the geometry
of latter is hidden by the distribution added by e.
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In order to fit the setting of DRS, we choose the mask to be drawn from
a uniform distribution over the integral hypercube [—cmask + D, Cmask - D]™ for
some fixed cmask € N. In terms of security, adding such a mask does not improve
the attacks on the secret key. However, forging a signature becomes easier since
signatures have larger norms.

One can find experimental results for the learning attack from Ducas and Yu
in Figure 3. First we consider the impact of a small mask fixing ¢nask = 1 for
A(B) € {1, D/2} then we focus on A(B) = 1 with larger masks.

0.95 T T T T T T 1.02 T T T T T

Dim. 64 =——+— Dim. 64 =——+—
Dim. 128 —+— ! Dim. 128 —=— |
Dim. 192 Dim. 192

0.9

Dim. 256 M 098 | Dim. 256

10 12 14 16 18 20 22 24 26 10 12 14 16 18 20 22 24 26
(a) A(B) =1 (b) A(B) = D/2

Fig. 3: Experimental measures of r(n, N) for different noise levels, with negative
noise and a mask s.t. Cmask = 1.

One can observe from Figure 3 that the impact of a small mask seems to
be limited. Indeed, the factors r(n, N) for A(B) = 1 are larger for very small
sample sizes but the asymptotic value seems to be unchanged an reached for
small sample sizes as well. The situation is mitigated for A(B) = D/2, as the
attack is clearly less efficient with the mask. However there is no definitive sign
of convergence, so the asymptotical value could soon be reached as well.

From Figure 4 it seems that the sample size N for which the limit value of
r is reached increases for larger masks. However the difference with the original
signature procedure is rather small.

Finally our study seems to indicate that adding a mask is not an efficient
counter-measure against Ducas and Yu’s attack [24], especially considering that
the scheme would be slower and weaker against signature forgery.
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Average quality of reduction

Average quality of CVP We evaluated experimentally the quality of the approx-
imation factor obtained by Algorithm 1 as a CVP, solver for small dimensions.
To this end we used the CVP solver from FPYLLL [62], called with the method
CVP.closest_vector(L,t), where L is the lattice and t is the target vector. From
our computations, for a fixed dominance level A(B), the average approximation
factor reached by Algorithm 1 is smaller than a constant, seemingly decreasing
with respect to the dimension.
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Note that since one is able to recover B from its HNF in exponential time,
this indicates that approximating the CVPP within a small constant factor
should be solvable in polynomial time for diagonally dominant matrices. This
contrasts with the situation over general lattices [3].

AB) N[ 10 15 20 25 30 35 40 45 50 55 60
1 291 2.86 2.79 2.73 2.67 2.61 2.61 2.56 2.56 2.51 2.50

pSu D/2 1.55 1.50 1.50 1.37 1.38 1.41 143 1.36 1.38 1.36 1.38
neg—PSW 1 144 124 126 1.21 1.22 1.16 1.18 1.15 1.15 1.13 1.14
g D/2 1.066 1.022 1.028 1.015 1.021 1.012 1.018 1.010 1.011 1.010 1.009

Table 3: Average approximation factor reached by PSW and neg-PSW for small
dimensions and A(B) € {1,D/2}.

B Short vectors and reduction algorithms for Column
Diagonally Dominant matrices

In this section we consider Column Diagonally Dominant matrices. A c.d.d ma-
trices can be simply defined as the transpose matrix of a Diagonally Dominant
matrix (Definition 9). Conceqeuntly, we will note AT(B) = A(BT).

The overall methodology used in this subsection is very similar to the previous
one. Again, the results proven in this subsection can be grouped in the following
theorem.

Theorem 3. Consider B € 2™ a c.d.d. matriz and L = L(B). Then A\ (L) >
AT (B) and there is an algorithm, RSR (Alg. 6), running within a polynomial
amount of arithmetic operations such that

_AT(B)

Vv € span(L),RSR(v) = v mod L, ||RSR(V)||co < D 5

Consequently one has u(>) (L) < D — @.

As done previously, the proof of this theorem will be done in two steps:
bounding the minimal size of the shortest vector, then bounding the maximal
convergence radius of a reduction algorithm. Note that the acronym RSR stands
for RepeatedSingleReduce.

B.1 Specific notations
We will use the following objects and notations.

— For I C [1,n], we denote by By € M|z),|7)(Z) the submatrix of B composed
of the rows and columns of indexes in I. Naturally, if B is a r.d.d/c.d.d
matrix, so is Bj.
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— Soo(l) is the set of positions ¢ given ! € Z™ such that |I;| = ||{||co
— B(I,B) = min {mealx{|(l ‘B)j| | llloo = 1,800 () = I}} given any set of in-
J

dexes I.
It is simply min{||l - Br|leo | I € {1, 1}/11}.
We denote B(I,B) by B; when B is implied, and stress that By # A;(B).

B.2 Short vectors
First let us study the norm of a shortest vector.

Lemma 5 (Minimal largest value of non-zero combinations). Consider
k € Z"\{0}, j € [1,n] such that |k;| = || k||, B be a c.d.d matriz, and v = k-B.
Then one has |v;| > ||k|lo - 6;(BT).

Proof. Without any loss of generality we can assume v; > 0 and k; > 0. Then

n

> kB

=1

lvi| =

> kiD= |kiBij| > k(D - |Bij|) = k;é;(B”).
i=1 =1

i#£j i#£]
O

This directly implies that ,\§°°’ (£(B)) = AT(B). Let us show some additional
results on c.d.d. matrices.

Lemma 6 (Submatrix bound on non-zero combinations). Consider B
a c.d.d. matriz, k € Z™, I = Sy (k) and v = k-B. Then there is j € I such that
|v;| > B(I,B).

Proof. If k € {—||k|/c,0,||k|lc}™, then there is j € So(k) such that |v;| >
|&lloo % B(Seo(k), B). If 3j1, |kj, | ¢ {0, ||k||co } With kj, # 0, one can pick j; such
that |kj,| > |k;| for all j ¢ Soo(k). Consider the vectors k' and k" such that
k=K + k" and

K, =

sign(k;) - (|kloo — ks 1), ifjel
0, otherwise.

Therefore we also have

W — sign(k;) - |ks|, ifjelrl
I k; otherwise.

Remark that for all j € S (k) we have sign(k]) = sign(k}) = sign(k;) and
|k7| = |k"|oo. From what precedes we know that there is j € S (k) such that
|(K'-B);| = B(Sx(k), B). Moreover S (k) C Seo (k") and the signs are the same
so sign((k” - B);) = sign((k’ - B);). Thus we obtain |(k-B);| > B(S«(k),B). O

This gives us the following theorem.

Theorem 4 (Bound by the minimal submatrix). Let B be a c.d.d. matriz.
Then A (£(B)) > min B;.
IC[1,n]
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B.3 Reduction algorithms for c.d.d. matrices

The previous reduction algorithm only concerned r.d.d matrices and are not
guaranteed to terminate on c.d.d matrices. We will propose here a different
algorithm relying on the c.d.d structure. Before we present the full algorithm,
we first introduce the core part that we denote by SingleReduce. It is described
in Algorithm 5.

Algorithm 5 SingleReduce

Require: v € Z", B a c.d.d matrix, R; > D — LBT).

2
Ensure: w = vmod £(B) and ||[w||e < max(qRi,||V]je — ¢AT(B)), where ¢ =
max{t € N* | Vi € [1,n], ||V|s — tR: > t(6:;(BT))}

1w« i+ 1, s+ ]0,..,0 € {0,1}" {initialization vector, index, reduction
status}

2: ¢ + max{t € N* | Vi € [1,i], ||v|le — tR: > t(6:;(BT))}

3: while \/7_, ((lw;| > gR;) A (s; = 0)) do

4:  if |wi| > gR; and s; =0 then

5: W w— qp,4HB: {Reduce |w;|}
6: s+ 1 {“Update” the reduction status of index i}
7:  end if

8 i<+ (imodn)+1 {Enforces i to be within [1,n] and not [0,n — 1]}
9: end while
10: return w

Lemma 7. SingleReduce (Alg. 5) outputs w € Z"™ verifying the following prop-
erties:

1. w =v mod £L(B).
2. Vi € [1,n],|vi| > qR; = |wi| < |vql.
3. Vi € [1,n],|vi| < qR; = |w;| < qR;.

Moreover the algorithm performs at most n additions on vectors.

Proof. First remark that we add or remove at most one time each row vector to
the variable w. This is ensured by the flag vector s. Therefore we add at most n
vectors to w. Write v =w(©® w®) ... w) = w the two-by-two distinct values

of the variable w with 7 < n. Similarly write s, ...,s(") the different values
(r)

taken by s. Fix some index ¢ € [1,n]. First assume s; ’ = 0. Then we know
that |W§T)| < qR; and w; satisfies the claimed properties. Now assume SET) =1.
Let us denote by kg the integer such that wgk‘)) = w§’“°‘1) =+ ¢D. Without loss
of generality we can assume WEO) = v; > 0. First we consider the case where

w§°) > gR;. Then for some J C [1,n] \ {i} we have

wgko_l) = WEO)—FZ +qb;; > wgo)—q(D—di(BT)) > qR;—q(D—6;(BT)) > ¢q
jeJ

2
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therefore w — gD. We can write

%

(ko) — w(kO_l)

n 5,(BT
wi =w® —qD+ Y +gb;; > qRi—qD—q(D - 5;(BT) > —q(D—%)
JjE[1,n]
J#i

which ensures |W§n)| < |w£0)|. Now consider the case where WEO) < ¢R;. From
D— %BT) > D—6;(BT) we deduce that w'* ™" > 0 and w{* = w*~Y _¢D.

With the same reasoning as before we can conclude w§”) < WZ(O) and WE") >

w§’“°) —gD —q(D—-6;(B)) > —q(D — @) which ensures |fw§")| < gR;. Finally
we remark that the results obtained are independent of the choice of i. ]

This building block naturally gives us the RSR reduction algorithm, which
is guaranteed to finish given a c.d.d. lattice basis. Theoretically, there is no
algorithm that can provide strictly better bounds on I, for every single column
diagonally dominant lattice: the covering radius cannot be lower than half the
size of the shortest vector, and for AT(B) = D we do reach this extremity.

Algorithm 6 RSR

Require: v € Z", B a c.d.d matrix, R; > D — ‘si(QB).
Ensure: w = v mod £(B) and |w;| < R;.
W<V
while \/7_, (lw;| > R;) do
w <SingleReduce(w,B,R).
end while
return w

Proposition 1. Given a vector v € Z™, R € Z"™ such that R; > D — @
where D, 6;(B) are associated to a c.d.d. matriz B, RSR (Alg. 6) outputs w € Z"
verifying the following properties:

1. w =v mod L(B).

Moreover the algorithm performs at most n [logb 2?,'1:%1 + n additions on
vectors, where b = %.

Proof. Consider ||v|| such that there is no integer ¢ > 0 such that ||v||c —tR; >
t6;(B), i.e. ||V]|oo — Ri < 6;(B). Then a call to SingleReduce with ¢ = 1 outputs
w such that ||w;|| < R;. Now consider ||v||o sufficiently large so that ¢ exists.
One call to SingleReduce outputs w such that ||W|lcc < max{qR;,|V|c —
qAT(B))} < ||v|lo — AT (B)) by definition of g. Thus we get |W|lco < ||V]|oo -
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(1 - Q), where Q = qﬁjl(lz). Clearly @ > 0, and let us prove that @ < 1. By
definition we have

T
IVlloo — qR: > q6;(BT)) = a 2D + AT(B)

vl ™ 2
which gives ’
@< 2D2 f A(]’-?()B) '
Since AT(B) > 0 one has 2D + AT(B) > 2D, which leads to Q < 2D/2D = 1.

Then, writing a :=1 — 2;?293(%3) = gg;ﬁ;ggg onehas0<1-Q<a<1

and ||W|leo < @ - ||V|lco. Consequently, after i calls to SingleReduce, one has
[Wlloo < @ - ||V|]lco- Let us find i the number of calls to SingleReduce after
which a single call to SingleReduce with ¢ = 1 will output a well-reduced
vector. This is ensured by

. . 2D+ AT (B
Wleo < - [Vle < R+ AT(B) = o' < 2202
: 2D + AT(B
1 2 ].Oga 2“V||()
— =l 2D + AT(B)
T 2 vl
< i=|lo _ 2wl
T | ®Va oD+ ATBY |

Since each call to SingleReduce has at most n vector additions, we get the
claimed worst-case cost. O

We want to stress this does not show the algorithm is practically efficient:
SingleReduce might run a quadratic amount of absolute value comparisons on
scalars in a single call. However, the reduction still runs a polynomial amount
of vector operations in the dimension and in the entry size.

Comparison with Babai’s Nearest Plane Unlike the r.d.d case, we do not have a
measure of ||b;||1. However, we estimate that it is possible in the case of c.d.d to
have rows with very large noise, which might give ||b;||1 > 2D and thus a larger
worst-case bound than a r.d.d for Babai’s nearest plane algorithm.
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