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In aerospace Engineering, the accurate simulation of ice accretion is a key element to increase flight safety and avoid accidents related to icing effects. The icing code developed in the NSMB solver is based on an Eulerian formulation for droplets tracking, an iterative Messinger model using a modified water runback scheme for ice thickness calculation and mesh deformation to track the ice/air interface through time. The whole process is parallelized with MPI and applied with chimera grids.

INTRODUCTION

To increase the flight safety by reducing the number of accident related to icing effects any aircraft must be able to fly in all weather conditions. Ice accretion results in severe aircraft performance degradation and is one of the major causes of flight accident. Ice forms on different surfaces of the aircraft such as: wings, engine intakes, control surface, when aircraft flies in a weather conditions with temperature lower than freezing point and with super cooled droplets impaction on the aircraft surfaces. By impacting the surface droplets freeze or flow as water film on the surface. Based on the surface temperature, the entire impacting droplet can freeze at the impact point or a portion freezes and the rest flow as runback water on the surface and freezes downstream of the airfoil. In the design process, the prediction of precise complex Ice accretion is one of the challenges for the aeronautic science.

Icing codes used by industries are mainly based on inviscid panel or Euler methods to simulate the fluid, a Lagrangian formulation to predict the trajectories of water droplets, impingement areas and a classical Messinger Model to compute the ice thickness. One of the disadvantage of this approach is the poor accuracy of the calculated fluid by neglecting viscous and turbulence effects. Numerous solvers were developed for that matter. Lagrangian approach for droplets tracking solves Newton equation of motion for each individual droplet. This approach requires non-automatic and well defined initial positions and amount of incoming droplets to obtain accurate impingement areas. The key element of ice accretion is the determination of impingement collection efficiency. While a Lagrangian formulation requires a statistical averaging process to evaluate it, the determination of this quantity in Eulerian formulation is direct. In addition, the resolution of droplet equations in the Eulerian frame open up access to the large panel of computational fluid dynamics accelerating techniques. For reasons stated above, the advantages of choosing Eulerian framework are obvious.

In this paper we present the icing code developed in the structured compressible and multi-block Navier-Stokes solver NSMB [START_REF] Vos | Recent advances in aerodynamics inside the NSMB (Navier-Stokes Multi-Block) consortium[END_REF]. Supercooled water droplets field and impingement areas are obtained by means of an Eulerian approach. The ice thickness is calculated based on an iterative Messinger model upgraded by an improved water runback scheme for three-dimensional and multi-block ice accretion simulations. Mesh deformation is used to track the ice/air interface through time for multi-steps calculations. The whole process is solved on the same mesh used for the fluid computation and parallelized with Message Passing Interface for complex multi-block configurations. Droplets are considered spherical and not to be subject to deformation or breaking. The droplet phase is sufficiently diluted to neglect interactions between droplets. Temperature of the droplet phase is set to be constant and equal to free-stream temperature, heat transfer with the surrounding air is neglected. The only forces acting on droplets are drag, gravity and buoyancy.

The governing equations (which correspond to an Eulerian formulation of a Lagrangian transport of particles) for the conservation of mass and momentum of the droplets are written as follows :

∂ α ∂t + ∇.(αu) = 0 ∂ αu ∂t + ∇. (αu ⊗ u) = α C D Re d 24K (u a -u) + α 1 -ρ a ρ 1 Fr 2 g (1) 
α is defined as the non-dimensionalized volume fraction of water and u the non-dimensionalized velocity field of droplets. u a is the non-dimensionalized velocity of air, ρ the density of water, ρ a the density of air, g the gravity vector. Fr = U ∞ (Lg) is the Froude number, U ∞ the freestream velocity of air, L the characteristic length (typically the airfoil chord length), K = ρdU ∞ /18Lµ is an inertia parameter and µ the dynamic viscosity of air. d is the median diameter of the droplets. The first term on the right-hand-side of the momentum equation accounts for the drag acting on the droplet or particle based on low-Reynolds number behaviour for spheres. The droplets Reynolds number ( Re d ) is defined based on the slip velocity between the air and droplet and the droplet diameter.

Re d = ρd|u a -u|U ∞ µ (2) 
The drag coefficient of the droplets C d is given by :

     C d = 0.44 Re d , if Re d > 1000 C d = 24 Re d , if Re d < 0.1 C d = 24×(1+0.15×Re 0.657 d ) Re d (3) 
A third order upwind scheme is used and the implicit droplet equations are solved with a SIP or BiCGSTAB algorithm. The freestream values of droplet velocity and volume fraction are imposed as boundary conditions at the far field. A switching boundary condition is applied at the wall : Neumann when the incoming droplet flux is positive and Dirichlet otherwise. Finally the collection efficiency coefficient that characterizes the configuration's ability to capture incoming water droplets is defined as :

β = αu.n (4) 

Modelling of Ice Thickness

The Messinger model [START_REF] Messinger | Equilibrium Temperature of an Unheated Icing Surface as a Function of Airspeed[END_REF] solves the mass conservation and energy conservation based on the first law of thermodynamic on cells located on walls (fig. 2).

The energy and mass flow rates conservation in control volume writes : The computation of mass fluxes starts from the stagnation point and the upper and lower cells are updated one by one by setting the inflow liquid water mass of the downstream cell equals to the outflow liquid water mass of the current cell [START_REF] Messinger | Equilibrium Temperature of an Unheated Icing Surface as a Function of Airspeed[END_REF]. Although this method showed accurate results in rime ice for two-dimensional configurations, it has the disadvantages to be a serial computation and must be modified for three-dimensional and multi-block configurations. The ice thickness solver developed in NSMB is based on a modified Messinger model including an upgraded runback scheme and an iterative procedure for solving three-dimensional and complex multi-block configurations. The runback model developed by Zhu et al. [START_REF] Zhu | 3D ice accretion simulation for complex configuration basing on improved messinger model[END_REF] is used to compute in each cell located on the wall the amount of outflow liquid water going in north-south direction cells and the amount of outflow liquid water going in west-east direction cells. The neighboring cells are then updated. The mass fluxes exchange at block boundaries is performed using message passing interface, and the whole process is repeated until a convergence criteria is met. Finally a three-dimensional re-meshing is applied to deform the grid.

ṁimpinging + ∑ ṁin f low -ṁice -ṁevap -∑ ṁout f low = 0 qimpinging + ∑ qin f low -qevap -qice -∑ qout f low -qconv = 0 (5) 

THE CHIMERA METHOD

The chimera method is based on the management of independent overlapped grids. It significantly simplifies the generation of meshes. It provides a good alternative to unstructured grids. Its principle is to decompose the complex full domain into simple sub-domains independently meshed by curvilinear grids. The only constraint is a superposition of grids to allow the link of the flow description. Beyond simplifying the mesh generation, this technique offers a powerful solution to manage moving bodies. The pioneers of the chimera method are Benek et al. [START_REF] Benek | A flexible grid embedding technique with application to the euler equations[END_REF] and the method has subsequently been improved and adapted to many cases. The huge possibilities offered by this approach explain its successful use in many and diverse applications like high-speed reaction flow, blood flow, combustion, aerodynamics, flow around ships, separation of the spacecraft orbiter from boosters or aerodynamic noise. It is associated with other numerical tools to increase efficiency (such as Automatic Mesh Refinement (AMR) coupling with chimera method). The chimera process is detailed for structured grids by Meakin [START_REF] Meakin | Chapter 11 : Composite overset structured grids in : Handbook of grid generation[END_REF]. Here an overview and basic definitions of chimera method is discussed. The process of chimera method is divided into four main steps :

• 1 st step : Detection of overlapped cells. This process consists in finding which cells are overlapped by other cells.

The test is based only on the coordinates of the cells. The main advantage of our method over the method proposed previously is in a smart determination of overlapped cell kinds based on the local distance to the wall which enforces the resolution of the Navier-Stokes equation on cells near walls by the grid owing the wall boundary condition and is totally automatic with no user intervention. It allows to manage a configuration with multiple walls and automatically adapts to the change in configuration. 

RESULTS

Simulations are performed on a two-dimensional NACA23012 aifoil, an Onera M6 swept wing, a Wing/Body DLR-F6 configuration and an MDA airfoil (see Fig. 3). The flow computation is accomplished implicitly by means of a LU-SGS method. Spatial discretization is achieved using second order or fourth order central scheme with matrix artificial dissipation. Spalart-Allmaras model with wall roughness is used as turbulence model.

CONCLUSIONS

An icing module has been successfully implemented in the compressible Navier-Stokes solver NSMB. The icing code developed, fully parallelized in MPI, computes three-dimensional ice accretion by means of an Eulerian droplet transport model and a modified iterative Messinger model. Mesh deformation is used to track ice/air interface.
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 1 FIGURE 1. Icing Module Interactions in NSMB
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 2 nd step : Determination of the overlapped cell status. Three kinds of overlapped cells exist : a) Interpolated cells : the flow data are obtained by interpolation on other overlapping grids. b) Calculated cells : the values come from the resolution of the equations governing the flow. c) Hole cells (or blanked/masked cells) : the values of this kind of cells are never used in the discretization schemes or overlapped boundary conditions and they are not interpolated nor calculated. • 3 rd step : Calculation of the interpolations parameters. In this step, the donor cells and the associated weights that compose the interpolation are evaluated for each valid overlapped cell. • 4 th step : Calculation of the interpolation values.
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 3 FIGURE 3. Droplet trajectories and collection efficiency on the MDA airfoil at M = 0.23, AOA = 0 o , Re = 4.9x10 6