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RADIAL EXTENSION OF ΓΓΓ-LIMITS

OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

Abstract. We continue in this paper our study of the notion of radial uniformly upper
semicontinuous functional that we developed in a previous paper (see [AHM14]) in the
context of relaxation. We consider here the framework of Γ-convergence. We present general
radial extension results with respect to Γ-convergence and give some applications to Γ-
convergence and homogenization of integral functionals with constraints.
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2 RADIAL EXTENSION OF Γ-LIMITS

1. Introduction

Let X be a vector space and let } ¨ } be a norm on X. In [AHM14, Theorem 3.1] we proved
that if F : X ! r0,8s is ru-usc1 on a subset D of the effective domain dompF q of F , i.e.
there exists a ą 0 such that

lim
t!1´

sup
uPD

F ptuq ´ F puq

a` F puq
ď 0,

and if D is strongly star-shaped, i.e.

tD Ă D for all t Ps0, 1r

with D denoting the closure of D with respect to } ¨ }, then the lsc2 envelope F ` χD of
F ` χD, where χD denotes the indicator function of D, is given by the sum of the radial
extension of F and the indicator function of D whenever lsc envelope of F ` χD is equal to
F on D, i.e.

F ` χD “ F on D implies F ` χD “ pF ` χD,

where pF : X ! r0,8s is defined by

pF puq :“ lim
t!1´

F ptuq.

In this paper, we extend this result to the framework of Γ-convergence (see Theorem 2.7,
Corollary 2.8 and Theorem 2.9).

In the spirit of De Giorgi (see [DG79, §4]), our motivation comes from the problem of
finding an integral representation of the Γ-limit of a family of integral functionals subjected
to constraints. A typical example is given by integral functionals Fε : W 1,ppΩ;Rmq! r0,8s
defined by

Fεpuq :“

ż

Ω

fεpx,∇upxqqdx,

where Ω Ă RN is a bounded open set, p ą N , ε ą 0 and fε : Ω ˆM ! r0,8s is a Borel
measurable function, not necessarily convex, having g-growth, i.e. there exist α, β ą 0 and
a Borel measurable function g : M! r0,8s, which do not depend on ε, such that for every
px, ξq P ΩˆM,

αgpξq ď fεpx, ξq ď βp1` gpξqq

with M denoting the space of m ˆ N matrices. Thus, for each ε ą 0, the effective domain
dompFεq of Fε is equal to the effective domain dompGq of G : W 1,ppΩ;Rmq! r0,8s defined
by

Gpuq :“

ż

Ω

gp∇upxqqdx.

This means that integral functionals Fε are subjected to constraints on gradients represented
by the set dompGq. Under some requirements (see §3.2), it can be proved (see Theorem 3.8)
that tFεuε Γ-converges, with respect to the Lp-norm, on dompGq, i.e.

Γ- lim
ε!0

Fεpuq “ F puq for all u P dompGq. (1.1)

1The abbreviation ru-usc means radially uniformly upper semicontinuous.
2The abbreviation lsc means lower semicontinuous.
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The difficulty is then to extend (1.1) to the whole space W 1,ppΩ;Rmq. This can be achieved
by developing extension theorems with respect to the concept of ru-usc functional (see, in
particular, Theorem 2.7).

To our knowledge, the concept of ru-usc finds its origin in [CDA02, Condition (10.1.13),
pp. 213] in connection with relaxation problems with constraints. Later, this concept was
proved very useful for relaxation problems in the vectorial case with bounded and convex
constraints see [AH10]. Then, it was used to study homogenization and relaxation problems
with constraints (see for instance [AHM11, AHM12, AHMZ15]). Ru-usc seems to be a key
concept to deal with certain constrained variational problems (see Sect. 3). However, of
course, this concept does not allow to handle all types of constraints as for example obstacle
constraints.

The plan of the paper is as follows. In §2.1 we recall the definition of a ru-usc functionals (see
Definition 2.1) and the one of a family of ru-usc functionals (see Definition 2.4). An important
point is the fact that ru-usc is stable with respect to Γ-convergence (see Theorem 2.6). The
definition of ru-usc functions together with the link with the one of ru-usc functionals is
recalled in §3.1 (see Definitions 3.1 and 3.2). Roughly, functionals with ru-usc integrands
are ru-usc (see Proposition 3.3). The main results of the paper are stated and proved in
§2.2 (see Theorem 2.7, Corollary 2.8 and Theorem 2.9), and applications of these results to
Γ-convergence and homogenization of integral functionals subjected to constraints are given
in Section 3 (see Corollaries 3.10, 3.12 and 3.13). In the Applications, we need a partial
Γ-convergence theorem (see Theorem 3.8) which was established in [AHM21, Theorem 4.3].
For the convenience of the reader, the proof of Theorem 3.8 is given in Appendix A, and
the auxiliary results that are used in its proof are stated (without the proofs) in §B.1 and
§B.2. For the application to homogenization we need a subadditive theorem which is stated
(without proof) in §B.3.

Throughout the paper, we will use the following notation and terminology.

‚ Given a vector space X and a norm }¨} on X, the closure (resp. interior) with respect
to } ¨ } of a set A Ă X is denoted by A (resp. intA) and its boundary by BA.

‚ By the effective domain of a function F : X ! r0,8s we mean dompF q given by
dompF q :“ tu P X : F puq ă 8u.

‚ A set D Ă X such that tD Ă D for all t Ps0, 1r is said to be strongly star-shaped.
When tD Ă intD for all t Ps0, 1r, we say that D is super-strongly star-shaped.

‚ For D Ă X we denote the indicator function of D by χD, i.e.

χDpxq “

"

0 if x P D
8 if x P XzD.

‚ For A Ă RN , the diameter of A (resp. the distance from a point x P RN to the subset
A) is defined by diampAq :“ supx,yPA |x´ y| (resp. distpx,Aq :“ infyPA |x´ y|).

‚ The symbol´
ş

stands for the mean-value integral with respect to the Lebesgue measure
LN on RN , i.e. ´

ş

Q
“ 1

LN pQq
´
ş

Q
.
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2. Main results

In what follows, X is a vector space and } ¨ } is a norm on X. (In the applications pX, } ¨ }q
will be W 1,p with p ą 1 endowed with the Lp-norm.)

2.1. Ru-usc functionals. We begin by recalling the concept of ru-usc functional.

Definition 2.1. We say that F : X ! r0,8s is ru-usc if there exists a ą 0 such that

lim
t!1´

∆a
F ptq ď 0

with ∆a
F : r0, 1s!s ´ 8,8s defined by

∆a
F ptq :“ sup

uPdompF q

F ptuq ´ F puq

a` F puq
,

where dompF q denotes the effective domain of F .

Let pF : X ! r0,8s be defined by

pF puq :“ lim
t!1´

F ptuq.

Usually, pF is called the radial extension of F .

Remark 2.2. If F is ru-usc then pF ď F . Indeed, for every u P dompF q, F ptuq ď F puq `

∆a
F ptqpa`F puqq for all t P r0, 1s. As limt!1´ ∆a

F ptq ď 0 it follows that pF puq “ limt!1´ F ptuq ď
F puq ` limt!1´ ∆a

F ptqpa` F puqq ď F puq for all u P dompF q.

The interest of Definition 2.1 comes from the following theorem. (For a proof we refer to
[AHM11, Theorem 3.5] and also [AHM12, §4.2])

Theorem 2.3. If F : X ! r0,8s is ru-usc and if dom(F) is super-strongly star-shaped, i.e.

tdompF q Ă intdompF q for all t Ps0, 1r, (2.1)

then:

(a) pF is ru-usc;

(b) pF puq “ lim
t!1´

F ptuq for all u P X.

If moreover, F is lower semicontinuous (lsc) with respect to } ¨ } on intdompF q then:

(c) pF puq “

$

&

%

F puq if u P intdompF q
lim
t!1´

F ptuq if u P BdompF q

8 otherwise;

(d) pF is the lsc envelope of F .

The following definition generalizes Definition 2.1 to the case of a family of functionals.

Definition 2.4. For each ε ą 0, let Fε : X ! r0,8s. We say that tFεuεą0 is ru-usc if there
exists a ą 0 such that

lim
t!1´

sup
εą0

∆a
Fεptq ď 0.

(When Fε “ F for all ε ą 0, we recover Definition 2.1.)
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The interest of Definition 2.4 comes from the following theorem which says that ru-usc is
conserved under Γ-convergence. We begin by recalling the definition of Γ-convergence (see
[DM93, BD98, Bra06] for more details).

Definition 2.5. For each ε ą 0, let Fε : X ! r0,8s and let Γ- limε!0 Fε : X ! r0,8s and
Γ- limε!0 Fε : X ! r0,8s be respectively defined by:

Γ- lim
ε!0

Fεpuq :“ inf

"

lim
ε!0

Fεpuεq : uε
}¨}
! u

*

;

Γ- lim
ε!0

Fεpuq :“ inf
!

lim
ε!0

Fεpuεq : uε
}¨}
! u

)

.

Let F : X ! r0,8s. We say that tFεuεą0 Γ-converges to F , and we write

F “ Γ- lim
ε!0

Fε,

if the following two inequalities hold:

F ď Γ- lim
ε!0

Fε;

Γ- lim
ε!0

Fε ď F.

The following theorem asserts that ru-usc is stable with respect to Γ-convergence.

Theorem 2.6. Let F : X ! r0,8s and, for each ε ą 0, let Fε : X ! r0,8s. If tFεuεą0

is ru-usc and if tFεuεą0 Γ-converges to F then F is ru-usc. If moreover (2.1) holds then
pF “ F .

Proof of Theorem 2.6. Fix any u P dompF q. Since tFεuεą0 Γ-converges to F , there exists
tuεuεą0 Ă X with uε P dompFεq such that:

uε
}¨}
! u; (2.2)

lim
ε!0

Fεpuεq “ F puq. (2.3)

Fix any t P r0, 1s. For every ε ą 0, we have

Fεptuεq ď ∆a
Fεptq

`

a` Fεpuεq
˘

` Fεpuεq

ď sup
ε1ą0

∆a
Fε1
ptq

`

a` Fεpuεq
˘

` Fεpuεq. (2.4)

From (2.2) we see that tuε
}¨}
! tu, and so, since tFεuεą0 Γ-converges to F ,

F ptuq ď lim
ε!0

Fεptuεq. (2.5)

Letting ε! 0 in (2.4) and using (2.3) and (2.5) we deduce that

F ptuq ď sup
ε1ą0

∆a
Fε1
ptq

`

a` F puq
˘

` F puq.

Hence, for every u P dompF q,

F ptuq ´ F puq

a` F puq
ď sup

εą0
∆a
Fεptq.
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Consequently, for every t P r0, 1s,

sup
uPdompF q

F ptuq ´ F puq

a` F puq
ď sup

εą0
∆a
Fεptq, i.e. ∆a

F ptq ď sup
εą0

∆a
Fεptq.

As tFεuεą0 is ru-usc we have limt!1´ supεą0 ∆a
Fε
ptq ď 0 and so limt!1´ ∆a

F ptq ď 0, which
proves that F is ru-usc.
Since F “ Γ- limε!0 Fε, F is lsc with respect to } ¨ }. Hence, if moreover (2.1) holds then

F “ pF by Theorem 2.3(d). �

2.2. Radial extension theorems with respect to Γ-convergence. The following theo-
rem is the first main result of the paper.

Theorem 2.7. Let F : X ! r0,8s and, for each ε ą 0, let Fε : X ! r0,8s. Let D,E Ă X
be such that:

tE Ă D for all t Ps0, 1r; (2.6)

dom

ˆ

Γ- lim
ε!0

Fε

˙

Ă E. (2.7)

If tFεuεą0 is ru-usc and if

Γ- lim
ε!0

Fεpuq “ F puq for all u P D, (2.8)

then

Γ- lim
ε!0

Fε “ pF ` χE.

Proof of Theorem 2.7. First of all, taking (2.7) into account, if u R E then

Γ- lim
ε!0

Fεpuq “ Γ- lim
ε!0

Fεpuq “ 8.

So, it is sufficient to prove that for every u P E,

Γ- lim
ε!0

Fεpuq “ pF puq. (2.9)

Fix u P E. By (2.6), for any t Ps0, 1r, we have tu P D. From (2.8) it follows that

F ptuq “ Γ- lim
ε!0

Fεptuq “ Γ- lim
ε!0

Fεptuq for all t Ps0, 1r.

Hence, since the Γ-limit sup is lower semicontinuous with respect to } ¨ } and tu
}¨}
! u as

t! 1´,
pF puq “ lim

t!1´
F ptuq “ lim

t!1´
Γ- lim

ε!0
Fεptuq ě Γ- lim

ε!0
Fεpuq. (2.10)

Let tuεuεą0 Ă X be such that uε P dompFεq for all ε ą 0 and:

uε
}¨}
! u; (2.11)

lim
ε!0

Fεpuεq “ Γ- lim
ε!0

Fεpuq ă 8. (2.12)
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For any t Ps0, 1r, from (2.11) we see that tuε
}¨}
! tu with tu P D by (2.6). Hence, by using

(2.8),

lim
ε!0

Fεptuεq ě Γ- lim
ε!0

Fεptuq “ F ptuq for all t Ps0, 1r.

It follows that
lim
t!1´

lim
ε!0

Fεptuεq ě pF puq. (2.13)

On the other hand, for every t Ps0, 1r and every ε ą 0, we have

Fεptuεq ď
`

1`∆a
Fεptq

˘

Fεpuεq ` a∆a
Fεptq

ď

ˆ

1` sup
ε1ą0

∆a
Fε1
ptq

˙

Fεpuεq ` aε sup
ε1ą0

∆a
Fε1
ptq,

and so, by letting ε! 0 and by using (2.12), we get

lim
ε!0

Fεptuεq ď

ˆ

1` sup
ε1ą0

∆a
Fε1
ptq

˙

lim
ε!0

Fεpuεq ` a sup
ε1ą0

∆a
Fε1
ptq

“

ˆ

1` sup
ε1ą0

∆a
Fε1
ptq

˙

Γ- lim
ε!0

Fεpuq ` a sup
ε1ą0

∆a
Fε1
ptq for all t Ps0, 1r.

As tFεuεą0 is ru-usc with a ą 0, i.e. limt!1´ supε1ą0 ∆a
Fε1
ptq ď 0, letting t ! 1´ we deduce

that
lim
t!1´

lim
ε!0

Fεptuεq ď Γ- lim
ε!0

Fεpuq, (2.14)

and (2.9) follows by combining (2.10), (2.13) and (2.14). �

If dompFεq Ă D for all ε ą 0 then dom pΓ- limε!0 Fεq Ă D and so, as a direct consequence of
Theorem 2.7, we have the following result which roughly asserts that the Γ-limit of a ru-usc
family of functionals having effective domains included in a same strongly star-shaped set D
can be computed from its Γ-limit on D as the sum of the radial extension of Γ- lim |D and
the indicator function of D.

Corollary 2.8. Let F : X ! r0,8s and, for each ε ą 0, let Fε : X ! r0,8s. Let D Ă X be
a strongly star-shaped set, i.e. tD Ă D for all t Ps0, 1r, such that dompFεq Ă D for all ε ą 0.

If tFεuεą0 is ru-usc and if Γ- limε!0 Fεpuq “ F puq for all u P D, then Γ- limε!0 Fε “ pF `χD.

Here is the second main result of the paper. Roughly, this theorem asserts that Γ-convergence
is stable under super-strongly star-shaped constraints.

Theorem 2.9. Let F : X ! r0,8s and, for each ε ą 0, let Fε : X ! r0,8s. Let D Ă X be
such that

D is super-strongly star-shaped, i.e. tD Ă intD for all t Ps0, 1r. (2.15)

If tFεuεą0 is ru-usc and if
Γ- lim

ε!0
Fε “ F,

then
Γ- lim

ε!0
pFε ` χDq “ F ` χD.
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Proof of Theorem 2.9. First of all, if u R D then

Γ- lim
ε!0

pFε ` χDq puq “ Γ- lim
ε!0

pFε ` χDq puq “ 8.

So, it is sufficient to prove that tFε ` χDuεą0 Γ-converges to F on D. As Fε ď Fε ` χD for
all ε ą 0, we have

F “ Γ- lim
ε!0

Fε ď Γ- lim
ε!0

pFε ` χDq ď Γ- lim
ε!0

pFε ` χDq . (2.16)

Fix any u P X. Let tuεuεą0 Ă X be such that

uε
}¨}
! u and F puq “ Γ- lim

ε!0
Fεpuq “ lim

ε!0
Fεpuεq.

Then, for every u P X,

Γ- lim
ε!0

pFε ` χDq puq ď lim
ε!0

pFε ` χDq puεq “ lim
ε!0

pFεpuεq ` χDpuεqq

“ lim
ε!0

Fεpuεq ` lim
ε!0

χDpuεq

“ F puq ` lim
ε!0

χDpuεq

ď F puq ` χintDpuq.

Taking (2.16) into account, we see that

F ď Γ- lim
ε!0

pFε ` χDq ď Γ- lim
ε!0

pFε ` χDq ď F ` χintD,

which implies that tFε ` χDuεą0 Γ-converges to F on intD. Now, fix any u P D. By (2.15)
we have tu P intD for all t Ps0, 1r, and so

Γ- lim
ε!0

pFε ` χDq ptuq “ Γ- lim
ε!0

pFε ` χDq ptuq “ F ptuq for all t Ps0, 1r.

It follows that

Γ- lim
ε!0

pFε ` χDq puq ď lim
t!1´

Γ- lim
ε!0

pFε ` χDq ptuq ď lim
t!1´

F ptuq “ pF puq.

Since tFεuεą0 is ru-usc and Γ- limε!0 Fε “ F , from Theorem 2.6 we can asset that F is

ru-usc, and so pF ď F (see Remark 2.2). Consequently

Γ- lim
ε!0

pFε ` χDq puq ď F puq for all u P D. (2.17)

From (2.16) and (2.17) we conclude that

Γ- lim
ε!0

pFε ` χDq puq “ F puq for all u P D,

and the proof is complete. �

3. Applications to Γ-convergence and homogenization with constraints

Let m,N ě 1 be two integers, let p ą 1 be a real number, let Ω Ă RN be a bounded open
set and let M denote the space of mˆN matrices. In order to deal with integral functionals
of the calculus of variations, in what follows we consider X “ W 1,ppΩ;Rmq and } ¨ } “ } ¨ }Lp .
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3.1. Ru-usc functions. As for functionals (see Definitions 2.1 and 2.4) we can define the
concept of ru-usc for functions and families of functions from ΩˆM to r0,8s (with Ω which
can be unbounded).

Definition 3.1. Let f : ΩˆM! r0,8s be a Borel measurable function. We say that f is
ru-usc if there exists a ą 0 such that

lim
t!1´

δaf ptq ď 0,

where δaf : r0, 1s!s ´ 8,8s is given by

δaf ptq :“ sup
xPΩ

sup
ξPdompfq

fpx, tξq ´ fpx, ξq

a` fpx, ξq
.

The following definition generalizes Definition 3.1 to the case of a family of functions.

Definition 3.2. For each ε ą 0, let fε : Ω ˆM ! r0,8s be a Borel measurable function.
We say that tfεuεą0 is ru-usc if there exists a ą 0 such that

lim
t!1´

sup
εą0

δafεptq ď 0,

where, for each ε ą 0, δafε : r0, 1s!s ´ 8,8s is given by

δafεptq :“ sup
xPΩ

sup
ξPdompfεq

fεpx, tξq ´ fεpx, ξq

a` fεpx, ξq
. (3.1)

The following result makes clear the link between ru-usc families of integrands and ru-usc
families of functionals. (For a proof we refer to [AHM21, Proposition 2.23].)

Proposition 3.3. For each ε ą 0, let fε : Ω ˆM ! r0,8s be a Borel measurable function
and let Fε : W 1,ppΩ;Rmq ! r0,8s be defined by Fεpuq :“

ş

Ω
fεpx,∇upxqqdx. If tfεuεą0 is

ru-usc then tFεuεą0 is ru-usc.

Roughly, the following result, which is useful for dealing with homogenization, asserts that
a ru-usc 1-periodic function generates a family of ru-usc functions. (For a proof we refer to
[AHM21, Lemma 2.24].)

Proposition 3.4. Let f : RN ˆM ! r0,8s be Borel measurable function such that fp¨, ξq
is 1-periodic for all ξ P M, i.e. for every px, zq P RN ˆ ZN , fpx ` z, ξq “ fpx, ξq, and, for
each ε ą 0, let fε : ΩˆM! r0,8s be defined by

fεpx, ξq :“ f
´x

ε
, ξ
¯

.

If f is ru-usc then tfεuεą0 is ru-usc.

3.2. Γ-convergence and homogenization. We begin by establishing a partial Γ-convergence
theorem.
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3.2.1. Partial Γ-convergence theorem. Let g : M ! r0,8s be a Borel measurable function.
In what follows, we consider the following conditions:

(C1) g is p-coercive i.e. there exists c ą 0 such that for every ξ PM,

gpξq ě c|ξ|p;

(C2) there exists γ ą 0 such that for every t Ps0, 1r and every ξ, ζ PM,

gptξ ` p1´ tqζq ď γp1` gpξq ` gpζqq;

(C3) 0 P intdompgq;
(C4) the functional G : W 1,ppΩ;Rmq! r0,8s be defined by

Gpuq :“

ż

Ω

gp∇upxqqdx

is Lp-lsc;
(C5) tdompGq Ă dompGq for all t Ps0, 1r, where G : W 1,ppΩ;Rmq ! r0,8s denotes the

Lp-lsc envelope of G, i.e. for every u P W 1,ppΩ;Rmq,

Gpuq :“ inf

"

lim
ε!0

Gpuεq : uε
}¨}Lp−! u

*

.

Remark 3.5. (i) The condition (C2) implies that dompgq is convex. When g is convex,
(C2) can be dropped.

(ii) Since a convex function is continuous in the interior of its effective domain, if g is
convex and if (C3) holds then g is bounded at the neighborhood of the null matrix,
i.e. there exists r ą 0 such that

sup
|ξ|ďr

gpξq ă 8.

More generally, it is proved in [AHMZ15, Lemma 4.1] that such a boundlessness
condition holds if (C2)–(C3) are satisfied.

(iii) Under (C2) it is clear that dompGq is convex. Hence, if moreover (C3) holds then
tdompGq Ă dompGq for all t Ps0, 1r, and so, under (C2)–(C3), if (C4) is satisfied then
also is (C5).

For each ε ą 0, let fε : ΩˆM! r0,8s be a Borel measurable function. In what follows, we
consider the following conditions:

(C6) there exist α, β ą 0 such that for every ε ą 0 and every px, ξq P ΩˆM,

αgpξq ď fεpx, ξq ď βp1` gpξqq;

(C7) tfεuεą0 is ru-usc;
(C8) for every x P O and every ξ P G,

lim
ρ!0

lim
ε!0

Hρ
rfεspx, ξq ě lim

ρ!0
lim
ε!0

Hρ
rfεspx, ξq,

where Hρrfεs : O ˆM! r0,8s is defined by

Hρ
rfεspx, ξq :“ inf

#

´

ż

Qρpxq

fεpy, ξ `∇vpyqqdy : v P W 1,p
0 pQρpxq;R

m
q

+

(3.2)
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with Qρpxq :“ x`s ´ ρ
2
, ρ

2
rN .

Remark 3.6. (i) Under (C2) and (C6) we have dompfεq “ dompgq for all ε ą 0, and so
dompfεq is convex for all ε ą 0.

(ii) In the periodic case, i.e. fεpx, ξq “ fpx
ε
, ξq with f : RN ˆM ! r0,8s a 1-periodic

function with respect to the first variable, (C8) can be proved by using Akcoglu-
Krengel’s subadditive theorem (see Theorem B.5).

For each ε ą 0, let Fε : W 1,ppΩ;Rmq! r0,8s be defined by

Fεpuq :“

ż

Ω

fεpx,∇upxqqdx.

Remark 3.7. (i) If (C2) and (C6) are satisfied then dompFεq “ dompGq for all ε ą 0.
(ii) If (C4) holds then dom

`

Γ- limε!0 Fε
˘

“ dom pΓ- limε!0 Fεq “ dompGq. Otherwise,

we have dom
`

Γ- limε!0 Fε
˘

“ dom pΓ- limε!0 Fεq “ dompGq.

The following theorem establishes the Γ-convergence of tFεuεą0 on dompGq. It plays a
central role for establishing Γ-convergence and homogenization results on the whole space
W 1,ppΩ;Rmq.

Theorem 3.8. Assume that p ą N . If (C1)–(C3) and (C6)–(C7) hold then for every u P
dompGq,

$

’

’

&

’

’

%

Γ- lim
ε!0

Fεpuq ě

ż

Ω

lim
t!1´

lim
ρ!0

lim
ε!0

Hρ
rfεspx, t∇upxqqdx

Γ- lim
ε!0

Fεpuq “

ż

Ω

lim
t!1´

lim
ρ!0

lim
ε!0

Hρ
rfεspx, t∇upxqqdx.

(3.3)

If moreover (C8) is satisfied then for every u P dompGq,

Γ- lim
ε!0

Fεpuq “

ż

Ω

lim
t!1´

lim
ρ!0

lim
ε!0

Hρ
rfεspx, t∇upxqqdx. (3.4)

Theorem 3.8) was established in [AHM21, Theorem 4.3]. For the convenience of the reader,
we give a proof in Appendix A.

3.2.2. Γ-convergence. From now on, let F : W 1,ppΩ;Rmq! r0,8s be defined by

F puq :“

ż

Ω

lim
t!1´

lim
ρ!0

lim
ε!0

Hρ
rfεspx, t∇upxqqdx. (3.5)

By adding (C4) to the hypotheses of Theorem 3.8 we obtain the following result. (Note that
this result does not need any radial extension theorem.)

Corollary 3.9. Assume that p ą N . If (C1)–(C4) and (C6)–(C8) hold then

Γ- lim
ε!0

Fε “ F ` χdompGq.

Proof of Corollary 3.9. From (C6) we see that for every u P W 1,ppΩ;Rmq,

αGpuq ď Γ- lim
ε!0

Fεpuq ď βp1`Gpuqq,

hence domplimε!0 Fεq “ dompGq by using (C4), and the proof is complete. �
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By adding (C5) to the hypotheses of Theorem 3.8, from Theorem 2.7 we deduce the following
result.

Corollary 3.10. Assume that p ą N . If (C1)–(C3), (C5) and (C6)–(C8) hold then

Γ- lim
ε!0

Fε “ pF ` χdompGq. (3.6)

Proof of Corollary 3.10. From (C6) we have domplimε!0 Fεq “ dompGq. Hence, taking
Theorem 3.8 into account and according to (C5), (3.6) follows by applying Theorem 2.7 with
D “ dompGq and E “ dompGq. �

Let Φ : W 1,ppΩ;Rmq!s ´ 8,8s be such that:

(C9) Φ is Lp-continuous;
(C10) for every t Ps0, 1r, Φptuq ă Φpuq.

Let θ P R and let D Ă W 1,ppΩ;Rmq be given by

D :“
!

u P W 1,p
pΩ;Rmq : Φpuq ă θ

)

.

Lemma 3.11. The set D is Lp-closed and super-strongly star-shaped.

Proof of Lemma 3.11. First of all, from (C9) we can assert that D is Lp-open, i.e. D “

intD. Let t Ps0, 1r and let u P D. By using again (C9) we have Φpuq ď θ. But, by (C10),
Φptuq ă Φpuq and so Φptuq ă θ. Hence tu P D and the proof is complete. �

Taking Lemma 3.11 into account, as a direct consequence of Corollary 3.9 (resp. Corollary
3.10) and Theorem 2.9 we deduce Corollary 3.12(i) (resp. Corollary 3.12(ii)) below.

Corollary 3.12. Assume that p ą N .

(i) If (C1)–(C4) and (C6)–(C10) hold then

Γ- lim
ε!0
pFε ` χDq “ F ` χdompGq ` χD.

(ii) If (C1)–(C3), (C5) and (C6)–(C10) hold then

Γ- lim
ε!0
pFε ` χDq “ pF ` χdompGq ` χD.

3.2.3. Homogenization. Let f : RN ˆM! r0,8s be a Borel measurable function satisfying
the following conditions:

(CH
6 ) there exist α, β ą 0 such that for every px, ξq P RN ˆM,

αgpξq ď fpx, ξq ď βp1` gpξqq;

(CH
7 ) f is ru-usc;

(CH
8 ) f is 1-periodic with respect to its first variable, i.e. for every ξ PM,

fpx` z, ξq “ fpx, ξq

for all px, zq P RN ˆ ZN .
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For each ε ą 0, we consider fε : ΩˆM! r0,8s be defined by

fεpx, ξq :“ f
´x

ε
, ξ
¯

. (3.7)

Then, for every ε ą 0, Fε : W 1,ppΩ;Rmq! r0,8s is given by

Fεpuq “

ż

Ω

f
´x

ε
,∇upxq

¯

dx.

Let Fhom : W 1,ppΩ;Rmq! r0,8s be defined by

Fhompuq :“

ż

Ω

pfhomp∇upxqqdx

with pfhom : M! r0,8s given by

pfhompξq :“ lim
t!1´

fhomptξq,

where fhom : M! r0,8s is defined by

fhompξq :“ inf
kPN˚

1

kN
inf

"
ż

s0,krN
fpy, ξ `∇ϕpyqqdy : ϕ P W 1,p

0 ps0, krN ;Rmq

*

.

As a consequence of Corollaries 3.9, 3.10 and 3.12 we have the following homogenization
results.

Corollary 3.13. Assume that p ą N .

(i) If (C1)–(C4) and (CH
6 )–(CH

8 ) hold then

Γ- lim
ε!0

Fε “ Fhom ` χdompGq.

(ii) If (C1)–(C3), (C5) and (CH
6 )–(CH

8 ) hold then

Γ- lim
ε!0

Fε “ pFhom ` χdompGq.

(iii) If (C1)–(C4), (CH
6 )–(CH

8 ) and (C9)–(C10) hold then

Γ- lim
ε!0
pFε ` χDq “ Fhom ` χdompGq ` χD.

(iv) If (C1)–(C3), (C5), (CH
6 )–(CH

8 ) and (C9)–(C10) hold then

Γ- lim
ε!0
pFε ` χDq “ pFhom ` χdompGq ` χD.

Proof of Corollary 3.13. First of all, taking (3.7) into account, it is easy to see that (C6)
can be deduced from (CH

6 ). On the hand, from Proposition 3.4 we see that (CH
7 ) implies

(C7). Let x P Ω, let ξ P G and let Sξ : ObpR
Nq! r0,8s defined by

Sξ
pAq :“ inf

"
ż

A

fpx, ξ `∇ϕpxqqdx : ϕ P W 1,p
0 pA;Rmq

*

,

where ObpR
Nq denotes the class of all bounded open subsets of RN . It is clear that Sξ

is subadditive. Then, by using (CH
8 ) we see that Sξ is ZN -invariant. Finally, from the



14 RADIAL EXTENSION OF Γ-LIMITS

right inequality in (CH
6 ) we deduce that for every A P ObpR

Nq, SξpAq ď CξL
NpAq with

Cξ :“ βp1` gpξqq ă 8 because ξ P G. From Theorem B.5 it follows that for every ρ ą 0,

lim
ε!0

Sξ
`

1
ε
Qρpxq

˘

LN
`

1
ε
Qρpxq

˘ “ inf
kě1

Sξps0, krNq

kN
,

i.e.

lim
ε!0

Hρ
rfεspx, ξq “ fhompξq.

We are thus proved that

lim
ρ!0

lim
ε!0

Hρ
rfεspx, ξq “ fhompξq for all x P Ω and all ξ P G, (3.8)

which implies (C8). Let F : W 1,ppΩ;Rmq! r0,8s be defined by (3.5). By (3.8) we have

F puq “ Fhompuq for all u P dompGq,

and (i) and (iii) follow from Corollaries 3.9 and 3.12(i) respectively. When (C5) holds, by
using (3.8), we have

pF puq “ pFhompuq for all u P dompGq,

which gives (ii) and (iv) by applying Corollaries 3.10 and 3.12(ii) respectively. �

Appendix A. Proof of the partial Γ-convergence theorem

Here we give a proof of Theorem 3.8.

Proof of Theorem 3.8. In what follows, OpΩq denotes the class of open subsets of Ω. Let
Fε : W 1,ppΩ;Rmq ˆOpΩq! r0,8s be defined by

Fεpu,Aq “

ż

A

fεpx,∇upxqqdx

and let Γ- limε!0 Fε,Γ- limε!0 Fε : W 1,ppΩ;Rmq ˆOpΩq! r0,8s be given by:

Γ- lim
ε!0

Fεpu,Aq :“ inf

"

lim
ε!0

Fεpuε, Aq : uε
}¨}Lp−! u

*

;

Γ- lim
ε!0

Fεpu,Aq :“ inf
!

lim
ε!0

Fεpuε, Aq : uε
}¨}Lp−! u

)

.

(For A “ Ω, Fεpu,Ωq “ Fεpuq, Γ- limε!0 Fεpu,Ωq “ Γ- limε!0 Fεpuq and Γ- limε!0 Fεpu,Ωq “
Γ- limε!0 Fεpuq.) The proof is divided into six steps.

Step 1: integral representation of Γ- limΓ- limΓ- lim and Γ- limΓ- limΓ- lim. For each u P W 1,ppΩ;Rmq we
consider the set functions S´u ,S

`
u : OpΩq! r0,8s given by:

S´u pAq :“ Γ- lim
ε!0

Fεpu,Aq;

S`u pAq :“ Γ- lim
ε!0

Fεpu,Aq.

Step 1 consists of proving the following lemma.
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Lemma A.1. Assume that p ą N . If (C1)–(C3) and (C6)–(C7) hold then for every u P
dompGq and every A P OpΩq,

S´u pAq “

ż

A

λ´u pxqdx;

S`u pAq “

ż

A

λ`u pxqdx,

where λ´u , λ
`
u P L

1pΩq are given by:

λ´u pxq “ lim
ρ!0

S´u pQρpxqq

LNpQρpxqq
;

λ`u pxq “ lim
ρ!0

S`u pQρpxqq

LNpQρpxqq
.

Proof of Lemma A.1. Fix u P dompGq. Using the right inequality in (C6) we see that for
every A P OpΩq,

S´u pAq ď β

ˆ

LN
pAq `

ż

A

gp∇upxqqdx
˙

; (A.1)

S`u pAq ď β

ˆ

LN
pAq `

ż

A

gp∇upxqqdx
˙

.

Thus, the condition (iv) of Lemma B.1 is satisfied with ν “ βr1 ` gp∇up¨qqsLN (which is
absolutely continuous with respect to LN). On the other hand, it is easily seen that the
conditions (i) and (ii) of Lemma B.1 are satisfied. Hence, the proof is completed if we prove
the condition (iii) of Lemma B.1, i.e.

S´u pAYBq ď S´u pAq `S´u pBq for all A,B P OpΩq; (A.2)

S`u pAYBq ď S`u pAq `S`u pBq for all A,B P OpΩq. (A.3)

Indeed, by Lemma B.1, the set function S´u (resp. S`u ) can be uniquely extended to a finite
positive Radon measure which is absolutely continuous with respect to LN , and the theorem
follows by using Radon-Nikodym’s theorem and then Lebesgue’s differentiation theorem.

Remark A.2. Lemma A.1 shows that Γ- limε!0 Fεpu, ¨q and Γ- limt!8 Fεpu, ¨q can be uniquely
extended to a finite positive Radon measure on Ω which is absolutely continuous with respect
to LN .

Substep 1-1: an auxiliary result for proving Lemma A.1. To show (A.2) (resp.
(A.3)) we need the following lemma.

Lemma A.3. Assume that p ą N and (C1)–(C3) and (C6)–(C7) hold. If U, V, Z, T P OpΩq
are such that Z Ă U and T Ă V , then:

S´u pZ Y T q ď S´u pUq `S´u pV q; (A.4)

S`u pZ Y T q ď S`u pUq `S`u pV q. (A.5)
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Proof of Lemma A.3. As the proofs of (A.4) and (A.5) are the same, we only give the
proof of (A.4). Let tuεuεą0 and tvεuεą0 be two sequences in W 1,ppΩ;Rmq such that:

uε
}¨}Lp−! u; (A.6)

vε
}¨}Lp−! u; (A.7)

lim
ε!0

ż

U

fεpx,∇uεpxqqdx “ S´u pUq ă 8; (A.8)

lim
ε!0

ż

V

fεpx,∇vεpxqqdx “ S´u pV q ă 8. (A.9)

By (C1) and (C6) we have supεą0 }∇uε}LppUq ă 8 and supεą0 }∇vε}LppV q ă 8. Taking (A.6)
and (A.7) into account, as p ą N , up to a subsequence, we have:

uε
L8pUq
−! u; (A.10)

vε
L8pV q
−! u. (A.11)

Fix δ Ps0, distpZ, BUqr with BU :“ UzU , fix any q ě 1 and consider W´
i ,W

`
i Ă Ω given by:

W´
i :“

!

x P Ω : distpx, Zq ď δ
3
`
pi´1qδ

3q

)

;

W`
i :“

!

x P Ω : δ
3
` iδ

3q
ď distpx, Zq

)

,

where i P t1, ¨ ¨ ¨ , qu. For every i P t1, ¨ ¨ ¨ , qu there exists a cut-off function ϕi P C
8pΩq for

the pair pW`
i ,W

´
i q, i.e. ϕipxq P r0, 1s for all x P Ω, ϕipxq “ 0 for all x P W`

i and ϕipxq “ 1
for all x P W´

i . Fix any ε ą 0 and define wiε P W
1,ppΩ;Rmq by

wiε :“ ϕiuε ` p1´ ϕiqvε. (A.12)

Fix any t Ps0, 1r. Setting Wi :“ ΩzpW´
i YW

`
i q we have

∇ptwiεq “ t∇wiε “

$

&

%

t∇uε in W´
i

p1´ tq t
1´t

∇ϕi b puε ´ vεq ` t
`

ϕi∇uε ` p1´ ϕiq∇vε
˘

in Wi

t∇vt in W`
i .

Noticing that Z Y T “ ppZ Y T q XW´
i q Y pW XWiq Y pT XW

`
i q with pZ Y T q XW´

i Ă U ,
T X W`

i Ă V and W :“ T X tx P U : δ
3
ă distpx, Zq ă 2δ

3
u we deduce that for every

i P t1, ¨ ¨ ¨ , qu,

ż

ZYT

fεpx, t∇wiεqdx ď

ż

U

fεpx, t∇uεqdx`
ż

V

fεpx, t∇vεqdx

`

ż

WXWi

fεpx, t∇wiεqdx. (A.13)
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Fix any i P t1, ¨ ¨ ¨ , qu. From (C2) and (C6) we see that
ż

WXWi

fεpx, t∇wiεqdx ď βLN
pW XWiq ` β

ż

WXWi

gpt∇wiεqdx

ď βp1` γqLN
pW XWiq

`βγ

ż

WXWi

gpϕi∇uε ` p1´ ϕiq∇vεqdx

`βγ

ż

WXWi

g

ˆ

t

1´ t
∇ϕi b puε ´ vεq

˙

dx,

and so, by using again (C2) and (C6),
ż

WXWi

fεpx, t∇wiεqdx ď βp1` γ ` γ2
qLN

pW XWiq

`
βγ2

α

ˆ
ż

WXWi

fεpx,∇uεqdx`
ż

WXWi

fεpx,∇vεqdx
˙

`βγ

ż

WXWi

g

ˆ

t

1´ t
∇ϕi b puε ´ vεq

˙

dx. (A.14)

On the other hand, we have
ˇ

ˇ

ˇ

ˇ

t

1´ t
∇ϕipxq b puεpxq ´ vεpxqq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

t

1´ t

ˇ

ˇ

ˇ

ˇ

}∇ϕi}L8}uε ´ vε}L8pUXV q

for LN -a.a. x P W XWi Ă U XV . But, by (C2)–(C3) (see Remark 3.5(ii)), there exists r ą 0
such that

θ :“ sup
|ξ|ďr

gpξq ă 8, (A.15)

and limε!0 }uε ´ vε}L8pUXV q “ 0 by (A.10) and (A.11), hence for each t Ps0, 1r and each
i P t1, ¨ ¨ ¨ , qu there exists εt,i ą 0 such that

ˇ

ˇ

ˇ

ˇ

t

1´ t
∇ϕipxq b puεpxq ´ vεpxqq

ˇ

ˇ

ˇ

ˇ

ď r

for LN -a.a. x P W XWi and all ε Ps0, εt,is. Consequently, for every i P t1, ¨ ¨ ¨ , qu,
ż

WXWi

g

ˆ

t

1´ t
∇ϕi b puε ´ vεq

˙

dx ď θLN
pW XWiq (A.16)

for all t Ps0, 1r and all ε Ps0, εt,qs with εt,q :“ mintεt,i : i P t1, ¨ ¨ ¨ , quu. Moreover, we have:
ż

U

fεpx, t∇uεqdx ď
ˆ

1` sup
ε1ą0

δafε1 ptq

˙
ż

U

fεpx,∇uεqdx` a sup
ε1ą0

δafε1 ptqL
N
pUq; (A.17)

ż

V

fεpx, t∇vεqdx ď
ˆ

1` sup
ε1ą0

δafε1 ptq

˙
ż

V

fεpx,∇vεqdx` a sup
ε1ą0

δafε1 ptqL
N
pV q, (A.18)

where a ą 0 is given by (C7) and δafε1 : r0, 1s!s ´ 8,8s is defined by (3.1). Taking (A.16)

into account and substituting (A.14), (A.17) and (A.18) into (A.13) and then averaging these



18 RADIAL EXTENSION OF Γ-LIMITS

inequalities, it follows that for every t Ps0, 1r, every q ě 1 and every ε Ps0, εt,qs, there exists
iε,t,q P t1, ¨ ¨ ¨ , qu such that

ż

ZYT

fεpx,∇ptwiε,t,qε qqdx ď

ˆ

1` sup
ε1ą0

δafε1 ptq

˙
ż

U

fεpx,∇uεqdx` a sup
ε1ą0

δafε1 ptqL
N
pUq

`

ˆ

1` sup
ε1ą0

δafε1 ptq

˙
ż

V

fεpx,∇vεqdx` a sup
ε1ą0

δafε1 ptqL
N
pV q

`
C

q

ˆ

LN
pΩq `

ż

U

fεpx,∇uεqdx`
ż

V

fεpx,∇vεqdx
˙

with C “ max
 

βp1` γ ` γ2q ` θ, βγ
2

α

(

. Thus, letting ε! 0, q ! 8 and t! 1´ and using

(C7), i.e. limt!1´ supε1ą0 δ
a
fε1
ptq ď 0, (A.8) and (A.9), we get

lim
t!1´

lim
q!8

lim
ε!0

ż

ZYT

fεpx,∇ptwiε,t,qε qqdx ď S´u pUq `S´u pV q. (A.19)

On the other hand, taking (A.12) into account and using (A.6) and (A.7) we see that

lim
t!1´

lim
q!8

lim
ε!0

}twiε,t,qε ´ u}Lp “ 0.

By diagonalization, there exist increasing mappings ε 7! tε and ε 7! qε with tε ! 1´ and
qε ! 8 such that:

lim
ε!0

ż

ZYT

fεpx,∇ŵεqdx ď lim
t!1´

lim
q!8

lim
ε!0

ż

ZYT

fεpx,∇ptwiε,t,qε qqdx;

lim
ε!0

}ŵε ´ u}Lp “ 0,

where ŵε :“ tεw
iε,tε,qε
ε . Hence

S´u pZ Y T q ď lim
t!1´

lim
q!8

lim
ε!0

ż

ZYT

fεpx,∇ptwiε,t,qε qqdx,

and (A.4) follows from (A.19). �

Substep 1-2: end of the proof of Lemma A.1. We now prove (A.2). Fix A,B P OpΩq
such that S´u pAq ă 8 and S´u pBq ă 8. Then, by (A.1),

ş

AYB
gp∇upxqqdx ă 8. Fix any

η ą 0 and consider C0, D0 P OpΩq such that C0 Ă A, D0 Ă B and

β

ˆ

LN
pEq `

ż

E

gp∇upxqqdx
˙

ă η

with E :“ A Y BzC0 YD0. Then S´u pEq ď η by (A.1). Let Ĉ, D̂ P OpΩq be such that

C0 Ă C, C Ă Ĉ, Ĉ Ă A, D0 Ă D, D Ă D̂ and D̂ Ă B. Applying Lemma A.3 with
U “ Ĉ Y D̂, V “ T “ E and Z “ C Y D (resp. U “ A, V “ B, Z “ Ĉ and T “ D̂) we
obtain

S´u pAYBq ď S´u pĈ Y D̂q ` η
`

resp. S´u pĈ Y D̂q ď S´u pAq `S´u pBq
˘

,

i.e. S´u pAYBq ď S´u pAq `S´u pBq ` η, and (A.2) follows by letting η ! 0. �
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Step 2: other formulas for Γ-limΓ-limΓ-lim and Γ-limΓ-limΓ-lim. Let F´0 , F
`
0, : W 1,ppΩ;RmqˆOpΩq! r0,8s

be defined by:

F´0 pu,Aq :“ inf

"

lim
ε!0

Fεpuε, Aq : W 1,p
0 pΩ;Rmq Q uε ´ u

}¨}Lp−! 0

*

;

F`0 pu,Aq :“ inf
!

lim
ε!0

Fεpuε, Aq : W 1,p
0 pΩ;Rmq Q uε ´ u

}¨}Lp−! 0
)

.

Since W 1,p
0 pΩ;Rmq Ă W 1,ppΩ;Rmq, for every u P W 1,ppΩ;Rmq and every A P OpΩq, we have:

S´u pAq ď F´0 pu,Aq; (A.20)

S`u pAq ď F`0 pu,Aq. (A.21)

On the other hand, we have the following lemma.

Lemma A.4. Assume that p ą N and (C1)–(C3) and (C6)–(C7) hold. Then, for every
u P dompGq, every A P OpΩq and every t Ps0, 1r, we have:

F´0 ptu, Aq ď

ˆ

1` sup
εą0

δafεptq

˙

S´u pAq ` a sup
εą0

δafεptqL
N
pAq; (A.22)

F`0 ptu, Aq ď

ˆ

1` sup
εą0

δafεptq

˙

S`u pAq ` a sup
εą0

δafεptqL
N
pAq, (A.23)

where a ą 0 is given by (C7) and δafε1 : r0, 1s!s´8,8s is defined by (3.1). As a consequence

of (A.20)-(A.22) and (A.21)-(A.23), for every u P dompGq and every A P OpΩq, we have:

ΓpLpq- lim
ε!0

Fεpu,Aq “ lim
t!1´

F´0 ptu, Aq; (A.24)

ΓpLpq- lim
ε!0

Fεpu,Aq “ lim
t!1´

F`0 ptu, Aq.

Proof of Lemma A.4. Fix u P dompGq and A P OpΩq. As the proofs of (A.22) and (A.23)
are the same, we only prove (A.22). Let tuεuεą0 Ă W 1,ppΩ;Rmq be such that:

uε
}¨}Lp−! u; (A.25)

lim
ε!0

ż

A

fεpx,∇uεpxqqdx “ S´u pAq ă 8. (A.26)

From (C1) and (A.26) we see that supεą0 }∇uε}Lp ă 8. As p ą N , taking (A.25) into
account, we can assert, up to a subsequence, that

uε
}¨}L8−! u. (A.27)

Fix δ ą 0 and set Aδ :“ tx P A : distpx, BAq ą δu with BA :“ AzA. Fix any ε ą 0 and any
q ě 1 and consider W´

i ,W
`
i Ă Ω given by:

W´
i :“

!

x P Ω : distpx,Aδq ď
δ
3
`
pi´1qδ

3q

)

;

W`
i :“

!

x P Ω : δ
3
` iδ

3q
ď distpx,Aδq

)

,
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where i P t1, ¨ ¨ ¨ , qu. (Note that W´
i Ă A.) For every i P t1, ¨ ¨ ¨ , qu there exists a cut-off

function ϕi P C
8pΩq for the pair pW`

i ,W
´
i q, i.e. ϕipxq P r0, 1s for all x P Ω, ϕipxq “ 0 for

all x P W`
i and ϕipxq “ 1 for all x P W´

i . Define wiε : Ω! Rm by

wiε :“ ϕiuε ` p1´ ϕiqu. (A.28)

Then wiε ´ u P W
1,p
0 pA;Rmq. Fix any t Ps0, 1r. Setting Wi :“ XzpW´

i YW
`
i q Ă A, we have

∇ptwiεq “ t∇wiε “

$

&

%

t∇uε in W´
i

p1´ tq t
1´t

∇ϕi b puε ´ uq ` t pϕi∇uε ` p1´ ϕiq∇uq in Wi

t∇u in W`
i .

Fix any i P t1, ¨ ¨ ¨ , qu. Noticing that A “ W´
i YWi Y pAXW

`
i q, we deduce that

ż

A

fεpx, t∇wiεqdx ď
ż

A

fεpx, t∇uεqdx`
ż

AXW`
i

fεpx, t∇uqdx`
ż

Wi

fεpx, t∇wiεqdx. (A.29)

From the right inequality in (C6) and the inequality (C2), we see that ...
ż

Wi

fεpx, t∇wiεqdx ď βLN
pWiq ` β

ż

Wi

gpt∇wiεqdx

ď βp1` γqLN
pWiq ` βγ

ż

Wi

gpϕi∇uε ` p1´ ϕiq∇uqdx

`βγ

ż

Wi

g

ˆ

t

1´ t
∇ϕi b puε ´ uq

˙

dx, (A.30)

and by using again (C2) and the left inequality in (C6) we obtain
ż

Wi

fεpx, t∇wiεqdx ď βp1` γ ` γ2
qLN

pWiq `
βγ2

α

ˆ
ż

Wi

fεpx,∇uεqdx`
ż

Wi

fεpx,∇uqdx
˙

`βγ

ż

Wi

g

ˆ

t

1´ t
∇ϕi b puε ´ uq

˙

dx. (A.31)

On the other hand, for LN -a.e. x P Ω, we have
ˇ

ˇ

ˇ

ˇ

t

1´ t
∇ϕipxq b puεpxq ´ upxqq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

t

1´ t

ˇ

ˇ

ˇ

ˇ

}∇ϕi}L8}uε ´ u}L8 .

But limε!0 }uε ´ u}L8 “ 0 by (A.27), hence for each i P t1, ¨ ¨ ¨ , qu there exists εi ą 0 such
that for LN -a.e. x P Ω and every ε Ps0, εis,

ˇ

ˇ

ˇ

ˇ

t

1´ t
∇ϕipxq b puεpxq ´ upxqq

ˇ

ˇ

ˇ

ˇ

ď r

with r ą 0 given by (C2)–(C3) (see Remark 3.5(ii)). Hence, for every i P t1, ¨ ¨ ¨ , qu,
ż

Wi

g

ˆ

t

1´ t
∇ϕi b puε ´ uq

˙

dx ď θLN
pWiq (A.32)
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for all ε Ps0, εqs with εq “ mintεi : i P t1, ¨ ¨ ¨ , quu, where θ is defined by (A.15). Moreover,
we have:

ż

A

fεpx, t∇uεqdx ď

ˆ

1` sup
ε1ą0

δafε1 ptq

˙
ż

A

fεpx,∇uεqdx

`a sup
ε1ą0

δafε1 ptqL
N
pAq; (A.33)

ż

AXW`
i

fεpx, t∇uqdx ď

ˆ

1` sup
ε1ą0

δafε1 ptq

˙
ż

AXW`
i

fεpx,∇uqdx

`a sup
ε1ą0

δafε1 ptqL
N
pAXW`

i q. (A.34)

Taking (A.32) into account and substituting (A.31), (A.33) and (A.34) into (A.29) and then
averaging these inequalities, it follows that for every q ě 1 and every ε Ps0, εt,qs, there exists
iε,q P t1, ¨ ¨ ¨ , qu such that

ż

A

fεpx,∇ptwiε,qt qqdx ď

ˆ

1` sup
ε1ą0

δafε1 ptq

˙ˆ
ż

A

fεpx,∇uεqdx`
1

q

ż

A

fεpx,∇uqdx
˙

`a sup
ε1ą0

δafε1 ptqL
N
pAq

ˆ

1`
1

q

˙

`
C

q
LN

pAq

`
C

q

ˆ
ż

A

fεpx,∇uεqdx`
ż

A

fεpx,∇uqdx
˙

with C “ max
 

βp1 ` γ ` γ2q ` θ, βγ
2

α

(

. Since u P dompGq, from (C6) we see that

limε!0

ş

A
fεpx,∇uqdx ă 8. Thus, letting ε ! 0 and q ! 8 and using (A.26), we get

lim
q!8

lim
ε!0

ż

A

fεpx,∇ptwiε,qε qqdx ď

ˆ

1` sup
ε1ą0

δafε1 ptq

˙

S´u pAq ` a sup
ε1ą0

δafε1 ptqL
N
pAq. (A.35)

On the other hand, taking (A.28) into account and using (A.25) we see that

lim
q!8

lim
ε!0

}twiε,qε ´ tu}Lp “ 0.

By diagonalization, there exists an increasing mapping ε 7! qε with qε ! 8 such that:

lim
ε!0

ż

A

fεpx,∇ŵεqdx ď lim
ε!0

ż

A

fεpx,∇ŵεqdx ď lim
q!8

lim
ε!0

ż

A

fεpx,∇ptwiε,qε qqdx;

lim
ε!0

}ŵε ´ u}Lp “ 0,

where ŵε :“ tw
iε,qε
ε is such that ŵε ´ tu P W

1,p
0 pA;Rmq. Hence

F´0 ptu, Aq ď lim
q!8

lim
ε!0

ż

A

fεpx,∇ptwiε,qε qqdx,

and (A.22) follows from (A.35).
Since limt!1´ supε1ą0 δ

a
fε1
ptq ď 0 by (C7), from (A.22) we deduce that

lim
t!1´

F´0 ptu, Aq ď S´u pAq.
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Moreover, by (A.20) we have

S´u pAq ď lim
t!1´

S´tupAq ď lim
t!1´

F´0 ptu, Aq,

which gives (A.24). �

Step 3: using the Vitali envelope. For each u P W 1,ppΩ;Rmq we consider the set
functions M´

u ,M
`
u : OpΩq! r0,8s defined by:

M´
u pAq :“ lim

t!1´
m´
tupAq;

M`
u pAq :“ lim

t!1´
m`
tupAq. (A.36)

where, for each z P W 1,ppΩ;Rmq, m´
z ,m

`
z : OpΩq! r0,8s are given by:

m´
z pAq :“ lim

ε!0
inf

!

Fεpv,Aq : v ´ z P W 1,p
0 pA;Rmq

)

;

m`
z pAq :“ lim

ε!0
inf

!

Fεpv,Aq : v ´ z P W 1,p
0 pA;Rmq

)

.

For each δ ą 0 and each A P OpΩq, we denote the class of countable families tQi “ Qρipxiq :“
xi`s ´

ρi
2
, ρi

2
rNuiPI of disjoint open cubes of A with xi P A and ρi Ps0, δr and such that

LNpAz YiPI Qiq “ 0 by VδpAq, we consider M`
u,δ : OpΩq! r0,8s given by

M`
u,δpAq :“ inf

#

ÿ

iPI

M`
u pQiq : tQiuiPI PVδpAq

+

,

and we define M
`

u : OpΩq! r0,8s by

M
`

u pAq :“ sup
δą0

M`
u,δpAq “ lim

δ!0
M`

u,δpAq.

The set function M
`

u is called the Vitali envelope of M`
u , see §??. Step 3 consists of proving

the following lemma.

Lemma A.5. Assume that p ą N and (C1)–(C3) and (C6)–(C7) hold. Then, for every
u P dompGq and every A P OpΩq, we have:

Γ- lim
ε!0

Fεpu,Aq ěM´
u pAq; (A.37)

Γ- lim
ε!0

Fεpu,Aq “M
`

u pAq. (A.38)

Proof of Lemma A.5. Fix u P dompGq. Given any A P OpΩq it is easy to see that for
every t Ps0, 1r, we have:

m´
tupAq ď F´0 ptu, Aq;

m`
tupAq ď F`0 ptu, Aq.

Hence, by Lemma A.4, we have:

M´
u pAq “ lim

t!1´
m´
tupAq ď lim

t!1´
F´0 ptu, Aq “ Γ- lim

ε!0
Fεpu,Aq;

M`
u pAq “ lim

t!1´
m`
tupAq ď lim

t!1´
F`0 ptu, Aq “ Γ- lim

ε!0
Fεpu,Aq.
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Consequently

M
`

u pAq ď Γ- lim
ε!0

Fεpu,Aq

because in the proof of Lemma A.4 it is established that Γ- limε!0 Fεpu, ¨q can be uniquely
extended to a finite positive Radon measure on Ω which is absolutely continuous with respect
to LN , see Remark A.2. Hence (A.37) holds and, to establish (A.38), it remains to prove
that

Γ- lim
ε!0

Fεpu,Aq ďM
`

u pAq (A.39)

with M
`

u pAq ă 8. Fix any δ ą 0. By definition of M`
u,δpAq there exists tQiuiPI P VδpAq

such that
ÿ

iPI

M`
u pQiq ďM`

u,δpAq `
δ

2
. (A.40)

Fix any ε ą 0 and define mε
u : OpΩq! r0,8s by

mε
upUq :“ inf

!

Fεpv, Uq : v ´ u P W 1,p
0 pU ;Rmq

)

. (A.41)

(Thus m`
u p¨q “ limε!0 mε

up¨q.) Fix any t Ps0, 1r. For each i P I, by definition of mε
tupQiq there

exists viε,t P W
1,ppQi;R

mq such that viε,t ´ tu P W
1,p
0 pQi;R

mq and

Fεpv
i
ε,t, Qiq ď mε

tupQiq `
δLNpQiq

2LNpAq
. (A.42)

Define uδε,t : Ω! Rm by

uδε,t :“

"

tu in ΩzA
viε,t in Qi.

Then uδε,t ´ tu P W
1,p
0 pA;Rmq. From (A.42) we see that

Fεpu
δ
ε,t, Aq ď

ÿ

iPI

mε
tupQiq `

δ

2
,

hence limt!1´ limε!0 Fεpu
δ
ε,t, Aq ďM`

u,δpAq ` ε by using (A.40), and consequently

lim
δ!0

lim
t!1´

lim
ε!0

Fεpu
δ
ε,t, Aq ďM

`

u pAq. (A.43)

On the other hand, we have

}uδε,t ´ u}
p
Lp ď 2p

`

}uδε,t ´ tu}
p
Lp ` }tu´ u}

p
Lp

˘

“ 2p
ˆ
ż

A

|uδε,t ´ tu|
pdx` p1´ tqp}u}pLp

˙

“ 2p

˜

ÿ

iPI

ż

Qi

|viε,t ´ tu|
pdx` p1´ tqp}u}pLp

¸

.
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As diampQiq Ps0, δr for all i P I, from Poincaré’s inequality we can assert that there exists
C ą 0 (which only depends on p) such that

ÿ

iPI

ż

Qi

|viε,t ´ tu|
pdx ď δpC

ÿ

iPI

ż

Qi

|∇viε,t ´ t∇u|pdx,

hence
ÿ

iPI

ż

Qi

|viε,t ´ tu|
pdx ď 2pδpC

˜

ÿ

iPI

ż

Qi

|∇viε,t|pdx` tp
ż

A

|∇u|pdx

¸

,

and consequently

}uδε,t ´ u}
p
Lp ď 22pδpC

˜

ÿ

iPI

ż

Qi

|∇viε,t|pdx` tp
ż

A

|∇u|pdx

¸

` 2pp1´ tqp}u}pLp . (A.44)

Taking (C1), the left inequality in (C6), (A.40) and (A.42) into account, from (A.44) we
deduce that

lim
t!1´

lim
ε!0

}uδε,t ´ u}
p
Lp ď 22pδpC

ˆ

1

αc
pM`

u,δpAq ` δq `

ż

A

|∇u|pdx
˙

,

which gives

lim
δ!0

lim
t!1´

lim
ε!0

}uδε,t ´ u}
p
Lp “ 0 (A.45)

because limε!0 M
`
u,δpAq “M

`

u pAq ă 8. According to (A.43) and (A.45), by diagonalization

there exist mappings ε 7! tε and ε! δε, with tε ! 1´ and δε ! 0 as ε! 0, such that:

lim
ε!0

}wε ´ u}
p
Lp “ 0; (A.46)

lim
ε!0

Fεpwε, Aq ďM
`

u pAq (A.47)

with wε :“ uδεε,tε . By (A.46) we have Γ- limε!0 Fεpu,Aq ď limε!0 Fεpwε, Aq, and inequality
(A.39) follows from (A.47). �

Step 4: differentiation with respect to LNLNLN . Using Lemma A.1, Remark A.2 and
Lemma A.5, it is easily seen that for every u P dompGq and every A P OpΩq,

Γ- lim
ε!0

Fεpu,Aq ě

ż

A

lim
ρ!0

M´
u pQρpxqq

LNpQρpxqq
dx “

ż

A

lim
ρ!0

lim
t!1´

m´
tupQρpxqq

LNpQρpxqq
dx; (A.48)

Γ- lim
ε!0

Fεpu,Aq “

ż

A

lim
ρ!0

M
`

u pQρpxqq

LNpQρpxqq
dx. (A.49)

The goal of Step 4 is to apply Theorem B.3 (with S “M`
u where u P dompGq) for proving

the following lemma.

Lemma A.6. Assume that p ą N and (C1)–(C3) and (C6)–(C7) hold. Then, for every
u P dompGq and every A P OpΩq,

M
`

u pAq “

ż

A

lim
ρ!0

M`
u pQρpxqq

LNpQρpxqq
dx. (A.50)
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As a consequence, for every u P dompGq and every A P OpΩq, we have

Γ- lim
ε!0

Fεpu,Aq “

ż

A

lim
ρ!0

M`
u pQρpxqq

LNpQρpxqq
dx “

ż

A

lim
ρ!0

lim
t!1´

m`
tupQρpxqq

LNpQρpxqq
dx. (A.51)

Proof of Lemma A.6. Fix u P dompGq. The integral representation of Γ- limε!0 Fεpu, ¨q
in (A.51) follows from (A.50), (A.49) and the definition of M`

u in (A.36). So, we only need
to establish (A.50). For this, it is sufficient to prove that M`

u is subadditive and there exists
a finite Radon measure ν on Ω which is absolutely continuous with respect to LN such that

M`
u pAq ď νpAq (A.52)

for all A P OpΩq, and then to apply Theorem B.3. For each ε ą 0 and each t Ps0, 1r, from
the definition of mε

tu in (A.41), it is easy to see that for every A,B,C P OpΩq with B,C Ă A,
B X C “ H and LNpAzpB Y Cqq “ 0,

mε
tupAq ď mε

tupBq `mε
tupCq

(with mε
zp¨q defined in (A.41)), and so

lim
t!1´

lim
ε!0

mε
tupAq ď lim

t!1´
lim
ε!0

mε
tupBq ` lim

τ!1´
lim
t!8

mε
tupCq,

i.e.

M`
u pAq ďM`

u pBq `M`
u pCq, (A.53)

which shows the subadditivity of M`
u .

Remark A.7. As, in general, the lim of the sum is not smaller than the sum of the lim, we
cannot assert that (A.53) holds for M´

u instead of M`
u and so that M´

u is subadditive.

On the other hand, given any ε ą 0 and any t Ps0, 1r, by using the right inequality in (C6)
we have

mε
tupAq ď β

ˆ

LN
pAq `

ż

A

gpt∇upxqqdx
˙

.

But, from (C2) we see that gpt∇upxqq ď γp1` gp∇upxqq ` gp0qq for LN -a.a. x P Ω, hence

mε
tupAq ď βp1` γ ` γgp0qqLN

pAq ` βγ

ż

A

gp∇upxqqdx.

Letting ε! 0 and t! 1´ we conclude that

M`
u pAq ď C

ˆ

LN
pAq `

ż

A

gp∇upxqqdx
˙

with C :“ βp1 ` γ ` γgp0qq. Thus (A.52) holds with the Radon measure ν :“ C
`

1 `

gp∇up¨qq
˘

LN which is necessarily finite since u P dompGq and gp0q ă 8 by (C3). �

Step 5: establishing Γ-limΓ-limΓ-lim and Γ-limΓ-limΓ-lim formulas. According to (A.48) and (A.51), Γ-lim
and Γ-lim formulas, see (3.3), will be established (see Substep 5-2) if we prove that for every
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u P dompGq and LN -a.e. x P Ω, we have:

lim
t!1´

lim
ρ!0

m´
tuxpQρpxqq

LNpQρpxqq
ď lim

ρ!0

M´
u pQρpxqq

LNpQρpxqq
; (A.54)

lim
t!1´

lim
ρ!0

m`
tuxpQρpxqq

LNpQρpxqq
“ lim

ρ!0

M`
u pQρpxqq

LNpQρpxqq
, (A.55)

where uxpyq :“ upxq `∇upxqpy ´ xq and (A.55) is equivalent to:

lim
t!1´

lim
ρ!0

m`
tuxpQρpxqq

LNpQρpxqq
ď lim

ρ!0

M`
u pQρpxqq

LNpQρpxqq
; (A.56)

lim
t!1´

lim
ρ!0

m`
tuxpQρpxqq

LNpQρpxqq
ě lim

ρ!0

M`
u pQρpxqq

LNpQρpxqq
. (A.57)

Substep 5-1: proofs of (A.54), (A.56) and (A.57). As the proofs of (A.54), (A.56) and
(A.57) use the same method, we only give the proof of (A.54). First of all, by diagonalization
there exists a mapping s 7! ts with ts ! 1´ as s! 1´ such that:

lim
s!1´

ts
s
“ 1;

lim
t!1´

lim
s!1´

∆

ˆ

t

s

˙

ď lim
s!1´

∆

ˆ

ts
s

˙

,

where ∆p¨q :“ supεą0 δ
a
fε
p¨q with a ą 0 given by (C7) and δafεp¨q defined by (3.1). But, by

(C7), limr!1´ ∆prq ď 0, hence

lim
t!1´

lim
s!1´

∆

ˆ

t

s

˙

ď 0. (A.58)

Fix any η ą 0. For every t Ps0, 1r there exists st Psτ, 1r such that for every s P rst, 1r,

∆

ˆ

t

s

˙

ď lim
s!1´

∆

ˆ

t

s

˙

`
η

2
. (A.59)

In the same way, there exists t0 Ps0, 1r such that for every t P rt0, 1r,

lim
s!1´

∆

ˆ

t

s

˙

ď lim
t!1´

lim
s!1´

∆

ˆ

t

s

˙

`
η

2
, (A.60)

and from (A.58), (A.59) and (A.60) we deduce that for every t P rt0, 1r and every s P rst, 1r,

∆

ˆ

t

s

˙

ď η. (A.61)

Fix u P dompGq. Fix any ε ą 0, any λ Ps0, 1r, any ρ ą 0, any t P rt0, 1r and any s P rst, 1r.
By definition of mε

supQλρpxqq in (A.41), there exists w : Ω ! Rm such that w ´ su P

W 1,p
0 pQλρpxq;R

mq and
ż

Qλρpxq

fεpy,∇wpyqqdy ď mε
supQλρpxqq ` ηL

N
pQλρpxqq. (A.62)
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Let ϕi P C
8pΩq be a cut-off function for the pair pΩzQρpxq, Qλρpxqq, i.e. ϕpxq P r0, 1s for all

x P Ω, ϕpxq “ 0 for all ΩzQρpxq and ϕpxq “ 1 for all x P Qλρpxq, such that

}∇ϕ}L8 ď
4

ρp1´ λq
. (A.63)

Let v P W 1,ppΩ;Rmq be defined by

v :“ ϕ
t

s
u` p1´ ϕq

t

s
ux “ ϕ

t

s
pu´ uxq `

t

s
ux.

Then v ´ t
s
ux P W

1,p
0 pQρpxq;R

mq and

∇psvq “
"

∇ptuq in Qλρpxq
p1´ tq t

1´t
∇ϕb pu´ uxq ` t

`

ϕ∇u` p1´ ϕq∇upxq
˘

in QρpxqzQλρpxq.

As t
s
w ´ tu P W 1,p

0 pQλρpxq;R
mq we have sv ` p t

s
w ´ tuq ´ tux P W

1,p
0 pQρpxq;R

mq, and so

mε
tuxpQρpxqq ď

ż

Qρpxq

fε

ˆ

y,∇psvq `∇
´ t

s
w ´ tu

¯

˙

dy

“

ż

Qλρpxq

fε

ˆ

y,
t

s
∇w

˙

dx`

ż

QρpxqzQλρpxq

fεpy,∇psvqqdy.

Taking (A.62), (C2) and the right inequality in (C6) into account, we deduce that

mε
tuxpQρpxqq

LNpQλρpxqq
ď

ˆ

1`∆

ˆ

t

s

˙˙ˆ

mε
supQλρpxqq

LNpQλρpxqq
` η

˙

`
a

λN
∆

ˆ

t

s

˙

`C

ˆ

1

λN
´ 1

˙

p1` gp∇upxqq ` C

λNρN

ż

QρpxqzQλρpxq

gp∇upyqqdy

`
C

λNρN

ż

QρpxqzQλρpxq

g

ˆ

t

1´ t
∇ϕb pu´ uxq

˙

dy

with C :“ β ` βγ ` βγ2. Thus, taking (A.61) into account, as LNpQρpxqq ě LNpQλρpxqq,
we get

mε
tuxpQρpxqq

LNpQρpxqq
ď p1` ηq

ˆ

mε
supQλρpxqq

LNpQλρpxqq
` η

˙

`
a

λN
η ` C

ˆ

1

λN
´ 1

˙

p1` gp∇upxqq

`
C

λNρN

ż

QρpxqzQλρpxq

g

ˆ

t

1´ t
∇ϕb pu´ uxq

˙

dy

`
C

λNρN

ż

QρpxqzQλρpxq

gp∇upyqqdy. (A.64)

On the other hand, by (A.63), for LN -a.a. y P QρpxqzQλρpxq, we have
ˇ

ˇ

ˇ

ˇ

t

1´ t
∇ϕpyq b pupyq ´ uxpyqq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

t

1´ t

ˇ

ˇ

ˇ

ˇ

}∇ϕ}L8}u´ ux}L8

ď
4t

p1´ tqp1´ λq

1

ρ
}u´ ux}L8 .
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But, since p ą N , limρ!0
1
ρ
}u ´ ux}L8 “ 0, hence there exists ρ0 ą 0 (which depends on t

and λ) such that for LN -a.e. y P QρpxqzQλρpxq and every ρ Ps0, ρ0r,
ˇ

ˇ

ˇ

ˇ

t

1´ t
∇ϕpyq b pupyq ´ uxpyqq

ˇ

ˇ

ˇ

ˇ

ď r

with r ą 0 given by (C2)–(C3) (see Remark 3.5(ii)). Hence

C

λNρN

ż

QρpxqzQλρpxq

g

ˆ

t

1´ t
∇ϕb pu´ uxq

˙

dy ď Cθ

ˆ

1

λN
´ 1

˙

, (A.65)

where θ is defined by (A.15). Moreover, it easy to see that

C

λNρN

ż

QρpxqzQλρpxq

gp∇upyqqdy ď
C

λN
´

ż

Qρpxq

ˇ

ˇgp∇upyqq ´ gp∇upxqq
ˇ

ˇdy

`C

ˆ

1

λN
´ 1

˙

gp∇upxqq. (A.66)

Taking (A.65) and (A.66) into account, from (A.64) we deduce that

mε
tuxpQρpxqq

LNpQρpxqq
ď p1` ηq

ˆ

mε
supQλρpxqq

LNpQλρpxqq
` η

˙

`
a

λN
η ` C

ˆ

1

λN
´ 1

˙

p1` 2gp∇upxqq ` θq

`
C

λN
´

ż

Qρpxq

ˇ

ˇgp∇upyqq ´ gp∇upxqq
ˇ

ˇdy. (A.67)

As u P dompGq, i.e. gp∇up¨qq P L1pΩq, we can assert that

lim
ρ!0

´

ż

Qρpxq

ˇ

ˇgp∇upyqq ´ gp∇upxqq
ˇ

ˇdy “ 0. (A.68)

Letting ε! 0, s! 1´ and ρ! 0 in (A.67) and using (A.68), we see that

lim
ρ!0

m´
tuxpQρpxqq

LNpQρpxqq
ď p1` ηq

ˆ

lim
ρ!0

M´
u pQρpxqq

LNpQρpxqq
` η

˙

`
a

λN
η

`C

ˆ

1

λN
´ 1

˙

p1` 2gp∇upxqq ` θq. (A.69)

Letting t! 1´ and λ! 1´ in (A.69) we conclude that

lim
t!1´

lim
ρ!0

m´
tuxpQρpxqq

LNpQρpxqq
ď p1` ηq

ˆ

lim
ρ!0

M´
u pQρpxqq

LNpQρpxqq
` η

˙

` aη,

and (A.54) follows by letting η ! 0.

Substep 5-2: end of Step 5. Combining (A.48) with (A.54) and (A.51) with (A.55), for
every u P dompGq and every A P OpΩq, we have:

$

’

’

&

’

’

%

Γ- lim
ε!0

Fεpu,Aq ě

ż

A

lim
t!1´

lim
ρ!0

m´
tuxpQρpxqq

LNpQρpxqq
dx

Γ- lim
ε!0

Fεpu,Aq “

ż

A

lim
t!1´

lim
ρ!0

m`
tuxpQρpxqq

LNpQρpxqq
dx.

(A.70)
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On the other hand, it is easily seen that for LN -a.e. x P Ω, we have:

lim
t!1´

lim
ρ!0

m´
tuxpQρpxqq

LNpQρpxqq
“ lim

t!1´
lim
ρ!0

lim
ε!0

Hρ
rfεspx, t∇upxqq;

lim
t!1´

lim
ρ!0

m`
tuxpQρpxqq

LNpQρpxqq
“ lim

t!1´
lim
ρ!0

lim
ε!0

Hρ
rfεspx, t∇upxqq,

and (3.3) follows by taking A “ Ω in (A.70).

Step 6: end of the proof. Let u P dompGq. Then, ∇upxq P G for LN -a.a. x P Ω. By
using (C8) it follows that LN -a.e. x P Ω,

lim
t!1´

lim
ρ!0

lim
ε!0

Hρ
rfεspx,∇upxqq “ lim

t!1´
lim
ρ!0

lim
ε!0

Hρ
rfεspx,∇upxqq,

and (3.4) follows from (3.3). �

Appendix B. Auxiliary results

B.1. The De Giorgi-Letta lemma. Let Ω Ă RN be a bounded open set and let OpΩq
be the class of open subsets of Ω. The following result is due to De Giorgi and Letta (see
[DGL77] and also [But89, Lemma 3.3.6 pp. 105]).

Lemma B.1. Let S : OpΩq ! r0,8s be an increasing set function, i.e. SpAq ď SpBq for
all A,B P OpΩq such A Ă B, satisfying the following four conditions:

(i) SpHq “ 0;
(ii) S is superadditive, i.e. SpA Y Bq ě SpAq ` SpBq for all A,B P OpΩq such that

AXB “ H;
(iii) S is subadditive, i.e. SpAYBq ď SpAq `SpBq for all A,B P OpΩq;
(iv) there exists a finite Radon measure ν on Ω such that SpAq ď νpAq for all A P OpΩq.

Then, S can be uniquely extended to a finite positive Radon measure on Ω which is absolutely
continuous with respect to ν.

B.2. Integral representation of the Vitali envelope of a set function. Let Ω Ă RN

be a bounded open set and let OpΩq be the class of open subsets of Ω. For each δ ą 0 and
each A P OpΩq, we denote the class of countable families tQi “ Qρipxiq :“ xi`s´

ρi
2
, ρi

2
rNuiPI

of disjoint open cubes of A with xi P A and ρi Ps0, δr and such that LNpAz YiPI Qiq “ 0 by
VδpAq.

Definition B.2. Given S : OpΩq! r0,8s, for each δ ą 0 we define Sδ : OpΩq! r0,8s by

SδpAq :“ inf

#

ÿ

iPI

SpQiq : tQiuiPI PVδpAq

+

.

By the Vitali envelope of S we call the set function S : OpΩq! r´8,8s defined by

SpAq :“ sup
δą0

SδpAq “ lim
δ!0

SδpAq.

The interest of Definition B.2 comes from the following integral representation result. (For
a proof we refer to [AHM18, §3.3] or [AHCM17, §A.4].)
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Theorem B.3. Let S : OpΩq! r0,8s be a set function satisfying the following two condi-
tions:

(i) there exists a finite Radon measure ν on Ω which is absolutely continuous with respect
to LN such that SpAq ď νpAq for all A P OpΩq;

(ii) S is subadditive, i.e. SpAq ď SpBq ` SpCq for all A,B,C P OpΩq with B,C Ă A,
B X C “ H and LNpAzpB Y Cqq “ 0.

Then limρ!0
SpQρp¨qq

LN pQρp¨qq
P L1pΩq and for every A P OpΩq, one has

SpAq “

ż

A

lim
ρ!0

SpQρpxqq

LNpQρpxqq
dx.

B.3. A subadditive theorem. Let ObpR
Nq be the class of all bounded open subsets of

RN . We begin with the following definition.

Definition B.4. Let S : ObpR
Nq! r0,8s be a set function.

(i) We say that S is subadditive if

SpAq ď SpBq `SpCq

for all A,B,C P ObpR
Nq with B,C Ă A, B X C “ H and LNpAzpB Y Cqq “ 0.

(ii) We say that S is ZN -invariant if

SpA` zq “ SpAq

for all A P ObpR
Nq and all z P ZN .

Let CubpRNq be the class of all open cubes in RN . The following theorem is due to Akcoglu
and Krengel (see [AK81] and also [LM02] and [AHM11, Theorem 3.11]).

Theorem B.5. Let S : ObpR
Nq! r0,8s be a subadditive and ZN -invariant set function for

which there exists C ą 0 such that for every A P ObpR
Nq,

SpAq ď CLN
pAq.

Then, for every Q P CubpRNq,

lim
ε!0

S
`

1
ε
Q
˘

LN
`

1
ε
Q
˘ “ inf

kě1

Sps0, krNq

kN
.
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