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RADIAL EXTENSION OF I'-LIMITS
OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

ABSTRACT. We continue in this paper our study of the notion of radial uniformly upper
semicontinuous functional that we developed in a previous paper (see [AHMI4]) in the
context of relaxation. We consider here the framework of I'-convergence. We present general
radial extension results with respect to I'-convergence and give some applications to I'-
convergence and homogenization of integral functionals with constraints.
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2 RADIAL EXTENSION OF T-LIMITS

1. INTRODUCTION

Let X be a vector space and let | - | be a norm on X. In [AHMI14, Theorem 3.1] we proved
that if F: X — [0, 0] is ru-usd| on a subset D of the effective domain dom(F) of F, i.e.
there exists a > 0 such that
— F(tu) — F(u)
1 —— <0,
o1 eh  a+ F(u)

and if D is strongly star-shaped, i.e.
tD < D for all t €]0, 1]

with D denoting the closure of D with respect to | - |, then the ls envelope F' + yp of
F + xp, where xp denotes the indicator function of D, is given by the sum of the radial
extension of F' and the indicator function of D whenever Isc envelope of F' + xp is equal to
FonD,ie.
F + xp = F on D implies F' + xp = ' + xp,
where F': X — [0, 0] is defined by
F(u) := lim F(tu).
t—1—

In this paper, we extend this result to the framework of I'-convergence (see Theorem ,
Corollary 2.8 and Theorem [2.9)).

In the spirit of De Giorgi (see [DGT9, §4]), our motivation comes from the problem of
finding an integral representation of the I'-limit of a family of integral functionals subjected
to constraints. A typical example is given by integral functionals F. : WP(Q; R™) — [0, 0]
defined by

F.(u) := L fe(z, Vu(z))dz,

where 0 = RY is a bounded open set, p > N, ¢ > 0 and f. : @ x M — [0, 0] is a Borel
measurable function, not necessarily convex, having g-growth, i.e. there exist o, § > 0 and
a Borel measurable function g : M — [0, c], which do not depend on ¢, such that for every
(x,€) € Q x M,
ag(§) < fe(z,§) < B(1 +9(¢))

with IM denoting the space of m x N matrices. Thus, for each £ > 0, the effective domain
dom(F) of F. is equal to the effective domain dom(G) of G : WP (Q; R™) — [0, 0] defined
by

G(u) := f g(Vu(z))dz.
Q
This means that integral functionals F. are subjected to constraints on gradients represented

by the set dom(G). Under some requirements (see §3.2)), it can be proved (see Theorem [3.8))
that {F.}. I'-converges, with respect to the LP-norm, on dom(G), i.e.

I- liné F.(u) = F(u) for all u € dom(G). (1.1)

IThe abbreviation ru-usc means radially uniformly upper semicontinuous.
2The abbreviation lsc means lower semicontinuous.
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The difficulty is then to extend (1.1)) to the whole space W'*(2; R™). This can be achieved
by developing extension theorems with respect to the concept of ru-usc functional (see, in
particular, Theorem [2.7]).

To our knowledge, the concept of ru-usc finds its origin in [CDA02, Condition (10.1.13),
pp. 213] in connection with relaxation problems with constraints. Later, this concept was
proved very useful for relaxation problems in the vectorial case with bounded and convex
constraints see [AH10]. Then, it was used to study homogenization and relaxation problems
with constraints (see for instance [AHMI11) [AHM12, [AHMZ15]). Ru-usc seems to be a key
concept to deal with certain constrained variational problems (see Sect. . However, of
course, this concept does not allow to handle all types of constraints as for example obstacle
constraints.

The plan of the paper is as follows. In We recall the definition of a ru-usc functionals (see
Definition [2.1)) and the one of a family of ru-usc functionals (see Definition[2.4). An important
point is the fact that ru-usc is stable with respect to I'-convergence (see Theorem . The
definition of ru-usc functions together with the link with the one of ru-usc functionals is
recalled in §3.1| (see Definitions and . Roughly, functionals with ru-usc integrands
are ru-usc (see Proposition . The main results of the paper are stated and proved in
§2.2| (see Theorem , Corollary and Theorem , and applications of these results to
['-convergence and homogenization of integral functionals subjected to constraints are given
in Section 3| (see Corollaries [3.10}, [3.12| and [3.13)). In the Applications, we need a partial
I'-convergence theorem (see Theorem [3.8) which was established in [AHM21, Theorem 4.3].
For the convenience of the reader, the proof of Theorem is given in Appendix [A] and
the auxiliary results that are used in its proof are stated (without the proofs) in §B.1| and
§B.2] For the application to homogenization we need a subadditive theorem which is stated

(without proof) in §B.3|

Throughout the paper, we will use the following notation and terminology.

e Given a vector space X and a norm ||| on X, the closure (resp. interior) with respect
to | - || of a set A < X is denoted by A (resp. intA) and its boundary by JA.

e By the effective domain of a function F' : X — [0,0] we mean dom(F') given by
dom(F) :={ue X : F(u) < w}.

e A set D = X such that tD < D for all ¢ €]0, 1] is said to be strongly star-shaped.
When tD c intD for all ¢ €]0, 1], we say that D is super-strongly star-shaped.

e For D < X we denote the indicator function of D by xp, i.e.

() = 0 ifzeD
XD =3 o ifx e X\D.

e For A = RY, the diameter of A (resp. the distance from a point € RY to the subset
A) is defined by diam(A) := sup, ,ca |7 — y| (vesp. dist(z, A) := infycq |z —y)).
e The symbol {stands for the mean-value integral with respect to the Lebesgue measure

gN on IR,N, 1.e. §Q = S[N;(Q)S»Q
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2. MAIN RESULTS

In what follows, X is a vector space and || - | is a norm on X. (In the applications (X, | - |)
will be WP with p > 1 endowed with the LP-norm.)

2.1. Ru-usc functionals. We begin by recalling the concept of ru-usc functional.
Definition 2.1. We say that F': X — [0, o] is ru-usc if there exists a > 0 such that
lim A%(t) <0
t—1—
with A% : [0, 1] —] — o0, 0] defined by
F(tu) — F
A%L(t) :=  sup Fltu) — Flu) (u)’
uedom(F) a + F(U)
where dom(F’) denotes the effective domain of F'.

Let F: X — [0, 0] be defined by
F(u) := lim F(tu).

t—1—
Usually, F is called the radial extension of F.
Remark 2.2. If F is ru-usc then F' < F. Indeed, for every u € dom(F), F(tu) < F(u)

_l’_
A% (t)(a+F(u)) forallt € [0,1]. As lim,_,;- A%(t) < 0t follows that F(u) = lim, ,,- F(tu) <
F(u) + limy_1- A%(t)(a + F(u)) < F(u) for all v e dom(F).

The interest of Definition comes from the following theorem. (For a proof we refer to
[AHM11), Theorem 3.5] and also [AHM12, §4.2])

Theorem 2.3. If F: X — [0, 0] is ru-usc and if dom(F) is super-strongly star-shaped, i.e.

tdom(F') < intdom(F) for all t €]0, 1], (2.1)
then:
(a) F is ru-usc;

(b) ﬁ(u) = lirln F(tu) for allue X.
t—1—

If moreover, F is lower semicontinuous (lsc) with respect to || - | on intdom(F') then:
F(u) if u € intdom(F)
(c) ﬁ(u) = lim F(tu) if u € ddom(F)
t—1—
0 otherwise;

(d) F is the Isc envelope of F.
The following definition generalizes Definition to the case of a family of functionals.

Definition 2.4. For each ¢ > 0, let F. : X — [0,00]. We say that {F.}.~¢ is ru-usc if there
exists @ > 0 such that .
lim sup A% (¢) < 0.

t—1— >0

(When F. = F for all £ > 0, we recover Definition [2.1])
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The interest of Definition comes from the following theorem which says that ru-usc is
conserved under I'-convergence. We begin by recalling the definition of I'-convergence (see
[DM93), BD98, Bra06] for more details).

Definition 2.5. For each ¢ > 0, let F. : X — [0,0] and let I-lim._, F. : X — [0, 0] and
[-lim. o F. : X — [0, 0] be respectively defined by:

[-lim F,(u) := inf {li_mFE(ug) s U i u} :

e—0 e—0

F—H&Fg(u) ;= inf {@Fs(ug) D Ue it u} :

Let F': X — [0,0]. We say that {F_.}.~o ['-converges to F', and we write
F =T-lim F,
if the following two inequalities hold:
F <T-lim F.;

e—0

[-limF. < F.
e—0
The following theorem asserts that ru-usc is stable with respect to I'-convergence.

Theorem 2.6. Let F': X — [0,0] and, for each ¢ > 0, let F. : X — [0,00]. If {F:}.=0
is ru-usc and if {F.}.=o I'-converges to F' then F is ru-usc. If moreover (2.1)) holds then
F=F.

Proof of Theorem 2.6 Fix any u € dom(F). Since {F.}.~o I'-converges to F, there exists
{uc}eso © X with u. € dom(F.) such that:

I
Us — U;

lim F.(u.) = F(u).

e—0

Fix any t € [0, 1]. For every ¢ > 0, we have
F.(tu.) < AL () (a+ Fo(u.)) + Fo(u.)
< sup A% (1) (a + Fo(ue)) + Fe(ue). (2.4)

From (2.2) we see that tu, L tu, and so, since {F_.}.~o ['-converges to F,

F(tu) < lim F_(tu.). (2.5)

e—0

Letting ¢ — 0 in (2.4 and using (2.3) and (2.5 we deduce that
F(tu) < sup A}, (t)(a + F(u)) + F(u).
e’>0 ‘

Hence, for every u € dom(F),
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Consequently, for every t € [0, 1],

F(tu) — F(u) _
sup ———————= <sup A% (t), i.e. A%L(t) < sup A% (1).
uedonll)(F) a+ Fu) DIS F. (1) ¥ (t) DE) F.(t)
As {F.}.-0 is ru-usc we have lim, ;- sup._y A%, (¢) < 0 and so lim, ;- A%(¢) < 0, which
proves that F' is ru-usc.
Since F' = I'-lim._ F;, F is Isc with respect to || - |. Hence, if moreover (2.1]) holds then

F = F by Theorem (d) [
2.2. Radial extension theorems with respect to I'-convergence. The following theo-

rem is the first main result of the paper.

Theorem 2.7. Let F : X — [0,0] and, for each e >0, let F. : X — [0,00]. Let D,E < X
be such that:

tE < D for all t €]0,1]; (2.6)
dom <F—li_mFE) c E. (2.7)
e—0
If {F.}c~0 is ru-usc and if
I'-lim F.(u) = F(u) for alluwe D, (2.8)

e—0
then
Proof of Theorem [2.7 First of all, taking (2.7)) into account, if u ¢ E then
[-lim F,(u) = D@)Fg(u) = o0.

e—0

So, it is sufficient to prove that for every v € F,
I-lim F.(u) = F(u). (2.9)
Fix ue E. By , for any t €]0, 1[, we have tu € D. From it follows that
F(tu) =T- lli% F.(tu) = F-EFg(tu) for all ¢ €]0, 1[.

Hence, since the I'-limit sup is lower semicontinuous with respect to || - | and tu — wu as
t— 17,
F(u) = lim F(tu) = lim T-Tim F.(tu) > T-Tim F.(u). (2.10)
t—1— t—1— e—0 e—0

Let {u.}.~0 < X be such that u. € dom(F.) for all € > 0 and:

I
Ue — U;

lir% F.(u.) =I-lim F.(u) < o0. (2.12)

e—0
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For any ¢ €]0, 1[, from (2.11]) we see that tu,. I 4o with tu e D by (2.6). Hence, by using
(2-8),
lim F.(tu.) = I'-lim F,(tu) = F(tu) for all t €]0, 1].

e—0 e—0
It follows that R
lim h_mFa(tua) > F(u) (2'13)

t—1—e—0

On the other hand, for every ¢ €]0, 1] and every ¢ > 0, we have
F.(tu.) < (1+ A% (8)F(ue) + aAg ()

< <1 +sup A%, (t)) Fe(ue) + a-sup A% (1),

e'>0 e'>0

and so, by letting ¢ — 0 and by using (2.12)), we get

lim F.(tu.) < <1 +sup A%, (t)) liné F.(u:) + asup A%, (t)

e—0 e'>0 e'>0

e'>0 e—0 e'>0

= <1 +sup A, (t)) I-lim F.(u) + asup A%, (¢) for all ¢ €]0, 1[.
As {F.}.~ is ru-usc with a > 0, i.e. lim,_;- sup_., A% (t) < 0, letting t — 1~ we deduce

that :
lim lim F(tu.) < I-lim F.(u), (2.14)

t—1—e—0 e—0

and (2.9) follows by combining (2.10)), (2.13]) and (2.14)). H

If dom(F.) = D for all ¢ > 0 then dom (I'-lim__, F.) = D and so, as a direct consequence of
Theorem [2.7] we have the following result which roughly asserts that the I-limit of a ru-usc
family of functionals having effective domains included in a same strongly star-shaped set D
can be computed from its I-limit on D as the sum of the radial extension of I'-lim |, and

the indicator function of D.

Corollary 2.8. Let F': X — [0,00] and, for eache >0, let F. : X — [0,0]. Let D = X be
a strongly star-shaped set, i.e. tD < D for allt €]0, 1|, such that dom(F.) < D for alle > 0.
If {F.}.~0 is ru-usc and if I'-lim._o F.(u) = F(u) for allu e D, then I'-lim._o F. = F'+ xp.
Here is the second main result of the paper. Roughly, this theorem asserts that I'-convergence
is stable under super-strongly star-shaped constraints.

Theorem 2.9. Let F': X — [0,0] and, for each e > 0, let F. : X — [0,00]. Let D < X be
such that

D is super-strongly star-shaped, i.e. tD < intD for all t €]0, 1. (2.15)
If {F.}.~0 is ru-usc and if
P-lim £, = F,
then
I‘-lir% (F. +xp) =F + xp-
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Proof of Theorem [2.9] First of all, if u ¢ D then
[-lim (F. + xp) (u) = 1“—@(FE + xp) (u) = 0.

e—0

So, it is sufficient to prove that {F. + xp}eso I-converges to F on D. As F. < F, + xp for
all e > 0, we have

F =T-limF. <T-lim (F. + xp) < F-@(FE + XD) - (2.16)

e—0 e—0

Fix any u € X. Let {u.}.~0 € X be such that

Ue Iy and F(u) =T-lim F.(u) = lim F.(u.).

e—0 e—0

Then, for every u € X,

DT (P + o) () < T (F+ xp) (w) = T (Fu(u) + xo(u.)
= lim Fi(ue) + lim xp (ue)
= F(u)+ EXD(UE)

F(u) + Xintp(u).

N

Taking ([2.16]) into account, we see that
F < T-lim (F. + xp) < F_@(Fg + Xp) < F + XintD,
e—

e—0

which implies that {F. + xp}e-o [-converges to I on intD. Now, fix any v € D. By (2.15)
we have tu € intD for all ¢ €]0, 1[, and so

- hm (F. + xp) (tu) =T- hm (F. + xp) (tu) = F(tu) for all ¢t €]0, 1[.

It follows that
F-@)(FE—FXD)( u) < lim I'- hm(F + xp) (tu) < lim F(tu) = F(u).

t—1— t—1—
Since {F.}.~o 1s ru-usc and [-lim. o F. = F, from Theorem [2.6 - we can asset that F' is
ru-usc, and so F<F (see Remark |2 . Consequently
- hm(F +xp) (u) < F(u) for all u € D. (2.17)

From ) and ({ - we conclude that
I- 11H(1) (F. + xp) (u) = F(u) for all ue D,

and the proof is complete.

3. APPLICATIONS TO I'-CONVERGENCE AND HOMOGENIZATION WITH CONSTRAINTS

Let m, N > 1 be two integers, let p > 1 be a real number, let Q = R" be a bounded open
set and let IM denote the space of m x N matrices. In order to deal with integral functionals
of the calculus of variations, in what follows we consider X = WP(Q; R™) and ||| = | - | z».



RADIAL EXTENSION OF T'-LIMITS 9

3.1. Ru-usc functions. As for functionals (see Definitions and we can define the
concept of ru-usc for functions and families of functions from Q x IM to [0, oo] (with € which
can be unbounded).

Definition 3.1. Let f : Q x M — [0, 0] be a Borel measurable function. We say that f is
ru-usc if there exists @ > 0 such that

lim §4(t) <0,

t—1—

where 6% : [0, 1] —] — o0, 0] is given by

a L f(x,t{)—f(x,f)
o5(1) = igggeiln?(f) a+ f(z,§)

The following definition generalizes Definition [3.1] to the case of a family of functions.

Definition 3.2. For each € > 0, let f. : 2 x M — [0, 0] be a Borel measurable function.
We say that {f.}.~o is ru-usc if there exists a > 0 such that

lim sup 6% (¢) <0,

t—1— e>0

where, for each € > 0, 6% : [0,1] —] — 00, 00] is given by

a - ff(x’tg)_fa(xvg)
L) =S S Tt RwE)

(3.1)

The following result makes clear the link between ru-usc families of integrands and ru-usc
families of functionals. (For a proof we refer to [AHM21], Proposition 2.23].)

Proposition 3.3. For each ¢ > 0, let f. : Q x M — [0,00] be a Borel measurable function
and let F. : WHP(Q;R™) — [0,0] be defined by Fo(u) =\, fo(z, Vu(z))dx. If {f}eso is

ru-usc then {F:}.=q is ru-usc.

Roughly, the following result, which is useful for dealing with homogenization, asserts that

a ru-usc 1-periodic function generates a family of ru-usc functions. (For a proof we refer to
[AHM21], Lemma 2.24].)

Proposition 3.4. Let f : RY x M — [0, 0] be Borel measurable function such that f(-,€)
is 1-periodic for all £ € M, i.e. for every (z,z) € RN x ZN, f(x + 2,€) = f(x,€), and, for
each € > 0, let f.: Q@ x M — [0, 0] be defined by

fola. )= £ (Z.6).
If [ is ru-usc then {f.}c=0 is ru-usc.

3.2. I'-convergence and homogenization. We begin by establishing a partial I'-convergence
theorem.
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3.2.1. Partial T'-convergence theorem. Let g : M — [0, 0] be a Borel measurable function.
In what follows, we consider the following conditions:

(C1) g is p-coercive i.e. there exists ¢ > 0 such that for every & € M,

9(&) = cl¢]”;
(Cy) there exists v > 0 such that for every ¢ €]0, 1] and every &, € M,

gt + (1 =1)¢) < v(1+g(§) + 9(0);

(C3) 0 € intdom(g);
(C4) the functional G : W1P(Q; R™) — [0, o0] be defined by

G(u) := Lg(Vu(x))dm

is LP-lsc;
(Cs) tdom(G) = dom(G) for all ¢ €]0, 1[, where G : W'P(Q; R™) — [0, 0] denotes the
LP-Isc envelope of G, i.e. for every u € WhP(Q; R™),

G(u) := inf {li_mG(uE) DU Iz u} :
e—0
Remark 3.5. (i) The condition (Cs) implies that dom(g) is convex. When g is convex,
(C3) can be dropped.
(ii) Since a convex function is continuous in the interior of its effective domain, if g is
convex and if (Cs) holds then g is bounded at the neighborhood of the null matrix,
i.e. there exists r > 0 such that
sup g(£) < 0.

¢l<r

More generally, it is proved in [AHMZI15, Lemma 4.1] that such a boundlessness
condition holds if (Cy)—(C3) are satisfied.

(iii) Under (Cy) it is clear that dom(G) is convex. Hence, if moreover (Cs3) holds then
tdom(G) < dom(G) for all ¢ €]0, 1[, and so, under (Cz)—(Cj), if (Cy) is satisfied then
also is (Cs).

For each € > 0, let f. : @ x M — [0, o] be a Borel measurable function. In what follows, we
consider the following conditions:

(Cg) there exist «, 5 > 0 such that for every € > 0 and every (z,§) €  x M,

ag(§) < fe(z,8) < B(1 +9(8));

(C7) {fe}e>0 IS Tu-usc;
(Cg) for every x € O and every & € G,

lim lim 7°[ f.](2, §) > lim lim 77 [ f.] (=, €),
—0:-0 p—0e—0

where Z°[f.] : O x M — [0, o0] is defined by

T\ f)(x,€) ;= inf {J[ fe(y, &+ Vo(y))dy : v e Wol’p(Qp(x); Rm)} (3.2)

Qp(2)



RADIAL EXTENSION OF T'-LIMITS 11

with Q,(x) := z+] — &, &[V.

Remark 3.6. (i) Under (Cy) and (Cg) we have dom(f.) = dom(g) for all € > 0, and so
dom(f.) is convex for all € > 0.
(ii) In the periodic case, i.e. fo(z,§) = f(%,€) with f: RN x M — [0, %] a 1-periodic
function with respect to the first variable, (Cg) can be proved by using Akcoglu-
Krengel’s subadditive theorem (see Theorem [B.5)).

For each € > 0, let F. : W'P(Q; R™) — [0, 0] be defined by
u) = f fe(x, Vu(x))dz.

Remark 3.7. (i) If (Cy) and (Cg) are satisfied then dom(F.) = dom(G) for all £ > 0.
(i) If (Cy) holds then dom (I-lim._g F.) = dom (I-lim__, F.) = dom(G). Otherwise,
we have dom (I-lim._ F.) = dom (I-lim__, F.) = dom(G).

==—=e—0

The following theorem establishes the I'-convergence of {F.}.-o on dom(G). It plays a
central role for establishing I'-convergence and homogenization results on the whole space

WP(Q; R™).

Theorem 3.8. Assume that p > N. If (C1)—(Cs) and (Cg)—(C;) hold then for every u €
dom(G),

[-lim F.(u) > f lim lim lim %7 f.](x, tVu(z))dz
Q

e—0 t—1-P~0e—0 (33)
[-lim F.(u) = | lim lim lim %27[f.](x, tVu(z))dz.
e—0 Qtol— p—0e—0

If moreover (Cg) is satisfied then for every u € dom(G),

F—li_r)ré F.(u) = J lim lim lim %7[f.](x, tVu(x))dz. (3.4)

t—1- P—0e—0

Theorem [3.8)) was established in [AHM21] Theorem 4.3]. For the convenience of the reader,
we give a proof in Appendix [A]

3.2.2. T-convergence. From now on, let F': W1P(Q; R™) — [0, 0] be defined by

Plu) — L lim T T 227 1. (&, £V u(x)) d. (3.5)

t—1— p—0e—0

By adding (Cy) to the hypotheses of Theorem [3.§| we obtain the following result. (Note that
this result does not need any radial extension theorem.)

Corollary 3.9. Assume that p > N. If (C1)—(Cy) and (Cg)—(Cg) hold then
F'lli% Fa =F+ Xdom(G)-
Proof of Corollary [3.9} From (Cs) we see that for every u € WhP(Q; R™),
aG(u) < I-1im F.(u) < B(1 + G(u)),
e—0

hence dom(lim,_,, ;) = dom(G) by using (Cy), and the proof is complete. Bl

22220
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By adding (Cs) to the hypotheses of Theorem from Theorem we deduce the following

result.
Corollary 3.10. Assume that p > N. If (C1)—(C3), (C5) and (Cgs)—(Cs) hold then

I-lim F. = F + Xaom@)- (3.6)

Proof of Corollary From (Cs) we have dom(lim, ,, F.) = dom(G). Hence, taking
Theorem into account and according to (Cs), (3.6|) follows by applying Theorem with

D = dom(G) and F = dom(G). B
Let @ : W1P(Q; R™) —] — o0, 0] be such that:

(Cy) @ is LP-continuous;
(Cyg) for every t €]0, 1[, D(tu) < P(u).

Let 6 € R and let D < WP(Q; R™) be given by
D= {u e WWP(QR™) : (u) < 9}.
Lemma 3.11. The set D is LP-closed and super-strongly star-shaped.

Proof of Lemma [3.11]. First of all, from (Cg) we can assert that D is LP-open, i.e. D =
intD. Let t €]0,1[ and let v € D. By using again (Cy) we have ®(u) < 6. But, by (Cyp),
O (tu) < ®(u) and so ®(tu) < 0. Hence tu € D and the proof is complete. B

Taking Lemma into account, as a direct consequence of Corollary [3.9| (resp. Corollary
3.10) and Theorem [2.9) we deduce Corollary [3.12(i) (resp. Corollary [3.12((ii)) below.

Corollary 3.12. Assume that p > N.
(i) If (C1)—~(Cy) and (Cg)—(C1o) hold then

F-?L%(FE + Xp) = F + Xdom(c) + X1
(11) If (Cl)—(C3), (C5> and (C6>—<C10) hold then
P-lim(F + xp) = F+ Xdom(@) T XD-

3.2.3. Homogenization. Let f: RN x M — [0, 0] be a Borel measurable function satisfying
the following conditions:

(CH) there exist a, 3 > 0 such that for every (z,¢) € RY x M,
ag(§) < f(x,8) < B(1 +9(£));

(CH) f is ru-usc;
(Cl) f is 1-periodic with respect to its first variable, i.e. for every £ € M,

f(x+z,£) = f(l.af)
for all (z,2) e RN x ZN.
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For each e > 0, we consider f. : Q x M — [0, 0] be defined by
fol@. &)= £ (Z.€). (3.7)
Then, for every € > 0, F. : W'P(Q; R™) — [0, 0] is given by

F.(u) = Lf (g,Vu(x)> dz.
Let Fiom : WHP(Q; R™) — [0, 00] be defined by
Fhom(u) = L Foom (Vu(z))d

with from : M — [0, 0] given by
.ﬁ’lom(g) = h_m fhom(tg)a

t—1—

where fiom : M — [0, 0] is defined by

3 1 3 . P LJRM
from(€) = inf - inf U]O’W Fy,&+ Vo(y)dy : o € Wy (10, k[V; R )} :

As a consequence of Corollaries [3.9] and we have the following homogenization

results.

Corollary 3.13. Assume that p > N.
(i) If (C1)—(Cy) and (CF)—~(CE) hold then
I'- hH(l] F. = Fyom + Xdom(G)-
(i) If (C1)~(Cs), (Cs) and (Cg)~(Cy) hold then
F'?B% F. = Fhom + Xdom(@)-
(iii) If (C1)—(Cy), (CH—(CL) and (Cg)—(Cig) hold then
F—ll_I)I(l)(Fg + XD) = Fhom + Xdom(G) + XBb-
(IV) [f (Cl)*(C:ﬁ,), (C5)7 (Cg)*(cg) and (Cg)*(clg) hold then
F_ll_I)%(FE + XD> = ﬁhom + Xdom(é) + XD-

Proof of Corollary First of all, taking (3.7) into account, it is easy to see that (Cg)
can be deduced from (C{). On the hand, from Proposition [3.4] we see that (CY) implies
(Cq). Let z € Q, let £ € G and let 8¢ : 6,(RY) — [0, 0] defined by

se(a) = int{ [ fo + Voo o e WirAR" ]

where O,(RY) denotes the class of all bounded open subsets of RY. It is clear that &¢
is subadditive. Then, by using (CY) we see that &° is Z"-invariant. Finally, from the
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right inequality in (C§) we deduce that for every A € 6,(RY), $*(A) < Ce#N(A) with
Ce := B(1 4 g(&)) < © because £ € G. From Theorem it follows that for every p > 0,

S (RQp() S50, k[Y)
iy @Qpp(gc)) ey
ie.

lli%%p[fg](l',g) = fhom(g)‘
We are thus proved that

lim im Z°[ f-](x,€) = fuom(&) for all x € Q and all € € G, (3.8)

p—0e—0
which implies (Cg). Let F: W'?(Q; R™) — [0, 0] be defined by (3.5)). By (3.8)) we have
F(u) = Fhom(u) for all u € dom(G),

and (i) and (iii) follow from Corollaries and [3.12(1) respectively. When (Cj;) holds, by
using (3.8)), we have
F(u) = Fyom(u) for all u € dom(G),

which gives (ii) and (iv) by applying Corollaries and [3.12((ii) respectively. W

APPENDIX A. PROOF OF THE PARTIAL ['-CONVERGENCE THEOREM

Here we give a proof of Theorem [3.8

Proof of Theorem [3.8. In what follows, ©(f2) denotes the class of open subsets of Q. Let
F.: WP(Q;R™) x 6(2) — [0, 0] be defined by

F.(u,A) = L fe(z, Vu(x))dzx

and let T-lim__, F., [-lim, o F. : W3(Q; R™) x 0(Q) — [0, 0] be given by:

=222e—0

e—0 e—0

[-lim F.(u, A) := inf {li_mFa(ug,A) U Iz u} :

DT . (u, A) 1= inf {Tn F (e, A) e 22

e—0

(For A = Q, F.(u,Q) = F.(u), I-lim__, F.(u,Q) = [-lim__, F.(u) and T-lim._q F.(u, Q) =

22222e—0 S

I-lim._ F.(u).) The proof is divided into six steps.

Step 1: integral representation of I'-lim and I'-lim. For each u € W'?(Q;R™) we
consider the set functions &, , 8, : O(Q2) — [0, 0] given by:

S, (A) :==T-lim F.(u, A);

u
e—0

SH(A) = F-F%Fe(u,A).

Step 1 consists of proving the following lemma.
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Lemma A.1. Assume that p > N. If (C1)—(C3) and (Cg)—(C7) hold then for every u €
dom(G) and every A e O(Q),

where A\, \} € LY(Q) are given by:

S Qu)
A (z) = ll)lg(l) ZNQ, @)
o SHQ)
M) = 1 N, @)

Proof of Lemma [A.1l Fix u € dom(G). Using the right inequality in (Cg) we see that for
every Ae 0(Q),

S (A) < (3N<A> o) g<w<x>>dx) ; (A1)

SHA) < B (:ZN(A) + JA g(Vu(x))dx) .

Thus, the condition (iv) of Lemma is satisfied with v = B[1 + ¢g(Vu(-))|Z" (which is
absolutely continuous with respect to Z%). On the other hand, it is easily seen that the
conditions (i) and (ii) of Lemma [B.1| are satisfied. Hence, the proof is completed if we prove
the condition (iii) of Lemma [B.1} i.e.
S, (AuB) <S8, (A)+ S8, (B) for all A, Be O(Q); (A.2)
SHAUB) <SS (A)+ 85 (B) for all A, Be 6(9). (A.3)

Indeed, by Lemma the set function &, (resp. &,7) can be uniquely extended to a finite
positive Radon measure which is absolutely continuous with respect to %, and the theorem
follows by using Radon-Nikodym’s theorem and then Lebesgue’s differentiation theorem.

Remark A.2. Lemma shows that T-lim_ , F.(u,-) and I'-lim;_,o F.(u, -) can be uniquely

=2l 50t e
extended to a finite positive Radon measure on €2 which is absolutely continuous with respect

to &N,

Substep 1-1: an auxiliary result for proving Lemma [A.1l To show (A.2) (resp.
(A.3) we need the following lemma.

Lemma A.3. Assume that p > N and (C1)—(C3) and (C¢)—(C7) hold. If U, V,Z,T € O(Q)
are such that Z < U and T <V, then:

S (ZuT)

u
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Proof of Lemma [A.3l As the proofs of (A.4) and (A.5) are the same, we only give the
proof of (A.4). Let {u.}.~0 and {v.}.~0 be two sequences in W'?(Q; R™) such that:

ug (A.6)
Ve ey u; (A.7)
lir% fe(z, Vu.(z))dz = 8, (U) < oo; (A.8)
i Ju
hH(l) fe(x, Vo (x))de = 8, (V) < 0. (A.9)
e=Vly

By (C ) and (Cg) we have sup_. |Vue| ey < 0 and sup,.q [V | ey < 0. Taking (A
and ( into account, as p > N, up to a subsequence we have:

Ue glilcy u; (A.10)
v. 290, (A.11)

Fix § €]0, dist(Z, oU)[ with oU := U\U, fix any ¢ = 1 and consider W,”, W,;" <  given by:

1 3q

W= {eeQ:d+ 2 <dist(e, 2)},

W= = {az‘ e Q:dist(z, Z) < g + @ 1)6};
i (
where i € {1,--- ,q}. For every i € {1,--- ¢} there exists a cut-off function ¢; € C*(2) for
the pair (W', W- ), i.e. pi(x) €]0,1] for all z € Q, p;(x) =0 for all z € W;" and p;(x) =

for all z € W;". Fix any € > 0 and define w! € WH?(Q2; R™) by
wh = e + (1 — ;). (A.12)

Fix any ¢ €]0, 1[. Setting W; := Q\(W,” u W) we have

1

tVu, in W,
V(twl) =tVwl =<{ (1 —=t)75Ve ® (ue — ve) + t(9;Vue + (1 — 9;)Voe) in W;
tht in Wi+'

Noticing that Z v T = ((Z 0 T) N AW u (T AW with (ZuT)n W, cU,

W) o (W
TAWrHcVand W :=Tn{zxe U ¢ < dist(z,Z) < £} we deduce that for every

7

ZE{l '7Q}

fo(z,tVw?) J fe(z, tVu.)dz +J fe(z, tVv.)dx

ZuT

+f f (z,tVw!)dz. (A.13)
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Fix any i € {1,--- ,¢}. From (Cy) and (Cg) we see that
J fo(z, tVul)de < BLNW A W;) + 8 g(tVw!)dz
WnW; WnW;

< BAL+NZN(W A W)

+/37f 9(piVu. + (1 — ;) Vo, )dz
WnW;

+/37f g (1—tv% ® (u. — va)> dz,
WAW; -
and so, by using again (Cs) and (Cg),

f fs(x,tié)dx < pfl+~+ WQ)EN(W N W)
W('\Wi

By’
+7 (meW fe(z, Vue)dx + JWmWi fg(.?c,va)da:>

+5v JWHWi g (1—_thoz ® (ue — vg)> dz. (A.14)

On the other hand, we have

1-t

for n-a.a. xe WA W, < UnV. But, by (C2)—(C3) (see Remark [3.5(ii)), there exists 7 > 0
such that

t
Vel ® (o) ~ e < [ IVl = vl

0 := sup g(&) < oo, (A.15)

[gl<r

and lim._g [u: — ve|o@wa~v) = 0 by (A.10) and (A.11), hence for each ¢ €]0,1[ and each
ie{l,---,q} there exists g;; > 0 such that

' Vi) ® (ue(a) — ve(2))

<
1t :
for Zy-a.a. v € W n W, and all € €]0,¢;,]. Consequently, for every i € {1,--- ¢},
f g (—Vgoz ® (ue — ve)) dr < 0N (W A W) (A.16)
WnW; 11—t
for all ¢ €]0, 1] and all € €]0,2;,] with &, := min{e;; : i € {1,--- ,¢}}. Moreover, we have:

J fe(x, tVu.)dr < (1 + sup(Sf ) fe(x, Vu.)dx + asupéf LN (U); (A7)
U U

e’>0 e'>0

e'>0 e'>0 <

where a > 0 is given by (C7) and 6%, : [0,1] —] — 00, 0] is defined by (3.1). Taking (A
into account and substituting (A.14}), (A.17)) and (A.18) into (A.13)) and then averaging these

J fe(x, tVu.)dx < <1 + sup(Sf ) fe(z, Vv)dz + asup 6§ () ZN(V),  (A.18)
v v
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inequalities, it follows that for every ¢ €]0, 1[, every ¢ = 1 and every ¢ €]0,Z;,], there exists
Getq €1{1, -+ ,q} such that

fo(z, V(tw=))dr < (1 +sup 0% ( ) f fe(@, Vue)dz + asup 6%, (1) 2N (U)

zZuT />0 e'>0 fer

e'>0

p < M(©) +J fe(x, Vu.)dx +J fg(x,vvg)dm)

with C' = max {ﬂ (1+~ + ’y ) &} Thus, lettlng € —0,qg— oandt— 1" and using
(Cy), ie. limy_;- sup.—q 6 <0, and (A.9), we get

lim Tim lim fe(z, V(tw=t))de < S, (U) + S, (V). (A.19)

t—1— g—0o0 e—0 20T

On the other hand, taking (A.12)) into account and using (A.6) and (A.7) we see that

lim lim llm [twi=te — u| L = 0.
t—1- g—00e—0

(1 + Supéf ) f fe(x, Vo, )dx + asupéfE LN (V)
e

By diagonalization, there exist increasing mappings € +— t. and € — ¢. with t. — 17 and
g- — o0 such that:

lim | fo(z, Vi )de < lim lim lim | fo(z, V(twete))de;

c=0Jzor t—17 g—0e=0 J7 7
lim Hu?a — U”Lp = O,
e—0

ia,taqu

where W, := t.we . Hence

S (ZuT) < lim lim lim fo(x, V(tw=*9))dx,

t—1— g—o0 e—0 20T

and (A.4]) follows from (A.19)). B

Substep 1-2: end of the proof of Lemma [A.1] We now prove (A.2). Fix 4, B € 6(2)
such that 8, (A) < © and &, (B) < co. Then, by (A1), §, ;9(Vu(z))dz < . Fix any

n > 0 and consider Cy, Dy € O(R2) such that Cy = A, Dy = B and
6 (:ZN(E) + J g(Vu(a:))da:) <n
E

with E := AU B\Cou Do. Then 8, (E) < n by (AI). Let C,D € 6(Q) be such that
Cyc C,C c C’, C < A Dyc D, D c D and D ¢ B. Applying Lemma |A.3| with
U=CuD,V=T=FandZ=CuD(resp. U=A, V=B, Z=CandT = D) we
obtain

S (AU B) <S8, (CuD)+n (resp. S, (CuD) <S8, (A)+8,(B)),
ie. S, (AuB)<S§, (A +J8,(B)+n, and (A.2) follows by letting n — 0. W
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Step 2: other formulas for I-lim and -lim. Let £y, Fy : WP(Q; R™) x 6(Q2) — [0, o]
be defined by:

e—0

Fy(u, A) := inf {li_mFa(ug,A) WP (4 R™) 3 ue — u Iz O} ;

FJ(U,A) ;= inf {MFa(ua,A) : W()LP(Q; Rm) Su. —u w} O} .

e—0
Since Wy P (4 R™) < W(Q; R™), for every u € W(Q; R™) and every A € 6(9), we have:
S (A) < Fy (u, A); (A.20)
SH(A) < Fy (u, A). (A.21)
On the other hand, we have the following lemma.

Lemma A.4. Assume that p > N and (C1)—(Cs3) and (Cg)—(C;) hold. Then, for every
u € dom(G), every A e O(2) and every t €]0, 1{, we have:

Fy (tu, A) < <1 + sup % (t)) Sy (A) + asup 6y (1) LN (A); (A.22)
e>0 e>0

Fy (tu, A) < <1 + sup 0% (t)) ST(A) + asup 6% (1) LN (A), (A.23)
e>0 e>0

where a > 0 is given by (C7) and 6%, : [0,1] —]—00, 0] is defined by (3.1). As a consequence
of (A.20))-(A.22)) and (A.21)-(A.23), for every u € dom(G) and every A € O(XY), we have:
['(LP)-lim F(u, A) = lim Fy (tu, A); (A.24)
t—1—

e—0
F(LP)-@FS(U,A) = lim Fy (tu, A).
£— t—1—
Proof of Lemma [A.4l Fix v € dom(G) and A € 6(R2). As the proofs of (A.22) and (A.23))
are the same, we only prove (A.22). Let {u.}.-0 € W'?(Q; R™) be such that:

U [y u; (A.25)
lir% fe(z, Vue(z))dr = 8, (A) < . (A.26)
e=0J4

From (C;) and (A.26) we see that sup..,|Vuc|» < 0. As p > N, taking (A.25) into
account, we can assert, up to a subsequence, that

Ue Mee o, (A.27)

Fix § > 0 and set A5 := {x € A : dist(z,04) > §} with 0A := A\A. Fix any ¢ > 0 and any
q = 1 and consider W, W," < Q given by:

)

W = {x e Q : dist(x, As) < g + M};

7 3q

Wt {x eQ: i+ i< dist(a;,A(;)},

7
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where i € {1,--- ,q}. (Note that W, < A.) For every i € {1,--- ,q} there exists a cut-off

2

function ; € C*(Q) for the pair (W7, W.7), i.e. p;(x) € [0,1] for all z € Q, ;(x) = 0 for

[ K3

all z € W* and ¢;(z) =1 for all z € W,. Define w’ : Q@ — R™ by
w! = pu. + (1 — p;)u. (A.28)
Then w! —u € Wy ?(A; R™). Fix any t €]0, 1[. Setting W; := X\(W,” u W;*) c A, we have

7 K3

tVu, in W,
V(tw!) =tVuwl = (1 —t)75Ve; ® (u: —u) +t (;Vue + (1 — ¢;)Vu) in W,
tVu in W;*.

Fix any i € {1,--- ,¢}. Noticing that A = W, U W, U (A " W), we deduce that

)

J fo(x, tVwl)de < J fo(x, tVu.)dx + J fo(z, tVu)de + | fo(x, tVw')dz. (A.29)
A A AW,

W;

From the right inequality in (Cg) and the inequality (Cs), we see that ...
f f(z, tVw)dr < BLN(W;) + ﬁJ g(tVw!)dzx
W¢ Wi

< BA+NLYW) + 57J 9(iVue + (1 — ;) Vu)dzx

i

+ 5 fwi g (%Vg@i ® (ue — u)) dz, (A.30)

and by using again (Cs) and the left inequality in (Cg) we obtain

fo(x, tVw)de < B+~ +y¥)ZYN W) + %72 ( folx, Vu)dr + | fo(x, Vu)da:)
W;

Wi Wi

+67 Jw,- g <1L_tv<,0¢ ® (ue — u)) dx. (A.31)

On the other hand, for ZV-a.e. z € ), we have

N

) ® (o) ~ (o)

t
| 1Vl = ulie.

But lim. o [u. — u|r= = 0 by (A.27), hence for each i € {1,--- , ¢} there exists g, > 0 such
that for ZN-a.e. x € Q and every ¢ €]0, &],

':Vgpl ® (us(x) —u(z))| <7

with 7 > 0 given by (C2)—(C3) (see Remark [3.5[(ii)). Hence, for every i € {1,--- , g},

. g (:Vgpz ® (u. — u)> dx < 0N (W) (A.32)
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for all € €]0,g,] with &, = min{e; : i € {1,--- , ¢}}, where 0 is defined by (A.15). Moreover,
we have:
>0 °°

Jfg(x,tVug)dx < <1+sup5?,(t))f fe(z, Vu,)dx
A A
+asup 8%, (t) LN (A); (A.33)
e’>0 "

1>
e'>0

J fe(z, tVu)dr < <1+sup5?,(t)>f fe(z, Vu)dx
AnW; Anw;

+asup 0f,, LN (A WH. (A.34)

e'>0

Taking (A.32)) into account and substituting (A.31)), (A.33) and (A.34) into (A.29)) and then
averaging these inequalities, it follows that for every ¢ > 1 and every ¢ €]0, %, ], there exists

icq € {1, - ,q} such that

L fs(x,V(tw;'w))dx < (1 + sup 0%, (t)) (L fe(z, Vu.)dx + %L fe(:U,Vu)dx)

e’>0

+asup 0}, (1) LN (A) <1 + 1) + QZN(A)
>0 °° q q

+% ( L £, Vo )da + L £(, Vu)d:z:)

with C = max{8(1 + v + +?) + 9,%’2 . Since u € dom(G), from (Cg) we see that
lim. o §, f-(z,Vu)dz < co. Thus, letting e — 0 and ¢ — o and using (A.26), we get

lim mf folx, V(tw=))dr < (1 + sup 07, (t)) S, (A) + asupdy, LN (A).  (A.35)
A

g—0e—0 e’>0 e’>0
On the other hand, taking (A.28) into account and using (A.25)) we see that

lim lim |tw’* — tul|z» = 0.
q—o0 e—0

By diagonalization, there exists an increasing mapping € — ¢. with g. — o0 such that:

lim | fo(z, Var)dr <lim | fo(e, Vio)de < lim lm [ (2, V(twe))ds;
e—0Ja e—0 A q—00 e—0 A
lim |, — u|r =0,
e—0

where @, = tw!=* is such that @. — tu € Wy (A; R™). Hence

Fy (tu, A) < Tim Tim j £,V (twin)) dr,
A

q—0 e—0
and (A.22) follows from (A.35).
Since lim; 1~ sup..( 0%, (t) < 0 by (Cr), from (A.22) we deduce that

lim Fy (tu, A) < S, (A).

t—1—
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Moreover, by (|A.20) we have
S, (A) < lim 8, (A) < lim Fy (tu, A),

u
t—1— t—1—

which gives (A.24)). B
Step 3: using the Vitali envelope. For each u € W'?(Q;R™) we consider the set
functions A, , M, - O(2) — [0, 0] defined by:

M7 (4) 1= T g, (A);

u

MF(A) = @ m; (A). (A.36)
t—1—
where, for each z € WHP(Q; R™), m_, m} : () — [0, 0] are given by:

m; (A) := lim inf {FE(U,A) cv— 2z e WyP(A; Rm)};

‘ e—0
m; (A) := ﬁéiﬂf {Fe(v, A) v —ze WyP(A; Rm)}

For each § > 0 and each A € O(2), we denote the class of countable families {Q); = Q,, (z;) :=
N %[N}id of disjoint open cubes of A with z; € A and p; €]0,d[ and such that

LN(A\ Vier Q;) = 0 by Z5(A), we consider |5 : 6(Q) — [0, 0] given by

M S 5(A) = inf {Z ML Qi) {Qitier € %(A)} :

iel
and we define 4, : 6() — [0, 0] by
M (A) = sup Ml 5(A) = lim M) 5(A).

6>0

The set function %Z is called the Vitali envelope of /", see §77. Step 3 consists of proving
the following lemma.

Lemma A.5. Assume that p > N and (C1)—(Cs) and (Cg)—(Cy) hold. Then, for every
u € dom(G) and every A e O(Q), we have:

[-lim F.(u, A) > M, (A); (A.37)
e—0
I-lm £ (u, A) = M, (A). (A.38)

Proof of Lemma [A.5 Fix v € dom(G). Given any A € O(1Q) it is easy to see that for
every t €]0, 1[, we have:

Hence, by Lemma [A.4] we have:
M, (A) = lim my, (A) < lim Fy (tu, A) = I-lim F.(u, A);

v t—1- t—1— —0

v t—1— tu t—1—

M (A) = lim m) (A) < lim Fy (tu, A) = r-@Fg(u,A).
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Consequently
M, (A) < I-lim £ (u, A)

because in the proof of Lemma it is established that I'-lim._q Fi(u,-) can be uniquely
extended to a finite positive Radon measure on €2 which is absolutely continuous with respect

to £V, see Remark . Hence (|A.37)) holds and, to establish (A.38)), it remains to prove
that

I-Tim F.(u, A) < 4, (A) (A.39)

e—0

with %:(A) < oo. Fix any § > 0. By definition of J; 5(A) there exists {Qi}icr € Z5(A)
such that

DT (Q) < MTS(A) + g (A.40)

el

Fix any € > 0 and define m, : 0(Q2) — [0, o] by

me (U) := inf {FE(U, U):v—ue WHPU; Rm)}. (A.41)
(Thus m} (-) = lim._om(-).) Fix any t €]0,1[. For each i € I, by definition of m$,(Q;) there
exists v?, € WLP(Q;; R™) such that v, — tu e Wy?(Q; R™) and

0L (@)

FE(vé,ta Qi) < mg, (Q;) + m (A.42)

Define u : 1 — R™ by

ua,t = ’U;t n Ql

Then u, —tu € Wy (A; R™). From (A.42) we see that
J
U t? Z mg,, (Q:) + 2

el

hence lim;_;- lim._o F.(u,, A) < M.S5(A) + ¢ by using (A.40), and consequently

F.(u

-+
u

A< M, (A). (A.43)

lim lim lim F.(u?

6—0t—1—e—0 Ue it

On the other hand, we have

lugs —ulf < 2 (Jud, = tulf, + Jtu — ulf,)

_ o U |u5,t—tu!pdx+<1—’f)p”“”i”>

) (ZJ 0l — tufPdz + (1 — )P |ulf >

el
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As diam(Q;) €]0, d[ for all i € I, from Poincaré’s inequality we can assert that there exists
C' > 0 (which only depends on p) such that

ZJ vl — tulPdx < 5PCZJ VL, — tVuldz,
Qi Qi

el iel
hence
ZJ i, — tulPde < 2°6°C (Z J Vol Pde + J |Vu]pd:c> ,
iel Y Qi iel Y Qi A

and consequently

Hu;it —ulf, <2%5PC (ZJ |Vv§’t]pd:c + tpf ]Vu]pd:c) + 2P(1 — t)P||ul?,. (A.44)
Qi A

el

Taking (C;), the left inequality in (Cg), (A.40) and (A.42)) into account, from (A.44) we
deduce that

- 1

lim Tim |ul, — ulp, < 2%6PC <—(%J5(A) +0) + J |Vu|pdx> :
t—1—e—0 ’ oc ’ A

which gives

. T T .0 P _
lim lim hm o, —ulf, =0 (A.45)

because lim, o 4, 5(A) = M. (A) < 0. According to (A.43) and (A.45), by diagonalization
there exist mappings ¢ +— t. and € — 9., with ., — 1~ and J. — 0 as ¢ — 0, such that:

ity e — ulf, = 0 (4.46)

lim £ (w., 4) < M, (A) (A.47)
with w, = ugfts. By (A.46) we have I'-lim._o F.(u, A) < lim._q F.(w., A), and inequality
(A.39) follows from (A.47). W

Step 4: differentiation with respect to £V. Using Lemma Remark and
Lemma [A.5] it is easily seen that for every u € dom(G) and every A € O(1),

I-lim F.(u, A) >J Ewm :f lim lim de; (A.48)
A A

=0 =0 ZN(Q)()) p=01—1= ZN(Q,())
F-EFg(u, A) = L 1135% %ﬁdz. (A.49)

The goal of Step 4 is to apply Theorem [B.3| (with & = ;7 where u € dom(G)) for proving
the following lemma.

Lemma A.6. Assume that p > N and (Cy)—(C3) and (Cs)—(C7) hold. Then, for every
u € dom(G) and every Ae O(Q),

2y [ i @l
w0 - | I o™ A
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As a consequence, for every u € dom(G) and every A € O(X)), we have

Fie o A Q) [ mi (Qp())
F_lli% F.(u,A) = J;l /l)li% mdw = JA 'lolir(l)tl_l)rlrl mdm. (A.51)

Proof of Lemma [A.6l Fix u € dom(G). The integral representation of I'-lim._o F.(u, -)

in (A.51) follows from (A.50), (A.49) and the definition of ./, in (A.36]). So, we only need

to establish ({A.50]). For this, it is sufficient to prove that ., is subadditive and there exists
a finite Radon measure v on € which is absolutely continuous with respect to Z such that

MF(A) < V(A) (A.52)

for all A € 6(12), and then to apply Theorem [B.3| For each ¢ > 0 and each ¢ €]0, 1[, from
the definition of m§, in (A.41)), it is easy to see that for every A, B,C € 0(Q2) with B,C < A,
BnC =g and ZN(A\(Bu (C)) =0,

mg,, (A) < mg, (B) + mg,(C)
(with m&(-) defined in (A.41])), and so
T T, (A) < Tin B, (B) + Tin i i, (),
ie.
My(A) < MS(B)+ M) (C), (A.53)
which shows the subadditivity of ..

Remark A.7. As, in general, the lim of the sum is not smaller than the sum of the lim, we
cannot assert that (A.53)) holds for ., instead of ., and so that , is subadditive.

On the other hand, given any £ > 0 and any t €]0, 1[, by using the right inequality in (Cg)
we have

m$, (A) < 8 (QN(A) + L g(tVu(a:))dx) :
But, from (Cz) we see that g(tVu(z)) < v(1 + g(Vu(x)) + g(0)) for £N-a.a. x € Q, hence
() < B+ +99(0)ZY(A) + 57 [ g(Tula)de
Letting ¢ — 0 and t — 1~ we conclude that
MT(A) <O (st(A) + L g(Vu(x))dx)

with C := (1 + v + vg(0)). Thus (A.52) holds with the Radon measure v := C(1 +
9(Vu(-))) ™ which is necessarily finite since u € dom(G) and g(0) < o by (C5). W

Step 5: establishing I'-lim and I -lim formulas. According to (A.48) and (A.51]), I-lim
and I-lim formulas, see (3.3)), will be established (see Substep 5-2) if we prove that for every
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u e dom(G) and FN-a.e. x € 2, we have:

8 g,y < BT .0y s

I b SR TG s
where u;(y) := u(z) + Vu(z)(y — =) and is equivalent to:

i B Sy < Ty 39

i B S G > A G ) s

Substep 5-1: proofs of (A.54)), (A.56) and (A.57)). As the proofs of (A.54)), (A.56) and
(A.57)) use the same method, we only give the proof of (A.54]). First of all, by diagonalization
there exists a mapping s — t; with £, — 17 as s — 1~ such that:
ls
lim — =1;
s—1— S

fi i A (1) < o (%))

t—17 s—1— S s—1— S
where A(+) := sup..( 0% (-) with a > 0 given by (C7) and 6% (-) defined by (3.1). But, by
(Cy7), lim,_;- A(r) < 0, hence

i Tm A (3) <0. (A58)

t—17 s—1— S

Fix any n > 0. For every t €]0, 1] there exists s; €]7, 1| such that for every s € [s, 1],

t — t
A (—) < Tim A <—) + 1 (A.59)
S s—1— S 2
In the same way, there exists ¢y €]0, 1| such that for every t € [to, 1],
_ t - t
lim A <—) < lim lim A <—) + Q, (A.60)
s—1— S t—1= s—1— S 2
and from (A.58), (A.59)) and (A.60) we deduce that for every ¢ € [to, 1] and every s € [s, 1],
t
A <—) <. (A.61)
s

Fix u € dom(G). Fix any € > 0, any A €]0, 1], any p > 0, any t € [to, 1| and any s € [s, 1].
By definition of m$,(Qx,(z)) in (A.41)), there exists w : © — R™ such that w — su €
Wol’p(Q,\p(x); R™) and

f@ T Ve )y < i (Qae) 41 @) (A.62)
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Let ¢; € C*(Q) be a cut-off function for the pair (N\Q,(z), @), (2)), i.c. (z) € [0,1] for all

z €, p(r) =0 for all N\Q,(z) and ¢(x) = 1 for all z € Q, (), such that
4

p(1—A)

IVelre < (A.63)

Let v € WHP(Q; R™) be defined by
t t t t
vi=p-u+ (1—p)-u, = o—(u —uy) + —uy.
s s s $
Then v — tu, € Wy (Q,(z); R™) and

V(s0) = { V(tu) in Qy,(x) _
(1— t) Vo® (u—u,) + t(goVu + (1 - )Vu(x)) in Q,(7)\Q,,(7).

As Lw — tu e WP (Qy,(2); R™) we have sv + (Lw — tu) — tu, € Wi P(Q,(x); R™), and so
S 0 P S 0 P

min @) < [ g (190 + 9 (G-

t
= J fe <y, —Vw) dzx + J fe(y, V(sv))dy.
Q)\p(z) S Qﬂ(z)\QAp(m)

Takmg (Cg) and the right inequality in (Cg) into account, we deduce that

S < () () o)

+0 (5 1) (e avu) « e [ @ty

t
9 (—W) ® (u - ux)) dy
AN qu’)\c;xp( DI

with C' := 8 + By + $7?. Thus, taking (A into account, as ZN(Q,(z)) = LN (Q»,(x)),

we get

miux(Qp(x)) ms, (Qx()) L - "
2N Q) = T (EZN(Q () *”) AN””}(AN 1) (1+9(Vu(z))
C
+)\NpN JQp(x)\QAp(x) g (1——7§V(’0 ® (u — u;c)> dy
C
Vu dy. A.64
+)\NpNJ ()\QA,,(@g( (y))dy (A.64)

On the other hand, by (A.63)), for ZV-a.a. y € Q,(x)\Qx,(x), we have

t t
Ve © ()~ wal)| < || 19l

4t 1
L0 Ny

lu = g | oo
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But, since p > N, lim, %Hu — Ug||L» = 0, hence there exists py > 0 (which depends on ¢
and \) such that for ZV-a.e. y € Q,(x)\Qx,(z) and every p €]0, po|,

<r

TR0 ® (1) - ()

with 7 > 0 given by (C2)—(C3) (see Remark [3.5[(ii)). Hence

C t 1
— gl —Vp® u—ux)dyéC’G(——l), A.65
AP Jo @@ @) <1 —t ( ) AN 0
where 6 is defined by (A.15). Moreover, it easy to see that
C C
W g(Vu)dy < 51 |9(Vuly)) = g(Vu(z))|dy
Qp(z)\Qkp(“)) Qp(l’)
1

+C <>\—N — 1) g(Vu(x)). (A.66)

Taking ({A.65) and (A.66)) into account, from (A.64) we deduce that

m;, (Qy(7)) mg, (Qxp(7)) a R ulr
EZIORO)] < (1+7) (—3N(QA,,(33)) + 77) + 31+ C ()\N 1) (1 +29(Vu(z)) +0)
+ 17 l9(Vu(y)) — g(Vu(z))|dy. (A.67)
Qp(z)

As u € dom(G), i.e. g(Vu(-)) e L*(2), we can assert that
lim ( )\g(VU(y)) — g(Vu(x))|dy = 0. (A.68)
- Qp(z
Letting ¢ — 0, s — 1~ and p — 0 in (A.67)) and using (A.68]), we see that
= My, (Qp(2)) ( M (Qp())
lim —eCP 70 < (14 lim —%———=F= ) +
v < 0 (BmERgm )

+C ()\_N — 1) (1+2g9(Vu(x)) +0). (A.69)

Letting t — 17 and A — 1~ in (A.69)) we conclude that
tw My (Qp())
lim lim M < (1+ (hm i L k2
e 2R A Ve N2 (X )
and m follows by letting n — 0.

Substep 5-2: end of Step 5. Combining (A.48)) with (| and - with (| - for

every u € dom(G) and every A € O(1), we have

+17) + an,

. e mg, (Q())
-l Fe(u, 4) > f i de (A.70)
tuy z
b~ iy Fe(u, 4) f Han by o (Qp ) ™
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On the other hand, it is easily seen that for ZV-a.c. = € 2, we have:

o T S0 - TR A 7o)
)

(
lim lim M lim lim lim #Z7[f.](z, tVu

t—1— p—0 gN(Q,O( )) t—1— p—0e—0 [ ]< ( ))
and (3.3) follows by taking A = € in (A.70)).

Step 6: end of the proof. Let u € dom(G). Then, Vu(z) € G for #V-a.a. x € Q. By
using (Cg) it follows that #N-a.e. x € €,

lim lim lim %7[f.)(z, Vu(z)) = lim lim lim #Z°[f.](x, Vu(z)),

t—1- P00 t—1— pP—0e—0

and (3.4)) follows from (3.3). W

APPENDIX B. AUXILIARY RESULTS

B.1. The De Giorgi-Letta lemma. Let Q = R”Y be a bounded open set and let O()
be the class of open subsets of 2. The following result is due to De Giorgi and Letta (see
[DGLT7T] and also [But89, Lemma 3.3.6 pp. 105]).

Lemma B.1. Let § : O(2) — [0,0] be an increasing set function, i.e. §(A) < §(B) for
all A, Be 06(Q) such A < B, satisfying the following four conditions:

(i) S(@) = 0;
(ii) & is superadditive, i.e. S(A U B) = 8(A) + S(B) for all A,B € O(2) such that
AnB=:;

(i) & is subadditive, i.e. (AU B) < §(A) + 8(B) for all A, B € O6();

(iv) there exists a finite Radon measure v on § such that S(A) < v(A) for all Ae O(Q).
Then, & can be uniquely extended to a finite positive Radon measure on €2 which is absolutely
continuous with respect to v.

B.2. Integral representation of the Vitali envelope of a set function. Let Q < RV
be a bounded open set and let O(2) be the class of open subsets of Q. For each § > 0 and
each A € O(Q), we denote the class of countable families {Q; = Q,, (2;) 1= x4+] — &, &[N }ies

of disjoint open cubes of A with z; € A and p; €]0, 6] and such that £V (A\ U Q;) = 0 by
an

Definition B.2. Given & : 0(Q2) — [0, ], for each 6 > 0 we define &5 : 6(2) — [0, 0] by

S5(A) := inf {2 S(Q:) : {Qitier € %(A)} .

el
By the Vitali envelope of & we call the set function & : 6(Q) — [0, 0] defined by
S(A) :=sup S5(A) = (lsh% Ss5(A).

6>0

The interest of Definition comes from the following integral representation result. (For
a proof we refer to [AHMIS| §3.3] or [AHCMI17, §A.4].)
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Theorem B.3. Let & : O(Q) — [0,0] be a set function satisfying the following two condi-
tions:

() there exists a finite Radon measure v on §) which is absolutely continuous with respect
to &N such that S(A) < v(A) for all A€ 6(Q);

(ii) & is subadditive, i.e. S(A) < S(B) + S(C) for all A, B,C € 0(Q) with B,C < A,
BnC =g and Y (A\(BuC)) =0.

Then lim,_q ;}5?7% e LY(Q) and for every A e 6(Q), one has
- . S(Qp(x))

S(A) = f lim — 22

A= Q,w)

B.3. A subadditive theorem. Let 0,(R") be the class of all bounded open subsets of
RY. We begin with the following definition.

Definition B.4. Let & : 0,(RY) — [0, 0] be a set function.
(i) We say that & is subadditive if
S(A) < $(B)+38(0)

for all A, B,C € 0,(RY) with B,C < A, BnC = @ and ZV(A\(B u C)) = 0.
(i) We say that & is ZN-invariant if

S(A+2) = S(A)
for all A e 0,(RY) and all z € Z".

Let Cub(RY) be the class of all open cubes in RY. The following theorem is due to Akcoglu
and Krengel (see [AK81] and also [LM02] and [AHMI1l, Theorem 3.11}).

Theorem B.5. Let 8 : 0,(RY) — [0, 0] be a subadditive and Z" -invariant set function for
which there exists C > 0 such that for every A € O,(RY),

S(A) < CZLYN(A).

dz.

Then, for every Q € Cub(RY),

sk . 800,k
Monig) ~ &
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