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Abstract

In this article we reconsider the problem of the propagation of waves in a random
medium in a kinetic regime. The final aim of this program would be the understand-
ing of the conditions which allow to derive a kinetic or radiative transfer equation.
Although it is not reached for the moment, accurate optimal and somehow surpris-
ing number estimates in the Fock space setting, which happen to be left invariant by
the dynamics. Keel and Tao endpoint Strichartz estimates play a crucial role after
being combined with Cauchy-Kowalevski type argument. Although the whole article
is focussed on the simplest case of Schridinger waves in a gaussian random potential
of which the translation into a QFT problem is straightforward, several intermedi-
ate results are written in a general setting in order to be applied to other similar
problems.

Keywords: Random media, waves and Schriédinger equations, Strichartz estimates,
Cauchy-Kowalevski, Fock space, number estimates.
MSC2020 35A10, 35Q20, 35Q40, 35Q60,35R60,60H15,81V73

1 Introduction

The asymptotic analysis or random homogenization of wave propagation in a random
medium, in a kinetic or diffusive regime has motivated several works in the recent decades.
It is not our purpose here to give an exhaustive list but we think essentially of two dif-
ferent approaches: the one initiated by G. Papanicolaou and coauthors (see e.g. [ ,

, 1) with a rather complete review by J. Garnier in [Gar] and the one proposed
by L. Erdos, H.T. Yau and later with M. Salmhofer in [ I I 1. Those two
approaches formulate their results in terms of a kinetic (or diffusive) evolution equation
for some weak limit of scaled Wigner functions. The main difference between the two
approaches can be summarized as follows : The first approach presented in [Gar] mod-
eled on the problem of randomly layered media (see [ 1) focusses on space-time wave
functions, by solving a space-time PDE (it can be a Schrodinger or a wave equation) with
random coefficients but with a smooth and essentially deterministic right-hand side. With
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very strong assumptions on the right-hand side of the equation, essentially deterministic
and smooth, a kinetic equation is written for the distributional weak limit of the Wigner
function associated with the space-time wave function. The work of [ 1 1 ]
is concerned with Cauchy problems, at the quantum level for the Schriédinger equation
and semiclassically at a classical level for a linear Boltzmann equation in [ ] or a heat
equation in [ 1 1. The strategy of this second approach consists after writing a
Dyson expansion (the iteration of Duhamel’s formula), in making an accurate combina-
torial analysis of Feynman diagrams which label all the random interaction terms of the
expanded Dyson series. This Dyson expansion technique was actually already used for a
similar problem by H. Spohn in [Spo]. The final step which gives the asymptotic behaviour
of the Wigner transform, essentially relies on the accurate control and expression of the
remaining terms of the series by using stationary phase asymptotic expressions for the
many oscillating integrals. The results of this second approach always require strong as-
sumptions on the initial data at the initial time ¢ = 0 and prove weak convergence results
at the macroscopic time ¢ #Z0.

The main difficulty in this problem is concerned with the control of recollisions and
especially the proof that the asymptotic evolution is Markovian, or given by some semi-
group associated to a kinetic of heat equation, although the multiple scattering process
of waves could destroy this markovian aspect. Depending on the asymptotic regime, the
effective asymptotic evolution could be affected by some memory or non local in time ef-
fect. In the considered asymptotic problems, it must be checked that those memory effects
vanish asymptotically. In the approach reviewed in [Gar] which is concerned with rather
general random fields, this is proved by estimating higher moments. In the approach of
[ ] the combinatorial accurate analysis of Feynman diagrams, is reminiscent of the
accurate control of recollision terms by G. Gallavotti in [Gal] for the classical Lorentz gas
problem (Wind tree model). Both approaches bring accurate information about a difficult
problem in slightly different frameworks and with various range of applications.

However those results remain unsatifactory from the mathematical point of view and
for the following reason: The dynamics of (quantum) waves is given by a semigroup (actu-
ally a unitary group when there is no dissipation) and the asymptotic kinetic or diffusive
limits are also given by well defined (semi)-groups. In the Cauchy problem approach,
one does not yet understand the dynamically stable class of initial data which makes
the derivation of a classical kinetic or heat equation possible. Actually the results of
[ [ 1 ] are themselves puzzling because with very specific initial data at
time ¢t = 0, they prove the asymptotic expected behaviour at the macroscopic time ¢ # 0.
But this means that the time evolved quantum state at the macroscopic time #/2 # 0,
enters in the class of admissible initial data for which the asymptotic evolution can be
proved for a nonzero time interval (at the macroscopic scale). Such initial data do not en-
ter in the very specfic class considered at time ¢ = 0. In the space time approach reviewed
in [Gar] the strong assumptions on the right-hand side compared with the weak conver-
gence results of the wave function, have been considered in a negative way. Actually what
is called “statistical stability” is shown to fail with rough data (see [Bal]). But no positive
answer for a general class of random right-hand side seems to emerge. Although the two
approaches are about slightly different problems, they seem related at least for some ba-
sic random processes on which we will focus in this article.

Our hope is that such an analysis about the propagation of random waves in a ran-



dom medium should lead to results relying on dynamically stable hypotheses. We are
led in this direction by the strategy followed by the second author with Z. Ammari in
[ 1L 1 where they managed to give a general and robust class of initial data,
dynamically stable, such that the quantum mean field dynamics can be followed.

About this very technical question a first attempt was tried by the first author in [Bre].
The idea was to exploit the link between gaussian random fields (and possibly other fields
like the poissonian random fields) with quantum field theory. It rapidly appears that the
asymptotic problem, of waves in a random medium in a gaussian random field in the
kinetic regime, cannot be thought as an infinite semiclassical problem like the bosonic
mean field problem. It has some similarities but the strength of the free wave propagator
and the translation invariance lead to non quadratic and non “semiclassical” Wick quan-
tized operators. For this reason the coherent state method presented in [Bre] led to an
accurate Ansatz, only for O(h'2) macroscopic times, where & > 0 is the chosen small pa-
rameter, and the derivation of a linear Boltzmann equation was possible only by forcing
the markovian nature of the asymptotic evolution by reinitializing on some intermediate
time scale the random potential. It was not at all satisfactory. Actually the number es-
timates that we prove in this article confirm that a coherent state approach cannot work
for those problems.

Another issue of this problem is the good understanding of the dispersive properties
of the free wave propagator with the asymptotic behaviour of waves in a random medium.
The different behaviours expected in small dimension, d < 2 for the Schrodinger equation
in the kinetic regime compared to d = 3, are closely linked with the time integrability
of the dispersion relation (L' — L™ estimates). In the community of nonlinear PDE’s,
Strichartz estimates are known to be more robust and effective than the pointwise in
time L1 — L*™ estimate. With the endpoint Strichartz estimates proved by Keel and Tao in
[ 1, those inequalities are now well adapted for linear critical problems. This article
shows that they actually lead to very accurate and somehow surprising “number esti-
mates” with some non trivial consequences.

Before giving the outline of this text, let us point out some limitations and features of
the present analysis:

¢ We are not yet able to derive a full kinetic equation, except if one makes some
connection with the existing results of [ 1. The class of good initial data for
which an asymptotic equation can be written is not yet identified.

* We work essentially with the Schrédinger equation in the presence of a gaussian
random potential in the kinetic regime, as what we think to be the simplest, and
richest model problem from the point of view of available structures.

* Once the two previous points are made clear, the interested reader will realize that
several argument, especially the one making use of Strichartz estimates, have been
written in a sufficiently general framework in order to be transposed in another
framework.

* Some results like the possibility to define Wigner measures for all times, the lo-
calization in energy of the propagation phenomena, the class of potential corre-



sponding to the scale invariant potential for Strichartz estimates, definitely bring a
partial but accurate information.

Our main results are about accurate number estimates, stated in Proposition 4.5 in a
rather general abstract setting and in Theorem 5.1 for the case of our model problem of
the Schrodinger equation with a gaussian translation invariant potential in the kinetic
regime and dimension d = 3.

Outline of the article;

a) In Section 2 the link between gaussian Hilbert spaces and the bosonic Fock space is
recalled and the equations in which we are interested are explicitely written.

b) In Section 3 the translation invariance is used in order to make appear in a crucial way
the center of mass variable, with respect to the position of the field variable. The
expression of the creation and annihiliation operators are given explicitely in the
center of mass and relative variables and finally LP-estimates are carefully checked
for those creation and annihilation operators under the suitable assumptions on the
potential.

¢) Section 4 reviews the known results about endpoint Strichartz estimates, and gives
consequences in connection with the L?-estimate in the center of mass given in
Section 3. Then a rather general fixed point is proved which combines endpoint
Strichartz estimates with an adaptation of Cauchy-Kowalevski techniques.

d) In Section 5, the general assumptions of Section 4 are checked in the framework of
the Schrodinger equation with a gaussian random field in the kinetic regime and
ambient dimension d = 3.

e) Consequences and a priori information, for the asymptotic evolution of Wigner func-
tions are given in Section 6, withouth computing them.

f) Finally various approximation or stability results are deduced as consequences of the
general estimates proved in Sections 4, 5 and 6.

Before starting, be aware of the following assumed framework and conventions:

All our Hilbert spaces, real or complex, are separable. All measures are assumed
sigma-finite. On a set & endowed with a sigma-set, a generic sigma-finite measure will be
denoted dx, while the normal calligraphy dx will be reserved for the Lebesgue measure
on & =R?% . When (Z,dx) and (%, dy) are two sigma-finite measured spaces, the notation
LﬁZLgI, ,1<p,q<+oc0, is used for L?(%,dx;L?(?% ,dy)). However a more general version
of LYLY will be introduced in Subsection 3.2.

2 Random fields and Fock space

2.1 Gaussian Hilbert space and random fields

Let ¢ be the stochastic gaussian measure (see e.g. [Jan]) on the Lebesgue measured space
(R?, %,dy). This defines a real Hilbert gaussian space indexed by L2(R%,dy;R) which is
generated, as a Hilbert space, by the centered real gaussian variables X4 ~ N(0,|A|),
with A measurable set of R? and |A| = Jady. By Minlés theorem (see [Sim]) the space
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L%(Q,%9;R) which contains powers of those gaussian processes can be realized with Q =
SR, dy;R).

Complex valued elements F € L%(Q,¥;C) are written F = Re F+iImF , Re F,ImF € L%(Q,%;R)
handled by the R-linearity of the decomposition.

Once the complexification is fixed in this order (see [Jan] for an accurate description of
various complex structures of gaussian measures), the chaos decomposition of elements

in F € L%(Q,%;C) can be written

F(w)=EBfRd Foyt,eyn): Xy Xyt dyr+dyn, 1)
n=0JR™"

where

* Fro(Wo)s--» Vo)) = Frn(y1,...,yn) for all 0 € G,, and complex valued functions are
treated by the R-linearity of the decomposition F,, = Re(¥,) + iImF,, ;

¢ the above symmetry can be written F,, = S, F, where S, is the symmetrizing or-
thogonal projection on L2(R%",dy; ---dy,;C) given by

1
(SnFn)(yly---ayn):; Z Fn(yo(l)w--;ya(n)); (2)

*0eG,

* the family (X),cge is made of jointly gaussian real centered random fields such
that E(X,X,)=6(y—y'), which actually means

EI( f FDX, dyX f 2 Xydy)] = f F»g) dy
Rd Rd Rd

for all f,g € S([RE;C);!

* products or Wick products of singular random variables X, , j =1...J, must be
considered in their weak formulation as well;

* :Y;---Y, : stands for the Wick product of the random variables Y7i,...,Y, ;

¢ with the assumed symmetry of the F,, components,

EUFP) = [ IF@)? d9)= Y n!
Q n=0 R

o0
AFan oy dyredyn = ) nllFal7s.
" n=0
®3)

A field is a random function of x € R? and we shall consider F : R¢ x(Q — C . A real gaussian
centered translation invariant field can be written

V(x,w)zjl;dV(y—x)Xy dy.

An element F € Lz([Rg x Q,dx ®%;C) has the chaos decomposition

o0
F(x,w)=®fRd Fpolx,y1,...,90): Xy, - X, 1 dy1---dyn 4)
n=0JR"
(e, 0)
:@ » Fox,y1—%,...,9n—%): Xy, -~ X, : dy1---dyn (5)
n=0 "

IWe follow the general probabilistic convention which omits the w argument with X y = Xy(w) e.g. in
formula (1).



where F,,(x,y1,...,Yn) = F’n(x,yl +x,...,Yn +x) shares the same symmetry in (y1,...,y,) as
F, and

I1F 2 fRd E(F(x,)%) dx = Y

[e.]
— ma 12 — | 2
Lz(RgXQ)_ 0n-||Fn||L2(RdXRdn) nZOn||Fn”L2(RdXRdn) (6)
n= =

Assumptions on the real potential function V will be specified later but we can already
compute the product 7 (x,w) F (x,w) by making use of Wick formula (see e.g. [Jan]-Theorem 3.15)

n

Xy Xy Xy, =1 X, Xy - Xy 04 Z 0(y—yj) i Xy, Xy, | Xy Xy, Xy,
j=1 —~—
removed
which leads to the chaos decomposition of 7 (x,w)F(x,w) as
f ! Z V( VF,,( ) X X, .:d d
Rd(n+1) (n+1)! 0_66"+1 yU(rL+1) X n x>y0'(1) xa"'>y0'(n) ) Y1 Yn+1-" yl yn+1

o[
Rd(n-1)

2.2 The Fock space presentation

fRdV(y)Fn(x,y,yl—x,-.-,yn-l—x) dy| : Xy Xy, ;i dy1---dyn-1. (7)

The chaos decomposition (1) provides the isomorphism between L2(Q,$%;C) and the bosonic
Fock space

T(LAR?,dy;C) = é(LZ(Rd,dy;Q)G’"
n=0

where for a (real or complex) Hilbert space f, h®” is the symmetric Hilbert completed
tensor product, equal to C (or R) for n =0, endowed with the norm such that

1o lger = @17 Wfulzeme gycron = W fullze@in dyy--dyni0)- ©)

The above direct sum is also the Hilbert completed direct sum. Note that the Fock space
norm (8) differs from the §H®"*-norm chosen in [Jan] in adequation with Wick products by
a factor vn!. The unitary operator from L?(Q,%;C) to T (LZ(Rg ,dy;0)) is thus given by

00
F*_’@fn s fan=VnlF,,
n=0

since
2 . 2 . 2
||F||L2(Q,E§’;C) = Zon'”Fn “Lz(Rd”,dyr“dyn;C) = ZO ”fn ”Lz(Rd,dy;C)@” .
n= n=

The Fock space I'(h) is endowed with densely defined Wick-quantized operators. For a

monomial symbol b(z) = (z87,5z%P) with b € L(H®P;h®7), the Wick quantization bWVick ig
alg
defined on € h°" by

neN

Vn+pln+q)!

n!

bWickfn+p — Sn+q(6 ® Id®n)fn+p

where S, : h™ — h°™ is the symmetrizing orthogonal projection given by

1
Sm(g1® - ®gm) =" Y. 8o)®®Zaim) 9)

f0e6,



already introduced in (2).
Basic examples in our case h = L2(R?,d y;C) are given by

a(g) :(<g>z>)WiCk> a(g)fn(y1>---ayn—1): \/Ej%d@fn(yla"'ayn—lay) dy>

vn+1
—— Y oY@ Yons1)s

% _ Wick * =
@' =z, T, @' D) =G X

: 1
P(V)=(V2Re(V, )Wk (V) = \/—E[a(V) +a*(V)],

n—-1
dT(A) = (2, Az)VK, dr(A)= Y 1d** 0 A@1d®" 17*,
k=0
with
la(g),a* (N =alg)a*(f)~a"(Malg) = (g, /14,

Remember also that more generally, if (A,D(A)) generates a strongly continuous semi-
group of contractions e, ¢ = 0, then ['(e!4)f, = [e'41®"f, defines a strongly continuous
semigroup of contractions I'(e?4) on I'(h) with generator denoted by (dT'(A),D(dI(A))),
which extends the above definition of dI'(A). In particular this makes sense for A = —iB
with (B,D(B)) self-adjoint on h and (dI'(B),D(dI'(B))) is a self-adjoint operator on I'(h)
when (B,D(B)) is self-adjoint on f.

According to (5)(6), random L%[R%,dx;C) functions F(x,w) can be written as elements f of
L2(R?,dx;C) e T(LA(R?, d y; C)),

F(x,0)— f(x,-—x) = @ fale,y1-%,..., 50 — %)

neN

with  f, € L2 (R xR, dxdy; - dyy;C),
2 - 2
”F”L2(Rd ><Q,dx®<§) = ZO ”fn ||L2(Rd XRd",dxdyy“dyn) ’
o

and where Lgym refers to the exchange symmetry in the y-variables.
When V € LQ(Rd,dy; R) and 7 (x,w) = fRd V(y-x)X, dy, the Wick product formula (7) for

V(x,w)F(x,w) is transformed into

V(x,w)F(x,0)— [a(V)+a" (V)If (x,-—x) = [\@(,b(V)f](x,-—x). (10)
1
20,1
With the notation D, = 71.6y =| ¢ [theoperator(x-D,,D(x-D,)),withx-D, = Zgzl «*D Y
1
20,4
[

is essentially self-adjoint on .#(R?,d y;C) for all x € R? . This defines a strongly continuous
unitary representation of the additive group ([Riff, +) on Lz([Rﬁ) ® F(LZ(IR;Z)) given by

. 0 Pl
e—Lx~dF(Dy)(®fn(x’yl’._.’yn)) =P fulx,y1-2,..., 5, —x).
n=0 n=0

Therefore the above unitary correspondence F(x,w) — f(x,-—x) gives a unitary correspon-
dence
FeL*R?xQ,dx®%;C)— f e L2R?,dx;C) e (L3R, d y;C)), (11)

while (10) becomes for V € L2(R?%,d y;R)

VF — [\@d)(V)f] . (12)
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We now translate a general pseudo-differential operator in the x-variable, a V¥(x,D,) ®
Idy 2 «.c) under the above transformation (11).
When | is a complex Hilbert space, we recall that L2(R?,dx;C)®h equals L2(R?, dx; ) and

¢ the Fourier transform, with the normalization

dé
2m)d’

Fu(é) = f e % x) dx, Flu(x)= f e Cy(&)
Rd Rd

is unitary from Lz(Rd,dx; h) to Lz([Rd, (;f)d R

o 9(|Rd;h) , ! ([Rd;h) and the Fourier transform have the same properties as in the
scalar case h=C.

Be aware that the behavior of the Fourier transform when fj is a general Banach space
is more tricky according to [Pee]l. So when §j is a Hilbert space, we consider pseudo-
differential operators in the x-variable of the form aV(x,D,) = aV¥(x,D,) ® Idy, for a
symbol a € .’ (Rii;ﬂ:) given by its Schwartz’ kernel

Ty ) L

Weyl _ ilx—-y)-¢ —_—
[aV(x, D)I(x, ) fRde a( 2 @md

When h=C, aVe¥l(x D,) is a continuous endomorphism of y([Rff;C) and #'(R%;C) with
the formal adjoint Eweyl(x,D ») and the alternative representations:

e When v,u € #(R%;C),

dxd¢
(2m)d

w,a" (D) = fR  ale, &) Wio, ul, )

where W[v,u] is the Wigner function of the pair [v, u] (or the Weyl symbol of |u)(v]),
given by

W[v,u](x,£)=f ey + )Tl —2) ds,
R4 2 2
and which belongs to #(R%¢;C).
* By setting [P,X] =p¢-x—py-Efor P=(py,pe), X =(x,8) in R2d = T*R% | and

dX
(2n)d

Fa(P)= fR y eHPXl g (x)

we have a = F(ZFa) in #'(R%?). When Fa € L1(R??;0),

dP
Weyl _ or
a“(x,D,) = fRZd FaP)tp g,

where 7p = e!Pe*~PxD2) = [pipea=px)|Weyl(x D) ) is the unitary phase translation

Tpu(x) =P P2y (x — ).

In particular, the above integral is a Z(L2(R?,dx;C))-integral when Fa € L1(R%?,dP;C)

and a fortiori when a € #(R%4;C).



With those two remarks, for a general a € .%'(R??;C) the integral

aWeyl(x’Dx) — f Fa(P) ei(Pf‘x_Px'Dx) d—P
R2d —— 27)¢

can be interpreted as the weak limit

dP

aV¥(x,D,) =w-limf Fa,(P)e!Pex—psD:) ’
n—oo R2d (2”)d

where a, € #(R%?;C) is any approximation of a € &'(R2%;C).
While considering the aweyl(x,Dx)®Idb , the same construction makes sense after noticing
that for u,v e y(Rd;f)) , the Wigner transform W[v,u] belongs to y(Rid :£1(h))? and

dxd¢
2m)d’

w,a"Nx, D )uy = Tr [aWeyl(x,Dx)cDIdh] Iu)(vl] zf ; a(x, ) Tr{Wlv, ull(x, &)
R2

We apply this with h = L2(Q,%;C) and h = T(L2R?, d y;C)): We start from

dP
@2n)d’

aV(x,D,) = a V¥ (x,D,) ® 1d; 2 .c) = W-lim f Fan(P)e!Pex=paDa)
7 n—oo Jm2d
the correspondance
aweyl(x,Dx)F — eix~dF(Dy)aWey1(x’Dx)e—ix~dF(Dy)f ,

and
elxﬂ,ei(pg'x—px.Dx)(e—ixﬂ,X) — ei(px-x—px-(Dx—A)) for all 1 ¢ Rd

which gives by the functional calculus, the equality of unitary operators

eix~dF(Dy)ei(pg-x—px~Dx)(e—ix~dF(Dy)) — ei(px-x—px(Dx—dl"(Dy))) .

We deduce that for a € #'(R24;C), aV&¥(x, D,)F € #'(R?; L%(Q,%;0)) is transformed into

aV(x,D)F — aV¥(x,D, — dT(D,) f € ' RETLARY, dy; 0))). (13)
with 4P
a3 (x, D, —dT(D,)) = w-lim f Fa,(P)e'PePeDemdl D) _—_
n—oo Jp2d (277;)d

Let us continue by applying the Fourier transform in the x-variable with

d¢
2m)d

Fou(@) = f ey dx , Flu() = f e u(g)
Rd R4
and set for f € #'RE;T(LAR?, dy;C)))
f=F.f e ' ®RETALARY, dy; 0)).

With
FraV¥x, D) F;1 = aV(-Dy,0)

2pp (h) denotes the Schatten space of compact operators for 1 < p < +oo.



where the functional calculus leads to F,, a We¥(x, D ,—dT(D 9)lam 1- aweyl(—Dg, ¢{—dI'(Dy)),
we obtain the unitary correspondence

FeLl’®!xQ,dx®9;0)~ f =F.f e L*R?, (2d‘;d TLAR?, dy; ), (14)
T

fale,y1—2%,...,9,—%): X, - X, :dy1---dy,, (15)

ith F( ) i 1
wi x,w) = —
n=0JR" \/m

and where (12) and (13) become

VF —V2p(V)f, (16)
Elweyl(x,Dx)Fl — awe)’l(_Df’é — dl"(Dy))f . an
€S RELHUQ,Y;0)) ey’(R?;F(I;(Rd ,dy;0)

From this point of view, the Fock space and functional analysis presentation is sim-
pler than sticking with the usual chaos decomposition (4) where Fourier transforms and
pseudo-differential operators do not seem to have simple probabilistic interpretation.

Remark 2.1. As a final remark, all the above constructions can be tensorized with an
additional separable Hilbert space ) = L%(Z,dz;C).

2.3 Our problem

We aim at studying the stochastic partial differential equation

i0,F = —AF+VhVF,
(18)
F(t=0)=F,
where

® 7 is the translation invariant gaussian random field
V(x,w)= fd Viy-x)X, dy,
R

with V € L2(R%;R);
e the solution F(¢,x,w,z) is seeked in €°R;L2(R% x Q x Z,dx ® 9 ®dz;C));
* h >0 is a small parameter which will tend to 0.

In particular we will consider the asymptotic behavior of quantities

(), "N, DIF () ey = fZ E [(F(%,z), aweyl(hx,Dx)F(%aZ»L?(Rd,dx)] dz(2)
(19)

for a € S(1,dx%+dé&2) and ¢ € [0, T]. Remember that the symbol class S(1,dx%+d&?) is the

set of €™-functions on R?? with all derivatives bounded on R?? .

Note that the variable z € Z does not appear in the equation. The dynamics is thus well

defined when it is defined for Z = {z9} and dz=6,,. A sufficient condition was provided

in [Bre] by making use of Nelson commutator method.
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Lemma 2.2. Proposition 4.4 in [Bre]: Assume V € H>(R%;R) then the operator —A, +
alg

VRV is essentially self-adjoint on @y(Rf;(Lz(Rd,dy;C))O") which is a dense subset of
neN

L2R%,dx; L*(Q,%;0)) = L2(R? x Q,dx ®9;C) by (4).

Remark 2.3. A side corollary of our analysis says that the dynamics is well defined under
the assumption V € L™ (R%;R) with r! = d2_fz in dimension d = 3, See Subsection 7.4 at the
end of the article.

Lemma 2.2 provides a natural self-adjoint realization of —A, + VA7 in h = L2(R% x Q) x
Z,dx®% ®dz;C) and any initial datum Fy € ) defines a unique solution F € EOUR; h).
There are various reasons for introducing an additional variable z € Z, and this trick will
be used repeatedly. One of them is the following: Starting with Z = {29} and dz = §,,,
one may consider instead of F(%) = UV(%)F() with Uy (¢) = eI+ VRY) , the evolution of
a state

o(5) = Up(+)poU3(5)
h R h

with gg € LULAR? x Q;0)), 00 =0, Trl[po]l = 1 possibly replacing ||Fyl;2 = 1. By writing
1/2 ,1/2

00 =0y @y one gets
¢ Ly 12 L 129
= [Uyp(= Uy (=
Q(h) [ V(h)QO Il V(h)Qo 1
where F(t) = Uy/(t)gé/2 is the solution to (18) in

LUALARY x Q,dx x9;C) = L2R? x QA x Z,dx ® 9 ® dz)
with Z=R%2Q, dz=dx®¥Y,

while the trace to be computed at time % equals

:fz[E

Thus considering the evolution of non negative trace class operators instead of projectors

Tr aweyl(hx,Dx)Q(%)

t t
(F(E,Z), aweyl(hx,Dx)F(Z,Z)>L2(Rd,dx) dZ(Z).

on wave functions, becomes the same problem by introducing the suitable additional pa-
rameter z€ Z .

The unitary correspondence (14)(15), with (16)(17) and Remark 2.1, transforms the dy-
namics (18) into

{ i f=@- fzr(Dy))Z f+V2rpW)f, .
f&=0)=fo,
and the quantity (19) into

(), @V D~ T D) N 02,5 00 1)

We will see that the variable ¢ € R? and even some part Y’ of the variable Y = (y1,...,¥n),
when the total number is fixed to n, can be taken as another parameter like z € Z for some
points of the analysis. This leads to a parameter z’-dependent, z' = (£,Y’,2) € R xRI" x Z ,
analysis in L2RI®=1) gy . Those parameters appear in Section 3 by introducing the

+...+
center of mass Y" = yg = %

and the relative coordinates y} =y;—Ya , a general func-
tional framework for parameter dependent Strichartz estimates and their consequences

are presented in Section 4 and finally those are detailled in Section 5 for (20).

11



3 The Fock space and the center of mass

According to (20) our stochastic dynamics has been translated in a parameter dependent

dynamics in the Fock space. We shall consider an additional unitary transform using the

center of mass and the relative variables
n_Yit-ootYyn r_

ye=T————, ¥,

.
n Yi—Xag

in the n-particles sector, n = 1. It trivializes the free dynamics when 7 =0 or V = 0.
The expression of the interaction term v2h¢(V) becomes more tricky but various general
estimates are given here.

3.1 The unitary transform associated with the center of mass

We shall use the following notations for n = 1:

* A generic element of R?” will be written

n
Yo=1,..,9n) with [¥,12=Y 1y;l2. (22)
Jj=1

* The center of mass of Y, € R%" will be written

+ cee +
yo=yp =TT (23)
n
and the relative coordinates y]’. =yj— yg will be gathered into
Y, =5 Y0) = (1= Y55 Y0 = 9G)- (24)

The vector Y, actually belongs to the subspace Z" = {Yn € R ,Z;.Lzl yj= O} and we
recall

n
Vol = nlyg 2+ [YVo]* = nlyg 2+ Y 1512 (25)
j=1

With those notations the map RI" 5Y, — (yg,Y,;) € R x Z" c R% x R%" is a measurable
map and the image measure of the Lebesgue measure [dY,| = ]'[j:1 |dy;| is nothing but

dyg ® du,(Y,) =dyg ®[n%dy1 - dy,8o(y1 +-+- +yn)]. (26)

For n =2 we can write d u,(Y,) = nd [Li%j, dy} for any fixed jg € {1,...,n} by taking the lin-
ear coordinates (y})#jo on £" where y]’.0 =—Y i y]’. . For n=1, #' = {0} and integrating
with respect to Y| =y € 2" is nothing but the evaluation at y1=0.

Definition 3.1. On I_I‘,’L":l[Rd” the measure y carried by % = U5> | R" is defined by

Vgn € 6R™), f@ gn(¥") dpn(¥") = fR L &nL 301+ +y)n? dyredyn

n—1
nz2 / / ., d / /
= fRd(n_Dgn(yl,...,yn_l,—J;yj)n dyi---dy ;.

(e, 0)
For 1 < p < +oo, the space LP(%,dy) is the direct sum @LP(®",du,) completed with
n=1
1/p

o0 o0

respect to the norm || @gn e = (Z lgn |I€p(%n i) . The closed subspace of symmetric
n=1 n=1 e

!

functions, gn (¥, --- ,y;(n)) =gn(y1,...,yp) forall 0 € S, and for all n 2 1, is then denoted
by LEyn(R,dp(Y").

12



For g, € L2(R%" x Z,dY" ® dz;C), n = 1, the function

gG,n(yG>Yr;>z) = Ung(yGalepz) = gn(yG +Yrgaz) (27)
belongs to L2(R? x Z" x Z,d yg ® d 1, ® dz;C) with

”Ung ”Lz([REd x B xZ,dygedu, ®dz) = ”gn ”Lz(Rd” xZ,dY,®dz)
and  g,(Y,2)=U5'86,2)Yn,2) = 860V, Y — &, 2).

Additionally Ug : LAR?,dy)°" — L*(R?, d yg; L2, (R", d pin)) = L2 (R", d pin; LAR?, d y))

sym
is unitary and the same result holds for the parameter z € Z version.
Proposition 3.2. The map Ug extended by Uggo(z) = go(2) for n =0, defines a unitary
map

Ug:L*(Z,dz;T(LAR?,dy;C)) — LA(Z;C)e L2, (Z x #,dz ® du; LA ®R?,dyg;C)).  (28)

sym
When dT'g(A)=Ug [dF(A)@Idp(Z,dz)]Uél for a self-adjoint operator (A,D(A)) in L2R%,dy),
the case A =D, gives
dTg(D,)=Ugdl(D,)Uz'=D,,. (29)

For any bounded measurable function ¢ on X x Z the multiplication by $(Y',z)
On(Y,,2) for n =1, while ¢pg : Z — C, commutes with dT'g(D,) =D, according to

an =
VteR? VueLA(Z,dz;C)e L2, (Z x Z,dze di; LAR?,dyg,C))  e'"Pre(pu) = (e’ Prau).
A particular case is ¢,(Y,,2) = ¢(n) for a bounded function ¢ :N— C.

Proof. The unitarity of Ug comes at once from (27) and the componentwise unitarity

already checked. For dI'g(D,) =D, , simply write

n

angG,n(yGaYr,L) = ay(;gn(yG +yia' - )G +y;) = Z(angn)(yG +yj,[a' - )G +y;)-
j=1

The commutation statement comes from the separation of variables, yg and (Y’,z). O

Introducing the center of mass thus simplifies the free transport part of (20). It is not
so for the interaction term v2Ap(V) = vA[a(V)+a*(V)]. An explicit and useful expression
is nevertheless possible for

ag(V)=Uga(V)U;' and a}(V)=Uga*(V)UZ . (30)

Proposition 3.3. The operator ag(V) and a,(V) for V € L2(R?,dy;C) have the following
action on fgn € Lgym(%” x Z,du, ® dz;L2R?%,dyg;C)) for n = 1 and fao € L%(Z,dz;C)
where we omit the transparent variable z € Z:

acVfeo=0, lacWfel= [ Tonfaitn dn, (31)
¥n> 1, [a6W)fenl06, V)= Vi | T06+mfene + 22, Y, 2 d,
LUlth Yn=(yi"~"y;1_]_7yn)€|Rdn7 Yr’L_]_E‘%n_l’ Yn_y_nE*%ny (32)
n
ai(Mfaolve)=Vyafao, (33)

/

* y, Y
V>0,  apWMfentve,Yh,)=Vn+18,:1lV(yg +y,.1)fen(vG - ’;:1 Y, + ’;:1 )],

!
. Y
with Yo =(},...,y) R, Y ex"! Y,+2Lecgn,
n

Z v(ytlf(n+1))u(yl/5(1)’ e ’y;(n+1))‘ (34)

U€6n+l

and  Spalv( U0 Yyl = s

13



Proof. Writeforn>1,
lacVfe )0 LY ) =a(VUG fo  J(Y)_; +y5h)
= Vi [ TGN oY,y + 55, 50) 5.

By setting j, =y ! + y, the formula (U;'g¢,2)() = 86.n (v, — &) with

n Vit typ1+¥, n-=1 .., ¥y e
= = + — =
Y6 n n Y6 n Y6

1,

leads to
laa(Vanl0f Yo ) = Vi [ VOE T+ fantl 2, -2 5, - 2 dy,

= Vi [ VOg T fonty  + 2 Y -2 dy,
Rd n n

with Yy, = (y3,-. -, 50 _1,9n) -
The computation of a Z‘;(V)fg,n is done by duality:

(ae(Mfan-1,8an) = fan-1,aa(V)gan)

— n-1 l
_\[Rdx%"—l fG,n—l(yG 7Yn_1)x

\/ﬁfRd Vrt+ynganlyy "+ yﬁn,Yn - y;n) dyn| dyg dpn-1(Y, ).

Remember Y, = (y],...,¥,_;,¥,) and Y, =Y, - %" € R" . The change of variables

~’=Y—y—” n=n—1+y_n n-1_,.n _ Yn Y’ =~_+y_n:~_+yn
n n T’L’ yG yG T’L’ yG yG n_l’ n—1 n-1 n n-1 _1’
with
dyndyg rdur Y _) =dyr oyl + -+ v, -1y - dy)_,
d
n
=dygm(n—1)‘%(&1+---+y;)d;v’1---d&;
=dygdun(Y,),
gives
n I
* _ ~/ vdi n
@V fan1,86) =V fR VORI a0 = = Y+ )

gG,n(ygaYr’L) dyg;dl-ln(Yr’L) .

Replacing n by n + 1, while remembering that a;(V)fg , is symmetric in the variables
(¥15---»¥,1) yields

!/ !

Y Y
I'L+1’Yn + n+1 )]
n n

la(V)f6n)wG, Y, 1) = Vn+1S541lV(ye + 3, 1f6.n(v6 —

with Y, = (y],..., ). O
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3.2 General LYL] spaces

When (¥,dx) and (%,dy) are sigma-finite measured spaces LQ’LZ, 1<p,q<+c0, de-
notes the space LﬁZLg =LP(%,dx;L9(% ,dy)). This shortened notation is especially useful
when estimates are written in those spaces, like in Strichartz estimates (see Section 4).
However the final space of the unitary map Ug in (28) shows already that the product
space & x % is too restrictive. Below is a convenient generalization.

Definition 3.4. Let (Z,,,dXp)ne v and (%, dyn)ne v be at most countable families (N <
N) of sigma-finite measured spaces. Let X = Uyue 4 %X, and ¥ = Uye 4%, be endowed with
the measures dx = X,c ydxy, and dy = Z,c 4 dyn. In this framework, the space L’;Lg,
1< p,q <+oo, will denote the closed subspace of LP(% ,dx;LY(% ,dy)) given by

Lng = {f e LP(¥,dx;L1(%,dy)), f(x,y)= Z 1o, (0)1a, (V) f(x,5) a.e.}.
neN

The above definition is coherent with the specific product case, which is the partic-
ular case A& = {0}. The differences will be clear from the different frameworks when
(%X, dxXnne v and (%, dyn)ne v Will be specified.

The two following properties of the product case are still valid in this extended frame-

work:
. ThedualofozLSI,, 1Sq,p<+ooisL£L§ with %+%=1and 1%+1% =1.
¢ Minkowski’s inequality says

Below are examples, associated with the decomposition associated with the introduction
of the center of mass (23) and the relative coordinates (24), where those notations will be
used

e N={n},n=1,%,=Rn*x2Z ,dxq=du,®dz’, %, =R?  dy, = dyg and
LY, L3, =LE LY, =LP(Rn x Z',dp, Az, LYR?,dy).

(Y ,2'y"ye
The notation Lfy, 2 SyngG will stand for the closed subspace of functions which are

symmetric with respect to the variables Y, € Z,, .
s A& ={0,1} with
Xo=2', Z1=RxZ' =2, R)*x2Z", dxo=dz', dx;=dpedz,
Yp={0}, P =R?, dyo=00, dyi=dyg,

where
Lfy,’z,)LSI,G =LP(Z',dz)e LP(# x Z' duedz; LYR?,dyg)).
With the same convention as above for L?, L?  , which refers to the symmetry

Y',2"),sym " YG >
for the Y’ € # variable, the formula (28) becomes

L2

Ug : LA(Z',dz/;TLP®R?,dy;0) — Ly 1 eymLye

The general spaces L2 L? | 1<p <+oco, will be especially useful after Sec-

Y',2"),sym ™~ YG >
tion 4.

¢ The previous example can be written with 4" =N and
3{0=Z’, A =%nXZ,, dX0=dZ’, an>0=d[Jn®dZ’,
% ={0}, Zh>o=R?, dyo=060, dyn-o=dyg.
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3.3 LY -Estimates for ag(V) and a},(V)

General L?-esptimates, or more precisely L? ¥'.2). syngG -estimates, are proved in this para-
graph for the operators ag(V) and a;(V). The use of the center of mass and the LgG
spaces, will be extremely useful for the application of Strichartz estimates in Section 4.

Let us start with a simple application of Young’s inequality.

Lemma 3.5. For any q',p’ €[1,2] such that q' < p’, let r' € [1,2] be defined by % =
1%' The inequality

1,1
oty

V(e +y)0e)l s o <Vl
L% LY,

holds for all V € Lr/([Rd,dy;C) andall pe Lp’([Rd,dy;C).

Proof. The conditions %+I% =% qi 1<q'<p'<2, ensure
1 1 1 1 1
;—§+—/——,€[§,1] and r'€[1,2].

Young’s inequality with % + % = % +1and 7, p, q& =1 yields
q/
' 'l
V6 +3 0000 1 < IVIOG = N0I06N 2 g =WV 10171,

<IVIZ 1Y gl 19
By taking p = % €[1,2] and r' = 7q' we obtain
IV(ye +y')<P(yG)IIL§,L% <Vl gl
O

The first result concerns the action of ag(V) and a[,(V) on a fixed finite particles
sector.

Proposition 3. 6 For any p',q' €l1,2] such that ¢' <p’', 2<p <q < +oo, let r' €[1,2] be
defined by =3 + —— lzke in Lemma 3.5. For any V € L1 (IRd dy;C)nL" (IRd dy;C), the
creation and annlhllatzon operators satisfy the following estimates:

Vigo€ LE, lagVfeollpq < 1VlLelfaolzs, (36)

Vn>0,¥fGn € Ly ) omlhe ||aG(V)fGn||L2 " < IVl Va+Iifanl,, i ,(37)
n+1

Vfea € LIS, lac(Vfaullez <1Vl fonlias, » (38)

Vn>1,9fan EL(yr 2),sym L3, lagW)fa nIIL2 e = VI \/E”fG,n”L?Y’,PZ)Lg’,G . (39)

_1n

A notable case is when q' =r' and p' = p =2.

Proof. The variable z € Z is actually a parameter which can be forgotten because our es-
timates are uniform w.r.t. z€ Z .

For (36) it suffices to notice [aj,(V)fa,0l(ya) = fa,0 x V(¥a).

The estimate of a,(V)fg,, for n > 0 relies on Lemma 3.5. We start from the expres-
sion (34)

/

* y, Y
(ag(V) fG,n)(yG’Yr;+1): Vn+18,:1V(yg +y;+1)fg,n(yg - ';:1,Yn+ ’;:1)
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with Y/ = (7)., y ) € B, Yy = (0h,...,y0) € R, Y, + 251 ¢ 2" The sym-
metrization S, ;1 simply takes the average of n + 1-terms which have all the same form
as

/ !/
y y
Va+1V(yg + ¥ fan(ve — ”“,Yn+ ’;“),

after circular permutation of the variables y which does not change the L2, Lq -norm.
We can therefore forget the symmetrization S n+1 for proving the upper bound (37) When

n > 1integrations must be performed with respect to the independent variables (ys,...,,) €

RI™-1  Remember that (¥9s-++»Yn>¥y,.1) are coordinates on 2" such that Y= Vg —

/

Vo= 1, dns1Y), )= +1)%dy}---dy’ ,, and that the quantity

!
Yn+1 Yy
’V(yG # ¥ fanto - 222 ¥, + 221

!

L2, LY
Y

Yn+1 G

equals

/ !
y y
”+1,Yn+"7+1))||

d/2 /
(n + 1) ”V(yG + yn+1)fG,n,(yG L2(Rd,dy;”1;LQ([Rd("‘D,dyz dy,,,Lq ))

When y, ., € R? is fixed, setting y| = —Z;?:z(yz + y"—r:l) and Y, = Inil  provides the

coordinates (yé+y”—r[1,...,y;+%) on Z" with dpu,(Y,) = n‘maly’2 ---dy) ,and then |V (yg+

! _ y;w—l Ynt1
Vi) fanye — 22, Yy + 22 )”LZ(RdWD,dy;---dy;;LgG) equals

!
yn+1

—-d/2 —d/2 n+1
”V(yG+yn+1)fG n(yG_ Y )”L;L% =n ”V(yG+ yn+1)fG n(yG’Y )”LZ(Y Lq )
We deduce
! !/
Y Yy
Viyg +yp,)fan(ye — 21,7, + =221 ,
n L2 Lq
Yo G
_(n+ 1)4/2 n+1
s——5— [|VGa+ yn+1)fG n (GG Yo )l Lo
n Y}, kZe] LQ([Rd dy )
Y, )||L2,L 1
Y, hZe] Lz(Rd dy)
|V(5/G +y,)fG,n(5/G7Yr’L)”L2(Rd dy"qu ) i
AysLS,
after using the change of variable y’ = 2% 2y ,pin R? for the third line and L2 = L%,’;L?V,

for the last one. We now use Lemma 3. 5 with
IV(3qa +y')fG,n(&G,Y£)||L2(Rd’dy,;L;'G) <V~ ||fG,n(5’G,Yr'L)|IL§'G

for almost all Y, e Z" and 1<q'<p'<2, % = % + % — = . Integrating w.r.t. Y, € Z" gives

1
p'

I
yn+1’Yn+yn+1)

”V(yG +y;;+1)fG,n(yG - = ”V”Lr’ Ifa n”Lz P

L2 , Lq l iZe]
Y
Yn+1 é

By multiplying by vr + 1 and with the symmetrization S, 1, we have proved (37).
The estimates with ag(V) follow by duality using

IIaG(V)fG,n+1IIL2 = sup KacV)fGn+1,fan)l.
w1 0 fanll 5 =1
Ly’LyG
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Indeed, if || fg » |l =1, then

2 rp
L, L,

KagV)fGn+1:fan)| = {fani1,a(V)fG nd

<Ifenalz, 1, lagVMfenlls 1o
Y, Y6

IVl ||fG,1||LgG whenn =0,
<
VI vn+ 1|IfG,n+1IIL§, L, whenn >0,
n+1

which implies the bounds (38) and (39). O

Remark 3.7. Instead of Young’s inequality one could use the more general Brascamp-
Lieb inequality (see[. I[Lie]). This would not change the result (up to multiplicative
constants). One may wonder whether it is possible to improve Lebesgue’s exponent, in
particular the integrability by reaching exponents p < 2 in (39) by strengthening the as-
sumptions on V. Actually it is not. Take V € LR and Qe L2([Rd,dy;C), then a(V)p®" =
ViV, 0)®" tand ag(VUg L(p®™) cannot be put in L2 Y LY. with p <2in general.

Proposition 3.8. Take a, a’E[R a<a’andfor 1<q¢'<sp'<2,2<p<q<-+oo, and let
r' €[1,2] be defined by =3 + 1_L ForanyV eL"R*)NLY R?), the following estimates
hold

- . max(|V |, IVIige®
Vfee ™ NL2 ) b 1eNaG(Vf I, =t e N s

<
Y/ ¢ =
2,Y',sym~ G’ 2L 2va —a 2y
(40)

max(|Vz, IVigqe)e™®

—-a'N 2 q aN a'N
Vf Ee LZ Y' symLyG ) ” aG(V)f”Lz,Y’LgG =< QW ||e f”LiY’Lg’G .
(41)
Again, a notable case is when q' =r' and p =p' =2.
Proof. By writing
aN * (V) aN(®fGn)_ @ea(rwl) an * (V)fGna
and N agWe= N (@D fon) = De ™V ag(Vfon,
n=0 n=1
Proposition 3.6 tells us that it suffices to bound
Vit e~ @-an+D) a e e
supvn+le” )
neN \/ \/a—a 2\/a’—a
e” e @
and sup yne @ -®ng-a < )
neN V2eVa —a 2\/a—a
O
4 Strichartz estimates in the center of mass variable
Here we review the celebrated results of Keel and Tao in [ 1 and adapt them to our

framework. We shall use like those authors the short notations
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* a(z) < b(z) for the uniform inequality
VzeZ, a(z)<Cb(2),

where C is a constant which depends only on the following data: the dimension d
or the free one particle evolution on R? ;

¢ for 1< p,q < +o0, various uses of the general notation LfC’L?V introduced in Defini-
tion 3.4 will be specified;

* except in specified cases, L% is used for 2 < p < +oo while Lﬁzl isusedfor1<p’'<2.

4.1 Endpoint Strichartz estimates

Keel and Tao’s results about endpoint Strichartz estimates (see [ 1) written with uni-
form inequalities, obviously induce a parameter dependent version which will be needed.
They start with a time-dependent operator U(¢) : by, — L2 = L%(X,dx;C) where t € R
and h;, is a (separable) Hilbert space of initial data. We rather consider a parameter
dependent operator U(t,z1) : hin — L?C defined for (¢,z1) € R x Z1 such that

10, z0f Lz S 1F g, » (42)

i gl
1U,200U"(s,2)g L S 7 l’; forall t #s, (43)
-3

while U*(t,z1) may be defined only on a dense set of L,lc .
On the measured space (Z1,dz1) the map (¢,z1) — U(t,z1)f € L?C is assumed measurable
for all f € bhin and U(2) : L¥(Z1,dz1;hin) — LY, L2, where L¥ L2 = L¥(Z1,dz;L%(X,dx))

here, is defined by pointwise multiplication (U(¢)f)(z1) = U(t,z1)f(z1) .
The set of sharp o-admissible space-time exponents is given by

1 o o
q,rz2 —+—=—,
q r 2
and the dual exponents are denoted by ¢',r’, %+% =1, %+% =1withl=sgqg' r=2,
1,0 _0+2
q/ r! - 2 .
We will consider cases where o > 1 and the endpoint Strichartz estimates for P = (2, %
holds true. The results for sharp o-admissible pairs (g,r) and (4, 7) are:
¢ the homogeneous estimate
||U(t)f||L‘;1L‘§L; ,S ”f”LW(Zl,dzubm); (44)
¢ the inhomogeneous estimate
IIfU(S)*F(S) dsllLez, dzhm S ”F”LZIL;?'L;’; (45)
¢ the retarded estimate
* < ~I
||f8<tU(t)U(S) F(s) dSlngngL; S ||F||L?1Lg L (46)

where s < ¢ can be replaced by s > ¢.
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Keel and Tao’s results are written in [ 1 with Z; ={z¢} and dz; =6, , but the uniform
inequalities with respect to z1 € Z; can be integrated afterwards for data in L7, .

By requiring o > 1, the endpoint estimate allows to take ¢ = ¢’ = 2 with the endpoint
exponents r, = % and r, = %
and bootstrap method in our linear setting.

This is a very convenient framework for fixed point

Below are the typical inequalities which will be used. In our applications like in
Subsection 3.3, the vaccuum sector plays a separate role and it is convenient to use the
general Definition 3.4 for LYL

,/V={0,1} , Z=ZOIJZ1
and %():{0} , 5{1=X , dX0=50 , dX1=dX.

In particular the spaces L2L for 1 < g < 0o equal

L2LY=L*(Zo,dzo)® L*(Z1,dzy;L* (X ,dx))= L2 oL? L2. (47)
vacuum

At this level the action of the dynamics U(¢)U(s)* is considered only on the LZ’IL?C compo-
nent.

Proposition 4.1. Consider L2L% = Lgo ®L? L2 like in (47) and according to Definition 3.4.

zZ17X

Assume that there is a dense Banach space D in Lgl,x =L2 L2 such that D c L% LY and
URU(s) ue LEIL;" is measurable with respect to t,s € R for all u € D with the uniform

estimate lU@U(s) ullz2 ;7o S llullp for almost all t,s €R.
21 x

Assume that the bounded operator B}, : L2L% — LglL;" and its adjoint By :LglL;" -
LEL?C are strongly measurable with respect to (t,s) € [0,T]1x [0, T] with the assumption

T
* 12 * o _ * ,
ts[l(}’l%]j(; I1B;slI” ds < +o0, 1By sl = ||Bt,s||L§1L;g —r2r2’ (48)
T
resp. sup [ 1By, dt <-+oo, 1Besl = 1Busllzoge sz o (49)
5€[0,71J0 o
The operator Ay, (resp. At) defined by
T
[ATF1() = 1zl(z)f0 UU(s)" By ;f(s) ds, (50)
T
resp. [ATf](t)zj(; B ;U@®U(s)*1z,(2)f (s) ds, (1)

acts continuously on L*°([0, T];LEL?C) (resp. extends as a continuous operator on Li(o, T];LEL?C))
with
RanA7 < Lo(0,TLLY, ), Ker(Ar)>LY([0,TLLY), (52)

Z21,X

1/2
1AL I e@ooqo,rizzrzy S| sup f 1B}, 0,17 UBy, o 1% ity dtn] , (53)
tuarel0,T1J10, 71

1/2
resp. AT | e@iqo,mirer2y S Supf ||Bt,,,tn_1||2---||Bt1,t0||2 dty---dt,| , (54)
to€l0,T71J10,T1"

for all non zero n e N.
When Bttt’s = Bttt,sls<t or Bg’s = Bttt’slpt (B! = B* resp. B! =B), the domain of integration
[0, TT* can be replaced by the corresponding n-dimensional simplex 0<t1<...<t, <T or

T>t1...>t,>0.
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Remark 4.2. The dense subspace D is introduced in order to get a dense domain of
LY[0,TT;L? ) where Ar is well defined by its integral formula. The extension to the

Z1,X

whole space Ll([O,T];Lgl,x) is proved by using the fact that L°°([O,T];L§1,x) is the dual of
L(o, T];Lgl,x) and it cannot be done in the other way.

Examples where the dense subset D is easy to construct are when L%(X,dx;C) = L2(R?,dx;C)
and U®U(s)* : HMRY;C) — HMRY;C) are measurable and uniformly bounded w.r.t. t,s € R
for some u>d/2. In this simple case, the set D can be L%(Z1,dzq; HMRY;C)) with u> % .

Proof. Let us start with A;,. When f € L*([0, T],dt;LgLfc) the function 1jg 7f belongs
to LgLix and, for almost all ¢y € [0,T], the function (z,s,x) — B;‘O’s 1j0,71(s)f (s) belongs

to LEILEL?’. The inhomogeneous endpoint Strichartz estimate implies for almost all

toel0,T]

T T
IATF(t0Z2re S fo IIBZ‘O,sf(s)IIiZ i dsg(fo ||B;‘0,s||2ds)nfnim([o,T];LgLi). (55)

5L
This proves firstly that A7, acts continuously on L*([0, T1;L2L2). The property RanAj <
L>([0,T1;L? .x) comes from the assumption B; L2L2% — LEIL?’ and the redundant mul-
tiplication by 1z,(2) in (50). Secondly iterating (55) with (¢¢,s) = (¢,,+1,t5) leads to (53).
Consider now Arf when f =1z, (2)f € L([0, T];Lgl’x) . For f in the dense subspace
L1([0,T1; D) of L([0, T];Lgl’x) , our assumptions ensure that A f belongs to L>([0, T];LgLi) c
LY([0,T];L2L2) with

IA7f o, rizzrey S CrlfllLiqo,r1im) -

With
T T T T
fo (w(t), Apf () dit = fo (12,(2) fo UU* (OB () dt, f(s)) ds = fo (ALo)s), f(s) ds,

where B; ; has simply been replaced by B ; in A;v(t) = lzl(z)fOT UU(s)*Bg,u(s)ds, we
obtain
1/2

T
Vv €L°o([0,T];L§L32€), v, A7f)] S (fo ||Bs,t||2 ds) ”U||L°°([0,T];L§L§)||f||L1([0,T];L§1,x)’

while L([0, T];L2L2) = (L*([0, T]; L2L2)) .

This proves that A7 extends as a continuous operator Ll([O,T];Lgl,x) — Ll([O,T];LgL?C)
and the formula contains the extension by 0 on Ll([O,T];Lgo), with Ll([O,T];LgL?C) =
LY[0,T1;L% ) L*([0,T];L% ,). Its adjoint is A}, : L([0, T];L2L2%) — L*([0, T];L2L2).

The estimate (53) for A;‘, with (IIB;"SII, t3) replaced by (IIB;"tII = |Bs,tll, tn+1-2) yields (54).
O

Note that when Bg,s = Bg’slbs or Bg’s = B§,51t<s with IIBB’SII < B, the upper bounds of

(53) and (54) are below s

[Z] =)

n! ~\ n

n/2

This gives a hint of times scales with respect to 8, e.g. when 2T < C here, where iterative
methods lead to convergent series or the associated fixed point methods can be used.
We will use some refined versions of the scaling rule 27 < C. Although the L? spaces
estimates are written with p = +oo and p =1, this scaling really relies on the endpoint
Strichartz estimate with p =2.

We complete our general corollaries of endpoint Strichartz estimates with a result which
combines the action of operators like B; ; and B;" . in Proposition 4.1.
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Proposition 4.3. Let .¢,_¢ be at most countable families of disjoint finite intervals, and
set Ul =Ujegl and UJ = Uje goJ . For a given o € L°°(UJ;L§L326) consider

t
P11 =17(t) ) A B115U®U(5)* B 1 7(8)poo,(s) ds
Je g

with  Peo,J(8) = Poc(8)14(s),

and  IBuiislpere—p2 ve < Pris , sup 1B ;7 <Pa1J,
sed ’

!
2 o 272
L2 L7 —L2L2

where B1 17 :LEIL;" — L2L.2 does not depend on (t,s) € I xJ while B;JJ(S) :L2L2% — LEILQ’
does not depend on the time variable t € I and is strongly measurable with respectto s € J .
Then the function g1 =Y 1c.y 1,1 belongs to Ll(UI,dt;LgLJZC) with

1/2 1/2
”‘PlHLl(UI,dt;LgLZ) ,S Z 7] ﬁl,IJﬁ2,1J|J| ||(Poo||Loo(UJ,dt;Lng) ’
leg,Je g
infJ <supl

as soon as [ZIEVJ’JEJ 1]0,+oo[(supI—ian)IIIl/zﬁl,IJﬁgJJIJI1/2] < +00.

Proof. Every term of ¢ can be written
¢
Vir0=Bras [ UOUGY o1 ds

where ¢2,17 = B} ; ;()poo,() € L*(R; L2, YY) satisfies

¢215=0 ifinfJ =supl,

12 12
and |21/l < |J17" B, 15 Qoo | Lo arL2r2) < 1177 P21 | Pooll Lo asL2L2) -

!
L2R,dt;L2 L)

The retarded endpoint Strichartz estimate with [ By 77|l 122 2r < p1,17 implies

. 1/2
lwrslzeaasrzrey S Lioool(SUpI —infed)B1, 17 Be, 17117l pooll Lo ar;L2L2)

and therefore
. 1/2 1/2
lyrsloaasrzrey S [1]0,+oo[(supl —inf )17 B1,17B2,171J] ] lPcollLo@a,ae;L2L2) -

The finiteness of Y.7c 7 e ¢ [1]0,+oo[(supI—ian)IIIl/zﬁlJJﬁQ,]JIJI1/2] ensures that @17 =
Y. Je ¢ W1 belongs to L'(I,dt; L2L%) and finally

o1l @r,aerzrz) = IZJ loLrliLia,asrzrs
€

. 1/2
N [l]o,+oo[(supl—1an)III1/2ﬁ1,1Jﬁ2,1JIJI / ]I|<Poo||L°°(UJ,dt;Lng)-
Ie s, Je ¢

O

4.2 Fixed point in weighted spaces

In this section, we apply the general framework of Strichartz estimates for evolution
equations in the spaces
F2=12%Z' dz;I(L*R%,dy;C)=L%Z',dz';C)e L2, (% x Z',du®dz’; L*(R?, d yg; C)).

sym
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The measured space of parameters (Z',dz’) will be specified later and by following the
notations of Definition 3.4 and (47) for the application of Strichartz estimates, we write

Z0=Zl , leﬂle , dZ0=dZ/ , dZ1=[J®dZ,
Xo={0} , X1=R? , dxo=6p , dx=dyg,

_T12 2 _7r2 2 2 _7r2 2 2
Fz - LZ,SymLyG - LZo 6BLZl,Synt’iLyG - LZo eBL(Y’,z’),symLyG ’ (56)

where the second variable x € & = X LI X has been replaced by yg in order to recall its
link with the center of mass on the non vacuum sector.

We will use the L§G ,1<p <+o00, version
2 p _712 2 D . _ I
L7 omLye =L, ®L(Y',z’),symLya with z1 =(Y',2).

In all the above identities the subscript sy, refers to the symmetry for the relative vari-
able Y' € 2. Because the symmetry is preserved by all our defined operators, this sub-
script will be forgotten when we write estimates.

Only the useful conditions on the “free dynamics” U(¢), or more precisely U(t)U(s)* :
F? — F? will be specified. Those will be checked for our model later in Section 5. The
free dynamics or more precisely U(t)U(s)* : F2 — F? is assumed to preserve the number
of particles

[U@®U(s)*,N1=0

with the following decomposition:

U@BU(s)* = (Ko(t,2)Ko(s,2")x )& (U1t Y, 2NUS (s,Y', 2" ) x (v 1)) (57)
in F!=L%Z7,dz;C)eL? (% xZ,dusdz;L2R?, dyg;C)), (58)
N et

sym

~

:Lgo (vacuum) — L?Y’,z’),sym L;QVG

where x, or x(y’ . stands for the pointwise multiplication. So U1(¢,Y’,2")U{(s,Y’,2’) is
a one particle operator acting in the yg-variable, parametrized by z1 = (Y’,z’) and we add
the following conditions which make the results of Subsection 4.1 relevant:

* The measured space (X1,dx;) is nothing but (R, d ya) in the center of mass variable
and the z1 = (Y’,z’)-dependent one particle operators U1(t,z1) : hin — Lz([Rd,dy(;;C)
and its adjoint are assumed to satisfy the estimate (42)(43) with 0 > 1. Remember

/ 20 20

To= ot and r, = .

¢ The additional assumption of Proposition 4.1 concerned with the dense subset D is
also assumed for Ui(¢,2z1).

¢ The vacuum component Ky belongs to L°(Rx Z',dt®dz’;C).

The interaction terms will be
B}, =c1(t,9)e* N Vhal, (Ve N and B, = calt,s)Vhe®* N ag(Vo)e @ N

with V1,Vo e L™ :f(le,d y;C) (complex valued V are allowed here) and where c1, ¢, a and
a' are real measurable functions of (¢,s) € [0, T1? with a —a’ < 0. Those will be specified
further and we shall check the estimates (48)(49). Because Zy = Z' corresponds to the
vacuum sector, N =0, on which ag(V) vanishes while the range of ag(V)* lies in the non
vacuum sector N = 1, the range BZ . lies naturally in LEILZ‘(’;, z1=(Y",2), once the proper
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estimates are checked while it adjoints B; s sends L2 L’ into LZL?,G and is naturally
extended by 0 on the vacuum sector L2 )

We will consider the following system

t
ul (£) =i f UWU* () (Vhag(Vulys) + VRul(s) + ul(s)| ds +fA0 (69
0

t
ul(t)=—i fo ag(V)UBU(s)* Vhul(s) ds +f9(), (60)
t
ul(t)=—i fo a(VRUMU)" (hag(Vuly(e)+ VRul(s)) ds +fE®. (6D
written shortly as
Vgeloo, 2,1}, ul= Y Lol +fr (62)
pefoo,2,1}
or
ugo ugo fo]é Loooo Loo2 Lool
ul |=L|ul |+|fR|, L= 0 Ly o0 |. (63)
u}ll u}ll 1h Lloo 0 L11

This system will be studied in spaces with the number weight e*™ and we will use the
following functional spaces.

Definition 4.4. For T >0, h €]0,hgl, I’,} denotes the interval I’,} =]1-T/h,T/h[.
Fix ag,a1 ER, ag < a1 and set M 401 = M >1/2.
Assume V1,V € L™o(R?,dy;C) with max(| Vil , I V2l ) < Cy.

For a parameter y >0 and a € [ag, a1l set

To=y(a1-a).
The space gao a1,y US the set of (e~ @N 2 symL?VG )3-valued measurable functions I’TE 3t~
@0
Uoo(t)
uo(t) | such that for all a in [ag, a1l,
u1(?)
It U € LY dt;e™NLIL2 ),
uge Ly (I}, ,dt;e”*NLZL2 ),
|t uy e Ly (1% dt;e *NL2L2 ).
and M(uoo, ug,u1) < +oo with
M(uoo, ug,u1) = Moo(Uco) + Ma(ug) + M1(u1), (64)
T —\ht 1/2
Moo(uc)= sup (aiH) Nt : (65)
ap=a<ai |ht| LOO(I};, ;LgL?’G)
aN
Ms(ug) = amcwm aoiggal Ty L2(1¢;L3L§G) , (66)
7€[0,T, [
Mi(uy) sup /Ta-1 eTuy (67)
) =——7+5 -
Moo1Cvy' 2 aoa<as | \/IRtl | gz

7€[0,Tq[
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t eY’%a
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_Yai—a) ylai-a)
> h

Figure 1: The time interval 1 ;L, = 7 according to « .

Endowed with the norm M(uo,ug,u1), ggo,al,y is a Banach space for all A €]0,A¢[.
The a-dependent time domain 7 ?. where weighted L$°, L? and L} norms are evaluated is
illustrated in Figure 1. ’

The constants Cy > 0 and Myo1 = max(e®,e”%)/2 = 1/2 were chosen so that Proposi-

tion 3.8 applied with ¢/ =r/, and p' =2, gives

a'

N = —a'N CVe MaOlcV
leNarMe Nl | < —Yplare < 222V o)
¢ LAl 2Vd -a 6 Va -a =6

Cye @ My01Cv

aN -a'N o ro
le™ac(Vle " luans, = 5 g 19 ay = o= 1Pliacs;
for all a,a’ € [ag,a1[, a < a’.
Finally the normalization of (66) and (67) was chosen in order to make the contraction
statement simple.

Proposition 4.5. Assume that the free dynamics Ui(t,z1) : hin — L2(R?,dyq;C) satisfies
(42)(43) (uniformly w.r.t. z € Z) with o > 1 and the additional existence of the dense sub-
set D assumed in Proposition 4.1.

Let hg >0, ag,a1 €R, agp < a1 and V1,Vo € L’Q(Rd,dy;(ﬁ) be fixed. The positive constants

h
M 01,Cv, the space é"ao,al,y

the parameter v > 0 small enough the linear operator L given by (63) is a contraction
of the Banach space (&" M) for all h €]0,hol and the system (63), explicitely written

@o,a1,Y?

(59)(60)(61), admits a unique solution for any (f;‘o,th,flh) e&h

@o,q1,Y *
More precisely there exists a constant Cg 17 determined by the dimension d and the free

and its norm M are the ones of Definition 4.4. By choosing

dynamics U, given by the pair Ky and U1, such that
Vhelo,hol, LIy, 1S CauManiCyy™™.

Takingeg. v = oz ensures ”L”Z(éah < % so that the solution to (63) satisfies
\%4 a0,a

1
502 2 2
2C5 y Moo m)

M(ul,uluy < 2M(fL, 2, ).

Uoco
Proof. The non-vanishing entries of L | ug |, namely
ui

Loooo(ttoo) , Loo2(uwa) , Loo1(uw1) , Laoa(ug) , Lii(uwi1) and Lico(ueo)
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will be considered separately in this order of increasing difficulty. Additionally the sym-
metry t — —t allows us to restrict the analysis to £ = 0, that is ¢ € [0, ﬂ[ for a € [ag, a1l .
Accordingly I g. is, in this proof, the restricted interval [0, %[ .

We use like in Section 4 the symbol < for inequalities with constants which depend only
on the dimension d and the free dynamics U .

Loooo(Wso) : For this term and up to the square root and the parameter i €]0, kgl , we fol-
low exactly the method of [Nir] for Cauchy-Kowalevski theorem. Write for ¢ €10, Ty/hl,
ht€l0, Tyl, a<a; —% , and

T — 1/2 Tu/h T —h 1/2
( ahtht) e L oooo(too)(t) = —if U@)U(s)"B; (%Ts) %Ny () ds
0 ? S
with 1/2 1/2
T,-ht h
Bio=1s<t ( aht ) e Vhag(V)e @V (Tishs) ) (68)
as —

anda<ag<ai-— % Hence hs <T,, and

T '—hS 1/2
(T) le®N too($) 22225 < Moo(too) (69)
while a < a; implies that IIBZSII = IIBZSIILEL;;& o, satisfies
Mz Cz _ MZ CZ _tho!
1B 2 < by o0l VL SRRy PaonTy et
’ (as—a) ht(Ty, —hs) (asip—a) t'(Tq,, —s")

by setting s’ = hs, t' = ht. By choosing

_air+a-hsly aj+a-s'ly

ag = 5 5 ,
we obtain
o Ylai—a)-s' Ty
Y(as—a)= 2 ==
(@1 -a)+s' To—s'
Tas/,h = Y(a’l - a’s’/h) = Yi S Tas,/h —g' = @ ,
2 2
and
(Tq—1t')s' _ (Ty—t)s'
(@ -t (Ta,, —5) (Ta-s)2
This yields
Tl i 12 2 o Ta=t' (1 & ' 2 2
fo 1B sI” ds <4yMg4,Cy; i fo T o) ds <4yM;,,Cy . (70)

The inequalities (69) and (70) combined with the inequality (53) with n = 1 of Proposi-
tion 4.1 imply

<272 M 401 Cv Moo(uo). (71)
L0, T/ REL2LE )

1/2
) eaNLoooo(uoo)

(Ta —ht
ht

Loo2(ug) : The Cauchy-Schwarz inequality applied to

(Ta—ht

1/2 t
) eV L oo(uo)(t) = —i/Ty —hti f UBUs) e®Nuy(s) ds,
ht Vit Jo
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imply

(Ta —ht
ht

1
VT ht—||eaNuz(S)”Lng([o,t];L; )
LgL?g \/Z G

<=V Ta - ht”eaNuz(S)”LZ([O t]'L2L2 )
< sup VT —Tlle“Nuz(s)llLZ([o T/RLLALE,) -

7€]0,Tq[

1/2
) e™N L ooa(u2)(t)

Taking the supremum over «a € [ag, a1[ yields
< 1/2
Moo(Loo2(12)) SMu01Cvy " “Ma(ug). (72)

Loo1(uy): The expression

Ta_h 1/2
( t) eNL 1 (w)®) = —i/To—ht f

UOUE) e™ ——uy(s)| ds,

" Vs
gives
(Ta_ht)l/ZeaNL (u )(t) \/ﬁ” aNLL]_(S)” ) -
ht o1l v Jhs LY([0,£;L2L2,,)
u (s)
< sup VT 7|l ! ”Ll([O LLL2L2 )
7€]0,T,[ G
SMaOICVY1/2M1(u1)
and s
T,—ht
II( > ) aNLool(ul)”Loo([O Taygere )—Ma01CVY 2M1(uy). (73)

The entries Loo(us), L11(u1) and finally L1..(ts) require some additional techniques.
The proof, done in several steps for each of them, relies on a dyadic partition of the in-
terval [0,Ty[ around T, . In the two cases of Loa(u2) and L11(u1), the norms Ma(¢p) and
M(p) are transformed into equivalent norms corresponding to this dyadic partition, the
proof being given in Lemma 4.6 below. Finally the entry Li..(u) is treated via dyadic
partitions around 7, and 0 and happens to be a direct application of Proposition 4.3.

Splitting the interval [0, T[. Fix a € [ao, a1[ and therefore T'= T, . The intervals J. are
defined for n e N by

Jr=T+2"[-T,~T/2[=[(1-2"T,(1-2""HTI,
<nop _ n
Jpt = néJnO Jpfor ngeN,

so that [0,7]= Upen 2 = J 7" U(Upsp, J7) , see Figure 2.

With the exponents
a1 +6a a1+ @22 - 1a
we note that
7 76 3
<2 _ ° > e _ 7=1
JT% 8Ta0 87Ta 4Ta Jro,
17T, "9
and forn =1 To =Tq- =(1-27"T,.

2 2n+1



Jr Jg Jll‘ Jr,n>1
=1
JT
<0 7<2
JT JT
Figure 2: The time intervals J7., n € N, with length 23;1

By taking 6,, = 27,% and 26, = z:‘jl for n > 1, we obtain in particular

!
ap

J%a =[To—46,,Ta—26,[=[Tq, —36n,Ta;, —6pl with b, < 12 (n>1)
as summarized in Figure 3.
alt
a1+a
>
a1+3a ht
+6
e
+(2n+2 \
a’n:al2n—+2; ___\____:_____.
o <1 _ 7<2 * .-n..
JTa = JT% JTa

Figure 3: The exponent a, is determined by %T% = %Ta while for n > 1, a/, is determined
by Ty =(1- 25 )T =(1-2"""2)T,,.

The equivalence of norms
Ky Na1(@) < Nai(@) <xaNa1(p), 2<i=<4, (74)

for some universal constant xg > 1 is proved in Lemma 4.6 for

Na,1(p) = TSE%’I;[ VT -1 ||‘P||L2([o,%];L§L§G) ) (75)
Naa(p) = \/T||<P||L2(h—1J;1;L§L§G) +5€?&1¥/8]\/5 ”(p||L2(h*1[T—25,T—5];L§L?VG) : (76)
Na3(p) = \/Ti1€1£2_”/2 ||‘P||L2(h-1J;;L§L§G) ’ 77
Noa(@)=VT ||‘P||L2(h-1J;2;LngG) "‘66]%‘,17}/’12] Vo ”‘P||L2(h-1[T—35,T—5];LgL§G) . (78)

Laz(ug) : For a € [ag, a1[, we seek an upper bound of Ng 1(¢) (with T'=T,) for

t
@)= e™N Log(ug)(t) = —i f e NVhag(Vo)UU(s)* ug(s) ds.
0
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By the equivalence of norms N3 1 and Ng 3 this is the same as finding an upper bound for

VTo 272 ign .
a lpllLen-ray 2r2 )

uniformly in both a € [ag, a1[ and n =0, or equivalently for

VTallQlrag1gz 202 ) and v Ta2_n/2||(PIIL2(h—1J; 2z ) (> 1),

with the same uniformity.
For t € h_lJ;1 we write

VTap@®) = —i/Tee™Nag(V)e %N f U@U(s)* Vhwi(s) ds
s<t

with
wi(s)= eaéNlh—lJ;;(S)UQ(S) = ealeh—lJ;2, (s)ua(s).
%

Then Proposition 3.8, the retarded Strichartz estimate (46) and the Cauchy-Schwarz in-
equality yield

[ = CvMao1
Ta”(p”LZ(h—lJ;I ;L2L§G) SJ Tafa”f U(t)U(S)* \/ELUl(S) ds”Lsz(h‘lJ;l'Lg,‘é)
a’e / s<t z a’
a,—a
0
SCvMaor VI \/ﬁwllngLl(th;z L2,)
g
5 CvMqo01 \/?\/ T% “wllngLf(h—lJ;zl ;Lga)
%0

al
g CvMao01 \/?\/ T% lle 0u2||L?(h—1J;2, L2L2 )"
%o
The equivalence between the norms N3 1 and N3 4 implies
Vv Ta”(p”lzz(h’lJ;l;LgL%G) 5 C%/Mz(n}sz(uz). (79)

For t e h_ngﬁa ,n>1, write
VT2 20(t) = — i\/Te2 2N qg(V)e %N f U@U(s)* Vhwi(s) ds
s<t

—iVTe2 ™Y eWNag(Vo)e N f UBU(S)* Vhwn(s) ds
m=2 s<t

N J

=9

with for m =2

W ()= 1-1zm (8)e™Nug(s) = 1 (8)e“ N uy(s).

W [Ty ~36m,Ty ~0n|

The first term is actually estimate as we did for (79) with the additional factor 272 <1.
It suffices to consider the application of Proposition 3.8, the retarded Strichartz esti-
mate (46) and the Cauchy-Schwarz inequality to

—n/21 ~
VT 27N PllL2n-1n 1212
Ta”™ 2z yG)

_n2 v CvMgo1
5\/T_a2n/2 ,a

m:2 \/ am—d

n
<Cy Maoy 7272 Y 22 H Vhw,,
m=2

f UU(s)* Vhwn,(s) ds
s<t

L2L2(h1T7 L)

L2L}h 17 L2 )

n
5 Cv M o1 \/?Z_n/z Z V Tollwm ||L§L?(h71JrTna;L;2vG) . (80)

m=2

29



Thanks to the equivalence of the norms N3 ; and Ng 4 (with T' =T ), we obtain for m > 2

m+2 ' N
V Ta ”wm”LgL?(h’ng ;Lgf(;) =92 2 \/6m ”eam uz(s)

<2™2Cy Myo1 v/ YMa(uz). (81)

L3 Ty =365, Ty ~0m [;L2L2)

zHyg

Putting together (80) and (81) gives

n
vV Ta 2—n/2 || (p”LZ(h—lJ;ga ;LEL;%G) 5 2—n/2 Zozm/ZC%/ M(ZIO]_ }/Mz(uz)
m=
SCY Mo,y Ma(us)
which, combined with (79) and the normalization of Mo(Lgs(u9)), yields

My(Loo(u2)) S Cyv Mao1 Y Ma(ug). (82)

The estimate of L11(u1) starts with the same decomposition of the interval [0,T/h]
with the norms

()
Nii(p)= sup \/T—TH(p— , (83)
7el0,71 VhtliLio,zie2es,)
T\Y2 5\12
Nia@)= || ¢ + sup (5) ”(P||L1(h*1[T—25,T—5];L§L§, o (84)
Ll(h_lJ;I;LZLEG) 6€]0,7/8] G
T 1/2 o
Nig@=|l|,~] ¢ +Su11>2_n ”(P”Ll(h*lJ;;L%L%G)’ (85)
— < >
Lintgphrzrz ) "
T2 512
Niap)=\72] ¢ + _sup (T) leloiorir-ssr-sizzrz - (86)
Ll(h_lJ;Z;Lnga) 6€]0,7/12] G

Those norms are equivalent according to
K1 'N11(9) < N1i(@) <x1iN1a(g) ,2<i<4 (87)

with a universal constant x; > 1. See Lemma 4.6 for the proof.
Lj1(uy)-Step 1, Decomposition of L11(z1): For a € [ag,a1[, we seek an upper bound of
N1,1(¢) for

t
o) =e™NL11(u)(t) = i f e NVhag(Vo)UU(s)* ui(s) ds.
0

By the equivalence of norms N1 ; and Ny 3 this is the same as finding a uniform upper
bound for

Ta 1/2

(3 v

-n/2
E and 2 ”(p”Ll(h_lJ;l'a ;LEL%/G) forn>1.

LY I5HL2L2 )

1/2
Setting w1 () = (%) Ly-1.2 (D(®) and, for n > 1, ya(8) = 2721155 (Dp(0) gives

t T 1/2
Wl(t)z—ifo (h—‘;) e“N\/ﬁag(Vg)U(t)U(s)*lh_lJﬁ(s)ul(s) ds, teh 'J3!,
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and, forn > 1,

t
Ynlt)=—i f 272N Vhag(V)UDU ()" 11 71 (S)ua(s) ds
0 «

t
—i ) f V22N ag(Vo)UBU ()" 1y gp (SDus(s) ds, teh ™ J, .
0 a a

l<m=sn

This allows to rewrite the above decomposition as

t<ila e T, \"? (hs\2
yat) = —i f 1io,n(s) | - (—) eNVhag(Va)e N UBU(s)* w1(s) ds,
0 ’ T‘ZE) ht
Blf(rt,s)

and, forn > 1,

ten-1gn Tq / h 1/2
wn® =i [T 1 s (902726 N Viag(Va)e N [ L2 U@ s) wils) ds
o [0 ] T

> 4h !

%o

Baults)
—i ) f Lig i1y 927" 2N Vhag(Vo)e N UMU () wm(s) ds,
m=2 N il ~ .
Bun(t,5)
1/2
. T% agN
with  w1(s) = 1j-17=2 (s) A e " uq(s)
py s
0

m>1__ / _ /
and wpy,(s) = 2 m/zlhfngn (8)e®Nuq(s)= 2721 T -36m Ty -om (8)e® Ny 1(s).
“ B

Proposition 4.1 tells us

3T 1/2

4ha
2
”'l//]_llLl h-1Js1.1212 5 sup ||B]_]_(t,3)” dt ||w1||L1 h-1J52 -I2L2 )>
( ) ( )
Ta ™ 27yq s€l0 STa] 0 T‘7‘6) Z7ya

> 4h
and, forn > 1,
1/2
2
”'l//n”Ll(h—lJn -L2L2 )5 sup f ||Bn]_(t,3)” dt ||w1”L1(h—1J52 L2L2 )
Ta" 27 yYG 3Ta1Jh-1J7 T 727G
s€l0,752] Ta 0
1/2
- 2
+Y | sup f 1Bum(t, N2 dt | Nwmll 7, sm 7, -
h-1J AT My

— -1gm -1 gn
m=2\ seh~tJp T

From the comparison between the norms N7 ; and N1 4 we know
!
eaON uy

lwillpig-1g=2 g2r2 S sup /Ty —7
W B ™ o, 1 0 Vhit

< Ma01Cyy2M1(uy),

LY(0,FKL2L2 )

while form > 1,
Ty )1/2 ey,
— 2_m/2 sup Ta’ — T” e ”Ll([O I1.12L2 )
7el0,T, [ " Vht hTTETG

1 =36m Ty ~Om

lwmll . ,S(
L -m—, m— 31212 )~ O

T(Z 1/2 12
S (W) 272 Ma01Cvy"* M1 (uy)
a

< Mao1Cyvy?Mi(uy).
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We have proved

NL11(u1)
t

LU(0,31L2L2 )
Mao1CyvyY2M1(uq)

3Tq 1/2 1/2
K2 2 9
S| sup | 1Bu@o)l"de) +sup| sup | IBai(ts)I dt
Ta

s€l0, %] n=1 | sef0,0a]

n>1m=2 | seh-1J7

1/2
n
+supZ( sup f o ||Bnm<t,s>||2dt) . (88)
Ta

It remains to estimate every term of the above right-hand side.
Lji(uy)-Step 2, Estimate for B;;: The expression

T, hs 1/2 uN WN
B11(t,8) = 110,41(s) | 77— =\ e™“Vhag(Vy)e %
’ Ty ht

implies, with Ty = y(a1 — @) = 77’(“6 -a),

a 1Y 2 9 4hs 1y, t](S)
IB11(¢,9)11% < T_a/ T, —M2,,C2 R, t](s)— <TyM2,,C3 — 3T, 1

0

We obtain
x 4hs
2 2 ~2
1B11(t, )" d¢ = TyMyo1Cy o 3T, In(2 hs

and

3Ty 1/2
“4h
( sup IB11(t, )12 dt) <yY2M401Cy . (89)

sel0, %2170

Lii(uy)-Step 3, Estimate for B,1, n > 1: From

hs )1/2

!
0

nl(t 3)_ [0, 3Ta](3)2 n/2 aN\/—aG(V2)e ao (

a

. 1 _ai—a _ Ty _ 6T,
we deduce with Qy—a =" =7y and T% =27,

27"Tyh

2 2
) < 1[0’%](8)7Ma01c‘/ .

hM2y C2 (3T, /4
IBr1(t,$)I1% < 1 are ()27 —22 ( a
> 4h

(ay—a) Ty,

With J7 =[(1-27")Tq,(1-27"")T,[ for n > 1 we obtain

e 277 7
[, 1Baotes de <2 T =2 0 = Tk o

Tq “
and
1/2
sup| sup f IBno(t,s)I dt §}/1/2Ma01CV. (90)
n>1 SE[O,%] h’lJ;‘,

Ljii(uy)-Step 4, Estimate for the B,,;,’s, n,m > 1: From

Bnm(t,8)= 110,017 ()2~ V260N \/p g (Vg)e @Y
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—(m+2)
and a,, —a = 2-(m+2) (g, — ) =2 Tq

, we deduce

2m+

h
9—(n-m) - YMZOlcV'
a

1Brm (I < 1jo gj0n-17: (5)

Using again that the length of J7, is 2+ DT we get

sup f IBum(t, )1 dt <2y272=mp2  C2
sehlJp JhT1Ip

and
1/2

n
sup ) | sup f IBam(t, )2 dt|  <yY2Ma0iCy. (91)
nzlm=1\seh-1Jy JA Jp,

Lis(uy)-Step 1, Decomposition of Lj(uy,):

Compared with the decomposition of Lgg(ug) and Lji(uy), an additional dyadic decom-
position has to be done around 0 in order to absorb the weight \/% properly and to use
Proposition 4.3. Decompose now [0,7"] = UneZJ; where J(T). is now the interval [T/4, T/2[
and J7 = 2”Jg, for n < 0, according to figure 4. In particular, the interval previously
denoted by Jg, is now J;O while J;"O is not changed for ng > 0.

|
i
0 Jn<0 JO JL n T
T° T T Jp,n>1
J70
Jt
J52

Figure 4: The time intervals J., ne Z.
We seek an upper bound of Ny 1(¢) for

t
@) = e™N L1oo(uoo)(t) = —hfo eNag(V)UU(8)* ag(V1)* tools) ds.

By the equivalence of norms N1 ; and N 3 this is equivalent to proving a uniform upper

bound for
Ta 1/2 a2
(E) [0 and 2 ||¢||L1(h—1J¥a;L§L§G) forn>1.
LY 15150202 )
But the dyadic decomposition around 0 says
Ta 1/2 sl
(h_) ¢ <2 Y 127F gl w 2r2,) = 21 Y 27, 1wy OPlLip-1z20z -
t Ll(h_lJ;;;Lng ) n<1l n<l

Lioo(uoo)-Step 2, Estimate on h™1J%=1:

We write 91 =3 <1 9~ lh—lJn B)e™ L1oo(te) = Y n<191,n(t) where
P1at)=—h Z 277 1, BNGE

m=—00

a+ta, (l+(l

f eVNag(Vo)e = NU@U(s)* e 7 Naky(Vi)e ™ N 11 (8)eNul (5) ds
0 a

1 t
==h Y Iy fo B1,UWU(s)* B}, ()poom(s) ds
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with

a+al

_ns1 _ &g
Bi,=2""7 eNag(Vp)e = V|
1/2
Mao1lVall e, o MaoiCyvy'"?
g S 2L iz < Ma0tCVY e
2L, ; T1/2
Vap—a @
a+a6 Y, VhS
B, =e 2 Nak(Vi)e aONlh*J;‘ (8)——
a  \/Ta—hs

, 1/2
< Mao01llVill, -, gmi2 < Mq01Cvy

IIBlnIILngG

(1390 - < < 2m2,
2Ly, —L2L3, . TY?
/ \V T - hS
Poo,m(s) = Ly ()Poo(s) 5 Pools) = DN ﬁum(ﬁ

By noticing
I~} | < Toh™ 2"

the upper bound of Proposition 4.3 gives

il aere ) S Y 2"2Ma01Cvy P27 (M a01Cvy 2™ ) | || @ool| oot gor2
“ ¢ —oosm=n=<1 Ta™"2"yg)
S M3y ChyMeo(ueo).
We proved
1 2
I meaNLloO(uOO)”l‘l(h_lJﬁ§LZL§G) g MaOlchMoo(uoo)- (92)

Lico(us)-Step 3, Estimate on h‘lJ,'I“a, n>1:
Write ¢1(8) = 272115 (D)e™N Lico(tteo) , where

1
B=-h 2751, 1 (£)x
P1 m:Z_oo hLIG

’ ’
a+a, a+a,
0

t
f eVNag(Vp)e T NU@U(s) e T Nagy(Vi)e N1, ap (£)e™Nul (s) ds
0 a

n
_h Z 2_§1h—1Jn (t)X
m=2 Ta

a+al, N

t ll+ll;.n ! !
f eMNag(Vo)e 2 NUMU() e 7 Nag (Ve N 11 m (s)e™ N ul (s) ds
0 a

h
00

1 t
==h Y L (O fo B1,U®U(s)* B3, ()oom(s) ds

n t
R Y 1y 0 fo BramUMOU(s) B, (8)peom(s) ds.
m=2 ¢

The family .# of Proposition 4.3 is made here of the single interval h_lJ?. while the

family ¢ = {h_lJ;" ,m< n} is splitted in two parts m <1 and 2 <m < n. In the last two
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lines the notations correspond to

a+al

B1,=2"2eMNqg(Vy)e = V|

, 1/2
1Bl L < M(l01||V2”LrU 2—n/2 < MamCVy
in Lnga‘_LgLy((]; ~ / ~ T1/2
ao - a1

* %N * —a'N Vhs
m<1 By, =e 2 Vag(Vi)e "0 11 ym (8)—=
Ta /Ty —hs

, 1/2
< Moo1lVill, -, gmi2 < Mq0:1Cvy

/
BLGL ~ o —a YT

m=2  Biy,= 2_%€aNaG(V2)e_%N ;

Moo01lVall, -, g2 < Ma01Cvy"?
Va,—a ~ T3?

araly Vhs

m=2 By, =e 2 Nag(Vie N 1m (s) —
a a_ S

-n/2
27

ms<1  |Bj,l 22,

<

m/2—n/2
> 2
m=2 ||Blnm||l§1§G<—l,§l,g,‘(’; ~

b

/ 1/2
< Ma011V1 ”Lrg Zm/2 < MamCVy

r ~ ~
LG L~ a,—a Ty?
Pm(s)= lh*1J7’5‘ ($)Po(s)
a

VT x VToe—h
0‘7}18u00(3)Jr Z e“lehAJm (‘9)‘?‘7‘9
Vhs m=2 Ta Vhs

The size of the intervals are estimated respectively by Ih_ngﬁaI <h7127"T, and

m=2  |B; | 2™,

Pool(8) = L1 21 ()e N Uoo(S).

RTNIR I SATI2M T, forms<1 , BTN ISATI2TMT, for m=2.

Proposition 4.3 gives

||(p1 ”Ll(h’lJ" L2L2 )
Ta YG ,S Z 2_n/2(Ma01CVY1/22_n/2)(Ma01CVY1/22m/2)2m/2
lpoollLoontazriLers ) ™ [ ~oozm=1
n
+ Z 2_n/2(Ma01CVYI/ZQM/Z_n/Z)(MaOICVY1/22m)2_rn/2 ]
m=2

SMa01C2y.

With
||(Poo”L°°(h*1J;;‘;L§L?,G) = ”(Poo”LOO([O,Tu/h[;LgL?,G) <= Mo(ueo),

we have proved

-n/2 N
sup2 n ||ea Lloo(uoo)"Ll(th;z‘
nz1 “

L2L2 ) < Mo01CEYMo(uoo). (93)
Conclusion. From (71), (72) and (73) we deduce

Moo(Loooo(tioo) + Loz (@) + Loo1 (1)) S ¥ *Ma01Cv M(ttoo, g, u1). (94)
Combining (88), (89), (90), (91), and taking the supremum over «a € [ag, a1[ yields

M1(L11(u1) S yY2M o1 Cy My (uy),
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while (82) says
My(Loa(u2)) S CyMao1v/yMa(us).

Finally the upper bounds (92),(93) combined, firstly with the equivalence of norms Ni;
and N31, and secondly the normalization of (67) of M7 yields

M1(L10o(too)) S YV Ma01Cy M(too, g, u1).
The sum of all those inequalities is
MI(too, u2,u1)) S Y2 M 01Cv M (oo, ug, u1),

which means that there exists a constant C; iy determined by the dimension d and the
free dynamics U such that

1/2
Ll 2@t . S CauMao1Cyy ™.

O

Lemma 4.6. The norms Nj 1,N,2,Np3,Np 4 defined in (75)(76)(77)(78) for p = 2 (resp.
(83)(84)(85)(86) for p =1) are equivalent according to (74) (resp. (87)).

Proof. We forget the notation LEL?, ., because it is a time integration issue and it can be
done with any Banach space valued functions.

With the Definition (77) of N2 3(¢), the equality

1plzen1az = (19152,170, 1907200
allows to replace N3 3(¢) by the equivalent norm
VTl@lp2g-gzn + VT sup 2l 2
n>
For p =1, the inequality
3T T 1 1 4
1 _[a S=T- =45
4h" h T ht 3T
allows to replace the second term of the definitions (84) (85)(86) of N12, N13 and N14,
respectively by

Vtel

4

sup V6 ’—

5€10,7/8] Vht Ly p-111-26 T-6D
—n2|| @

supVT2 "2 | ——= ,
n>1 Vht LY(h-1J2)

sup V6 ’L .
5€10,T/12] VhtlL (h-11T-36,T-6)

Additionally the sup,¢(o 71 in the definitions (75)(83) can be replaced by sup, ¢34 ;- We
are thus led to compare the norms, for p =1,2,

Np’l’T’h((p):re[ngIE,T[m (ht)l% LoD

Nparap)=VT (ht)l% Lp(h‘lJ;1)+6€?$TE/8]\/5H (ht)l(f)p 2L gir-2s,7-61)
Npsan@)=VT (ht)lﬁ g Toupa™® (htf)l(i"”2 Lty
Nparng)=VT (ht)l% Lp(h-lJ;z)jLae]%flTI/Hz]\/g” (ht)l(/p""”2 Lo(h-1T-36,T-5)
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The elementary homogeneity of those expressions gives

Ny irn(p)= i,1,1(¢) with ¢(¢)=¢@(ht) forp=1,2 and1=<i=<4,

hl/p

and it suffices to consider the case 7' = A = 1 while setting v = M,L,m .
For 7 €[3/4,1[ the identity

1/p
190 zoto.m = (19150 sty 1912 ra.)

reduces the comparison of N, 1,1,1(¢), Np 2.1,1(¢) and N, 31,1($) to the comparison of

Ai(y)= sup V1 ||‘V||Lp([3/4 1)
Te[3/4,1]

As(y) —668](1)1?8]\/_||W||LP[1 26,1-61) ?

As)=sup2” "2 |y 1o m) -
n>1 1
Taking7=1-0,6<1/8,in Aj(y) and 6 = 2771 n>1 in Ao(y) gives
As(y) = V2A5(yp) < V241 ().

For 7 €[3/4,1[ there exists n, >1 such that T €[1-2"", 1 - 27" 1[= J;“ and

2p(n1+1)/2

nr
/29—n/2
W1 5401y = Z ||w||Lp(Ji,)s 222”1’ T Y llLewp)? = Az(y)P.
n=

2r2 —1

The inequality
(1-27")<71 or V1-1 52_”’/2,

while taking the supremum over 7 € [3/4,1[, implies

Ai(y) < As(y).

(2p/2 _ 1)1/p

We have proved the equivalence
150N (@) < Np i(@) <kp1Np1(p) for p=1,2,i=2,3,

with a universal constant x, 1 > 1.
It now sufﬁces to compare N, 2 and N, 4 or equivalently N, 2 1,1(¢) and N, 4 1,1(¢) written
Wlth W tl/p 1/2

Np21,1(@) = 1¥lpe=1)+ su£>8]\/_llll/||Lp([1 28,1-67) =: Ba(y),
6€]0

Npa11(P)= Iyl e=2) + Sull/)lz]\/_llllllle([l 38,1-67) =: Ba(y).

For the first terms of Ba(y) and By(y),
gy S IV = WD, o+ 0D,
gives
||1l/||Lp(J<1) ||1//||Lp(J<2) ||1//||Lp(J<1) + sup vlrrqi-26,1-61)-
6¢€]0,1

/8]
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For the second terms of Ba(y) and B4(v),

VolwlliLe1-35.1-3821 < VOIWlLeqi-35.1-67) < VOIWlLeqi-ss.1-36/2) + VlwlLoq1-20.1-01)

leads to

12
(2/3) sup \/_IIVJIILP(u 36,1-6) = sup \/_IIVJIILP(u 26,1-6)) <2 sup \/_IIVJIILP(u 36,1-61) -
5€10,1/8] 5€10,1/12] 5€10,1/8

Adding the two terms yields the equivalences

K;}sz(v/) < By(y) <xp2Ba(y)
and K;}2N2,2((P) < N 4(¢p) < xp 2N2 2(¢p)

for a universal constant x, 2 > 1. The proof ends by taking x, =« 1xp2 >1. O

5 Consequences of Strichartz estimates for our model prob-
lem

The general results of Section 4 are applied to our model problem presented in Subsec-
tion 2.3.

5.1 Validity of the general hypotheses and main result

Let us consider (20)

{iatfh = (€~ dT(D )R " + VEla(V) +a* (DIF, 05

flt=0)=7k,

where f(¢) e L2R? x 2", -2 o
and 2" € Z" is a parameter, e.g. L2(Z",dz") = L2(RY, 2 o )d,
want to handle the evolution of Hilbert-Schmidt operators on L2([Rd, (2n)d ;
as described in the end of Section 2.3. Our complete parameter is thus

4 odz”;[(LAR?,dy;C))), 5 is the Fourier variable of x € R¢
<[Z)®F(L2([Rd dy;C)) when we
:C)eI(LA(R?,dy;C))

Z/ — (6,2,)6 Rd x Z// :Zl
and remember the writing introduced in Definition 3.4 and specified in (47) and (58)

ds ®dz; T(L2RY,dy;C))=L% L2 = L? eL? . L2

2(md "
L(R XZ’(Z]I)d ) ’ z,sym—yg z 21,sym~yg*

Vacuum

with Zo=Z' , Z1=ReZ,

where the subscript sym refers to the symmetry for the relative coordinate variable Y' €
Z .

Using the center of mass variable (see Section 3) by setting ¢ — ug(t) = Uél (@), (95)
becomes

{ i0sul, = (€ =D, )2ul + Vhlal,(V) +ag(Vlul, 96)

h(p— _ . h
uG(t—O)— UG-

In this context, the free dynamics U(¢) involved in (57) acts simply on LngG and equals

Ut)=Ko(t,2) e Uy(t,Y',2') = (P x ) @ (e 7D x 1 1)
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where we recall zo=2z' € Z' and z; = (Y',2') € & x Z'. Because |e** y(pIILp = ||(p||Lp for all

_itD? .
1< p < +oo and e Py = ¢itAy gatisfies

le™™ fliz <If s,

ol gl L
(4 )d/2|t sld/2

the assumption (42)(43) are satisfied for Ui(¢,21), z1 = (Y',2'), as soon as d = 3 with

o= i > 1, uniformly with respect to z1 € Z x Z'.

The dense subset D in L2 L?VG such that D < L%(Z;,dz; L7 (R%, dyg;C)), with r? = dZdZ

and d = 3 here, is simply D =L 2(Z1,dz1; HMRY)) with ©>d/2. Remember that the dense

subset D was introduced in Proposition 4.1 for the dense a priori definition of the operator

A7 on L([0, T];Lg’x) (see Remark 4.2 and the proof of Proposition 4.1).

Below are reviewed assumptions on V:

isA i(t—s)A

(@) gliLy =lle 'gllLe t#s,

1. If Ve L;_fz(Rd,d y;R), the assumptions of Proposition 4.5 are satisfied with Cy =

I _ 20 _ 2d
1+||V||L% >Oandr0——a+1——d+2.

2. If V € H2(R%;R) then (95) (or (96)) defines a unitary dynamics with a rather well un-
derstood domain of its generator in L2(R? x zZ" ds @n )d odz";[(LAR?,dy;C))) =~ L2L?

zZ7ya”

We will always assume V € L’ in the sequel, and depending on the statement we might
assume that V € H? or not.

If V € H3(R?;R), the unique solution ¢ — uf(t) = U5 f(t) € €°(R; LZL2 ) to (96) satis-
fies

t
ul(t)=Uug ,—i fo UU(8)* Vhlag(V)+ag(V)lul(s) ds, (97)

and we will now seek for a solution of this equation using the fixed point method developed
in Section 4.2, for V € L" but not necessarily V € H2(R%;R).
If(u uz, h) solves

ul (£)=—i f U(t)U*(s)(\/Eag(V)ui:o(sH \/Eu’g(s)ml(s)) ds+f (@), (98)
0
t
ul(t) = —i f agMU@BU(s)* Vhul(s) ds +fhw, (99)
0
t
ul(ty=—i f acWMUMU()" (hag(Nuly(s)+ VRul(s) ds, (100)
0
with
t
fh@)=-i fo U®U(s) ag(VIVRU()ug; o ds, (101)
t
fa@t)=—-iag(V) fo UDU(s) al;(VIVRU(Sug o ds+ac(VUBug,,  (102)
written shortly as
ugo ugo fo]é Loooo Loo2 Lool
ul [=L|ul [+|f2], L=| 0 La o0 [, (103)
ulll ulll 0 Lis 0 L1

then ul(¢) = uoo(t) + U(t)ul, | will yield a solution to (97).

Actually, with ug(t) = u’fjo(t) + U(t)ug’o, applying ag(V) to (98) on the one hand, and
summing v/ x(99) and (100) on the other hand yields \/ﬁag(V)ug = u’f + hug‘, which
inserted in (98) provides (97).
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Theorem 5.1. Assumed =3 and V ELd%(IRd,dy;[R) with
||V||L% <Cy.
Assume that there exists a; >0 and Cgq, >0 such that
VR el0,hol, Ne®Nugolrzrz < Ca -

There exists a constant Cg > 0 depending on the dimension d = 3, such that when y >0 is
chosen such that
2L < a 1/2 <
[ ||$(gfa1,al,y) Cqe™' Cyy

the function ug(t) = ui‘o(t)+ U(t)u}(‘;0 with (u uz, h) the unique solution to (103) in
&h M) satisfies

—a1,q1,y?

VIht|

<CqCye™CqyV2—2X——, (104)

eVl ) -U@ul 1
G GO0llrere T, — |ht|

3
VtEITa’ |

with
To=v(a1—a) (105)

for all a €[0,a1l and all h €]0,h¢l.
If, moreover, V € H2%(R%;R), then u is the only solution to (96) in %O(Ih :L212 ).

el

Proof. We take ag = —a1 where a1 > 0 is fixed. The constant M ;o1 of Definition 4.4 is
nothing but

e™
M a0l = 7 .
Accordingly to Definition 4.4, for a fixed y > 0 the time scale T, is given by Ty = y(a@1 — )
for all @ e [—a1, a1l . Proposition 4.5 tells us that the condition

eM 1
C _C 1/2 <=
a,Uu 9 vY 9

where Cy4 iy = C4 is determined by the dimension d = 3 here, ensures that the operator L

is a contraction in &” for all A €]0, hol:

—1,a1,Y

IA

IL || !
L& 9°

erary)

If M(f%,f2,0) < oo, then the system (103) admits a unique solution in &, , . for all
h €10, hol with
M(uh u2,u1) = 2M(fh afzhao)

It remains to check two things:

¢ the right-hand side (folz,,f2 ,0) given by (101)(102) belongs to &h
mate M(fo}g,f2 ,0);

24,1,y and to esti-

¢ the unique solution (u uz, h) to (103) yields after setting uG(t) =ul (t)+U(t)u

: : 0 2
the unique solution to (18) in €°(]1 - TO’ 7[ L;,.)-
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The first step is simpler than what we did for Proposition 4.5. Let us start with

t
e Nl =i fo UOU(s) e N Vhay(Ve NU(s)e™ N u,  ds

t
:f U@U(s)"F(s)ds
with F(s) = —iljo, t](s)e“N\/—aG(V)e_“lNU(s)e“IN h o - By Proposition 3.8 we know that
Cye™ 12 aiN, h Cye™y!? V2
”F”L2L2 Ly = ﬁ'hﬂ le™ ug ollras, = Wcallhtl
A direct application of the retarded endpoint Strichartz estimate (46) yields
T — |ht| 1/2 A )
(alh—tl) ||€aNfoo(t)||LgL§G N CVeaICalYl 2

and by taking the supremum over |ht| < T,
M(f,0) < Cye®Cyyy"2. (106)

For
t
Fia0=—ia6V) [ UOUE ayVIWVRU Gl ds,
’ 0 :

the Proposition 3.8 and the retarded Strichartz estimate (44) give

/i ,aN ¢ch
To—tle®™ f, 1||L2(1h~L2L2 )

<VTy-1——— CV
CVe 1
<,/
\/al—
2d 2d

where here r, = =fgandry=75.

f UBU(s) e 5 Ng “(VWVh U(s)u

Lg1 LAILY)

a+a1

> Naf,(VIVRU()u},

r’
L2 LAI%Le)’

Then using Proposition 3.8 again, the square integrability of 1 on I” and the boundedness
of U(s) in the L? norm,
2 2&1

Cze
N ph \4
VTa=1le™ foallzarzrz ) S VTa=T

al—a

CZ 2a1 V \/—

e“lN\/ﬁU(s)u}é,O

LZLAUNL,)

e NU ()l |

LWL,

albllth

2 2a
SCye™y G0

L2z,
By taking the supremum w.r.t. a € [-ay, a1[ and dividing by Cye®y2/2 we obtain
My(f}1) S Cye™ Cayy™. (107)

It remains to control
Ry =ac(VU®u ;.

For —a1 <a<aj and 0 <7 <T,, Proposition 3.8 and the homogeneous Strichartz esti-
mate (44) yield

Vo~ T”eaNaG(V)U(t)u}Cl; 0”L2(I¥ ;Lng )

Cye*
VT~ 1—=IU®e" N ul (12 r2qh.1r0
/ 1__ G,0"L% L(I ;L )
,S CV P \/?”ealNuG,O”Lngf(; . (108)
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Taking the supremum over 7 €[0,T,[, a € [-a, a1[ and dividing by CVe“1y1/2/2 gives
M0, 125,00 S Co,

It can be improved by rewriting the system

ul, fo% 0 foo 0
ub | =Ad-L) | fo +FRy | = [ FRo [+ Ad-D) 7| f2, | +Qd-L) 'L | £L,
ul 0 0 0 0

from which we deduce
M(ul,ul — £l u?) S Cyve™ y | M(FE, 51,00+ M(0, £2,,0)] .

The inequalities (106), (107) and (108) prove that (fo’g,fzh,O) e&h and thus

—Qa1,a1,Y

Ml uly - 1 q,u?) <2M(fL, £2,00 S Cve™ Co ™.
By possibly enlarging the constant C; > 0, the above inequality becomes

M(uh

b ul— Ry ul) < CaCyCore™y"?.
We have finished the proof as soon as we can identify
ul ()= ul()-U®ug,
for t € I’%u and a € [0,a1[. For ¢t € I’%O , the function ug(t) = ué‘o(t) + U(t)ug’O belongs to
€01 ho :L2L2 ) and satisfies (97) which is equivalent to (96). By the existence and unique-

el

ness for (97) or (96) in %O(IhO;Lnga) when V € H2(R%;R), u}é is the unique solution to
(97) or (96) in €% ;LIL3,). =

5.2 Consequences of Theorem 5.1

Let us work now with a general initial time ¢¢, specified later, and consider (96)

{ i0sul, = (€~ D, )%ul + Vhlag,(V) +ag(V)lul, (109)

h(p— — ., h
uG(t = tO) = uG,to ’

with the solution u’é(t) = u’é(t’ +19) = U(t’)u’é tt u" in the framework of Theorem 5.1.

For simplicity and because we work definitely in the framework of (109) we use here
U@®U(s)* =U(¢t—s). Remember that (u,u?,u”) solves

ul |=| 0 Lo 0 [[uh|+]|f2 (110)
u’ll Lis 0 Ly u}f 0

'g

with

t/
Loooo@Xt) = =i [ U =s)VhaVip(s) ds,
0
tl
Looi(p)t)=—i A Ut —8)¢p(s)ds, Leoa(p)(t)=VhLoo1(p)t),
t/
Lgo(p)th = —ifo acWUE —s)WVho(s)ds, qef2,1},

t/
Lilg)t) = =it [ a(VU = 9)a(Vipto) ds,
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and
t/
fhah=—i fo U -s)ag(VIVRU (s)ugy, ds,

i) = —iag(V) fo Ut -9)ag(VIVRU(S)ug ds+fzg(V)U(t’)u'é’tq.

~ v~

) )

Theorem 5.1 provides a framework in which L is a contraction and we will use it twice
while inverting

ul, f 0 re 0
uh |=aa-D)7t| B = | fh, | +ad-D7t| f2 | +ad-D7 L | £,
uh 0 0 0 0

and then using the Neumann expansion (Id -L)l= ZZ":OLk for different values of ¢
and of the parameter y in Theorem 5.1. The following result is an easy consequence of
Theorem 5.1.

Proposition 5.2. Assume that the initial datum ug o for to =0 in (109) satisfies the
uniform bound ||e2“1NugOIIL§L§G < Cq, for all h €]0,hol. Then there exists Tal >0 and
Cy, >0, 84, >0, such that

a) The following weighted estimate

N_ h N
le® uG(t)||LgL§GSCa1

holds true for all t € I%, =1- 2, %] and all h €10, hol.
ay

b) For tg € I’TE s u’é(to +0/h) admits in e_%NLgLiG the following asymptotic expansion

in terms c1>f(5€ [-61,61]1,

6/h
ul(to+06/h) = UGIRup(to)~ivVh | UG/h-s)ag(V)+ag(VIU(s)ul(to) ds
S—— 0
o)

v

o(81V2)

o6/h ps
—hf f U((5/h—s)[a5(V)+ag(V)]U(s—s')[aE(V)+ag(V)]U(s')ug(to) ds' ds
0 0

J

o351
+0(161°%)

wherev(h,d) = @’(Iélk/z), k=0,1,2,3, means ||eC;_1Nv(h,5)|ILgL?VG < C~'0(1|(5|]("/2 uniformly
with respect to h €]0,hol and tg € I’%

ay
Proof. a) Fix a; > 0 and apply Theorem 5.1 with a; replaced by 2a;. There exists y =
Y1 >0, determined by a;, C12(V) and the dimension d = 3, such that the operator L is a

contraction in &” The system (110) for g = 0 admits a unique solution with the

2a1,2a1,y1

norm M in &" estimated by

2a1,2a1,y1

M(ui‘o,ug,u}f)§cal (111)
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and the solution ug to (18) equals
ug(®) =U@ug o +ul@).

With Ty, =y1(2a; —a1) =y1a1, the estimate (111) says in particular

V Ikt
Ty,

o Ty . .
By taking Ty, = Tl with |ht| < 5 when ¢ € I;» and with
ay

veely, o le™Nul @l < Ca

a1 N h a1, h
lle U(t)uG,ollLELiG <le uG,OHLEL%G =Cq»

we finally obtain

veell |, leNug@ii: S Ca,

ay
for C’al large enough.
b) With a) the initial datum u, , = ug(¢o) of (109) fulfils the assumptions of Theorem 4.1
after time translation ¢’ = £ — t( and where ¢' € I ;L, means t € to+1 ;L, . For any y > 0 small
enough and by setting T, = y(a@1—a) for a € [0, a1] we know that the system (110) satisfies

1L 26ty ST 5 Mo f3,0 S Cary™™ s MO, 35,005 Car

while u, (' +t0) = U(¢)uf(to) + uly(t) for ' € I}, .
In particular

ul 0 fh 0
ubt | =|Fhy|+Ad-D)7| 7, | +@d-L) 'L | £},
ul 0 0 0
leads to
ul))  (Fo+Loo2(f3) + Loooo(f + Loo2(£3:g) + Looa(f3y +Laa(f3:5))
ul | = [Ro+ 2y + Loa(fRy) + Loo(£3y + Loo(£7,)) +0(0?)
uy Lol 2 + Loo2(f115)
in gfaha .y - By using the first line with @ = 5 , and by setting

v"(t)) = U ul(to) + [FLE) + Loa(FE)IE)
+ Looool 2 + Loca(Fae))(t) + Looal fa1 + Laa(f£)1(t))

the difference ug(to +t')—v(¢) satisfies satisfies

a VAl Al
ve'elt e Nluf(to+t)— v Wllper: SyRPe——,
o e VTo— 1kt

Ta
where Ta; = % For 6 =+— :i% we obtain
2

le # N to +5/h)— v (O/h) 2z =OUSIP).

It now suffices to specify all the terms of v*(8/h):

¢ The first one is nothing but U(6/h)ug(t0) with an ¢ (1)-norm.
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* The second term
o/h
F2(8/h) + Looa(f25)(6/h) = —i f U(6/h - $)Vhlal (V) +ac(MIU(s)ulk(to) ds
’ 0

has an @(62)-norm.

¢ All the other terms have an @ (§)-norm and equal
Leoool F1)(0/1) = fo " fo TUGIh - $)ak (VU (s - sHag, (VU uli (o) ds'ds,
LooooLoo2(F))0/R) = ~h fo " fo UG - )0, (VYU (s — $ag(VIU(ul (ko) ds'ds,
Leoa(F1)(0/h) = —h fo " fo T UIh - $)ag(VIU s — (VYU (sl (to) ds'ds,
Loaa(Laa(F)X6/h) = —h fo " fo UG - 9)ag(VU(s - ac(VIU(sul(to) ds'ds.

This ends the proof. O

6 Semiclassical measures

We will check here that semiclassical (or Wigner) measures for our model problem pre-
sented in Section 2.3 can be defined simultaneously for all macroscopic times ¢ E]—Tal, Tal[ .

6.1 Framework

Below are reviewed a few properties of semiclassical measures or Wigner measures. We
refer the reader e.g. to [ 1[Gerll 1[ 1[ 1[Sch] for various presentations of
those now well known objects.

a) The Anti-Wick quantization on R? is defined by

A-Wick _ h h
@A, D )= [ a0 e

(2nh)d
is defined for any a € L°(T*R%, dx;C) with
h4 p h(e-20)2
W@ = TR X = (o, b0) € TR,

It is a non negative quantization for which
(@z0)= (@ Vi*hx,D,)20) and [a® V' (ha, D) o 2@ drsoy < lallne.

A natural separable subspace of L°(T*R%;C) is
€AT*RY;C) = {a € %O(T*Rd;ﬂi),)}im a(X)= o}
—00
resp.  GUT*RY L{oo};C) = 6UT*RY;C)@C 1= {a € %O(T*Rd;ﬂi),)}im aX)e c:} :
—00

endowed with the €° norm, of which the dual is the space M (T*RY;C) (resp.
./%b(T*[Rd LI {oo};C)) of bounded Radon measures on T*RY (resp. T*R% Li{o0}).
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b) For a bounded family (oz)nejo,n, of normal states g, € LULARY, dx;0)), en =0,
Trlpn] =1, the set of semiclassical measures on T*R? (resp. T*R% Li{oo}) is defined

Wick
as the weak* limit point in 4, (T*R%;R, ) (resp. 4 (T*R?Li{oo};R,)) of U(zﬂ}fgih) with

O'WiCk(Qh,)(X) = <(P§L(’ Qhwél()Lz(Rd) =Tr Qh|‘l’§(>(<ﬂ§(| .

This is extended by linearity for any bounded family (0z)re10,4,[ in £ LL2RY,dx;C)).
The set of semiclassical measures is denoted by

A (op,h €]0,hq),

and when £ is restricted to a set & <]0,h¢[, 0€ &, we use

Mon,heE).
After recalling
. dX e
fT A0 = = Tr [a* KD s

semiclassical measures p € #(pp,h €10, hgl) are characterized by the existence of a
sequence (hp)pens , By € & such that

lim Ay =0,

Jim

lim Tr [0 V(D) g, | = f o(X) du(X), Vaed,
k—»oo T*Rd

Jim Tr[gp, | = (TR L foo}) = (T RY) + p(o0),

where 2 is any dense set of ng(T*Rd;C)_

d) After choosing 9 = c@;"’(T"[Rd;ﬂi) and by recalling la® Vik(hx,D,) — a V¥ (hx,D,)| =
G(h), for any a € S(1,dx? + dé2) o c5(‘)"’(T*[R‘7l;<[2), semiclassical measures are char-
acterized by

Va e €°(T*R%;C), lim Tr [aweyl(hkx,Dx)Qhk] = f a(X) duX),
k—o0 T+ Re

or
VP eT*R?, lim Tr[‘r?,kghk] :f e Pex=Px) g 1y(x, &),
k—oo T*Rd

with
Tg _ (ez(pg.x—px-f))Weyl(hx’Dx) _ et(pg-(hx)—prx) , P= (px,P{)~

The compactification T *R% L {oo} is just a way to count the mass of (gp, )ren+ Which
is not caught by the compactly supported obervables a € €;°(T *R%;C).

e) Semiclassical measures are transformed by the dual action of semiclassical Fourier
integral operator on a V¥(hx,D,), a € c56"’(T"‘|R€‘7l;<[2).

f) When .4 (pp1,h € &) = {1} and M (pp2,h € &) = {u2} the total variation between pq
and pg is estimated by

lug —p1l(  T*RY ) = 4liminfllgn1 —n 2l -

or T*R4 {0}
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g) When (A,d,)is a metric space and (94 (A))he10 sl 1en is @ bounded family in ZY(L2AR?, dx;C)),
semiclassical measures can be defined simultaneously for all A € A, if for any se-
quence (hp)nen, limy, .o iy =07, there exists a subsequence (A, )ren such that

VA€ A,3uy € My (TR Li{oo}),

lim Tr [a* W%k, x, D) o1, (V)] = f a(X)dpy(X).
*R4 L{oo}

k—o00

By assuming (A, d ) separable, sufficient conditions for this property are either

e For all given a € €°(T*R%;C), Tr[aV¥!(hx,D,)pn(1)] is an equicontinuous
family of continuous functions from A to C, or

¢ The map (P,1)— Tr [T;_l, or(1)] is an equicontinuous family of continuous func-
tions from T*R? x A to C.

For the first characterization, apply a diagonal extraction process for a dense count-
able subset of (A, d ») (and a dense countable subset of cgg(T *R?) lying in G (T R%;C))
and then apply the various characterisations of elements of .#(p,(1),h € 8).

Like in our problem, semiclassical measures can be defined for bounded families pp €
LULAR? x Z',dx ® dz';C)) after using observables a V¥ (hx,D,) ® Idzz .

When (0r)rel0,n, 1s @ family of states, g, =0 and Tr[p,] = 1, the relationship with the
study of pure states can be done in two ways:

¢ Firstly by writing a general state as a convex combination of pure states, provided
that this convex decomposition is explicit enough to follow the behaviour as A — 07 .

¢ Secondly by writing g = Q}ll/2(_)}1l/2 and taking Vj = 9111/2 € LALARIxZ',dxodz’;C)) ~

L%R? x Z' xZ,dx®dz' ®dz;C) where Z is another copy of R? x Z' with dz = dx®dz’ .
Then
Tr | (@ (hx,Dy) @ 1d;2 Jon | = (P, (@™ (hx, D) @ 1d2 )Wy).

6.2 Equicontinuity

The following result, which is the first useful information about semiclassical measures,
before computing them, comes from the equicontinuity directly deduced from Proposi-
tion 5.2. The unitary transforms introduced in Section 2.3 and Section 3 in order to
transform (18) into (96) and aV®¥(hx,D,) ® Id into (zzweyl(—hDg,gr -D,,,) are not recalled
here and the results are directly formulated for the initial problem (18) and the semiclas-
sical observables aVe¥(hx,D,)®1d.

Proposition 6.1. Assume
VeL R, dx;RnHZREGR), rl=—1\, d=3,

and let Uy (t) = e HAAVRY) ke in Subsection 2.3.
Assume that there exists a1 > 0 such that px(0) € LULARY x Q,dx®%4;C)), pn(0) =0,
Trlpx(0)] = 1 satisfies

AC,, >0,V €l0,hol, Tr|e®Np,(0)e™ V| <C,,.

Then there exists Tal > 0 such that elements of A (py(t),h €10, hol) can be defined simulta-
neously for all macroscopic times t €] — Tal, Tal[ when pp(t) = Uy/(%)ph(O) U;(%).
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Proof. When U(s) = e *5(-2) denotes the free unitary transform , the time evolved observ-
able U*($)[aV¥(hx,D,) ®1d.: 1U($) equals exactly oV (hx,Dy,s)®1d2 with

a(x,é,s)=alx+2Es,8).

It is clearly equicontinuous in A €]0, Aol with respect to s € [—Tal,Tal] in ff(Liw) for any
given a € €°(T*R%;C):

IIaweyl(hx,Dx,s) _ aWeyl(hx,Dx,O)llg(ng) = Ca |s].
We drop the tensorization with Id;: . With
Tr [ (h, D )pn(t +8)| = Tr [a " (x, D)on(®)|

=Tr

o d 6.0
aweyl(hx,Dx,5)U*(E)UV(Z)Qh(t)U;(E)U(Z)] —Tr [aweyl(hx,Dx,O)Qh(t)
it thus suffices to check, uniformly with respect to (4, ) €]0, ho[X]—flA’w1 , Tal[ , the estimate
o o 6.0
(— - ()U (=) - =05-0(1). 112
(1o (h)UV(h)Qh(t)Uy(h)U(h) on®ll 1 =05-0(1) (112)
We now use the decomposition pj,(0) = p1,(0)"205,(0)2 and consider the evolution
Uy/(%)gh(O)l/z € LULARY x Q,dx©9;0) ~ L2R? x O x Z,dx ® 9 ® dz;C)

withZ=R¢xQ,dz=dx®%¥.
The estimate (112) is done as soon as

0 0
U U G (en OV - [Ty ()onO 21l =05-o(1)

uniformly with respect to (h,) €10, Aol x1—T4q,, T, -
This problem is now translated in a problem in

ds

L’R?* x Z, o ® dz;C)eL2,, (R, x Z1;dyg ® dzy;C)
) vacKum

by the unitary transform Ug associated with the center of mass yg of Section 3, the
translation invariance and its Fourier variable ¢ € R? and the relative coordinates Y' € % .
The variable z; € Z; is nothing but z; = (£,Y’,2) e R% x # x Z with dz; = % ®uedz. The
subscript ¢ym refers to the symmetry in the variable Y' € 2. All the assumptions of
Theorem 5.1 have been checked in Section 5. In particular we can use Proposition 5.2-b)
with

ulb() =Uy(onO and L eTh .
It says in particular

0 0 t
uli( + ) =UG ) +6(512),

uniformly with respect to (&, %) €10, holxTI ; , and therefore
ay

0 0
U U U (en OV = [Ty (onO 21l =Op-o(151%)

uniformly with respect to (h,) €10, Aol x1—T4q,, Tq,l -
This ends the proof. O
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7 Approximations

With our number estimates stated in Section 5, various approximations can be consid-
ered for the general class of initial data (04(0))ne10,n0, OA(0) € LPULARE x Q,dx®9;0)),
01(0) = 0, Tr[px(0)] = 1 under the sole additional assumption Tre® g, (0)e®N] < C,, .
Before computing the evolution of the semiclassical measures (Mt)te]_Tal,Tal[ given by
Proposition 6.1 (this will be done in a subsequent article), it provides useful a priori in-
formation for them.

7.1 Truncation with respect to the number operator N

For £ >0, let y.:[0,+00) — [0,1] be a decaying function such that

VkeN,Ve€l0,1[,3C >0, sup s*y(s)<Cpre, (113)
s€[0,+00)

Vay>0,3Cq, >0,Ve€l0,1[, sup e 5(1—ye(s)<Cq, xe. (114)
s€[0,+00)

Examples are
ES

Xe(8) =1g-11(s) and ye(s)=e”

Then the operators
aGge(V)=xe(N)ag(V)x(N) |, a*G’E(V) = xe(N)a;(V)x:(N)
are bounded operators on

F?2=1%Z a7z ;T(L>R?,dy;C)) = L?

z,sym

_r2 2 2
- LZo 6BLZhS)’mL}’G

according to (56) and \/ﬁ(ag,g(V)Hz E,E(V)) is an @.(vh) bounded self-adjoint perturbation
of (-D,, )2 . Additionally for € > 0 the estimates of Proposition 3.6 hold true when ag(V)
and a, (V) are replaced by ag (V) and aag(V). Actually, (39) with n > 1 and (37) with
n >0 become

2
||aG,£(V)fG,n ”Lz’,Y,’legG = ”V”Lr’ )(g(n -1) \/E”fG,n ”Lz’,Y,’LLZI’G = Cg”V”er ||fG,n ”Lz’,YALgI’G (115)

2
lag Vfanlys o < IV xemPVatilfanl,, o <CellViglfanl, o (116)
z’,Yr’H_1 G 2’,Y,’L G z’,Yé YG

when V e LY (R%;C)nL" (R%;C), % = % + % - 1% , p',q’' €[1,2]. All the analysis can thus be
carried out with ag(V) and a (V) replaced by ag (V) and a; (V), either with estimates
which are uniform in € €]0, 1[, or by replacing the N-dependent estimates by constants
C. depending on € €]0, 1[ .
In particular the solution vg . to
{ 0w, = (€ =Dy 2ol +Vhlag (V) +ag (DI, a1
h —0) -k _,h

Vg (E=0)=vg . 0=Ug o
satisfies the same properties as the solution u’é to (96) stated in Theorem 5.1 and Propo-
sition 5.2, uniformly with respect to £ €]0, 1] .
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Proposition 7.1. Assume ”emlNu}cl;,o”L%L%G < Cy, for all h €]0,hl like in Proposition 5.2.
There exists Co, > 0 and T4, > 0 such that the solutions u}é to (96) and vg,s to (117) for
€ €]0,1[, satisfy

lug® ~vg Dlzzr: < Caye
forall te 1t =1- xSl
Additionally the statement b) of Proposition 5.2 holds true when ug, ag(V), aa(V) are
replaced by vg’g, age(V), aE’E(V).

Proof. The statements a) and b) of Proposition 5.2 hold true uniformly with respect to
€€]0,1[ for vg . as a consequence of the previous arguments.

In particular vg D= U(%)ug ot vgo,s where (vé‘o,g, vgg,vilg) solves the system
vgo,e Ugo,g f(glo,g Loooo,e LooZ,e Lool,e
vy, [=Le| Vb |+| fae |, Le=| 0 Ly 0 |, (118)
vig v’ll,E 0 L1 0 Li1e
with
t
fit) =i f U@BU(s) al, (VIVRU(s)E, | ds, (119)
o ; ,
h ! h h
foe()= —iaG,E(V)fO U(t)U(S)*aE’E(V)\/EU(S)uG’O ds+ag:(VIU@Bug g, (120)

and where the entries L, are the same as the ones of L with a(V) and a,(V) replaced by

ag(V)and ag, (V). When y.(s)=e™**, one recovers the system for u}é by taking e =0.

h

We start now with the equation for u,

ul(t) = U(%)u'é,o ~ivh fo % U(t-s)ag(V)+ag(V)lug(s) ds,
which implies
Xe(N)ul(t) = U(%)Xg(N)uZ’O ~ivh fo ‘ U(% —)x:MNlag(V) +ag(Vly(NYup(s) ds
—iVRhy(N) fo ‘ U(% —)ag(V)+a;(MIL - y2(N)ul(s) ds.
The function w, () = x:(N)ug(?) solves
we, (£) = U(%)xg(N)ug’O ~ivh fo ‘ U(t-s)ag(V)+ag (Vwp, (s)ds+gh, . (121)

with  g" , = —iVhy(N) fo Ut -9)lag(V) +a (VL - 2N Dulis) ds.  (122)

The system for (wgo’g, wgs, w’fs) after decomposing wg )= U(%)Xg(N)ug ot wé‘o,g(t) is
h h rh h
Woo,e Weo,e foo,s goo,s
h _ h £h
wy, | = L, wy . [+ f2’£ +| 0 |,
h h
wy . wy e 0 0
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where fo’gg and f2h£ have the same expressions as (119)(120) with ug o replaced by )(E(N)ug 0-
By taking the difference with (118), and because || L. || LEpayry) S 1/2 for y > 0 small enough,
the proof is done as soon as the three norms

lug® = xeMNDugDlzzrs (123)
Ml —f2 o Fre— 1350 (124)
Mg, ,,0,0), (125)

are bounded by Cy, €.

Because the time interval is restricted to I ’7‘, with ’f’al < Ty, , the weight /T, —|ht| or
ay

/T4, — 7 used in Definition 4.4 or in Proposition 4.5 can be forgotten now (simply multiply
fae Fares a € (00,2} and gh . by 1, (@),

h
The estimate of (123) is obvious since

(1= eV DugDllzrz, = supl(L—xe(De™ I x he™ VugDlzrs -

N J g
-~

O(e) Séal

The estimate of (124) is very similar. Actually in the proof of Theorem 5.1 we checked
M(fL, 3,00 S lle®Nuf, olz2rz - It gives now

ML e~ 2 e Foe = Fre0 S 1™ N (V) = Dugy g llz2rz < Caye.
For (125) let us first decompose ggo,g as
ggo,e = gﬁo,l,s +gilo,2,g
with gl |, =-iVhy(N) fo % U(t-8)ag(V)(1 - 2(N)ugy(s) ds
and gl , . =-iVhy(N) fo ﬁ Ut -8)ag(V)(1- x2(N))ulL(s) ds.

The estimate of gi‘o 1 follows the method for the bound of M (fo}g,0,0) in the proof of
Theorem 5.1, where we simply used the uniform bound in time for [|U(s)e®" u}é

With

,0”L§L§G .

sup | (1~ y2 (Vg Olzzrz < supl(L—xZ(sDe™ | x le "N ufylzrz_,
t s=0 N

N J g

() <Cq,
this gives
M(gﬁo’l’s,0,0) <Cyc.
h

2(11N h
For g2 5 g

remember firstly that the assumption is |e

N 3a ~

sibly reducing 7'y, , we may assume IIeTlNuG,h(t)IILzL?V < Cy, . We now use the obvious
27ya

relation ag(V)P(N) = (N + Dag(V) and write

,0"L§L§G < Cq, and by pos-

t
g’go 9e= —ixg(N)e_%(N“)(l —)(?(N + 1))euT1(N+1)fh Ut —s)\/ﬁag(V)u}é(s) ds.
o 0

Remember that the equivalent system (96) says \/Eag(V)u’é(t) = u}ll(t) + \/Eug(t) with
MO, u’zl, u}ll) S Cyq, - The above equality becomes

P 5. 0= xe YL~ 2V + 1)e™ TN DT VDL (0h) + Loga(@l)].
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The bounds for L1 and L9 in the Theorem 5.1, lead to
At~ Y2e 7 VDL 1 ) + Loog )] et 202 ) SCan
ay
With
_Y _M
1XeNDA= 2N +1)e ™2 Y Pllgaps ) <supl(1-xZ(s)e ™ *| = 0(),
s=0

this proves
Mgk, .,0,0<Cq,c.

O

Let us go back to our initial problem and let us compare the evolution of states for
the dynamics U(%) = ¢"itAtVRY) for ¢ = 0 and the case £ > 0 where Xe(N)V xe(N) is a
bounded self-adjoint perturbation of —A, . Set in particular

Uy o= e WMAVRID wigh 7, = yo(N)V xe(IN). (126)

Proposition 7.2. Assume like in Proposition 6.1

, 2d
VeL " (RY,dx;R)n HARE;R) r;:m , d=3,

and assume that there exists ay > 0 such that p5(0) € LHLAR? x Q,dx ®%4;C)), pp(0)=0,
Trlpx(0)] = 1 satisfies

3Cay >0, Vh €10, hol, Tr [ (0™ | <o,

Call pn(t) = Uy()en(OU;(£) and op () = Uy (£)on(OU; (). When the subset & <
10,hol, 0€ &, is chosen such that

Vte]- TapTal[, Mep@), he&)={u} and Mppe(t),he&) ={u,}
Then the total variation of ; — i ¢ is estimated by

Veel-To, Tl lpe—prel T'RE )<Che,

or T*R?L{oco}
for some constant Cy, >0 determined by a1 >0.

Proof. From
0h(D) = 01,e(0) = [ Uy (Don(OV2 - Uy o()0n(0/2 | 00 2T; (1)
+ Uy ()0 O[040V 2 () - n(O) V2T (2]
we deduce
IH(®) = peDIT"R? U {ooD) = 4 Timinf 104(t) = 01, (Dll 1 = 8 liminf |W" ()= Wi D2

with W2(#) = Uy o(£)04(0)% € LULAR? xQ,dx®%;0)) ~ LAR? x QA x Z,dx 89 ®d%;C) with
Z=R'xQ,dz=dxe¥9.
But Proposition 7.1 implies

Viel-To, To,l, IV @O-PLDIz  <Coe.
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7.2 Asymptotic conservation of energy

The result of this paragraph is a consequence of the approximation of the Uy dynamics
by the one of Uy, in terms of wave functions in Proposition 7.1, states and semiclassical
measures in Proposition 7.2

Proposition 7.3. Assume like in Proposition 6.1

. 2d

Ve L R?,dx;R) N HARR) =

d=3,

and assume that there exists ay > 0 such that p,(0) € LHLAR? x Q,dx ®9;C)), p(0)=0,
Trlpx(0)] = 1 satisfies

3Cq, >0, ¥R €10 hol, Tr|e™Npu(0)e™N| < Cy, .

Call p(t) = Uy (£)0n(0)U;(£) and let the subset & <10,hol, 0€ &, be such that
Vtel-To,, To,l, A(on@),he&) ={u}
with the additional assumption at time t =0,
supp o < {(x,f) e T*RY, &2 eF} (127)

where F is a closed subset of R. Then for all t €]— Tal,Tal[, the support of u; restricted to
T*RY satisfies
*mpd 2
Suppis|p.ge < {0, € T°RY, 2 e F .

Proof. For € >0 and z € C\R the resolvent estimate

C:Vh

Iz +A07" =2 = (A + VAV Mgz ) < ——
%0 Imz|

with 7 = y.(N)V y.(N) € ff(Li’w) as in (126) combined with Helffer-Sjostrand formula
[ 1 gives

Ve>0,Vy € 65°(R;0),3C,c >0,  lIx(-An) = x(~Ay + VATl g2 ) < CpeVh.
The semiclassical calculus then implies

” X(=Ax + VR @V (ha, D) y(~ Ay + VYD) - [ 2(1E1P)al V¥ (hx, D) Cay.c(Vh)

2@z,

for all @ € €3°(T*R%;C) and all y € €°(R;C).
Hence, the assumption (127) implies

VY EECRAF;0,1),  lim lx(-As+ VRT)0n O x(=As + VRV 112, = 0,
and therefore

Vx € CR\F3[0,1D), Ve €1-Ta,, To [, Tim | XD+ VRV 0O YD+ VAT 122, =0,

with pp, ((£) = U%(%)Qh(O)U;Z(%) and Uy, (¢) = e it=AAVRT)
When &' c&,0€ &', is such that

MOp (), h €E) ={pre},
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Proposition 7.2 tells us
|te = e /(TR < Cp .

while

f al, O R dptg o, &)
T*Rd

= lim Tr (A +VATDGY i, D) (B VAT 01,0)] =0,
€& ,h—

for a € €3°(T*R%;C) and y € €°(R\ F;[0,1]). We deduce

Va € €°(T*R%;0), Yy € 6 (R\F;[0,1]),Vt €]-Ty,, T, [, f L@@, ) P2 (E) dpelx,§) = 0,
T*R

which yields the result. O

7.3 Changing V

The formulation of Theorem 5.1 u’é(t) = Uy(t)u’cl;’0 = U(%)ug’owLufjo(t) where (u;‘)qe{oo’z’l} is

a solution of a fixed point problem, solved in Proposition 4.5, where only | V|| Ly s r= j—fz ,

is used, allows to consider perturbations of V', which can be done separately in the the
terms ag(V) and a (V) and with complex valued perturbations.
Remember that our state pp(¢) = ny(%)ph(O)U;}(%) is written

t ,t
on(t)= [Uﬂz>gh(o>1/2][ph(0)”2Uy(Z)],
and the link with the fixed point problem is done after setting

t
Uug, o +ul @) =ul(t) = UV(E)Qh(O)l/Q in £XL2,)~L?

2,6’

where the last identification is done via the unitary transform Ug of Section 3, omitted
here and explained in the proof of Proposition 6.1.
A generalization is done by writing for a pair ¥ = (V,Va) e L™ Q(Rd,d y;C)?,
VLN SR A 172
0p,7(t) = uGJ;(E)[uGJ;(Z)] e L (Ly ), (128)

where ugj(t) = U(t)on(0)V2 + uiloj(t) and (qu)qE{oo,Zl} solves the fixed point problem
(59)(60)(61) with f7(#)=0 and £ and f} given by

t
v =f" =i fo UMU) af(VVRU(s)L o ds, (129)
t
o) = fo 7 (1) = —iag(Va) fo UMU(s) ag;(VOVRU(S)ug; o ds+ac(VU(Bug, . (130)

This fixed point problem will be written

h h h

uoo,77 uoo,77 fooj
h T . h h

Ugy [ =Ly | Ugy |+ f2,77 . (131)
h h

u1, 2 u1,77 0
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Proposition 7.4. For two pairs ¥, = Vi, Vap) € Lrif([Rd,dy;CE)Q, for IIe‘“NuZOII =Cq
and by choosing Tal > 0 small enough, the two solutions to (131) with the right-hand sides
given by (129)(130) satisfy

N N t t
h h
Viel-Tq,,Ty,l, ||uoo,7;2(ﬁ) - uw’%(z)lng‘m <ClIVig=Viilly +1Ve2 = Vol |

for some constant C >0 given by a1 >0, Cq,, the dimension d, and max; j |V jl ., .

Proof. Tt suffices to notice that the difference v” = v —u” with u” =
k

h
7% % (uqy;)qe{oo,m} ’

k=1,2, solves

fh ~_](-h :

00,% 00,71
o Ly 0" = Ly ~Lp)Wi)+ | fl ~ 2,
0

Estimates for all the terms of the right-hand side have essentially been proved for Propo-
sition 4.5 and for Theorem 5.1. Although they are written for V; = Vs real-valued in The-
orem 5.1 the generalization is straightforward (like in Proposition 4.5) and upper bounds

are proportional the L™ o of the potential which is either (V12 -V 1) or (Vo2 —Vs1).
The time interval ]1- Ty, Tq,[=] —ZTal,ZTal[ is actually chosen like in Proposition 4.5
such that L7 LBy -y ) S % and this ends the proof. O

For a general pair 7 = (Vi,Va) € Lo (R%,dy;C)?, the trace-class operator Q];;(t) is no
more a state and neither self-adjoint. However it remains uniformly bounded in £ 1(L?C’w)
and complex-valued semiclassical measures p(¢) make sense for ¢ €] - ’f’al,Tal[. More-
over the results of Proposition 5.2 and Proposition 6.1 can be adapted mutatis mutandis
for such a general pair, so that semiclassical measures (extraction process) can be defined
simultaneously for all ¢ E]Tap Ta1[~
The above comparison result can be translated in terms of trace-class operators and
asymptotically for semiclassical measures.

Proposition 7.5. Assume

VeL R, d;R)nHAREGR) , Vi,VeeL™#(RY,dx;0) re=o5 » 423,

and assume that there exists ay > 0 such that p5(0) € LHLAR? x Q,dx ®%4;C)), pp(0)=0,
Trlpx(0)] = 1 satisfies

3Cay >0, Vh €10, hol, Tr[e™ (0™ | <Co,
Let pp(t) = Uy (£)(OU () and let o, 7(¢) be defined by (128). Then
3C>0,Vtel-To,, To,l, loa® =0, 7@l rzz,) < CUVI=Viy +1Va=Vi,].
When the subset & <]0,hol, 0€ &, is chosen such that
Viel-To,Ta)l, Mopt),he&)={u} and Mg, ), he&) ={u,y;}

Then the total variation of yi; — i, 7 is estimated by

AC'>0,Vtel-Tq,, Tal, e = py 71 S )SC'[||V1—V||UQ,+||V2—V||Lr;,]-

or T*R?Li{oo}
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Proof. Tt suffices to write

047 - on(t) = Gy(h) uph (- )[Gy(h)] +lug(s “1u Gy(h) ug(z h)'

and to remember that Hilbert-Schmidt norms correspond to Lg’ya-norms estimated in
Proposition 7.4. O

7.4 Quantum dynamics with low regularity

We conclude with an easy application of Proposition 7.4 which says that the dynamics
(Uy(1)):er is actually well defined under the sole assumption

: 2
VeL*®%:R) r’(,=d—f2 d=3, (132)

with good approximations when V,, € Lrif(le;[R) NH2(RY;R) satisfies lim,,—oo |V, = V|l =
0.

Proposition 7.6. Let V belong to L™ ZJ(IRd;[R) and let (V,)nen be a sequence in L™ L(Rd;[@) N
H2(RY;R) such that limy, .o |V =V, I, =0. Then for any t € R the unitary operator Uy, (¢)
converges strongly to a unitary operator Uy (t).

Therefore (Uy (t))ier is a strongly continous unitary group in LAR?x 2" dxedz";T(L2(R?,d y;C))) =
L? symL ya with a self-adjoint generator denoted (=N, + VAV ,D(=A, +VhY)).

The convergence (—A, + VY, ,D(=Ay +VRhY,)) to (=M + VAV ,D(=A, + VEY)) holds in the

strong resolvent sense.

Remark 7.7. Although the dynamics (Uy(t))er and its self-adjoint generator (—A, +
VRV ,D(=A, + VRY)) is well defined for V € L"s(R%;R), we have no information on the do-
main D(=A, + VEY). The approximation process by V,, € L"s(R%;R) n H2(R?;R) for which
a core of A, + VRV, is given by Proposition 4.4 in [Bre] recalled in Lemma 2.2, provides a
substitute for the analysis.

It could be interesting to see if this Schrodinger type approach relying on endpoint
Strichartz estimates could be applied to other quantum field theoretic problem and whether
it would bring additional information of tools as compared with the euclidean approach
(see [Sim] and refences therein).

Proof. Actually we can work here with A =1. The convergence of
Uy, Dug,o=U)ug,o+ (1)

is deduced from the convergence (see Proposition 7.4) of u 7, (¢) to w7 (£) when e N uGg,o €

2

L; symL y for some a1 >0.

From | Uy, (H)ug ollzz wl?, = =llugolrz, W3, We deduce | Uy (Hug ollzz wl2, = = llug OHLzsymL 2
This finally provides the extens1on of Uy/(t)uG o forany ugoe€ Lz symLic with the conver-
gence of Uy, (t)ug,o to Uy (t)ug,o , because e “1NL§ SymL?VG is dense in Lz symLie Passing
from the strong convergence of unitary groups to the strong resolvent convergence of gen-
erators is standard. O
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