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Abstract

In this article we reconsider the problem of the propagation of waves in a random
medium in a kinetic regime. The final aim of this program would be the understand-
ing of the conditions which allow to derive a kinetic or radiative transfer equation.
Although it is not reached for the moment, accurate optimal and somehow surpris-
ing number estimates in the Fock space setting, which happen to be left invariant by
the dynamics. Keel and Tao endpoint Strichartz estimates play a crucial role after
being combined with Cauchy-Kowalevski type argument. Although the whole article
is focussed on the simplest case of Schrödinger waves in a gaussian random potential
of which the translation into a QFT problem is straightforward, several intermedi-
ate results are written in a general setting in order to be applied to other similar
problems.
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1 Introduction

The asymptotic analysis or random homogenization of wave propagation in a random

medium, in a kinetic or diffusive regime has motivated several works in the recent decades.

It is not our purpose here to give an exhaustive list but we think essentially of two dif-

ferent approaches: the one initiated by G. Papanicolaou and coauthors (see e.g. [FGPS,

Pap, RPK]) with a rather complete review by J. Garnier in [Gar] and the one proposed

by L. Erdös, H.T. Yau and later with M. Salmhofer in [ErYa][EYS1][EYS2] . Those two

approaches formulate their results in terms of a kinetic (or diffusive) evolution equation

for some weak limit of scaled Wigner functions. The main difference between the two

approaches can be summarized as follows : The first approach presented in [Gar] mod-

eled on the problem of randomly layered media (see [FGPS]) focusses on space-time wave

functions, by solving a space-time PDE (it can be a Schrödinger or a wave equation) with

random coefficients but with a smooth and essentially deterministic right-hand side. With
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very strong assumptions on the right-hand side of the equation, essentially deterministic

and smooth, a kinetic equation is written for the distributional weak limit of the Wigner

function associated with the space-time wave function. The work of [ErYa][EYS1][EYS2]

is concerned with Cauchy problems, at the quantum level for the Schrödinger equation

and semiclassically at a classical level for a linear Boltzmann equation in [ErYa] or a heat

equation in [EYS1][EYS2]. The strategy of this second approach consists after writing a

Dyson expansion (the iteration of Duhamel’s formula), in making an accurate combina-

torial analysis of Feynman diagrams which label all the random interaction terms of the

expanded Dyson series. This Dyson expansion technique was actually already used for a

similar problem by H. Spohn in [Spo]. The final step which gives the asymptotic behaviour

of the Wigner transform, essentially relies on the accurate control and expression of the

remaining terms of the series by using stationary phase asymptotic expressions for the

many oscillating integrals. The results of this second approach always require strong as-

sumptions on the initial data at the initial time t =0 and prove weak convergence results

at the macroscopic time t 6=0 .

The main difficulty in this problem is concerned with the control of recollisions and

especially the proof that the asymptotic evolution is Markovian, or given by some semi-

group associated to a kinetic of heat equation, although the multiple scattering process

of waves could destroy this markovian aspect. Depending on the asymptotic regime, the

effective asymptotic evolution could be affected by some memory or non local in time ef-

fect. In the considered asymptotic problems, it must be checked that those memory effects

vanish asymptotically. In the approach reviewed in [Gar] which is concerned with rather

general random fields, this is proved by estimating higher moments. In the approach of

[ErYa] the combinatorial accurate analysis of Feynman diagrams, is reminiscent of the

accurate control of recollision terms by G. Gallavotti in [Gal] for the classical Lorentz gas

problem (Wind tree model). Both approaches bring accurate information about a difficult

problem in slightly different frameworks and with various range of applications.

However those results remain unsatifactory from the mathematical point of view and

for the following reason: The dynamics of (quantum) waves is given by a semigroup (actu-

ally a unitary group when there is no dissipation) and the asymptotic kinetic or diffusive

limits are also given by well defined (semi)-groups. In the Cauchy problem approach,

one does not yet understand the dynamically stable class of initial data which makes

the derivation of a classical kinetic or heat equation possible. Actually the results of

[ErYa][EYS1][EYS2] are themselves puzzling because with very specific initial data at

time t = 0 , they prove the asymptotic expected behaviour at the macroscopic time t 6= 0 .

But this means that the time evolved quantum state at the macroscopic time t/2 6= 0 ,

enters in the class of admissible initial data for which the asymptotic evolution can be

proved for a nonzero time interval (at the macroscopic scale). Such initial data do not en-

ter in the very specfic class considered at time t =0 . In the space time approach reviewed

in [Gar] the strong assumptions on the right-hand side compared with the weak conver-

gence results of the wave function, have been considered in a negative way. Actually what

is called “statistical stability” is shown to fail with rough data (see [Bal]). But no positive

answer for a general class of random right-hand side seems to emerge. Although the two

approaches are about slightly different problems, they seem related at least for some ba-

sic random processes on which we will focus in this article.

Our hope is that such an analysis about the propagation of random waves in a ran-
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dom medium should lead to results relying on dynamically stable hypotheses. We are

led in this direction by the strategy followed by the second author with Z. Ammari in

[AmNi1][AmNi2] where they managed to give a general and robust class of initial data,

dynamically stable, such that the quantum mean field dynamics can be followed.

About this very technical question a first attempt was tried by the first author in [Bre].

The idea was to exploit the link between gaussian random fields (and possibly other fields

like the poissonian random fields) with quantum field theory. It rapidly appears that the

asymptotic problem, of waves in a random medium in a gaussian random field in the

kinetic regime, cannot be thought as an infinite semiclassical problem like the bosonic

mean field problem. It has some similarities but the strength of the free wave propagator

and the translation invariance lead to non quadratic and non “semiclassical” Wick quan-

tized operators. For this reason the coherent state method presented in [Bre] led to an

accurate Ansatz, only for O(h1/2) macroscopic times, where h > 0 is the chosen small pa-

rameter, and the derivation of a linear Boltzmann equation was possible only by forcing

the markovian nature of the asymptotic evolution by reinitializing on some intermediate

time scale the random potential. It was not at all satisfactory. Actually the number es-

timates that we prove in this article confirm that a coherent state approach cannot work

for those problems.

Another issue of this problem is the good understanding of the dispersive properties

of the free wave propagator with the asymptotic behaviour of waves in a random medium.

The different behaviours expected in small dimension, d ≤ 2 for the Schrödinger equation

in the kinetic regime compared to d ≥ 3 , are closely linked with the time integrability

of the dispersion relation (L1 − L∞ estimates). In the community of nonlinear PDE’s,

Strichartz estimates are known to be more robust and effective than the pointwise in

time L1−L∞ estimate. With the endpoint Strichartz estimates proved by Keel and Tao in

[KeTa], those inequalities are now well adapted for linear critical problems. This article

shows that they actually lead to very accurate and somehow surprising “number esti-

mates” with some non trivial consequences.

Before giving the outline of this text, let us point out some limitations and features of

the present analysis:

• We are not yet able to derive a full kinetic equation, except if one makes some

connection with the existing results of [ErYa]. The class of good initial data for

which an asymptotic equation can be written is not yet identified.

• We work essentially with the Schrödinger equation in the presence of a gaussian

random potential in the kinetic regime, as what we think to be the simplest, and

richest model problem from the point of view of available structures.

• Once the two previous points are made clear, the interested reader will realize that

several argument, especially the one making use of Strichartz estimates, have been

written in a sufficiently general framework in order to be transposed in another

framework.

• Some results like the possibility to define Wigner measures for all times, the lo-

calization in energy of the propagation phenomena, the class of potential corre-
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sponding to the scale invariant potential for Strichartz estimates, definitely bring a

partial but accurate information.

Our main results are about accurate number estimates, stated in Proposition 4.5 in a

rather general abstract setting and in Theorem 5.1 for the case of our model problem of

the Schrödinger equation with a gaussian translation invariant potential in the kinetic

regime and dimension d ≥ 3 .

Outline of the article;

a) In Section 2 the link between gaussian Hilbert spaces and the bosonic Fock space is

recalled and the equations in which we are interested are explicitely written.

b) In Section 3 the translation invariance is used in order to make appear in a crucial way

the center of mass variable, with respect to the position of the field variable. The

expression of the creation and annihiliation operators are given explicitely in the

center of mass and relative variables and finally Lp-estimates are carefully checked

for those creation and annihilation operators under the suitable assumptions on the

potential.

c) Section 4 reviews the known results about endpoint Strichartz estimates, and gives

consequences in connection with the Lp-estimate in the center of mass given in

Section 3. Then a rather general fixed point is proved which combines endpoint

Strichartz estimates with an adaptation of Cauchy-Kowalevski techniques.

d) In Section 5, the general assumptions of Section 4 are checked in the framework of

the Schrödinger equation with a gaussian random field in the kinetic regime and

ambient dimension d ≥ 3 .

e) Consequences and a priori information, for the asymptotic evolution of Wigner func-

tions are given in Section 6, withouth computing them.

f) Finally various approximation or stability results are deduced as consequences of the

general estimates proved in Sections 4, 5 and 6.

Before starting, be aware of the following assumed framework and conventions:

All our Hilbert spaces, real or complex, are separable. All measures are assumed

sigma-finite. On a set X endowed with a sigma-set, a generic sigma-finite measure will be

denoted dx , while the normal calligraphy dx will be reserved for the Lebesgue measure

on X =R
d . When (X ,dx) and (Y ,dy) are two sigma-finite measured spaces, the notation

L
p
x L

q
y , 1 ≤ p, q ≤+∞ , is used for Lp(X ,dx;Lq(Y ,dy)) . However a more general version

of L
p
x L

q
y will be introduced in Subsection 3.2.

2 Random fields and Fock space

2.1 Gaussian Hilbert space and random fields

Let G be the stochastic gaussian measure (see e.g. [Jan]) on the Lebesgue measured space

(Rd,L , d y) . This defines a real Hilbert gaussian space indexed by L2(Rd , d y;R) which is

generated, as a Hilbert space, by the centered real gaussian variables X A ∼ N(0, |A|) ,

with A measurable set of Rd and |A| =
∫

A d y . By Minlös theorem (see [Sim]) the space
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L2(Ω,G ;R) which contains powers of those gaussian processes can be realized with Ω =
S ′(Rd, d y;R) .

Complex valued elements F ∈ L2(Ω,G ;C) are written F =Re F+iImF , Re F, ImF ∈ L2(Ω,G ;R)

handled by the R-linearity of the decomposition.

Once the complexification is fixed in this order (see [Jan] for an accurate description of

various complex structures of gaussian measures), the chaos decomposition of elements

in F ∈ L2(Ω,G ;C) can be written

F(ω)=
∞⊕

n=0

∫

Rdn
Fn(y1, . . . , yn) : X y1 · · ·X yn

: d y1 · · ·d yn , (1)

where

• Fn(yσ(1), . . . , yσ(n)) = Fn(y1, . . ., yn) for all σ ∈ Sn and complex valued functions are

treated by the R-linearity of the decomposition Fn =Re(Fn)+ iIm Fn ;

• the above symmetry can be written Fn = SnFn where Sn is the symmetrizing or-

thogonal projection on L2(Rdn, d y1 · · ·d yn;C) given by

(SnFn)(y1, . . ., yn)=
1

n!

∑

σ∈Sn

Fn(yσ(1), . . . , yσ(n)) ; (2)

• the family (X y)y∈Rd is made of jointly gaussian real centered random fields such

that E(X yX y′ )= δ(y− y′) , which actually means

E[(
∫

Rd
f (y)X y d y)(

∫

Rd
g(y′)X y′ d y′)]=

∫

Rd
f (y)g(y) d y

for all f , g ∈S (Rd;C) ;1

• products or Wick products of singular random variables X yj
, j = 1. . . J , must be

considered in their weak formulation as well;

• : Y1 · · ·Yn : stands for the Wick product of the random variables Y1, . . .,Yn ;

• with the assumed symmetry of the Fn components ,

E(|F|2)=
∫

Ω
|F(ω)|2 dG (ω)=

∞∑

n=0
n!

∫

Rdn
|Fn(y1, . . . , yn)|2 d y1 · · ·d yn =

∞∑

n=0
n!‖Fn‖2

L2 .

(3)

A field is a random function of x ∈R
d and we shall consider F :Rd×Ω→C . A real gaussian

centered translation invariant field can be written

V (x,ω)=
∫

Rd
V (y− x) X y d y .

An element F ∈ L2(Rd
x ×Ω, dx⊗G ;C) has the chaos decomposition

F(x,ω)=
∞⊕

n=0

∫

Rdn
F̃n(x, y1, . . . , yn) : X y1 · · ·X yn

: d y1 · · ·d yn (4)

=
∞⊕

n=0

∫

Rdn
Fn(x, y1 − x, . . ., yn − x) : X y1 · · ·X yn

: d y1 · · ·d yn (5)

1We follow the general probabilistic convention which omits the ω argument with X y = X y(ω) e.g. in
formula (1).

5



where Fn(x, y1, . . ., yn)= F̃n(x, y1+x, . . . , yn+x) shares the same symmetry in (y1, . . . , yn) as

F̃n and

‖F‖2
L2(Rd

x ×Ω)
=

∫

Rd
E(|F(x, ·)|2) dx=

∞∑

n=0
n!‖F̃n‖2

L2(Rd×Rdn ) =
∞∑

n=0
n!‖Fn‖2

L2(Rd×Rdn ) (6)

Assumptions on the real potential function V will be specified later but we can already

compute the product V (x,ω)F(x,ω) by making use of Wick formula (see e.g. [Jan]-Theorem 3.15)

X y : X y1 · · ·X yn
: = : X yX y1 · · ·X yn

:+
n∑

j=1
δ(y− yj) : X y1 · · ·X yj−1 X yj

︸︷︷︸

removed

X yj+1 · · ·X yn
:

which leads to the chaos decomposition of V (x,ω)F(x,ω) as

∫

Rd(n+1)

1

(n+1)!

∑

σ∈Sn+1

V (yσ(n+1)− x)Fn(x, yσ(1)− x, . . ., yσ(n)− x) : X y1 · · ·X yn+1 : d y1 · · ·d yn+1

+
∫

Rd(n−1)
n

[∫

Rd
V (y)Fn(x, y, y1 − x, . . ., yn−1 − x) d y

]

: X y1 · · ·X yn−1 : d y1 · · ·d yn−1 . (7)

2.2 The Fock space presentation

The chaos decomposition (1) provides the isomorphism between L2(Ω,G ;C) and the bosonic

Fock space

Γ(L2(Rd, d y;C))=
∞⊕

n=0
(L2(Rd , d y;C))⊙n

where for a (real or complex) Hilbert space h , h⊙n is the symmetric Hilbert completed

tensor product, equal to C (or R) for n = 0 , endowed with the norm such that

‖ϕ⊗n‖h⊙n = ‖ϕ‖n
h , ‖ fn‖L2(Rd ,dy;C)⊙n = ‖ fn‖L2(Rdn ,dy1···dyn ;C) . (8)

The above direct sum is also the Hilbert completed direct sum. Note that the Fock space

norm (8) differs from the h⊙n-norm chosen in [Jan] in adequation with Wick products by

a factor
p

n! . The unitary operator from L2(Ω,G ;C) to Γ(L2(Rd
y , d y;C)) is thus given by

F 7→
∞⊕

n=0
fn , fn =

p
n!Fn ,

since

‖F‖2
L2(Ω,G ;C) =

∞∑

n=0
n!‖Fn‖2

L2(Rdn ,dy1···dyn;C) =
∞∑

n=0
‖ fn‖2

L2(Rd ,dy;C)⊙n .

The Fock space Γ(h) is endowed with densely defined Wick-quantized operators. For a

monomial symbol b(z)= 〈z⊗q , b̃z⊗p〉 with b̃ ∈L (h⊗p;h⊗q) , the Wick quantization bWick is

defined on
alg⊕

n∈N
h⊙n by

bWick fn+p =
√

(n+ p)!(n+ q)!

n!
Sn+q(b̃⊗ Id⊗n) fn+p

where Sm : h⊗m → h⊙m is the symmetrizing orthogonal projection given by

Sm(g1 ⊗·· ·⊗ gm)=
1

m!

∑

σ∈Sm

gσ(1) ⊗·· ·⊗ gσ(m) (9)
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already introduced in (2).

Basic examples in our case h= L2(Rd , d y;C) are given by

a(g)= (〈g , z〉)Wick , a(g) fn(y1, . . ., yn−1)=
p

n

∫

Rd
g(y) fn(y1, . . . , yn−1, y) d y ,

a∗( f )= (〈z , f 〉)Wick , a∗( f ) fn(y1, . . ., yn+1)=
p

n+1

(n+1)!

∑

σ∈Sn+1

f (yσ(1)) fn(yσ(2), . . ., yσ(n+1)) ,

φ(V )= (
p

2Re〈V , z〉)Wick , φ(V )=
1
p

2
[a(V )+a∗(V )] ,

dΓ(A)= (〈z, Az〉)Wick , dΓ(A)=
n−1∑

k=0
Id⊗k ⊗ A⊗ Id⊗n−1−k .

with

[a(g),a∗( f )]= a(g)a∗( f )−a∗( f )a(g)= 〈g , f 〉Id,

Remember also that more generally, if (A,D(A)) generates a strongly continuous semi-

group of contractions etA, t ≥ 0, then Γ(etA) fn = [etA]⊗n fn defines a strongly continuous

semigroup of contractions Γ(etA) on Γ(h) with generator denoted by (dΓ(A),D(dΓ(A))) ,

which extends the above definition of dΓ(A) . In particular this makes sense for A =−iB

with (B,D(B)) self-adjoint on h and (dΓ(B),D(dΓ(B))) is a self-adjoint operator on Γ(h)

when (B,D(B)) is self-adjoint on h .

According to (5)(6), random L2(Rd , dx;C) functions F(x,ω) can be written as elements f of

L2(Rd, dx;C)⊗Γ(L2(Rd , d y;C)) ,

F(x,ω) 7→ f (x, ·− x)=
⊕

n∈N
fn(x, y1 − x, . . . , yn − x)

with fn ∈ L2
sym(Rd

x ×R
dn, dxd y1 · · ·d yn;C) ,

‖F‖2
L2(Rd×Ω,dx⊗G ) =

∞∑

n=0
‖ fn‖2

L2(Rd×Rdn ,dxdy1···dyn) ,

and where L2
sym refers to the exchange symmetry in the y-variables.

When V ∈ L2(Rd , d y;R) and V (x,ω)=
∫

Rd V (y− x) X y d y , the Wick product formula (7) for

V (x,ω)F(x,ω) is transformed into

V (x,ω)F(x,ω) 7→ [a(V )+a∗(V )] f (x, ·− x)= [
p

2φ(V ) f ](x, ·− x) . (10)

With the notation D y = 1
i
∂y =







1
i
∂y1

...
1
i
∂yd







the operator (x·D y,D(x·D y)) , with x·D y =
∑d

k=1 xkD yk ,

is essentially self-adjoint on S (Rd, d y;C) for all x ∈R
d . This defines a strongly continuous

unitary representation of the additive group (Rd
x ,+) on L2(Rd

x )⊗Γ(L2(Rd
y )) given by

e−ix·dΓ(D y)(
∞⊕

n=0
fn(x, y1, . . . , yn))=

∞⊕

n=0
fn(x, y1 − x, . . . , yn − x) .

Therefore the above unitary correspondence F(x,ω) 7→ f (x, ·−x) gives a unitary correspon-

dence

F ∈ L2(Rd ×Ω, dx⊗G ;C) 7→ f ∈ L2(Rd, dx;C)⊗Γ(L2(Rd , d y;C)) , (11)

while (10) becomes for V ∈ L2(Rd, d y;R)

V F 7→
[p

2Φ(V ) f
]

. (12)
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We now translate a general pseudo-differential operator in the x-variable , aWeyl(x,Dx)⊗
IdL2(Ω,G ;C) under the above transformation (11).

When h is a complex Hilbert space, we recall that L2(Rd, dx;C)⊗h equals L2(Rd , dx;h) and

• the Fourier transform, with the normalization

Fu(ξ)=
∫

Rd
e−iξ·xu(x) dx , F−1v(x)=

∫

Rd
eix·ξv(ξ)

dξ

(2π)d
,

is unitary from L2(Rd , dx;h) to L2(Rd, dξ

(2π)d ;h) ;

• S (Rd ;h) , S ′(Rd;h) and the Fourier transform have the same properties as in the

scalar case h=C .

Be aware that the behavior of the Fourier transform when h is a general Banach space

is more tricky according to [Pee]. So when h is a Hilbert space, we consider pseudo-

differential operators in the x-variable of the form aWeyl(x,Dx) = aWeyl(x,Dx)⊗ Idh for a

symbol a ∈S ′(R2d
x,ξ;C) given by its Schwartz’ kernel

[aWeyl(x,Dx)](x, y)=
∫

Rd
ei(x−y)·ξa

( x+ y

2
,ξ

) dξ

(2π)d
.

When h = C , aWeyl(x,Dx) is a continuous endomorphism of S (Rd
x ;C) and S ′(Rd ;C) with

the formal adjoint aWeyl(x,Dx) and the alternative representations:

• When v, u ∈S (Rd ;C) ,

〈v , aWeyl(x,Dx)u〉 =
∫

R2d
a(x,ξ)W[v, u](x,ξ)

dx dξ

(2π)d

where W[v, u] is the Wigner function of the pair [v, u] (or the Weyl symbol of |u〉〈v|),
given by

W[v, u](x,ξ)=
∫

Rd
eiξ·s u(x+

s

2
) v(x−

s

2
) ds ,

and which belongs to S (R2d;C) .

• By setting �P, X � = pξ · x− px ·ξ for P = (px, pξ) , X = (x,ξ) in R
2d = T∗

R
d , and

F a(P)=
∫

R2d
ei�P,X�a(X )

dX

(2π)d

we have a =F (F a) in S ′(R2d) . When F a ∈L1(R2d;C) ,

aWeyl(x,Dx)=
∫

R2d
F a(P) τP

dP

(2π)d
,

where τP = ei(pξ·x−px·Dx) = [ei(pξ·x−px·ξ)]Weyl(x,Dx) is the unitary phase translation

τP u (x)= eipξ·(x−px/2)u(x− px) .

In particular, the above integral is a L (L2(Rd , dx;C))-integral when F a ∈L1(R2d, dP;C)

and a fortiori when a ∈S (R2d;C) .
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With those two remarks, for a general a ∈S ′(R2d;C) the integral

aWeyl(x,Dx)=
∫

R2d
F a(P) ei(pξ·x−px·Dx)

︸ ︷︷ ︸

=τP

dP

(2π)d

can be interpreted as the weak limit

aWeyl(x,Dx)=w-lim
n→∞

∫

R2d
F an(P) ei(pξ·x−px·Dx) dP

(2π)d
,

where an ∈S (R2d;C) is any approximation of a ∈S ′(R2d;C) .

While considering the aWeyl(x,Dx)⊗Idh , the same construction makes sense after noticing

that for u,v ∈S (Rd ;h) , the Wigner transform W[v, u] belongs to S (R2d
x,ξ;L

1(h))2 and

〈v , aWeyl(x,Dx)u〉 =Tr
[

[aWeyl(x,Dx)⊗ Idh] |u〉〈v|
]

=
∫

R2d
a(x,ξ)Tr[W[v, u]](x,ξ)

dxdξ

(2π)d
.

We apply this with h= L2(Ω,G ;C) and h=Γ(L2(Rd, d y;C)): We start from

aWeyl(x,Dx)= aWeyl(x,Dx)⊗ IdL2(Ω,G ;C) =w-lim
n→∞

∫

R2d
F an(P)ei(pξ·x−px·Dx) dP

(2π)d
,

the correspondance

aWeyl(x,Dx)F 7→ eix·dΓ(D y)aWeyl(x,Dx)e−ix·dΓ(D y) f ,

and

eix·λei(pξ·x−px·Dx)(e−ix·λ×)= ei(px·x−px·(Dx−λ)) for all λ ∈R
d

which gives by the functional calculus, the equality of unitary operators

eix·dΓ(D y)ei(pξ·x−px·Dx)(e−ix·dΓ(D y))= ei(px·x−px·(Dx−dΓ(D y))) .

We deduce that for a ∈S ′(R2d;C) , aWeyl(x,Dx)F ∈S ′(Rd
x ;L2(Ω,G ;C)) is transformed into

aWeyl(x,Dx)F 7→ aWeyl(x,Dx−dΓ(D y)) f ∈S ′(Rd ;Γ(L2(Rd , d y;C))) . (13)

with

aWeyl(x,Dx−dΓ(D y))=w-lim
n→∞

∫

R2d
F an(P)ei(pξ·x−px·(Dx−dΓ(D y))) dP

(2π)d
.

Let us continue by applying the Fourier transform in the x-variable with

Fxu(ξ)=
∫

Rd
e−iξ·xu(x) dx , F−1

x u(x)=
∫

Rd
eix·ξu(ξ)

dξ

(2π)d

and set for f ∈S ′(Rd
x ;Γ(L2(Rd, d y;C)))

f̂ = Fx f ∈S ′(Rd ;Γ(L2(Rd , d y;C))) .

With

Fx aWeyl(x,Dx)F−1
x = aWeyl(−Dξ,ξ)

2L p(h) denotes the Schatten space of compact operators for 1≤ p ≤+∞ .
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where the functional calculus leads to Fx aWeyl(x,Dx−dΓ(D y))F−1
x = aWeyl(−Dξ,ξ−dΓ(D y)) ,

we obtain the unitary correspondence

F ∈ L2(Rd ×Ω, dx⊗G ;C) 7→ f̂ = Fx f ∈ L2(Rd ,
dξ

(2π)d
;Γ(L2(Rd, d y;C))) , (14)

with F(x,ω)=
∞∑

n=0

∫

Rdn

1
p

n!
fn(x, y1 − x, . . . , yn − x) : X y1 · · ·X yn

: d y1 · · ·d yn , (15)

and where (12) and (13) become

V F 7→
p

2φ(V ) f̂ , (16)

aWeyl(x,Dx)F
︸ ︷︷ ︸

∈S ′(Rd
ξ

;L2(Ω,G ;C))

7→ aWeyl(−Dξ,ξ−dΓ(D y)) f̂
︸ ︷︷ ︸

∈S ′(Rd
ξ

;Γ(L2(Rd ,dy;C)))

. (17)

From this point of view, the Fock space and functional analysis presentation is sim-

pler than sticking with the usual chaos decomposition (4) where Fourier transforms and

pseudo-differential operators do not seem to have simple probabilistic interpretation.

Remark 2.1. As a final remark, all the above constructions can be tensorized with an

additional separable Hilbert space h′ = L2(Z,dz;C) .

2.3 Our problem

We aim at studying the stochastic partial differential equation






i∂tF =−∆xF +
p

hV F ,

F(t =0)= F0 ,
(18)

where

• V is the translation invariant gaussian random field

V (x,ω)=
∫

Rd
V (y− x) X y d y ,

with V ∈ L2(Rd;R) ;

• the solution F(t, x,ω, z) is seeked in C 0(R;L2(Rd ×Ω×Z, dx⊗G ⊗dz;C)) ;

• h > 0 is a small parameter which will tend to 0 .

In particular we will consider the asymptotic behavior of quantities

〈F(
t

h
) , aWeyl(hx,Dx)F(

t

h
)〉L2(Rd×Ω×Z) =

∫

Z
E

[

〈F(
t

h
, z) , aWeyl(hx,Dx)F(

t

h
, z)〉L2(Rd ,dx)

]

dz(z)

(19)

for a ∈S(1, dx2+dξ2) and t ∈ [0,T] . Remember that the symbol class S(1, dx2+dξ2) is the

set of C ∞-functions on R
2d with all derivatives bounded on R

2d .

Note that the variable z ∈ Z does not appear in the equation. The dynamics is thus well

defined when it is defined for Z = {z0} and dz = δz0 . A sufficient condition was provided

in [Bre] by making use of Nelson commutator method.
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Lemma 2.2. Proposition 4.4 in [Bre]: Assume V ∈ H2(Rd;R) then the operator −∆x +
p

hV is essentially self-adjoint on
alg⊕

n∈N
S (Rd

x ; (L2(Rd , d y;C))⊙n) which is a dense subset of

L2(Rd
x , dx;L2(Ω,G ;C))= L2(Rd ×Ω, dx⊗G ;C) by (4).

Remark 2.3. A side corollary of our analysis says that the dynamics is well defined under

the assumption V ∈ Lr′σ (Rd;R) with r′σ = 2d
d+2 in dimension d ≥ 3 , See Subsection 7.4 at the

end of the article.

Lemma 2.2 provides a natural self-adjoint realization of −∆x+
p

hV in h= L2(Rd ×Ω×
Z, dx⊗G ⊗dz;C) and any initial datum F0 ∈ h defines a unique solution F ∈C 0(R;h) .

There are various reasons for introducing an additional variable z ∈ Z , and this trick will

be used repeatedly. One of them is the following: Starting with Z = {z0} and dz = δz0 ,

one may consider instead of F( t
h

) =UV ( t
h

)F0 with UV (t) = e−it(−∆x+
p

hV ) , the evolution of

a state

̺(
t

h
)=UV (

t

h
)̺0U∗

V (
t

h
)

with ̺0 ∈ L 1(L2(Rd ×Ω;C)) , ̺0 ≥ 0 , Tr[̺0] = 1 possibly replacing ‖F0‖L2 = 1 . By writing

̺0 = ̺1/2
0 ̺1/2

0 one gets

̺(
t

h
)= [UV (

t

h
)̺1/2

0 ][UV (
t

h
)̺1/2

0 ]∗

where F(t)=UV (t)̺1/2
0 is the solution to (18) in

L 2(L2(Rd ×Ω, dx×G ;C))≃ L2(Rd ×Ω×Z, dx⊗G ⊗dz)

with Z =R
d ⊗Ω , dz= dx⊗G ,

while the trace to be computed at time t
h

equals

Tr
[

aWeyl(hx,Dx)̺(
t

h
)
]

=
∫

Z
E

[

〈F(
t

h
, z) , aWeyl(hx,Dx)F(

t

h
, z)〉L2(Rd ,dx)

]

dz(z) .

Thus considering the evolution of non negative trace class operators instead of projectors

on wave functions, becomes the same problem by introducing the suitable additional pa-

rameter z ∈ Z .

The unitary correspondence (14)(15), with (16)(17) and Remark 2.1, transforms the dy-

namics (18) into 





i∂t f̂ = (ξ−dΓ(D y))2 f̂ +
p

2hφ(V ) f̂ ,

f̂ (t = 0)= f̂0 ,
(20)

and the quantity (19) into

〈 f̂ (
t

h
) , aWeyl(−hDξ,ξ−dΓ(D y)) f̂ (

t

h
)〉

L2(Rd×Ω×Z, dξ

(2π)d
⊗G⊗dz) . (21)

We will see that the variable ξ ∈R
d and even some part Y ′ of the variable Y = (y1, . . . , yn),

when the total number is fixed to n , can be taken as another parameter like z ∈ Z for some

points of the analysis. This leads to a parameter z′-dependent, z′ = (ξ,Y ′, z)∈R
d×Rdn′×Z ,

analysis in L2(Rd(n−n′), dY ′′) . Those parameters appear in Section 3 by introducing the

center of mass Y ′′ = yG = y1+···+yn

n
and the relative coordinates y′

j
= yj− yG , a general func-

tional framework for parameter dependent Strichartz estimates and their consequences

are presented in Section 4 and finally those are detailled in Section 5 for (20).
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3 The Fock space and the center of mass

According to (20) our stochastic dynamics has been translated in a parameter dependent

dynamics in the Fock space. We shall consider an additional unitary transform using the

center of mass and the relative variables

yn
G =

y1 +·· ·+ yn

n
, y′j = yj − yn

G

in the n-particles sector, n ≥ 1 . It trivializes the free dynamics when V ≡ 0 or V ≡ 0 .

The expression of the interaction term
p

2hφ(V ) becomes more tricky but various general

estimates are given here.

3.1 The unitary transform associated with the center of mass

We shall use the following notations for n ≥ 1:

• A generic element of Rdn will be written

Yn = (y1, . . ., yn) with |Yn|2 =
n∑

j=1
|yj |2 . (22)

• The center of mass of Yn ∈R
dn will be written

yG = yn
G =

y1 +·· ·+ yn

n
(23)

and the relative coordinates y′
j
= yj − yn

G
will be gathered into

Y ′
n = (y′1, . . ., y′n)= (y1 − yn

G , . . . , yn − yn
G ) . (24)

The vector Y ′
n actually belongs to the subspace Rn =

{

Yn ∈R
dn ,

∑n
j=1 yj = 0

}

and we

recall

|Yn|2 = n|yn
G |2 +

∣
∣Y ′

n

∣
∣2 = n|yn

G |2 +
n∑

j=1
|y′j|

2 . (25)

With those notations the map R
dn ∋ Yn 7→ (yn

G
,Y ′

n) ∈ R
d ×Rn ⊂ R

d ×R
dn is a measurable

map and the image measure of the Lebesgue measure |dYn| =
∏n

j=1 |d yj| is nothing but

d yG ⊗dµn(Y ′
n)= d yG ⊗ [ndd y1 · · ·d ynδ0(y1 +·· ·+ yn)] . (26)

For n ≥2 we can write dµn(Y ′
n)= nd ∏

j 6= j0
d y′

j
for any fixed j0 ∈ {1, . . . , n} by taking the lin-

ear coordinates (y′
j
) j 6= j0 on Rn where y′

j0
=−

∑

j 6= j0
y′

j
. For n = 1 , R1 = {0} and integrating

with respect to Y ′
1 = y′1 ∈R1 is nothing but the evaluation at y′1 = 0 .

Definition 3.1. On ⊔∞
n=1R

dn the measure µ carried by R =⊔∞
n=1Rn is defined by

∀gn ∈C 0
c (Rdn) ,

∫

Rn
gn(Y ′) dµn(Y ′)=

∫

Rdn
gn(y1, . . . , yn)δ0(y1 +·· ·+ yn) nd d y1 · · ·d yn

n≥2=
∫

Rd(n−1)
gn(y′1, . . ., y′n−1,−

n−1∑

j=1
y′j) nd d y′1 · · ·d y′n−1 .

For 1 ≤ p < +∞ , the space Lp(R, dµ) is the direct sum
∞⊕

n=1
Lp(Rn, dµn) completed with

respect to the norm ‖
∞⊕

n=1
gn‖Lp =

(
∞∑

n=1
‖gn‖p

Lp(Rn ,dµn)

)1/p

. The closed subspace of symmetric

functions, gn(y′
σ(1), . . . , y′

σ(n))= gn(y′1, . . . , y′n) for all σ ∈Sn and for all n ≥1 , is then denoted

by L
p
sym(R, dµ(Y ′)) .
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For gn ∈ L2(Rdn ×Z, dY n⊗dz;C) , n ≥ 1 , the function

gG,n(yG ,Y ′
n, z)=UG gn(yG ,Y ′

n, z)= gn(yG +Y ′
n, z) (27)

belongs to L2(Rd ×Rn ×Z, d yG ⊗dµn⊗dz;C) with

‖UG gn‖L2(Rd×Rn×Z,dyG⊗dµn⊗dz) = ‖gn‖L2(Rdn×Z,dYn⊗dz)

and gn(Yn, z)= (U−1
G gG,n)(Yn, z)= gG,n(yn

G ,Yn − yn
G , z) .

Additionally UG : L2(Rd , d y)⊙n 7→ L2(Rd, d yG ;L2
sym(Rn, dµn))= L2

sym(Rn, dµn;L2(Rd , d yG))

is unitary and the same result holds for the parameter z ∈ Z version.

Proposition 3.2. The map UG extended by UG g0(z) = g0(z) for n = 0 , defines a unitary

map

UG : L2(Z, dz;Γ(L2(Rd , d y;C)))→ L2(Z;C)⊕L2
sym(Z×R, dz⊗dµ;L2(Rd , d yG ;C)) . (28)

When dΓG(A)=UG[dΓ(A)⊗IdL2(Z,dz)]U
−1
G

for a self-adjoint operator (A,D(A)) in L2(Rd
y , d y) ,

the case A = D y gives

dΓG(D y)=UG dΓ(D y)U−1
G = D yG

. (29)

For any bounded measurable function φ on R × Z the multiplication by φ(Y ′, z)
∣
∣
Rn =

φn(Y ′
n, z) for n ≥ 1 , while φ0 : Z →C , commutes with dΓG(D y)= D yG

according to

∀t ∈R
d ,∀u ∈L2(Z,dz;C)⊕L2

sym(Z×R,dz⊗dµ;L2(Rd, d yG ,C)) eit·D yG (φu)=φ(eit·D yG u) .

A particular case is φn(Y ′
n, z)=ϕ(n) for a bounded function ϕ :N→C .

Proof. The unitarity of UG comes at once from (27) and the componentwise unitarity

already checked. For dΓG(D y)= D yG
, simply write

∂yG
gG,n(yG ,Y ′

n)= ∂yG
gn(yG + y′1, . . . , yG + y′n)=

n∑

j=1
(∂yj

gn)(yG + y′1, . . . , yG + y′n) .

The commutation statement comes from the separation of variables, yG and (Y ′, z) .

Introducing the center of mass thus simplifies the free transport part of (20). It is not

so for the interaction term
p

2hφ(V )=
p

h[a(V )+a∗(V )] . An explicit and useful expression

is nevertheless possible for

aG(V )=UG a(V )U−1
G and a∗

G(V )=UG a∗(V )U−1
G . (30)

Proposition 3.3. The operator aG(V ) and a∗
G

(V ) for V ∈ L2(Rd , d y;C) have the following

action on fG,n ∈ L2
sym(Rn × Z, dµn ⊗dz;L2(Rd , d yG ;C)) for n ≥ 1 and fG,0 ∈ L2(Z,dz;C)

where we omit the transparent variable z ∈ Z:

aG(V ) fG,0 = 0, [aG(V ) fG,1]=
∫

Rd
V (y1) fG,1(y1) d y1 , (31)

∀n > 1, [aG(V ) fG,n](yG ,Y ′
n−1)=

p
n

∫

Rd
V (yG + yn) fG,n(yG +

yn

n
,Yn −

yn

n
) d yn ,

with Yn = (y′1, . . . , y′n−1, yn) ∈R
dn , Y ′

n−1 ∈Rn−1 , Yn −
yn

n
∈Rn , (32)

a∗
G(V ) fG,0(yG )=V (yG) fG,0 , (33)

∀n > 0, a∗
G(V ) fG,n(yG ,Y ′

n+1)=
p

n+1Sn+1[V (yG + y′n+1) fG,n(yG −
y′n+1

n
,Yn +

y′n+1

n
)] ,

with Yn = (y′1, . . . , y′n) ∈R
dn , Y ′

n+1 ∈Rn+1 , Yn +
y′

n+1

n
∈Rn ,

and Sn+1[v(y′n+1)u(y′1, . . ., y′n+1)]=
1

(n+1)!

∑

σ∈Sn+1

v(y′σ(n+1))u(y′σ(1), . . ., y′σ(n+1)) . (34)
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Proof. Write for n >1 ,

[aG(V ) fG,n](yn−1
G ,Y ′

n−1)= [a(V )U−1
G fG,n](Y ′

n−1 + yn−1
G )

=
p

n

∫

Rd
V ( ỹn)[U−1

G fG,n](Y ′
n−1 + yn−1

G , ỹn) d ỹn .

By setting ỹn = yn−1
G

+ yn the formula (U−1
G

gG,n)(·)= gG,n(yn
G

, ·− yn
G

) with

yn
G =

y1 +·· ·+ yn−1 + ỹn

n
=

n−1

n
yn−1

G +
ỹn

n
= yn−1

G +
yn

n

leads to

[aG(V ) fG,n](yn−1
G ,Y ′

n−1)=
p

n

∫

Rd
V (yn−1

G
+ yn) fG,n(yn−1

G +
yn

n
,Y ′

n−1−
yn

n
, yn −

yn

n
) d yn

=
p

n

∫

Rd
V (yn−1

G
+ yn) fG,n(yn−1

G +
yn

n
,Yn −

yn

n
) d yn

with Yn = (y′1, . . . , y′n−1, yn) .

The computation of a∗
G

(V ) fG,n is done by duality:

〈a∗
G(V ) fG,n−1 , gG,n〉 = 〈 fG,n−1 , aG(V )gG,n〉

=
∫

Rd×Rn−1
fG,n−1(yn−1

G
,Y ′

n−1)×
[p

n

∫

Rd
V (yn−1

G
+ yn)gG,n(yn−1

G +
yn

n
,Yn −

yn

n
) d yn

]

d yn−1
G dµn−1(Y ′

n−1) .

Remember Yn = (y′1, . . . , y′n−1, yn) and Ỹ ′
n =Yn − yn

n
∈Rn . The change of variables

Ỹ ′
n =Yn −

yn

n
, yn

G = yn−1
G +

yn

n
, yn−1

G = yn
G −

ỹn

n−1
, Y ′

n−1 = Ỹn−1 +
yn

n
= Ỹn−1 +

ỹn

n−1
,

with

d ynd yn−1
G dµn−1(Y ′

n−1)= d yn−1
G δ0(y′1 +·· ·+ y′n−1)(n−1)dd y′1 · · ·d y′n−1

= d yn
G

nd

(n−1)d
(n−1)dδ0( ỹ′1 +·· ·+ ỹ′n)d ỹ′1 · · ·d ỹ′n

= d yn
Gdµn(Ỹ ′

n) ,

gives

〈a∗
G(V ) fG,n−1 , gG,n〉 =

p
n

∫

Rd×Rn
V (yn

G
+ ỹ′n) fG,n−1(yn

G
−

ỹn

n−1
, Ỹ ′

n−1+
ỹ′n

n−1
)×

gG,n(yn
G , Ỹ ′

n) d yn
Gdµn(Ỹ ′

n) .

Replacing n by n+1 , while remembering that a∗
G

(V ) fG,n is symmetric in the variables

(y′1, . . ., y′
n+1) yields

[a∗
G(V ) fG,n](yG ,Y ′

n+1)=
p

n+1Sn+1[V (yG + y′n+1) fG,n(yG −
y′n+1

n
,Yn +

y′n+1

n
)]

with Yn = (y′1, . . . , y′n) .
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3.2 General L
p
x L

q
y spaces

When (X ,dx) and (Y ,dy) are sigma-finite measured spaces L
p
x L

q
y , 1 ≤ p, q ≤ +∞ , de-

notes the space L
p
x L

q
y = Lp(X ,dx;Lq(Y ,dy)) . This shortened notation is especially useful

when estimates are written in those spaces, like in Strichartz estimates (see Section 4).

However the final space of the unitary map UG in (28) shows already that the product

space X ×Y is too restrictive. Below is a convenient generalization.

Definition 3.4. Let (Xn,dxn)n∈N and (Yn,dyn)n∈N be at most countable families (N ⊂
N) of sigma-finite measured spaces. Let X =⊔n∈N Xn and Y =⊔n∈N Yn be endowed with

the measures dx = Σn∈N dxn and dy = Σn∈N dyn . In this framework, the space L
p
x L

q
y ,

1≤ p, q ≤+∞ , will denote the closed subspace of Lp(X ,dx;Lq(Y ,dy)) given by

L
p
x L

q
y =

{

f ∈ Lp(X ,dx;Lq(Y ,dy)) , f (x, y)=
∑

n∈N

1Xn
(x)1Yn

(y) f (x, y) a.e.

}

.

The above definition is coherent with the specific product case, which is the partic-

ular case N = {0} . The differences will be clear from the different frameworks when

(Xn,dxn)n∈N and (Yn,dyn)n∈N will be specified.

The two following properties of the product case are still valid in this extended frame-

work:

• The dual of L
p
x L

q
y , 1≤ q, p <+∞ is L

p′

x L
q′

y with 1
q′ + 1

q
= 1 and 1

p′ + 1
p
= 1 .

• Minkowski’s inequality says

‖ f ‖L
p
x L

q
y
≤ ‖ f ‖L

q
yL

p
x

for 1≤ q ≤ p ≤+∞ . (35)

Below are examples, associated with the decomposition associated with the introduction

of the center of mass (23) and the relative coordinates (24), where those notations will be

used

• N = {n} , n ≥ 1 , Xn =Rn×Z′ , dxn = dµn⊗dz′ , Yn =R
d , dyn = d yG and

L
p

(Y ′
n ,z′)L

q
yG

= L
p
xn

L
q
yG

= Lp(Rn×Z′, dµn⊗dz′;Lq(Rd , d yG)) .

The notation L
p

(Y ′
n ,z′),symL

q
yG

will stand for the closed subspace of functions which are

symmetric with respect to the variables Y ′
n ∈Rn .

• N = {0,1} with

X0 = Z′ , X1 =R ×Z′ = (⊔∞
n=1Rn)×Z′ , dx0 =dz′ , dx1 = dµ⊗dz′ ,

Y0 = {0} , Y1 =R
d , dy0 = δ0 , dy1 = d yG ,

where

L
p

(Y ′,z′)L
q
yG

= Lp(Z′,dz′)⊕Lp(R ×Z′, dµ⊗dz′;Lq(Rd, d yG)) .

With the same convention as above for L
p

(Y ′,z′),symL
q
yG

, which refers to the symmetry

for the Y ′ ∈R variable, the formula (28) becomes

UG : L2(Z′,dz′;Γ(L2(Rd, d y;C)))→ L2
(Y ′,z′),symL2

yG
.

The general spaces L2
(Y ′,z′),symL

p
yG

, 1 ≤ p ≤ +∞ , will be especially useful after Sec-

tion 4.

• The previous example can be written with N =N and

X0 = Z′ , Xn>0 =Rn ×Z′ , dx0 =dz′ , dxn>0 = dµn⊗dz′ ,

Y0 = {0} , Yn>0 =R
d , dy0 = δ0 , dyn>0 = d yG .
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3.3 L
p
yG

-Estimates for aG(V ) and a∗
G

(V )

General Lp-esptimates, or more precisely L2
(Y ′,z),symL

p
yG

-estimates, are proved in this para-

graph for the operators aG(V ) and a∗
G

(V ) . The use of the center of mass and the L
p
yG

spaces, will be extremely useful for the application of Strichartz estimates in Section 4.

Let us start with a simple application of Young’s inequality.

Lemma 3.5. For any q′, p′ ∈ [1,2] such that q′ ≤ p′ , let r′ ∈ [1,2] be defined by 1
r′ =

1
2 +

1
q′ −

1
p′ . The inequality

‖V (yG + y′)ϕ(yG )‖
L2

y′ L
q′
yG

≤ ‖V‖Lr′ ‖ϕ‖Lp′ ,

holds for all V ∈ Lr′ (Rd , d y;C) and all ϕ ∈ Lp′
(Rd , d y;C) .

Proof. The conditions 1
r′ +

1
p′ = 1

2 + 1
q′ , 1≤ q′ ≤ p′ ≤ 2 , ensure

1

r′
=

1

2
+

1

q′ −
1

p′ ∈ [
1

2
,1] and r′ ∈ [1,2] .

Young’s inequality with 1
r̃
+ 1

p̃
= 1

2
q′
+1 and r̃, p̃, 2

q′ ≥ 1 yields

‖V (yG + y′)ϕ(yG)‖
L2

y′ L
q′
yG

≤ ‖|V |(yG − y′)|ϕ|(yG )‖
L2

y′ L
q′
yG

= ‖|V (−·)|q
′
∗|ϕ|q

′
‖1/q′

L2/q′

≤ ‖|V |q
′
‖1/q′

Lr̃ ‖|ϕ|q
′
‖1/q′

L p̃ .

By taking p̃ = p′

q′ ∈ [1,2] and r′ = r̃q′ we obtain

‖V (yG + y′)ϕ(yG)‖
L2

y′ L
q′
yG

≤‖V‖Lr′‖ϕ‖Lp′

The first result concerns the action of aG(V ) and a∗
G

(V ) on a fixed finite particles

sector.

Proposition 3.6. For any p′, q′ ∈ [1,2] such that q′ ≤ p′ , 2 ≤ p ≤ q ≤+∞ , let r′ ∈ [1,2] be

defined by 1
r′ =

1
2 +

1
q′ − 1

p′ like in Lemma 3.5. For any V ∈ Lq′
(Rd, d y;C)∩Lr′(Rd, d y;C) , the

creation and annihilation operators satisfy the following estimates:

∀ fG,0 ∈ L2
z , ‖a∗

G(V ) fG,0‖L2
zL

q′
yG

≤ ‖V‖Lq′ ‖ fG,0‖L2
z
, (36)

∀n > 0,∀ fG,n ∈ L2
(Y ′

n,z),symL
p′

yG
, ‖a∗

G(V ) fG,n‖L2

(Y ′,z)
n+1

L
q′
yG

≤‖V‖Lr′
p

n+1‖ fG,n‖L2
(Y ′

n ,z)
L

p′
yG

,(37)

∀ fG,1 ∈ L2
zL

q
yG

, ‖aG(V ) fG,1‖L2
z
≤‖V‖Lq′‖ fG,1‖L2

zL
q
yG

, (38)

∀n > 1,∀ fG,n ∈ L2
(Y ′

n,z),symL
q
yG

, ‖aG(V ) fG,n‖L2
(Y ′

n−1 ,n)
L

p
yG

≤ ‖V‖Lr′
p

n‖ fG,n‖L2
(Y ′

n ,z)
L

q
yG

. (39)

A notable case is when q′ = r′ and p′ = p = 2 .

Proof. The variable z ∈ Z is actually a parameter which can be forgotten because our es-

timates are uniform w.r.t. z ∈ Z .

For (36) it suffices to notice [a∗
G

(V ) fG,0](yG )= fG,0 ×V (yG ) .

The estimate of a∗
G

(V ) fG,n for n > 0 relies on Lemma 3.5. We start from the expres-

sion (34)

(aG(V )∗ fG,n)(yG ,Y ′
n+1)=

p
n+1Sn+1 V (yG + y′n+1) fG,n(yG −

y′n+1

n
,Yn +

y′n+1

n
)
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with Y ′
n+1 = (y′1, . . . , y′n, y′

n+1) ∈ Rn+1 , Yn = (y′1, . . ., y′n) ∈ R
dn , Yn + y′

n+1
n

∈ Rn . The sym-

metrization Sn+1 simply takes the average of n+1-terms which have all the same form

as
p

n+1V (yG + y′n+1) fG,n(yG −
y′n+1

n
,Yn +

y′n+1

n
) ,

after circular permutation of the variables y′
j

which does not change the L2
Y ′

n+1
L

q′

yG
-norm.

We can therefore forget the symmetrization Sn+1 for proving the upper bound (37). When

n >1 integrations must be performed with respect to the independent variables (y′2, . . . , y′n) ∈
R

d(n−1) . Remember that (y′2, . . . , y′n, y′
n+1) are coordinates on Rn+1 such that y′1 =−y′2 · · ·−

y′n − y′
n+1 , dµn+1(Y ′

n+1)= (n+1)dd y′2 · · ·d y′
n+1 and that the quantity

∥
∥
∥
∥V (yG + y′n+1) fG,n(yG −

yn+1

n
,Yn+

y′
n+1

n
)

∥
∥
∥
∥

L2
Y ′

n+1
L

q′
yG

equals

(n+1)d/2‖V (yG + y′n+1) fG,n(yG −
y′

n+1

n
,Yn+

y′
n+1

n
))‖

L2(Rd ,dy′
n+1 ;L2(Rd(n−1) ,dy′2···dy′n ;Lq′

yG
))

.

When y′n+1 ∈ R
d is fixed, setting y′1 = −

∑n
j=2(y′

h
+ y′n+1

n
) and Y ′

n = Yn + y′n+1
n

, provides the

coordinates (y′2+
y′n+1

n
, . . . , y′n+

y′n+1
n

) on Rn with dµn(Y ′
n)= nd/2d y′2 · · ·d y′n , and then ‖V (yG+

y′
n+1) fG,n(yG − y′

n+1
n

,Yn +
y′

n+1
n

)‖
L2(Rd(n−1) ,dy′2···dy′n ;Lq′

yG
)

equals

n−d/2‖V (yG+y′n+1) fG,n(yG−
y′

n+1

n
,Y ′

n)‖
L2

Y ′
n

L
q′
yG

= n−d/2‖V ( ỹG+
n+1

n
y′n+1) fG,n( ỹG ,Y ′

n)‖
L2(Y ′

nL
q′
ỹG

)
.

We deduce
∥
∥
∥
∥V (yG + y′n+1) fG,n(yG −

y′n+1

n
,Yn+

y′n+1

n
)

∥
∥
∥
∥

L2
Y ′

n+1
L

q′
yG

≤
(n+1)d/2

nd/2

∥
∥
∥
∥‖V ( ỹG +

n+1

n
y′n+1) fG,n( ỹG ,Y ′

n)‖
L2

Y ′
n

L
q′
ỹG

∥
∥
∥
∥

L2(Rd ,dy′
n+1)

≤
∥
∥
∥
∥‖V ( ỹG + y′) fG,n( ỹG ,Y ′

n)‖
L2

Y ′
n

L
q′
ỹG

∥
∥
∥
∥

L2(Rd ,dy′)

≤
∥
∥
∥
∥‖V ( ỹG + y′) fG,n( ỹG ,Y ′

n)‖
L2(Rd ,dy′;Lq′

ỹG
)

∥
∥
∥
∥

L2
Y ′

n

,

after using the change of variable y′ = n+1
n

y′n+1 in R
d for the third line and L2

y′L
2
Y ′

n
= L2

Y ′
n
L2

y′

for the last one. We now use Lemma 3.5 with

‖V ( ỹG + y′) fG,n( ỹG ,Y ′
n)‖

L2(Rd ,dy′;Lq′
ỹG

)
≤ ‖V‖Lr′ ‖ fG,n( ỹG ,Y ′

n)‖
L

p′
ỹG

for almost all Y ′
n ∈Rn and 1≤ q′ ≤ p′ ≤ 2 , 1

r′ =
1
2 + 1

q′ − 1
p′ . Integrating w.r.t. Y ′

n ∈Rn gives

∥
∥
∥
∥V (yG + y′n+1) fG,n(yG −

y′n+1

n
,Yn +

y′n+1

n
)

∥
∥
∥
∥

L2
Y ′

n+1
L

q′
yG

≤‖V‖Lr′‖ fG,n‖L2
Y ′

n
L

p′
yG

.

By multiplying by
p

n+1 and with the symmetrization Sn+1 , we have proved (37).

The estimates with aG(V ) follow by duality using

‖aG(V ) fG,n+1‖L2
Y ′

n+1
L

p
yG

= sup
‖ fG,n‖

L2
Y ′

n
L

p′
yG

=1
|〈aG(V ) fG,n+1, fG,n〉| .
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Indeed, if ‖ fG,n‖L2
Y ′

n
L

p′
yG

= 1, then

|〈aG(V ) fG,n+1, fG,n〉| = |〈 fG,n+1,a∗
G(V ) fG,n〉|

≤ ‖ fG,n+1‖L2
Y ′

n+1
L

q
yG
‖a∗

G(V ) fG,n‖L2
Y ′

n
L

q′
yG

≤







‖V‖Lq′ ‖ fG,1‖L
q
yG

when n = 0,

‖V‖Lr′
p

n+1‖ fG,n+1‖L2
Y ′

n+1
L

q
yG

, when n > 0,

which implies the bounds (38) and (39).

Remark 3.7. Instead of Young’s inequality one could use the more general Brascamp-

Lieb inequality (see[BrLi][Lie]). This would not change the result (up to multiplicative

constants). One may wonder whether it is possible to improve Lebesgue’s exponent, in

particular the integrability by reaching exponents p < 2 in (39) by strengthening the as-

sumptions on V . Actually it is not. Take V ∈S (Rd) and ϕ ∈ L2(Rd , d y;C) , then a(V )ϕ⊗n =
p

n〈V ,ϕ〉ϕ⊗n−1 and aG(V )U−1
G

(ϕ⊗n) cannot be put in L2
z,Y ′

n−1
L

p
yG

with p < 2 in general.

Proposition 3.8. Take α,α′ ∈ R, α < α′ and for 1 ≤ q′ ≤ p′ ≤ 2 , 2 ≤ p ≤ q ≤ +∞ , and let

r′ ∈ [1,2] be defined by 1
r′ =

1
2+

1
q′ − 1

p′ . For any V ∈ Lr′ (Rd)∩Lq′
(Rd) , the following estimates

hold

∀ f ∈ e−α
′N L2

z,Y ′,symL
p′

yG
, ‖eαNa∗

G(V ) f ‖
L2

z,Y ′ L
q′
yG

≤
max(‖V‖Lr′ ,‖V‖Lq′ )eα

′

2
p
α′−α

‖eα
′N f ‖

L2
z,Y ′ L

p′
yG

,

(40)

∀ f ∈ e−α
′N L2

z,Y ′,symL
q
yG

, ‖eαNaG(V ) f ‖L2
z,Y ′ L

p
yG

≤
max(‖V‖Lr′ ,‖V‖Lq′ )e−α

2
p
α′−α

‖eα
′N f ‖L2

z,Y ′ L
q
yG

.

(41)

Again, a notable case is when q′ = r′ and p = p′ = 2 .

Proof. By writing

eαNa∗
G(V )e−α

′N (
∞⊕

n=0
fG,n)=

∞⊕

n=0
eα(n+1)−α′na∗

G(V ) fG,n ,

and eαNaG(V )e−α
′N (

∞⊕

n=0
fG,n)=

∞⊕

n=1
eα(n−1)−α′naG(V ) fG,n ,

Proposition 3.6 tells us that it suffices to bound

sup
n∈N

p
n+1e−(α′−α)(n+1)eα

′
≤

eα
′

p
2e

p
α′−α

≤
eα

′

2
p
α′−α

,

and sup
n∈N

p
ne−(α′−α)n e−α≤

e−α
p

2e
p
α′−α

≤
e−α

2
p
α′−α

.

4 Strichartz estimates in the center of mass variable

Here we review the celebrated results of Keel and Tao in [KeTa] and adapt them to our

framework. We shall use like those authors the short notations
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• a(z). b(z) for the uniform inequality

∀z ∈ Z , a(z)≤ Cb(z) ,

where C is a constant which depends only on the following data: the dimension d

or the free one particle evolution on R
d ;

• for 1 ≤ p, q ≤ +∞ , various uses of the general notation L
p
x L

q
y introduced in Defini-

tion 3.4 will be specified;

• except in specified cases, L
p
x is used for 2≤ p ≤+∞ while L

p′

x is used for 1≤ p′ ≤ 2 .

4.1 Endpoint Strichartz estimates

Keel and Tao’s results about endpoint Strichartz estimates (see [KeTa]) written with uni-

form inequalities, obviously induce a parameter dependent version which will be needed.

They start with a time-dependent operator U(t) : hin → L2
x = L2(X ,dx;C) where t ∈ R

and hin is a (separable) Hilbert space of initial data. We rather consider a parameter

dependent operator U(t, z1) : hin → L2
x defined for (t, z1)∈R×Z1 such that

‖U(t, z1) f ‖L2
x
. ‖ f ‖hin , (42)

‖U(t, z1)U∗(s, z)g‖L∞
x
.

‖g‖L1
x

|t− s|σ
for all t 6= s , (43)

while U∗(t, z1) may be defined only on a dense set of L1
x .

On the measured space (Z1,dz1) the map (t, z1) 7→U(t, z1) f ∈ L2
x is assumed measurable

for all f ∈ hin and U(t) : Lw(Z1,dz1;hin) → Lw
z1

L2
x , where Lw

z1
L2

x = Lw(Z1,dz1;L2(X ,dx))

here, is defined by pointwise multiplication (U(t) f )(z1)=U(t, z1) f (z1) .

The set of sharp σ-admissible space-time exponents is given by

q, r ≥2
1

q
+
σ

r
=

σ

2
,

and the dual exponents are denoted by q′, r′ , 1
q
+ 1

q′ = 1 , 1
r
+ 1

r′ = 1 with 1 ≤ q′, r′ ≤ 2 ,
1
q′ + σ

r′ =
σ+2

2 .

We will consider cases where σ> 1 and the endpoint Strichartz estimates for P = (2, 2σ
σ−1 )

holds true. The results for sharp σ-admissible pairs (q, r) and (q̃, r̃) are:

• the homogeneous estimate

‖U(t) f ‖Lw
z1

L
q
t Lr

x
. ‖ f ‖Lw(Z1,dz1;hin) ; (44)

• the inhomogeneous estimate

‖
∫

U(s)∗F(s) ds‖Lw(Z1,dz1;hin) . ‖F‖
Lw

z1
L

q̃′
t Lr̃′

x

; (45)

• the retarded estimate

‖
∫

s<t
U(t)U(s)∗F(s) ds‖Lw

z1
L

q
t Lr

x
. ‖F‖

Lw
z1 L

q̃′
t Lr̃′

x

, (46)

where s < t can be replaced by s > t .
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Keel and Tao’s results are written in [KeTa] with Z1 = {z0} and dz1 = δz0 , but the uniform

inequalities with respect to z1 ∈ Z1 can be integrated afterwards for data in Lw
z1

.

By requiring σ > 1 , the endpoint estimate allows to take q = q̃′ = 2 with the endpoint

exponents rσ = 2σ
σ−1 and r′σ = 2σ

σ+1 . This is a very convenient framework for fixed point

and bootstrap method in our linear setting.

Below are the typical inequalities which will be used. In our applications like in

Subsection 3.3, the vaccuum sector plays a separate role and it is convenient to use the

general Definition 3.4 for Lw
z L

q
x

N = {0,1} , Z = Z0 ⊔Z1

and X0 = {0} , X1 = X , dx0 = δ0 , dx1 =dx .

In particular the spaces L2
zL

q
x for 1≤ q ≤∞ equal

L2
zL

q
x = L2(Z0,dz0)⊕L2(Z1,dz1;L2(X ,dx))= L2

z0
︸︷︷︸

vacuum

⊕L2
z1

L2
x . (47)

At this level the action of the dynamics U(t)U(s)∗ is considered only on the Lw
z1

L
q
x compo-

nent .

Proposition 4.1. Consider L2
zL

q
x = L2

z0
⊕L2

z1
L2

x like in (47) and according to Definition 3.4.

Assume that there is a dense Banach space D in L2
z1,x = L2

z1
L2

x such that D ⊂ L2
z1

L
rσ
x and

U(t)U(s)∗u ∈ L2
z1

L
rσ
x is measurable with respect to t, s ∈ R for all u ∈ D with the uniform

estimate ‖U(t)U(s)∗u‖L2
z1

L
rσ
x
. ‖u‖D for almost all t, s ∈R .

Assume that the bounded operator B∗
t,s : L2

zL2
x → L2

z1
L

r′σ
x and its adjoint Bt,s : L2

z1
L

rσ
x →

L2
zL2

x are strongly measurable with respect to (t, s)∈ [0,T]× [0,T] with the assumption

sup
t∈[0,T]

∫T

0
‖B∗

t,s‖
2 ds<+∞ , ‖B∗

t,s‖= ‖B∗
t,s‖L2

z1
L

r′σ
x ←L2

zL2
x

, (48)

resp. sup
s∈[0,T]

∫T

0
‖Bt,s‖2dt<+∞ , ‖Bt,s‖= ‖Bt,s‖L2

zL2
x←L2

z1
L

rσ
x

. (49)

The operator A∗
T

(resp. AT) defined by

[A∗
T f ](t)= 1Z1(z)

∫T

0
U(t)U(s)∗B∗

t,s f (s) ds , (50)

resp. [AT f ](t)=
∫T

0
Bt,sU(t)U(s)∗1Z1(z) f (s) ds , (51)

acts continuously on L∞([0,T];L2
zL2

x) (resp. extends as a continuous operator on L1([0,T];L2
zL2

x))

with

Ran A∗
T ⊂ L∞([0,T];L2

z1,x) , Ker(AT)⊃ L1([0,T];L2
z0

) , (52)

‖(A∗
T )n‖L (L∞([0,T];L2

z L2
x)) .

(

sup
tn+1∈[0,T]

∫

[0,T]n
‖B∗

tn+1,tn
‖2 . . .‖B∗

t2,t1
‖2 dt1 · · ·dtn

)1/2

, (53)

resp. ‖(AT )n‖L (L1([0,T];L2
z L2

x)) .

(

sup
t0∈[0,T]

∫

[0,T]n
‖Btn,tn−1‖

2 . . .‖Bt1,t0‖
2 dt1 · · ·dtn

)1/2

, (54)

for all non zero n ∈N .

When B
♯
t,s = B

♯
t,s1s<t or B

♯
t,s = B

♯
t,s1s>t (B♯ = B∗ resp. B♯ = B), the domain of integration

[0,T]n can be replaced by the corresponding n-dimensional simplex 0< t1 < . . .< tn < T or

T > t1 . . .> tn > 0 .
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Remark 4.2. The dense subspace D is introduced in order to get a dense domain of

L1([0,T];L2
z1,x) where AT is well defined by its integral formula. The extension to the

whole space L1([0,T];L2
z1,x) is proved by using the fact that L∞([0,T];L2

z1,x) is the dual of

L1([0,T];L2
z1,x) and it cannot be done in the other way.

Examples where the dense subset D is easy to construct are when L2(X ,dx;C)= L2(Rd, dx;C)

and U(t)U(s)∗ : Hµ(Rd;C)→ Hµ(Rd ;C) are measurable and uniformly bounded w.r.t. t, s ∈R
for some µ> d/2 . In this simple case, the set D can be L2(Z1,dz1; Hµ(Rd ;C)) with µ> d

2 .

Proof. Let us start with A∗
T

. When f ∈ L∞([0,T], dt;L2
zL2

x) the function 1[0,T] f belongs

to L2
zL2

t,x and, for almost all t0 ∈ [0,T] , the function (z, s, x) 7→ B∗
t0,s1[0,T](s) f (s) belongs

to L2
z1

L2
sL

r′σ
x . The inhomogeneous endpoint Strichartz estimate implies for almost all

t0 ∈ [0,T]

‖A∗
T f (t0)‖2

L2
zL2

x
.

∫T

0
‖B∗

t0,s f (s)‖2

L2
z1

L
r′σ
x

ds .

(∫T

0
‖B∗

t0,s‖
2 ds

)

‖ f ‖2
L∞([0,T];L2

z L2
x) . (55)

This proves firstly that A∗
T

acts continuously on L∞([0,T];L2
zL2

x) . The property Ran A∗
T
⊂

L∞([0,T];L2
z1,x) comes from the assumption B∗

t,s : L2
zL2

x → L2
z1

L
r′σ
x and the redundant mul-

tiplication by 1Z1(z) in (50) . Secondly iterating (55) with (t0, s)= (tn+1, tn) leads to (53) .

Consider now AT f when f = 1Z1(z) f ∈ L1([0,T];L2
z1,x) . For f in the dense subspace

L1([0,T];D) of L1([0,T];L2
z1,x) , our assumptions ensure that AT f belongs to L∞([0,T];L2

zL2
x)⊂

L1([0,T];L2
zL2

x) with

‖AT f ‖L1([0,T];L2
zL2

x) .CT‖ f ‖L1([0,T];D) .

With
∫T

0
〈v(t) , AT f (t)〉 dt =

∫T

0
〈1Z1(z)

∫T

0
U(s)U∗(t)B∗

t,sv(t) dt , f (s)〉 ds =
∫T

0
〈(Ã∗

Tv)(s) , f (s)〉 ds ,

where B∗
t,s has simply been replaced by B∗

s,t in Ã∗
T

v(t)= 1Z1(z)
∫T

0 U(t)U(s)∗B∗
s,tv(s) ds , we

obtain

∀v ∈ L∞([0,T];L2
zL2

x) , |〈v , AT f 〉|.
(∫T

0
‖Bs,t‖2 ds

)1/2

‖v‖L∞([0,T];L2
z L2

x)‖ f ‖L1([0,T];L2
z1 ,x) ,

while L∞([0,T];L2
zL2

x)= (L1([0,T];L2
zL2

x))′ .

This proves that AT extends as a continuous operator L1([0,T];L2
z1,x) → L1([0,T];L2

zL2
x)

and the formula contains the extension by 0 on L1([0,T];L2
z0

) , with L1([0,T];L2
zL2

x) =
L1([0,T];L2

z0
)⊕ L1([0,T];L2

z1,x) . Its adjoint is Ã∗
T

: L∞([0,T];L2
zL2

x) → L∞([0,T];L2
zL2

x) .

The estimate (53) for Ã∗
T

with (‖B∗
t,s‖, tk) replaced by (‖B∗

s,t‖ = ‖Bs,t‖, tn+1−k) yields (54) .

Note that when B
♯
t,s = B

♯
t,s1t>s or B

♯
t,s = B

♯
t,s1t<s with ‖B

♯
t,s‖ ≤ β , the upper bounds of

(53) and (54) are below
(

(β2T)n

n!

)1/2

.

(
eβ2T

n

)n/2

.

This gives a hint of times scales with respect to β , e.g. when β2T ≤ C here, where iterative

methods lead to convergent series or the associated fixed point methods can be used.

We will use some refined versions of the scaling rule β2T ≤ C . Although the L
p
t spaces

estimates are written with p = +∞ and p = 1 , this scaling really relies on the endpoint

Strichartz estimate with p =2 .

We complete our general corollaries of endpoint Strichartz estimates with a result which

combines the action of operators like Bt,s and B∗
t,s in Proposition 4.1.
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Proposition 4.3. Let I ,J be at most countable families of disjoint finite intervals, and

set U I =⊔I∈I I and U J =⊔I∈J J . For a given ϕ∞ ∈ L∞(U J;L2
zL2

x) consider

ϕ1,I(t)= 1I (t)
∑

J∈J

∫t

0
B1,IJU(t)U(s)∗B∗

2,IJ (s)ϕ∞,J(s) ds

with ϕ∞,J(s)=ϕ∞(s)1J(s) ,

and ‖B1,IJ‖L2
zL2

x←L2
z1

L
rσ
x
≤β1,IJ , sup

s∈J

‖B∗
2,IJ(s)‖

L2
z1

L
r′σ
x ←L2

zL2
x

≤β2,IJ ,

where B1,IJ : L2
z1

L
rσ
x → L2

zL2
x does not depend on (t, s)∈ I×J while B∗

2,IJ
(s) : L2

zL2
x → L2

z1
L

r′σ
x

does not depend on the time variable t ∈ I and is strongly measurable with respect to s ∈ J .

Then the function ϕ1 =
∑

I∈I ϕ1,I belongs to L1(U I, dt;L2
zL2

x) with

‖ϕ1‖L1(UI,dt;L2
zL2

x) .







∑

I ∈I , J ∈J

inf J < sup I

|I|1/2β1,IJβ2,IJ |J|1/2






‖ϕ∞‖L∞(UJ,dt;L2

zL2
x) ,

as soon as
[∑

I∈I ,J∈J 1]0,+∞[(sup I − inf J)|I|1/2β1,IJβ2,IJ |J|1/2]

<+∞ .

Proof. Every term of ϕ1,I can be written

ψIJ (t)= B1,IJ

∫t

0
U(t)U(s)∗φ2,IJ(s) ds

where φ2,IJ = B∗
2,IJ

(·)ϕ∞,J(·) ∈ L2(R;L2
z1

L
r′σ
x ) satisfies

φ2,IJ = 0 if inf J ≥ sup I ,

and ‖φ2,IJ‖
L2(R,dt;L2

z1
L

r′σ
x )

≤ |J|1/2β2,IJ‖ϕ∞,J‖L∞(J,dt;L2
zL2

x) ≤ |J|1/2β2,IJ‖ϕ∞‖L∞(UJ,dt;L2
zL2

x) .

The retarded endpoint Strichartz estimate with ‖B1,IJ‖L2
zL2

x←L2
zL

rσ
x
≤β1,IJ implies

‖ψIJ‖L2(I,dt;L2
zL2

x) . 1]0,+∞[(sup I − inf J)β1,IJβ2,IJ |J|1/2‖ϕ∞‖L∞(UJ,dt;L2
zL2

x)

and therefore

‖ψIJ‖L1(I,dt;L2
zL2

x) .
[

1]0,+∞[(sup I − inf J)|I|1/2β1,IJβ2,IJ |J|1/2
]

‖ϕ∞‖L∞(UJ,dt;L2
zL2

x) .

The finiteness of
∑

I∈I ,J∈J

[

1]0,+∞[(sup I − inf J)|I|1/2β1,IJβ2,IJ |J|1/2]

ensures that ϕ1,I =
∑

J∈J ψIJ belongs to L1(I, dt;L2
zL2

x) and finally

‖ϕ1‖L1(UI,dt;L2
zL2

x) =
∑

I∈I

‖ϕ1,I‖L1(I,dt;L2
zL2

x)

.
∑

I∈I ,J∈J

[

1]0,+∞[(sup I − inf J)|I|1/2β1,IJβ2,IJ |J|1/2
]

‖ϕ∞‖L∞(UJ,dt;L2
zL2

x) .

4.2 Fixed point in weighted spaces

In this section, we apply the general framework of Strichartz estimates for evolution

equations in the spaces

F2 = L2(Z′,dz′;Γ(L2(Rd , d y;C)))= L2(Z′,dz′;C)⊕L2
sym(R ×Z′, dµ⊗dz′;L2(Rd, d yG ;C)) .
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The measured space of parameters (Z′,dz′) will be specified later and by following the

notations of Definition 3.4 and (47) for the application of Strichartz estimates, we write

Z0 = Z′ , Z1 =R ×Z′ , dz0 =dz′ , dz1 =µ⊗dz′

X0 = {0} , X1 =R
d , dx0 = δ0 , dx= d yG ,

F2 = L2
z,symL2

yG
= L2

z0
⊕L2

z1,symL2
yG

= L2
z0
⊕L2

(Y ′,z′),symL2
yG

, (56)

where the second variable x ∈ X = X0 ⊔ X1 has been replaced by yG in order to recall its

link with the center of mass on the non vacuum sector.

We will use the L
p
yG

,1≤ p ≤+∞ , version

L2
z,symL

p
yG

= L2
z0
⊕L2

(Y ′,z′),symL
p
yG

with z1 = (Y ′, z′) .

In all the above identities the subscript sym refers to the symmetry for the relative vari-

able Y ′ ∈ R . Because the symmetry is preserved by all our defined operators, this sub-

script will be forgotten when we write estimates.

Only the useful conditions on the “free dynamics” U(t) , or more precisely U(t)U(s)∗ :

F2 → F2 will be specified. Those will be checked for our model later in Section 5. The

free dynamics or more precisely U(t)U(s)∗ : F2 → F2 is assumed to preserve the number

of particles

[U(t)U(s)∗, N]= 0

with the following decomposition:

U(t)U(s)∗ = (K0(t, z′)K0(s, z′)×z′)⊕ (U1(t,Y ′, z′)U∗
1 (s,Y ′, z′)×(Y ′,z′)) (57)

in F2 = L2(Z′,dz′;C)
︸ ︷︷ ︸

=L2
z0

(vacuum)

⊕L2
sym(R ×Z′, dµ⊗dz′;L2(Rd , d yG ;C))

︸ ︷︷ ︸

=L2
(Y ′ ,z′ ),sym

L2
yG

, (58)

where ×z′ or ×(Y ′,z′) stands for the pointwise multiplication. So U1(t,Y ′, z′)U∗
1 (s,Y ′, z′) is

a one particle operator acting in the yG-variable, parametrized by z1 = (Y ′, z′) and we add

the following conditions which make the results of Subsection 4.1 relevant:

• The measured space (X1,dx1) is nothing but (Rd, d yG) in the center of mass variable

and the z1 = (Y ′, z′)-dependent one particle operators U1(t, z1) : hin → L2(Rd, d yG ;C)

and its adjoint are assumed to satisfy the estimate (42)(43) with σ> 1 . Remember

r′σ = 2σ
σ+1 and rσ = 2σ

σ−1 .

• The additional assumption of Proposition 4.1 concerned with the dense subset D is

also assumed for U1(t, z1) .

• The vacuum component K0 belongs to L∞(R×Z′, dt⊗dz′;C) .

The interaction terms will be

B∗
t,s = c1(t, s)eα(t,s)N

p
ha∗

G(V1)e−α
′(t,s)N and Bt,s = c2(t, s)

p
heα(t,s)NaG(V2)e−α

′(t,s)N

with V1,V2 ∈ Lr′σ (Rd, d y;C) (complex valued V are allowed here) and where c1 , c2 , α and

α′ are real measurable functions of (t, s) ∈ [0,T]2 with α−α′ < 0 . Those will be specified

further and we shall check the estimates (48)(49). Because Z0 = Z′ corresponds to the

vacuum sector, N = 0 , on which aG(V ) vanishes while the range of aG(V )∗ lies in the non

vacuum sector N ≥ 1 , the range B∗
t,s lies naturally in L2

z1
L

r′σ
yG

, z1 = (Y ′, z′) , once the proper
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estimates are checked while it adjoints Bt,s sends L2
z1

L
rσ
yG

into L2
zL2

yG
and is naturally

extended by 0 on the vacuum sector L2
z0

.

We will consider the following system

uh
∞(t)=−i

∫t

0
U(t)U∗(s)

(p
ha∗

G(V1)uh
∞(s)+

p
huh

2(s)+uh
1 (s)

)

ds + f h
∞(t) (59)

uh
2 (t)=−i

∫t

0
aG(V2)U(t)U(s)∗

p
huh

2(s) ds + f h
2 (t) , (60)

uh
1 (t)=−i

∫t

0
aG(V2)U(t)U(s)∗

(

ha∗
G(V1)uh

∞(s)+
p

huh
1 (s)

)

ds + f h
1 (t) . (61)

written shortly as

∀q ∈ {∞,2,1}, uh
q =

∑

p∈{∞,2,1}
Lqp(uh

p) + f h
q (62)

or 




uh
∞

uh
2

uh
1




= L






uh
∞

uh
2

uh
1




+






f h
∞

f h
2

f h
1




 , L =






L∞∞ L∞2 L∞1

0 L22 0

L1∞ 0 L11




 . (63)

This system will be studied in spaces with the number weight eαN and we will use the

following functional spaces.

Definition 4.4. For T > 0 , h ∈]0, h0[ , Ih
T

denotes the interval Ih
T
=]−T/h,T/h[ .

Fix α0,α1 ∈R , α0 <α1 and set Mα01 = max(eα1 ,e−α0 )
2 ≥ 1/2 .

Assume V1,V2 ∈ Lr′σ (Rd , d y;C) with max(‖V1‖Lr′σ ,‖V2‖Lr′σ )<CV .

For a parameter γ> 0 and α ∈ [α0,α1[ set

Tα = γ(α1 −α) .

The space E h
α0,α1,γ is the set of (e−α0N L2

z,symL2
yG

)3-valued measurable functions Ih
Tα0

∋ t 7→





u∞(t)

u2(t)

u1(t)




 such that for all α in [α0,α1[ ,

|t|−1/2u∞ ∈ L∞(Ih
Tα

, dt; e−αNL2
zL2

yG
) ,

u2 ∈ L2
loc(I

h
Tα

, dt; e−αNL2
zL2

yG
) ,

|t|−1/2u1 ∈ L1
loc(I

h
Tα

, dt; e−αNL2
zL2

yG
) .

and M(u∞, u2, u1)<+∞ with

M(u∞, u2, u1)= M∞(u∞)+M2(u2)+M1(u1) , (64)

M∞(u∞)= sup
α0≤α<α1

∥
∥
∥
∥
∥

(
Tα−|ht|

|ht|

)1/2

eαN u∞

∥
∥
∥
∥
∥

L∞(Ih
Tα

;L2
zL2

yG
)

, (65)

M2(u2)=
1

Mα01CVγ1/2
sup

α0≤α<α1
τ∈[0,Tα[

√

Tα−τ
∥
∥
∥eαN u2

∥
∥
∥

L2(Ih
τ ;L2

zL2
yG

)
, (66)

M1(u1)=
1

Mα01CVγ1/2
sup

α0≤α<α1
τ∈[0,Tα[

√

Tα−τ

∥
∥
∥
∥
∥

eαN u1
√

|ht|

∥
∥
∥
∥
∥

L1(Ih
τ ;L2

zL2
yG

)

. (67)
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T0Tα0Tα

α0

α1

α

α

ht

t ∈ Ih
Tα

Figure 1: The time interval Ih
Tα

=
]

−γ(α1−α)
h

, γ(α1−α)
h

[

according to α .

Endowed with the norm M(u∞, u2, u1) , E h
α0,α1,γ is a Banach space for all h ∈]0, h0[ .

The α-dependent time domain Ih
Tα

where weighted L∞
t , L2

t and L1
t norms are evaluated is

illustrated in Figure 1.

The constants CV > 0 and Mα01 = max(eα1 , e−α0)/2 ≥ 1/2 were chosen so that Proposi-

tion 3.8 applied with q′ = r′σ and p′ = 2 , gives

‖eαNa∗
G(V )e−α

′Nϕ‖
L2

z1
L

r′σ
yG

≤
CV eα

′

2
p
α′−α

‖ϕ‖L2
zL2

yG
≤

Mα01CVp
α′−α

‖ϕ‖L2
zL2

yG

‖eαNaG(V )e−α
′Nϕ‖L2

zL2
yG

≤
CV e−α

2
p
α′−α

‖ϕ‖L2
z1

L
rσ
yG

≤
Mα01CVp

α′−α
‖ϕ‖L2

zL
rσ
yG

,

for all α,α′ ∈ [α0,α1[ , α<α′ .

Finally the normalization of (66) and (67) was chosen in order to make the contraction

statement simple.

Proposition 4.5. Assume that the free dynamics U1(t, z1) : hin → L2(Rd, d yG ;C) satisfies

(42)(43) (uniformly w.r.t. z ∈ Z) with σ > 1 and the additional existence of the dense sub-

set D assumed in Proposition 4.1.

Let h0 > 0 , α0,α1 ∈ R , α0 < α1 and V1,V2 ∈ Lr′σ (Rd, d y;C) be fixed. The positive constants

Mα01,CV , the space E h
α0,α1,γ and its norm M are the ones of Definition 4.4. By choosing

the parameter γ > 0 small enough the linear operator L given by (63) is a contraction

of the Banach space (E h
α0,α1,γ, M) for all h ∈]0, h0[ and the system (63), explicitely written

(59)(60)(61), admits a unique solution for any ( f h
∞, f h

2 , f h
1 ) ∈ E h

α0,α1,γ .

More precisely there exists a constant Cd,U determined by the dimension d and the free

dynamics U , given by the pair K0 and U1 , such that

∀h ∈]0, h0[ , ‖L‖L (E h
α0 ,α1 ,γ) ≤ Cd,U Mα01CVγ1/2 .

Taking e.g. γ= 1
2C2

d,U M2
α01C2

V

ensures ‖L‖L (E h
α0,α1 ,γ ) ≤

1
2 so that the solution to (63) satisfies

M(uh
∞, uh

2 , uh
1)≤ 2M( f h

∞, f h
2 , f h

1 ) .

Proof. The non-vanishing entries of L






u∞
u2

u1




, namely

L∞∞(u∞) , L∞2(u2) , L∞1(u1) , L22(u2) , L11(u1) and L1∞(u∞)
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will be considered separately in this order of increasing difficulty. Additionally the sym-

metry t 7→ −t allows us to restrict the analysis to t ≥ 0 , that is t ∈ [0, Tα

h
[ for α ∈ [α0,α1[ .

Accordingly Ih
T

is, in this proof, the restricted interval [0, T
h

[ .

We use like in Section 4 the symbol . for inequalities with constants which depend only

on the dimension d and the free dynamics U .

L∞∞(u∞) : For this term and up to the square root and the parameter h ∈]0, h0[ , we fol-

low exactly the method of [Nir] for Cauchy-Kowalevski theorem. Write for t ∈]0,Tα/h[ ,

ht ∈]0,Tα[ , α<α1 − ht
γ , and

(
Tα−ht

ht

)1/2

eαNL∞∞(u∞)(t)=−i

∫Tα/h

0
U(t)U(s)∗B∗

t,s

(
Tαs

−hs

hs

)1/2

eαsN u∞(s) ds

with

B∗
t,s = 1s<t

(
Tα−ht

ht

)1/2

eαN
p

ha∗
G(V )e−αsN

(
hs

Tαs
−hs

)1/2

, (68)

and α<αs <α1 − hs
γ . Hence hs <Tαs

and

(
Tαs

−hs

hs

)1/2

‖eαsN u∞(s)‖L2
zL2 yG

≤ M∞(u∞) (69)

while α<αs implies that ‖B∗
t,s‖= ‖B∗

t,s‖L2
zL

r′σ
yG

←L2
zL2

yG

satisfies

‖B∗
t,s‖

2 ≤ h1s<t

M2
α01C2

V

(αs −α)

(Tα−ht)(hs)

ht(Tαs
−hs)

= h1s′<t′
M2

α01C2
V

(αs′/h −α)

(Tα− t′)s′

t′(Tαs′ /h − s′)
,

by setting s′ = hs , t′ = ht . By choosing

αs =
α1 +α−hs/γ

2
=

α1 +α− s′/γ

2
,

we obtain

γ(αs −α) =
γ(α1 −α)− s′

2
=

Tα− s′

2
,

Tαs′ /h = γ(α1 −αs′/h)=
γ(α1 −α)+ s′

2
, Tαs′ /h − s′ =

Tα− s′

2
,

and
(Tα− t′)s′

(αs′/h −α)t′(Tαs′ /h − s′)
= 4γ

(Tα− t)s′

t′(Tα− s′)2
.

This yields

∫Tα/h

0
‖B∗

t,s‖
2 ds ≤4γM2

α01C2
V

Tα− t′

t′

∫t′

0

s′

(Tα− s′)2
ds′ ≤ 4γM2

α01C2
V . (70)

The inequalities (69) and (70) combined with the inequality (53) with n = 1 of Proposi-

tion 4.1 imply
∥
∥
∥
∥
∥

(
Tα−ht

ht

)1/2

eαNL∞∞(u∞)

∥
∥
∥
∥
∥

L∞([0,Tα/h];L2
zL2

yG
)

. 2γ1/2Mα01CV M∞(u∞) . (71)

L∞2(u2) : The Cauchy-Schwarz inequality applied to

(
Tα−ht

ht

)1/2

eαNL∞2(u2)(t)=−i
√

Tα−ht
1
p

t

∫t

0
U(t)U(s)∗eαN u2(s) ds ,
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imply
∥
∥
∥
∥
∥

(
Tα−ht

ht

)1/2

eαNL∞2(u2)(t)

∥
∥
∥
∥
∥

L2
zL2

yG

≤
√

Tα−ht
1
p

t
‖eαN u2(s)‖L2

zL1([0,t];L2
yG

)

≤
√

Tα−ht‖eαNu2(s)‖L2([0,t];L2
zL2

yG
)

≤ sup
τ∈]0,Tα[

√

Tα−τ‖eαN u2(s)‖L2([0,τ/h];L2
zL2

yG
) .

Taking the supremum over α ∈ [α0,α1[ yields

M∞(L∞2(u2)). Mα01CVγ1/2M2(u2) . (72)

L∞1(u1) : The expression

(
Tα−ht

ht

)1/2

eαNL∞1(u1)(t)=−i
√

Tα−ht

∫t

0

p
hs

p
ht

[

U(t)U(s)∗eαN 1
p

hs
u1(s)

]

ds ,

gives
∥
∥
∥
∥
∥

(
Tα−ht

ht

)1/2

eαNL∞1(u1)(t)

∥
∥
∥
∥
∥

L2
zL2

yG

≤
√

Tα−ht‖eαN u1(s)
p

hs
‖L1([0,t];L2

zL2
yG

)

≤ sup
τ∈]0,Tα[

√

Tα−τ‖
u1(s)
p

hs
‖L1([0, τ

h
];L2

zL2
yG

)

≤ Mα01CVγ1/2M1(u1)

and

‖
(

Tα−ht

ht

)1/2

eαNL∞1(u1)‖
L∞([0, Tα

h
];L2

zL2
yG

) ≤ Mα01CVγ1/2M1(u1) . (73)

The entries L22(u2), L11(u1) and finally L1∞(u∞) require some additional techniques.

The proof, done in several steps for each of them, relies on a dyadic partition of the in-

terval [0,Tα[ around Tα . In the two cases of L22(u2) and L11(u1) , the norms M2(ϕ) and

M1(ϕ) are transformed into equivalent norms corresponding to this dyadic partition, the

proof being given in Lemma 4.6 below. Finally the entry L1∞(u∞) is treated via dyadic

partitions around Tα and 0 and happens to be a direct application of Proposition 4.3.

Splitting the interval [0,T[. Fix α ∈ [α0,α1[ and therefore T = Tα . The intervals Jn
T

are

defined for n ∈N by

Jn
T = T +2−n[−T,−T/2[= [(1−2−n)T, (1−2−n−1)T[ ,

J
≤n0
T

= ∪
n≤n0

Jn
T for n0 ∈N,

so that [0,T]=∪n∈N Jn
T
= J

≤n0
T

∪ (∪n>n0 Jn
T

) , see Figure 2.

With the exponents

α′
0 =

α1 +6α
7

and α′
n =

α1 + (2n+2 −1)α

2n+2 for n ≥1

we note that

J≤2
Tα′0

=
7

8
Tα′

0
=

7

8

6

7
Tα =

3

4
Tα = J≤1

Tα
,

and for n ≥ 1 Tα′
n
= Tα−

1

2

Tα

2n+1
= (1−2−n−2)Tα .
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J0
T

T0
J1

T Jn
T

, n >1Jn
T

J≤1
T

J≤0
T

J≤2
T

Figure 2: The time intervals Jn
T

, n ∈N , with length T
2n+1

By taking δn = Tα

2n+2 and 2δn = Tα

2n+1 for n > 1 , we obtain in particular

Jn
Tα

= [Tα−4δn,Tα−2δn[= [Tα′
n
−3δn,Tα′

n
−δn[ with δn ≤

Tα′
n

12
(n > 1)

as summarized in Figure 3.

α1

α1+α
2

α1+3α
4

α′
0 =

α1+6α
7

α′
n = α1+(2n+2−1)α

2n+2
α

Jn
Tα

ht

J≤1
Tα

= J≤2
Tα′0

Figure 3: The exponent α′
0 is determined by 7

8 Tα′
0
= 3

4 Tα while for n >1 , α′
n is determined

by Tα′
n
= (1− 2−n−1

2 )Tα = (1−2−n−2)Tα .

The equivalence of norms

κ−1
2 N2,1(ϕ)≤ N2,i(ϕ)≤ κ2N2,1(ϕ) , 2≤ i ≤ 4, (74)

for some universal constant κ2 > 1 is proved in Lemma 4.6 for

N2,1(ϕ)= sup
τ∈[0,T[

p
T −τ

∥
∥ϕ

∥
∥

L2([0, τ
h

];L2
zL2

yG
) , (75)

N2,2(ϕ)=
p

T
∥
∥ϕ

∥
∥

L2(h−1 J≤1
T

;L2
zL2

yG
)+ sup

δ∈]0,T/8]

p
δ

∥
∥ϕ

∥
∥

L2(h−1[T−2δ,T−δ];L2
zL2

yG
) , (76)

N2,3(ϕ)=
p

T sup
n∈N

2−n/2 ∥
∥ϕ

∥
∥

L2(h−1 Jn
T

;L2
zL2

yG
) , (77)

N2,4(ϕ)=
p

T
∥
∥ϕ

∥
∥

L2(h−1 J≤2
T

;L2
zL2

yG
)+ sup

δ∈]0,T/12]

p
δ

∥
∥ϕ

∥
∥

L2(h−1[T−3δ,T−δ];L2
zL2

yG
) . (78)

L22(u2) : For α ∈ [α0,α1[ , we seek an upper bound of N2,1(ϕ) (with T = Tα) for

ϕ(t)= eαNL22(u2)(t)=−i

∫t

0
eαN

p
haG(V2)U(t)U(s)∗u2(s) ds .
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By the equivalence of norms N2,1 and N2,3 this is the same as finding an upper bound for
√

Tα2−n/2‖ϕ‖L2(h−1 Jn
Tα

;L2
zL2

yG
)

uniformly in both α∈ [α0,α1[ and n ≥ 0 , or equivalently for
√

Tα‖ϕ‖L2(h−1 J≤1
Tα

;L2
zL2

yG
) and

√

Tα2−n/2‖ϕ‖L2(h−1 Jn
Tα

;L2
zL2

yG
) (n > 1),

with the same uniformity.

For t ∈ h−1J≤1
Tα

we write

√

Tαϕ(t)=−i
√

TαeαNaG(V )e−α
′
0N

∫

s<t
U(t)U(s)∗

p
hw1(s) ds

with

w1(s)= eα
′
0N1h−1 J≤1

Tα
(s)u2(s)= eα

′
0N1h−1 J≤2

T
α′0

(s) u2(s) .

Then Proposition 3.8, the retarded Strichartz estimate (46) and the Cauchy-Schwarz in-

equality yield
√

Tα‖ϕ‖L2(h−1 J≤1
Tα

;L2
zL2

yG
) .

√

Tα
CV Mα01
√

α′
0 −α

‖
∫

s<t
U(t)U(s)∗

p
hw1(s) ds‖L2

zL2
t (h−1 J≤1

Tα
;Lrσ

yG
)

.CV Mα01
p
γ‖

p
hw1‖L2

zL1(h−1 J≤2
T
α′0

;L2
yG

)

.CV Mα01
p
γ
√

Tα′
0
‖w1‖L2

zL2
t (h−1 J≤2

T
α′0

;L2
yG

)

.CV Mα01
p
γ
√

Tα′
0
‖eα

′
0 u2‖L2

t (h−1 J≤2
T
α′0

;L2
zL2

yG
) .

The equivalence between the norms N2,1 and N2,4 implies
√

Tα‖ϕ‖L2(h−1 J≤1
Tα

;L2
zL2

yG
) . C2

V M2
α01γM2(u2) . (79)

For t ∈ h−1Jn
Tα

, n > 1 , write

√

Tα2−n/2ϕ(t)=− i
√

Tα2−n/2eαNaG(V )e−α
′
0N

∫

s<t
U(t)U(s)∗

p
hw1(s) ds

− i
√

Tα2−n/2
n∑

m=2
eαNaG(V2)e−α

′
mN

∫

s<t
U(t)U(s)∗

p
hwm(s) ds

︸ ︷︷ ︸

=ϕ̃

with for m ≥ 2

wm(s)= 1h−1 Jm
Tα

(s)eα
′
mN u2(s)= 1

h−1
[

Tα′m
−3δm,Tα′m

−δm

](s)eα
′
mN u2(s) .

The first term is actually estimate as we did for (79) with the additional factor 2−n/2 ≤ 1 .

It suffices to consider the application of Proposition 3.8, the retarded Strichartz esti-

mate (46) and the Cauchy-Schwarz inequality to
√

Tα2−n/2‖ϕ̃‖L2(h−1 Jn
Tα

;L2
zL2

yG )

.
√

Tα2−n/2
n∑

m=2

CV Mα01
√

α′
m −α

∥
∥
∥
∥

∫

s<t
U(t)U(s)∗

p
hwm(s) ds

∥
∥
∥
∥

L2
zL2

t (h−1 Jn
Tα

;Lrσ
yG

)

.CV Mα01
p
γ2−n/2

n∑

m=2
2m/2

∥
∥
∥

p
hwm

∥
∥
∥

L2
zL1

t (h−1 Jm
Tα

;L2
yG

)

.CV Mα01
p
γ2−n/2

n∑

m=2

√

Tα ‖wm‖L2
zL2

t (h−1 Jm
Tα

;L2
yG

) . (80)
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Thanks to the equivalence of the norms N2,1 and N2,4 (with T = Tα′
m

), we obtain for m ≥ 2

√

Tα ‖wm‖L2
zL2

t (h−1 Jm
Tα

;L2
yG

) = 2
m+2

2
√

δm

∥
∥
∥eα

′
mN u2(s)

∥
∥
∥

L2
t (h−1

[

Tα′m
−3δm,Tα′m

−δm

]

;L2
zL2

yG
)

. 2m/2CV Mα01
p
γM2(u2) . (81)

Putting together (80) and (81) gives

√

Tα2−n/2‖ϕ‖L2(h−1 Jn
Tα

;L2
zL2

yG
) . 2−n/2

n∑

m=0
2m/2C2

V M2
α01γM2(u2)

.C2
V M2

α01γM2(u2)

which, combined with (79) and the normalization of M2(L22(u2)) , yields

M2(L22(u2)).CV Mα01
p
γM2(u2) . (82)

The estimate of L11(u1) starts with the same decomposition of the interval [0,T/h]

with the norms

N1,1(ϕ)= sup
τ∈[0,T[

p
T −τ

∥
∥
∥
∥

ϕ(t)
p

ht

∥
∥
∥
∥

L1([0, τ
h

];L2
zL2

yG
)
, (83)

N1,2(ϕ)=

∥
∥
∥
∥
∥

(
T

ht

)1/2

ϕ

∥
∥
∥
∥
∥

L1(h−1 J≤1
T

;L2
zL2

yG
)

+ sup
δ∈]0,T/8]

(
δ

T

)1/2 ∥
∥ϕ

∥
∥

L1(h−1[T−2δ,T−δ];L2
zL2

yG
) , (84)

N1,3(ϕ)=

∥
∥
∥
∥
∥

(
T

ht

)1/2

ϕ

∥
∥
∥
∥
∥

L1(h−1 J≤1
T

;L2
zL2

yG
)

+sup
n>1

2−n/2 ∥
∥ϕ

∥
∥

L1(h−1 Jn
T

;L2
zL2

yG
) , (85)

N1,4(ϕ)=

∥
∥
∥
∥
∥

(
T

ht

)1/2

ϕ

∥
∥
∥
∥
∥

L1(h−1 J≤2
T

;L2
zL2

yG
)

+ sup
δ∈]0,T/12]

(
δ

T

)1/2 ∥
∥ϕ

∥
∥

L1(h−1[T−3δ,T−δ];L2
zL2

yG
) . (86)

Those norms are equivalent according to

κ−1
1 N1,1(ϕ)≤ N1,i(ϕ)≤ κ1N1,1(ϕ) ,2≤ i ≤ 4 (87)

with a universal constant κ1 > 1 . See Lemma 4.6 for the proof.

L11(u1)-Step 1, Decomposition of L11(u1): For α ∈ [α0,α1[ , we seek an upper bound of

N1,1(ϕ) for

ϕ(t)= eαNL11(u1)(t)=−i

∫t

0
eαN

p
haG(V2)U(t)U(s)∗u1(s) ds .

By the equivalence of norms N1,1 and N1,3 this is the same as finding a uniform upper

bound for
∥
∥
∥
∥
∥

(
Tα

ht

)1/2

ϕ

∥
∥
∥
∥
∥

L1(h−1 J≤1
Tα

;L2
zL2

yG
)

and 2−n/2‖ϕ‖L1(h−1 Jn
Tα

;L2
zL2

yG
) for n >1.

Setting ψ1(t)=
(

Tα

ht

)1/2
1h−1J≤1

Tα
(t)ϕ(t) and, for n > 1, ψn(t)= 2−n/21h−1 Jn

Tα
(t)ϕ(t) gives

ψ1(t)=−i

∫t

0

(
Tα

ht

)1/2

eαN
p

haG(V2)U(t)U(s)∗1h−1 J≤1
Tα

(s)u1(s) ds , t ∈ h−1J≤1
Tα

,
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and, for n > 1,

ψn(t)=−i

∫t

0
2−n/2eαN

p
haG(V2)U(t)U(s)∗1h−1 J≤1

Tα
(s)u1(s) ds

− i
∑

1<m≤n

∫t

0

p
h2−n/2eαNaG(V2)U(t)U(s)∗1h−1 Jm

Tα
(s)u1(s) ds , t ∈ h−1Jn

Tα
.

This allows to rewrite the above decomposition as

ψ1(t)
t≤ 3Tα

4h= − i

∫ 3Tα
4h

0
1[0,t](s)

(

Tα

Tα′
0

)1/2 (
hs

ht

)1/2

eαN
p

haG(V2)e−α
′
0N

︸ ︷︷ ︸

B11(t,s)

U(t)U(s)∗w1(s) ds ,

and, for n > 1,

ψn(t)
t∈h−1Jn

Tα= − i

∫ Tα
h

0
1[0, 3Tα

4h
](s)2−n/2eαN

p
haG(V2)e−α

′
0N

(

hs

Tα′
0

)1/2

︸ ︷︷ ︸

Bn1(t,s)

U(t)U(s)∗w1(s) ds

− i
n∑

m=2

∫ Tα
h

0
1[0,t]∩h−1Jm

Tα
(s)2−(n−m)/2eαN

p
haG(V2)e−α

′
mN

︸ ︷︷ ︸

Bnm (t,s)

U(t)U(s)∗wm(s) ds ,

with w1(s)= 1h−1 J≤2
T
α′0

(s)

(
Tα′

0

hs

)1/2

eα
′
0N u1(s)

and wm(s)
m>1= 2−m/21h−1 Jm

Tα
(s)eα

′
mN u1(s)= 2−m/21[

T
α′m

−3δm

h
,

T
α′m

−δm

h

](s)eα
′
mN u1(s) .

Proposition 4.1 tells us

‖ψ1‖L1(h−1 J≤1
Tα

;L2
zL2

yG
) .



 sup
s∈[0, 3Tα

4h
]

∫ 3Tα
4h

0
‖B11(t, s)‖2 dt





1/2

‖w1‖L1(h−1 J≤2
T
α′0

;L2
zL2

yG
) ,

and, for n > 1,

‖ψn‖L1(h−1 Jn
Tα

;L2
zL2

yG
) .



 sup
s∈[0, 3Tα

4h
]

∫

h−1Jn
Tα

‖Bn1(t, s)‖2 dt





1/2

‖w1‖L1(h−1 J≤2
T
α′0

;L2
zL2

yG
)

+
n∑

m=2



 sup
s∈h−1Jm

Tα

∫

h−1 Jn
Tα

‖Bnm(t, s)‖2 dt





1/2

‖wm‖
L1([

T
α′m

−3δm

h
,

T
α′m

−δm

h
];L2

zL2
yG

)
.

From the comparison between the norms N1,1 and N1,4 we know

‖w1‖L1(h−1 J≤2
T
α′0

;L2
zL2

yG
) . sup

τ∈[0,Tα′0
[

√

Tα′
0
−τ

∥
∥
∥
∥
∥

eα
′
0N u1p
ht

∥
∥
∥
∥
∥

L1([0, τ
h

];L2
zL2

yG
)

. Mα01CVγ1/2M1(u1) ,

while for m > 1 ,

‖wm‖
L1([

T
α′m

−3δm

h
,

T
α′m

−δm

h
];L2

zL2
yG

)
.

(
Tα′

m

δm

)1/2

2−m/2 sup
τ∈[0,Tα′m

[

√

Tα′
m
−τ‖

eα
′
mN u1p

ht
‖L1([0, τ

h
];L2

zL2
yG

)

.

(
Tα

Tα2−m−2

)1/2

2−m/2Mα01CVγ1/2M1(u1)

. Mα01CVγ1/2M1(u1) .
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We have proved

supτ∈[0,Tα[

√

Tα−τ
∥
∥
∥

eαN L11(u1)p
ht

∥
∥
∥

L1([0, τ
h

];L2
zL2

yG
)

Mα01CVγ1/2M1(u1)

.



 sup
s∈[0, 3Tα

4h
]

∫ 3Tα
4h

0
‖B11(t, s)‖2 dt





1/2

+sup
n≥1



 sup
s∈[0, 3Tα

4h
]

∫

h−1Jn
Tα

‖Bn1(t, s)‖2 dt





1/2

+sup
n>1

n∑

m=2



 sup
s∈h−1 Jm

Tα

∫

h−1 Jn
Tα

‖Bnm(t, s)‖2 dt





1/2

. (88)

It remains to estimate every term of the above right-hand side.

L11(u1)-Step 2, Estimate for B11: The expression

B11(t, s)= 1[0,t](s)

(

Tα

Tα′
0

)1/2 (
hs

ht

)1/2

eαN
p

haG(V2)e−α
′
0N

implies, with Tα = γ(α1 −α) = 7γ(α′
0 −α) ,

‖B11(t, s)‖2 ≤
Tα

Tα′
0

7γ

Tα
M2

α01C2
V h1[0,t](s)

hs

ht
≤ 7γM2

α01C2
V

4hs

3Tα

1[0,t](s)

t
.

We obtain
∫ 3Tα

4h

0
‖B11(t, s)‖2 dt ≤7γM2

α01C2
V

4hs

3Tα
ln(

3Tα

4hs
) .

and


 sup
s∈[0, 3Tα

4h
]

∫ 3Tα
4h

0
‖B11(t, s)‖2 dt





1/2

. γ1/2Mα01CV . (89)

L11(u1)-Step 3, Estimate for Bn1 , n > 1: From

Bn1(t, s)= 1[0, 3Tα
4h

](s)2−n/2eαN
p

haG(V2)e−α
′
0N

(

hs

Tα′
0

)1/2

we deduce with α′
0 −α= α1−α

7 = Tα

7γ and Tα′
0
= 6Tα

7 ,

‖Bn1(t, s)‖2 ≤ 1[0, 3Tα
4h

](s)2−n
hM2

α01C2
V

(α′
0 −α)

(

3Tα/4

Tα′
0

)

≤ 1[0, 3Tα
4h

](s)
2−n7γh

Tα
M2

α01C2
V .

With Jn
Tα

= [(1−2−n)Tα, (1−2−n−1)Tα[ for n >1 we obtain

∫

h−1 Jn
Tα

‖Bn0(t, s)‖2 dt ≤2−n−1Tα×
2−n7γ

Tα
M2

α01C2
V ≤

7γ

4
M2

α01C2
V .

and

sup
n>1



 sup
s∈[0, 3Tα

4h
]

∫

h−1 Jn
Tα

‖Bn0(t, s)‖2 dt





1/2

. γ1/2Mα01CV . (90)

L11(u1)-Step 4, Estimate for the Bnm’s, n, m >1: From

Bnm(t, s)= 1[0,t]∩h−1Jm
Tα

(s)2−(n−m)/2eαN
p

haG(V2)e−α
′
m N
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and α′
m −α= 2−(m+2)(α1 −α)= 2−(m+2)Tα

γ , we deduce

‖Bnm(t, s)‖2 ≤ 1[0,t]∩h−1Jm
Tα

(s)2−(n−m) h2m+2γ

Tα
M2

α01C2
V .

Using again that the length of Jn
Tα

is 2−(n+1)Tα , we get

sup
s∈h−1 Jm

Tα

∫

h−1 Jn
Tα

‖Bnm(t, s)‖2 dt ≤2γ2−2(n−m)M2
α01C2

V

and

sup
n≥1

n∑

m=1



 sup
s∈h−1Jm

Tα

∫

h−1 Jn
Tα

‖Bnm(t, s)‖2 dt





1/2

. γ1/2Mα01CV . (91)

L1∞(u∞)-Step 1, Decomposition of L1∞(u∞):

Compared with the decomposition of L22(u2) and L11(u1) , an additional dyadic decom-

position has to be done around 0 in order to absorb the weight 1p
ht

properly and to use

Proposition 4.3. Decompose now [0,T] =∪n∈ZJn
T

where J0
T

is now the interval [T/4,T/2[

and Jn
T
= 2nJ0

T
for n < 0 , according to figure 4. In particular, the interval previously

denoted by J0
T

is now J≤0
T

while J
≤n0
T

is not changed for n0 > 0 .

J0
T

T0
J1

T Jn
T

, n >1Jn
T

, n <0

J≤1
T

J≤0
T

J≤2
T

Figure 4: The time intervals Jn
T

, n ∈Z .

We seek an upper bound of N1,1(ϕ) for

ϕ(t)= eαNL1∞(u∞)(t)=−h

∫t

0
eαNaG(V2)U(t)U(s)∗aG(V1)∗u∞(s) ds .

By the equivalence of norms N1,1 and N1,3 this is equivalent to proving a uniform upper

bound for
∥
∥
∥
∥
∥

(
Tα

ht

)1/2

ϕ

∥
∥
∥
∥
∥

L1(h−1 J≤1
Tα

;L2
zL2

yG
)

and 2−n/2‖ϕ‖L1(h−1 Jn
Tα

;L2
zL2

yG
) for n >1.

But the dyadic decomposition around 0 says
∥
∥
∥
∥
∥

(
Tα

ht

)1/2

ϕ

∥
∥
∥
∥
∥

L1(h−1 J≤1
Tα

;L2
zL2

yG
)

≤ 2
∑

n≤1
‖2− n+1

2 ϕ‖L1(h−1 Jn
Tα

;L2
zL2

yG
) = 2‖

∑

n≤1
2− n+1

2 1h−1 Jn
Tα

(t)ϕ‖L1(h−1 J≤1
Tα

;L2
zL2

yG
) .

L1∞(u∞)-Step 2, Estimate on h−1Jn≤1
Tα

:

We write ϕ1 =
∑

n≤1 2− n+1
2 1h−1 Jn

Tα
(t)eαNL1∞(u∞)=

∑

n≤1ϕ1,n(t) where

ϕ1,n(t)=−h
1∑

m=−∞
2− n+1

2 1h−1Jn
Tα

(t)×
∫t

0
eαNaG(V2)e−

α+α′0
2 NU(t)U(s)∗e

α+α′0
2 N a∗

G(V1)e−α
′
0N1h−1 Jm

Tα
(s)eα

′
0N uh

∞(s) ds

=−h
1∑

m=−∞
1h−1 Jn

Tα

∫t

0
B1nU(t)U(s)∗B∗

2m(s)ϕ∞,m(s) ds
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with

B1n = 2− n+1
2 eαNaG(V2)e−

α+α′0
2 N ,

‖B1n‖L2
zL2

yG
←L2

zL
rσ
yG
.

Mα01‖V2‖Lr′σ
√

α′
0 −α

2−n/2 .
Mα01CVγ1/2

T1/2
α1

2−n/2 ,

B∗
2m = e

α+α′0
2 N a∗

G(V1)e−α
′
0N1h−1Jm

Tα
(s)

p
hs

√

Tα−hs
,

‖B∗
2m‖

L2
zL

r′σ
yG

←L2
zL2

yG

.
Mα01‖V1‖Lr′σ

√

α′
0 −α

2m/2 .
Mα01CVγ1/2

T1/2
α

2m/2 ,

ϕ∞,m(s)= 1h−1 Jm
Tα

(s)ϕ∞(s) , ϕ∞(s)= eα
′
0N

√

Tα−hs
p

hs
u∞(s) .

By noticing

|h−1Jn
Tα

| ≤ Tαh−12n

the upper bound of Proposition 4.3 gives

‖ϕ1‖L1(h−1 J≤1
Tα

;L2
zL2

yG
) .

[

∑

−∞≤m≤n≤1
2n/2(Mα01CVγ1/22−n/2)(Mα01CVγ1/22m/2)

]

∥
∥ϕ∞

∥
∥

L∞(h−1 J≤1
Tα

;L2
zL2

yG )

. M2
α01C2

VγM∞(u∞) .

We proved

‖
1

p
ht

eαNL1∞(u∞)‖L1(h−1 J≤1
Tα

;L2
zL2

yG
) . Mα01C2

VγM∞(u∞) . (92)

L1∞(u∞)-Step 3, Estimate on h−1Jn
Tα

, n> 1:

Write ϕ1(t)= 2−n/21h−1 Jn
Tα

(t)eαNL1∞(u∞) , where

ϕ1(t)=−h
1∑

m=−∞
2− n

2 1h−1 Jn
Tα

(t)×
∫t

0
eαNaG(V2)e−

α+α′0
2 NU(t)U(s)∗e

α+α′0
2 N a∗

G(V1)e−α
′
0N1h−1 Jm

Tα
(s)eα

′
0N uh

∞(s) ds

−h
n∑

m=2
2− n

2 1h−1 Jn
Tα

(t)×
∫t

0
eαNaG(V2)e−

α+α′m
2 NU(t)U(s)∗e

α+α′m
2 Na∗

G(V1)e−α
′
m N1h−1 Jm

Tα
(s)eα

′
mN uh

∞(s) ds

=−h
1∑

m=−∞
1h−1 Jn

Tα
(t)×

∫t

0
B1nU(t)U(s)∗B∗

2m(s)ϕ∞,m(s) ds

−h
n∑

m=2
1h−1 Jn

Tα
(t)×

∫t

0
B1nmU(t)U(s)∗B∗

2nm(s)ϕ∞,m(s) ds .

The family I of Proposition 4.3 is made here of the single interval h−1Jn
Tα

while the

family J =
{

h−1Jm
Tα

, m ≤ n
}

is splitted in two parts m ≤ 1 and 2 ≤ m ≤ n . In the last two

34



lines the notations correspond to

B1n = 2− n
2 eαNaG(V2)e−

α+α′0
2 N ,

‖B1n‖L2
zL2

yG
←L2

zL
rσ
yG
.

Mα01‖V2‖Lr′σ
√

α′
0 −α

2−n/2 .
Mα01CVγ1/2

T1/2
α1

2−n/2 ,

m ≤ 1 B∗
2m = e

α+α′0
2 N a∗

G(V1)e−α
′
0N1h−1 Jm

Tα
(s)

p
hs

√

Tα−hs
,

m ≤ 1 ‖B∗
2m‖

L2
zL

r′σ
yG

←L2
zL2

yG

.
Mα01‖V1‖Lr′σ

√

α′
0 −α

2m/2 .
Mα01CVγ1/2

T1/2
α

2m/2 ,

m ≥ 2 B1nm = 2− n
2 eαNaG(V2)e−

α+α′m
2 N ,

m ≥ 2 ‖B1nm‖L2
zL2

yG
←L2

zL
rσ
yG
.

Mα01‖V2‖Lr′σ
√

α′
m −α

2−n/2 .
Mα01CVγ1/2

T1/2
α1

2m/2−n/2

m ≥ 2 B∗
2nm = e

α+α′m
2 N a∗

G(V1)e−α
′
mN1h−1 Jm

Tα
(s)

p
hs

√

Tα−hs
,

m ≥ 2 ‖B∗
2mn‖L2

zL
r′σ
yG

←L2
zL2

yG

.
Mα01‖V1‖Lr′σ

√

α′
m −α

2m/2 .
Mα01CVγ1/2

T1/2
α

2m ,

ϕm(s)= 1h−1Jm
Tα

(s)ϕ∞(s) ,

ϕ∞(s)= 1h−1J≤1
Tα

(s)eα
′
0N

√

Tα−hs
p

hs
u∞(s)+

∞∑

m=2
eα

′
m N1h−1Jm

Tα
(s)

√

Tα−hs
p

hs
u∞(s) .

The size of the intervals are estimated respectively by |h−1Jn
Tα |. h−12−nTα and

|h−1Jm
Tα

|. h−12mTα for m ≤ 1 , |h−1Jm
Tα

|. h−12−mTα for m ≥ 2.

Proposition 4.3 gives

‖ϕ1‖L1(h−1 Jn
Tα

;L2
zL2

yG
)

‖ϕ∞‖L∞(h−1 J≤n
Tα

;L2
zL2

yG
)
.

[

∑

−∞≤m≤1
2−n/2(Mα01CVγ1/22−n/2)(Mα01CVγ1/22m/2)2m/2

]

+
[

n∑

m=2
2−n/2(Mα01CVγ1/22m/2−n/2)(Mα01CVγ1/22m)2−m/2

]

. Mα01C2
Vγ .

With

‖ϕ∞‖L∞(h−1 J≤n
Tα

;L2
zL2

yG
) ≤ ‖ϕ∞‖L∞([0,Tα/h[;L2

zL2
yG

) ≤ M∞(u∞) ,

we have proved

sup
n≥1

2−n/2‖eαNL1∞(u∞)‖L1(h−1 Jn
Tα

;L2
zL2

yG
) . Mα01C2

VγM∞(u∞) . (93)

Conclusion. From (71), (72) and (73) we deduce

M∞(L∞∞(u∞)+L∞2(u2)+L∞1(u1)). γ1/2Mα01CV M(u∞, u2, u1) . (94)

Combining (88), (89), (90), (91), and taking the supremum over α ∈ [α0,α1[ yields

M1(L11(u1)). γ1/2Mα01CV M1(u1) ,
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while (82) says

M2(L22(u2)).CV Mα01
p
γM2(u2) .

Finally the upper bounds (92),(93) combined, firstly with the equivalence of norms N11

and N31 , and secondly the normalization of (67) of M1 yields

M1(L1∞(u∞)). γ1/2Mα01CV M(u∞, u2, u1) .

The sum of all those inequalities is

M(L(u∞, u2, u1)). γ1/2Mα01CV M(u∞, u2, u1) ,

which means that there exists a constant Cd,U determined by the dimension d and the

free dynamics U such that

‖L‖L (E h
α0 ,α1 ,γ) ≤Cd,U Mα01CVγ1/2 .

Lemma 4.6. The norms Np,1, Np,2, Np,3, Np,4 defined in (75)(76)(77)(78) for p = 2 (resp.

(83)(84)(85)(86) for p = 1) are equivalent according to (74) (resp. (87)).

Proof. We forget the notation L2
zL2

yG
because it is a time integration issue and it can be

done with any Banach space valued functions.

With the Definition (77) of N2,3(ϕ) , the equality

‖ϕ‖L2(h−1 J≤1
T

) =
(

‖ϕ‖2
L2(h−1 J0

T
)
+‖ϕ‖2

L2(h−1 J1
T

)

)1/2

allows to replace N2,3(ϕ) by the equivalent norm
p

T‖ϕ‖L2(h−1 J≤1
T

) +
p

T sup
n>1

2−n/2‖ϕ‖L2(h−1 Jn
T

)

For p = 1 , the inequality

∀t ∈ [
3T

4h
,
T

h
[,

1

T
≤

1

ht
≤

4

3T

allows to replace the second term of the definitions (84) (85)(86) of N1,2 , N1,3 and N1,4 ,

respectively by

sup
δ∈]0,T/8]

p
δ

∥
∥
∥
∥

ϕ
p

ht

∥
∥
∥
∥

L1(h−1[T−2δ,T−δ[)

sup
n>1

p
T2−n/2

∥
∥
∥
∥

ϕ
p

ht

∥
∥
∥
∥

L1(h−1 Jn
T

)
,

sup
δ∈]0,T/12]

p
δ

∥
∥
∥
∥

ϕ
p

ht

∥
∥
∥
∥

L1(h−1[T−3δ,T−δ[)
.

Additionally the supτ∈[0,T[ in the definitions (75)(83) can be replaced by supτ∈[3T/4,T[ . We

are thus led to compare the norms, for p = 1,2 ,

Np,1,T,h(ϕ)= sup
τ∈[3T/4,T[

p
T −τ

∥
∥
∥
∥

ϕ

(ht)1/p−1/2

∥
∥
∥
∥

Lp([0, τ
h

])
,

Np,2,T,h(ϕ)=
p

T

∥
∥
∥
∥

ϕ

(ht)1/p−1/2

∥
∥
∥
∥

Lp(h−1 J≤1
T

)
+ sup

δ∈]0,T/8]

p
δ

∥
∥
∥
∥

ϕ

(ht)1/p−1/2

∥
∥
∥
∥

Lp(h−1[T−2δ,T−δ])
,

Np,3,T,h(ϕ)=
p

T

∥
∥
∥
∥

ϕ

(ht)1/p−1/2

∥
∥
∥
∥

Lp(h−1 J≤1
T

)
+
p

T sup
n>1

2−n/2
∥
∥
∥
∥

ϕ

(ht)1/p−1/2

∥
∥
∥
∥

Lp(h−1 Jn
T

)
,

Np,4,T,h(ϕ)=
p

T

∥
∥
∥
∥

ϕ

(ht)1/p−1/2

∥
∥
∥
∥

Lp(h−1 J≤2
T

)
+ sup

δ∈]0,T/12]

p
δ

∥
∥
∥
∥

ϕ

(ht)1/p−1/2

∥
∥
∥
∥

Lp(h−1[T−3δ,T−δ])
.
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The elementary homogeneity of those expressions gives

Np,i,T,h(ϕ)=
T

h1/p
Np,i,1,1(ϕ̃) with ϕ̃(t)=ϕ(ht) for p =1,2 and 1≤ i ≤ 4,

and it suffices to consider the case T = h = 1 while setting ψ= ϕ̃

t1/p−1/2 .

For τ ∈ [3/4,1[ the identity

∥
∥ψ

∥
∥

Lp ([0,τ]) =
(∥
∥ψ

∥
∥p

Lp(J≤1
1 )

+
∥
∥ψ

∥
∥p

Lp([3/4,τ])

)1/p

reduces the comparison of Np,1,1,1(ϕ̃) , Np,2,1,1(ϕ̃) and Np,3,1,1(ϕ̃) to the comparison of

A1(ψ)= sup
τ∈[3/4,1[

p
1−τ

∥
∥ψ

∥
∥

Lp ([3/4,τ]) ,

A2(ψ)= sup
δ∈]0,1/8]

p
δ

∥
∥ψ

∥
∥

Lp[1−2δ,1−δ]) ,

A3(ψ)= sup
n>1

2−n/2 ∥
∥ψ

∥
∥

Lp (Jn
1 ) .

Taking τ= 1−δ , δ≤ 1/8 , in A1(ψ) and δ= 2−n−1 , n > 1 , in A2(ψ) gives

A3(ψ)≤
p

2A2(ψ)≤
p

2A1(ψ) .

For τ ∈ [3/4,1[ there exists nτ > 1 such that τ ∈ [1−2−nτ ,1−2−nτ−1[= J
nτ

1 and

‖ψ‖p

Lp([3/4,τ]) =
nτ∑

n=2
‖ψ‖p

Lp(Jn
1 ) ≤

nτ∑

n=2
2np/2(2−n/2‖ψ‖Lp(Jn

1 ))
p ≤

2p(nτ+1)/2

2p/2 −1
A3(ψ)p .

The inequality

(1−2−nτ )≤ τ or
p

1−τ≤ 2−nτ/2 ,

while taking the supremum over τ ∈ [3/4,1[ , implies

A1(ψ)≤
p

2

(2p/2 −1)1/p
A3(ψ) .

We have proved the equivalence

κ−1
p,1Np,1(ϕ)≤ Np,i(ϕ)≤κp,1Np,1(ϕ) for p =1,2, i = 2,3,

with a universal constant κp,1 > 1 .

It now suffices to compare Np,2 and Np,4 or equivalently Np,2,1,1(ϕ̃) and Np,4,1,1(ϕ̃) written

with ψ= ϕ̃

t1/p−1/2

Np,2,1,1(ϕ̃)= ‖ψ‖Lp(J≤1
1 )+ sup

δ∈]0,1/8]

p
δ‖ψ‖Lp([1−2δ,1−δ]) =: B2(ψ) ,

Np,4,1,1(ϕ̃)= ‖ψ‖Lp(J≤2
1 )+ sup

δ∈]0,1/12]

p
δ‖ψ‖Lp([1−3δ,1−δ]) =: B4(ψ) .

For the first terms of B2(ψ) and B4(ψ) ,

‖ψ‖p

Lp(J≤1
1 )

≤ ‖ψ‖p

Lp(J≤2
1 )

= ‖ψ‖p

Lp(J≤1
1 )

+‖ψ‖p

Lp(J2
1 )

gives

‖ψ‖Lp(J≤1
1 ) ≤‖ψ‖Lp(J≤2

1 ) ≤ ‖ψ‖Lp(J≤1
1 ) + sup

δ∈]0,1/8]
‖ψ‖Lp([1−2δ,1−δ]) .
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For the second terms of B2(ψ) and B4(ψ) ,
p
δ‖ψ‖Lp([1−3δ,1−3δ/2]) ≤

p
δ‖ψ‖Lp([1−3δ,1−δ]) ≤

p
δ‖ψ‖Lp([1−3δ,1−3δ/2])+

p
δ‖ψ‖Lp([1−2δ,1−δ])

leads to

(2/3)1/2 sup
δ∈]0,1/8]

p
δ‖ψ‖Lp([1−3δ,1−δ]) ≤ sup

δ∈]0,1/12]

p
δ‖ψ‖Lp([1−2δ,1−δ]) ≤ 2 sup

δ∈]0,1/8]

p
δ‖ψ‖Lp([1−3δ,1−δ]) .

Adding the two terms yields the equivalences

κ−1
p,2B2(ψ)≤B4(ψ)≤ κp,2B2(ψ)

and κ−1
p,2N2,2(ϕ)≤ N2,4(ϕ)≤ κp,2N2,2(ϕ)

for a universal constant κp,2 > 1 . The proof ends by taking κp =κp,1κp,2 > 1 .

5 Consequences of Strichartz estimates for our model prob-

lem

The general results of Section 4 are applied to our model problem presented in Subsec-

tion 2.3.

5.1 Validity of the general hypotheses and main result

Let us consider (20)






i∂t f̂ h = (ξ−dΓ(D y))2 f̂ h+
p

h[a(V )+a∗(V )] f̂ ,

f̂ h(t =0)= f̂ h
0 ,

(95)

where f̂ h(t) ∈ L2(Rd × Z′′, dξ

(2π)d ⊗dz′′;Γ(L2(Rd, d y;C))) , ξ is the Fourier variable of x ∈ R
d

and z′′ ∈ Z′′ is a parameter, e.g. L2(Z′′,dz′′) = L2(Rd, dξ

(2π)d ;C)⊗Γ(L2(Rd , d y;C)) when we

want to handle the evolution of Hilbert-Schmidt operators on L2(Rd, dξ

(2π)d ;C)⊗Γ(L2(Rd , d y;C))

as described in the end of Section 2.3. Our complete parameter is thus

z′ = (ξ, z′) ∈R
d ×Z′′ = Z′

and remember the writing introduced in Definition 3.4 and specified in (47) and (58)

L2(Rd ×Z′′,
dξ

(2π)d
⊗dz;Γ(L2(Rd , d y;C)))= L2

z,symL2
yG

= L2
z0

︸︷︷︸

vacuum

⊕L2
z1,symL2

yG
.

with Z0 = Z′ , Z1 =R ⊗Z′ ,

where the subscript sym refers to the symmetry for the relative coordinate variable Y ′ ∈
R .

Using the center of mass variable (see Section 3) by setting t 7→ uh
G

(t) = U−1
G

f̂ h(t), (95)

becomes 





i∂tu
h
G
= (ξ−D yG

)2uh
G
+
p

h[a∗
G

(V )+aG(V )]uh
G

,

uh
G

(t =0)= uh
G,0 .

(96)

In this context, the free dynamics U(t) involved in (57) acts simply on L2
zL2

yG
and equals

U(t)= K0(t, z′)⊕U1(t,Y ′, z′)= (e−it|ξ|2×z′ )⊕ (e−it(ξ−D yG
)2
×(Y ′,z′))
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where we recall z0 = z′ ∈ Z′ and z1 = (Y ′, z′) ∈R ×Z′ . Because ‖e±iξ·yϕ‖L
p
y
= ‖ϕ‖L

p
y

for all

1≤ p ≤+∞ and e−itD2
y = eit∆y satisfies

‖eit∆y f ‖L2
y
≤ ‖ f ‖L2

y
,

‖eit∆y(eis∆y )∗g‖L∞
y
=‖ei(t−s)∆y g‖L∞

y
≤

‖g‖L1
y

(4π)d/2|t− s|d/2
t 6= s ,

the assumption (42)(43) are satisfied for U1(t, z1) , z1 = (Y ′, z′) , as soon as d ≥ 3 with

σ= d
2 > 1 , uniformly with respect to z1 ∈R ×Z′ .

The dense subset D in L2
z1

L2
yG

such that D ⊂ L2(Z1,dz1;Lrσ (Rd , d yG ;C)) , with rσ = 2d
d−2

and d ≥ 3 here, is simply D = L2(Z1, dz1; Hµ(Rd)) with µ> d/2 . Remember that the dense

subset D was introduced in Proposition 4.1 for the dense a priori definition of the operator

AT on L1([0,T];L2
z,x) (see Remark 4.2 and the proof of Proposition 4.1).

Below are reviewed assumptions on V :

1. If V ∈ L
2d

d+2 (Rd , d y;R) , the assumptions of Proposition 4.5 are satisfied with CV =
1+‖V‖

L
2d

d+2
> 0 and r′σ = 2σ

σ+1 = 2d
d+2 .

2. If V ∈ H2(Rd ;R) then (95) (or (96)) defines a unitary dynamics with a rather well un-

derstood domain of its generator in L2(Rd×Z′′, dξ

(2π)d ⊗dz′′;Γ(L2(Rd, d y;C)))≃ L2
zL2

yG
.

We will always assume V ∈ Lr′σ in the sequel, and depending on the statement we might

assume that V ∈ H2 or not.

If V ∈ H2(Rd;R), the unique solution t 7→ uh
G

(t)=U−1
G

f̂ h(t)∈C 0(R;L2
zL2

yG
) to (96) satis-

fies

uh
G(t)=U(t)uh

G,0− i

∫t

0
U(t)U(s)∗

p
h[a∗

G(V )+aG(V )]uh
G(s) ds , (97)

and we will now seek for a solution of this equation using the fixed point method developed

in Section 4.2, for V ∈ Lr′σ but not necessarily V ∈ H2(Rd;R).

If (uh
∞, uh

2 , uh
1) solves

uh
∞(t)=−i

∫t

0
U(t)U∗(s)

(p
ha∗

G(V )uh
∞(s)+

p
huh

2 (s)+uh
1(s)

)

ds+ f h
∞(t) , (98)

uh
2(t)=−i

∫t

0
aG(V )U(t)U(s)∗

p
huh

2(s) ds + f h
2 (t) , (99)

uh
1(t)=−i

∫t

0
aG(V )U(t)U(s)∗

(

ha∗
G(V )uh

∞(s)+
p

huh
1 (s)

)

ds , (100)

with

f h
∞(t)=−i

∫t

0
U(t)U(s)∗a∗

G(V )
p

hU(s)uh
G,0 ds , (101)

f h
2 (t)=−i aG(V )

∫t

0
U(t)U(s)∗a∗

G(V )
p

hU(s)uh
G,0 ds+aG(V )U(t)uh

G,0 , (102)

written shortly as





uh
∞

uh
2

uh
1




= L






uh
∞

uh
2

uh
1




+






f h
∞

f h
2
0




 , L =






L∞∞ L∞2 L∞1

0 L22 0

L1∞ 0 L11




 , (103)

then uh
G

(t)= u∞(t)+U(t)uh
G,0 will yield a solution to (97).

Actually, with uh
G

(t) = uh
∞(t)+U(t)uh

G,0, applying aG(V ) to (98) on the one hand, and

summing
p

h×(99) and (100) on the other hand yields
p

haG(V )uh
G
= uh

1 +
p

huh
2 , which

inserted in (98) provides (97).
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Theorem 5.1. Assume d ≥ 3 and V ∈ L
2d

d+2 (Rd , d y;R) with

‖V‖
L

2d
d+2

< CV .

Assume that there exists α1 > 0 and Cα1 > 0 such that

∀h ∈]0, h0[ , ‖eα1N uh
G,0‖L2

zL2
yG

≤ Cα1 .

There exists a constant Cd > 0 depending on the dimension d ≥ 3 , such that when γ> 0 is

chosen such that

2‖L‖L (E h
−α1 ,α1 ,γ) ≤ Cd eα1CVγ1/2 ≤ 1,

the function uh
G

(t) = uh
∞(t)+U(t)uh

G,0 with (uh
∞, uh

2 , uh
1) the unique solution to (103) in

(E h
−α1,α1,γ, M) satisfies

∀t ∈ Ih
Tα

,
∥
∥
∥eαN[uh

G(t)−U(t)uh
G,0]

∥
∥
∥

L2
zL2

yG

≤CdCV eα1 Cα1γ
1/2

√

|ht|
√

Tα−|ht|
, (104)

with

Tα = γ(α1 −α) (105)

for all α ∈ [0,α1[ and all h ∈]0, h0[ .

If, moreover, V ∈ H2(Rd ;R), then uh
G

is the only solution to (96) in C 0(Ih
T0

;L2
zL2

yG
) .

Proof. We take α0 = −α1 where α1 > 0 is fixed. The constant Mα01 of Definition 4.4 is

nothing but

Mα01 =
eα1

2
.

Accordingly to Definition 4.4, for a fixed γ> 0 the time scale Tα is given by Tα = γ(α1 −α)

for all α ∈ [−α1,α1[ . Proposition 4.5 tells us that the condition

Cd,U
eα1

2
CVγ1/2 ≤

1

2

where Cd,U = Cd is determined by the dimension d ≥ 3 here, ensures that the operator L

is a contraction in E h
−α1,α1,γ for all h ∈]0, h0[:

‖L‖L (E h
−α1 ,α1 ,γ) ≤

1

2
.

If M( f h
∞, f h

2 ,0) < ∞, then the system (103) admits a unique solution in E h
−α1,α1,γ for all

h ∈]0, h0[ with

M(uh
∞, uh

2 , uh
1)≤ 2M( f h

∞, f h
2 ,0) .

It remains to check two things:

• the right-hand side ( f h
∞, f h

2 ,0) given by (101)(102) belongs to E h
−α1,α1,γ and to esti-

mate M( f h
∞, f h

2 ,0) ;

• the unique solution (uh
∞, uh

2 , uh
1) to (103) yields after setting uh

G
(t)= uh

∞(t)+U(t)uh
G,0

the unique solution to (18) in C 0(]− T0
h

, T0
h

[;L2
z,yG

) .
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The first step is simpler than what we did for Proposition 4.5. Let us start with

eαN f h
∞(t)=− i

∫t

0
U(t)U(s)∗eαN

p
ha∗

G(V )e−α1NU(s)eα1N uh
G,0 ds

=
∫t

0
U(t)U(s)∗F(s) ds

with F(s)=−i1[0,t](s)eαN
p

ha∗
G

(V )e−α1NU(s)eα1N uh
G,0 . By Proposition 3.8 we know that

‖F‖
L2

sL2
z1

L
r′σ
yG

≤
CV eα1

2
p
α1 −α

|ht|1/2‖eα1N uh
G,0‖L2

zL2
yG

≤
CV eα1γ1/2

√

Tα

Cα1 |ht|1/2 .

A direct application of the retarded endpoint Strichartz estimate (46) yields
(

Tα−|ht|
|ht|

)1/2

‖eαN f h
∞(t)‖L2

zL2
yG
. CV eα1Cα1γ

1/2 .

and by taking the supremum over |ht| < Tα ,

M( f h
∞,0). CV eα1Cα1γ

1/2 . (106)

For

f h
2,1(t)=−i aG(V )

∫t

0
U(t)U(s)∗a∗

G(V )
p

hU(s)uh
G,0 ds ,

the Proposition 3.8 and the retarded Strichartz estimate (44) give
√

Tα−τ‖eαN f h
2,1‖L2

t (Ih
τ ;L2

zL2
yG

)

.
√

Tα−τ
CV eα1

p
α1 −α

∥
∥
∥
∥

∫t

0
U(t)U(s)∗e

α+α1
2 N a∗

G(V )
p

hU(s)uh
G,0 ds

∥
∥
∥
∥

L2
z1

L2
t (Ih

τ ;Lrσ
yG

)

.
√

Tα−τ
CV eα1

p
α1 −α

∥
∥
∥e

α+α1
2 N a∗

G(V )
p

hU(s)uh
G,0

∥
∥
∥

L2
z1

L2
s (Ih

τ ;L
r′σ
yG

)
,

where here r′σ = 2d
d+2 and rσ= 2d

d−2 .

Then using Proposition 3.8 again, the square integrability of 1 on Ih
τ and the boundedness

of U(s) in the L2 norm,

√

Tα−τ‖eαN f h
2,1‖L2

t (Ih
τ ;L2

zL2
yG

) .
√

Tα−τ
C2

V
e2α1

α1 −α

∥
∥
∥eα1N

p
hU(s)uh

G,0

∥
∥
∥

L2
zL2

s (Ih
τ ;L2

yG
)

.C2
V e2α1γ

√

Tα−τ
p
τ

Tα

∥
∥
∥eα1NU(s)uh

G,0

∥
∥
∥

L∞
s (Ih

τ ;L2
zL2

yG
)

.C2
V e2α1γ

∥
∥
∥eα1N uh

G,0

∥
∥
∥

L2
zL2

yG

By taking the supremum w.r.t. α ∈ [−α1,α1[ and dividing by CV eα1γ1/2/2 we obtain

M2( f h
2,1).CV eα1 Cα1γ

1/2 . (107)

It remains to control

f h
2,2(t)= aG(V )U(t)uh

G,0.

For −α1 ≤ α < α1 and 0 ≤ τ < Tα, Proposition 3.8 and the homogeneous Strichartz esti-

mate (44) yield
√

Tα−τ‖eαNaG(V )U(t)uh
G,0‖L2(Ih

τ ;L2
zL2

yG
)

.
√

Tα−τ
CV eα1

p
α1 −α

‖U(t)eα1N uh
G,0‖L2

z1
L2(Ih

τ ;Lrσ
yG

)

.CV eα1
p
γ‖eα1N uh

G,0‖L2
zL2

yG
. (108)
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Taking the supremum over τ ∈ [0,Tα[ , α∈ [−α,α1[ and dividing by CV eα1γ1/2/2 gives

M(0, f h
2,2,0).Cα1

It can be improved by rewriting the system





uh
∞

uh
2

uh
1




= (Id−L)−1






f h
∞

f h
2,1 + f h

2,2

0




=






0

f h
2,2

0




+ (Id−L)−1






f h
∞

f h
2,1

0




+ (Id−L)−1L






0

f h
2,2

0






from which we deduce

M(uh
∞, uh

2 − f h
2,2, uh

1).CV eα1
p
γ

[

M( f h
∞, f h

2,1,0)+M(0, f h
2,2,0)

]

.

The inequalities (106), (107) and (108) prove that ( f h
∞, f h

2 ,0) ∈ E h
−α1,α1,γ and thus

M(uh
∞, uh

2 − f h
2,2, uh

1)≤ 2M( f h
∞, f h

2 ,0).CV eα1 Cα1γ
1/2 .

By possibly enlarging the constant Cd > 0 , the above inequality becomes

M(uh
∞, uh

2 − f h
2,2, uh

1)≤ CdCV Cα1 eα1γ1/2 .

We have finished the proof as soon as we can identify

uh
∞(t)= uh

G(t)−U(t)uh
G,0

for t ∈ Ih
Tα

and α ∈ [0,α1[ . For t ∈ Ih
T0

, the function uh
G

(t) = uh
∞(t)+U(t)uh

G,0 belongs to

C 0(Ih
T0

;L2
zL2

yG
) and satisfies (97) which is equivalent to (96). By the existence and unique-

ness for (97) or (96) in C 0(Ih
T0

;L2
zL2

yG
) when V ∈ H2(Rd;R) , uh

G
is the unique solution to

(97) or (96) in C 0(Ih
T0

;L2
zL2

yG
) .

5.2 Consequences of Theorem 5.1

Let us work now with a general initial time t0 , specified later, and consider (96)






i∂tu
h
G
= (ξ−D yG

)2uh
G
+
p

h[a∗
G

(V )+aG(V )]uh
G

,

uh
G

(t = t0)= uh
G,t0

,
(109)

with the solution uh
G

(t) = uh
G

(t′+ t0) = U(t′)uh
G,t0

+ uh
∞ in the framework of Theorem 5.1.

For simplicity and because we work definitely in the framework of (109) we use here

U(t)U(s)∗ =U(t− s) . Remember that (uh
∞, uh

2 , uh
1) solves






uh
∞

uh
2

uh
1




=






L∞∞ L∞2 L∞1

0 L22 0

L1∞ 0 L11






︸ ︷︷ ︸

=L






uh
∞

uh
2

uh
1




+






f h
∞

f h
2
0




 (110)

with

L∞∞(ϕ)(t′)=−i

∫t′

0
U(t′− s)

p
ha∗

G(V )ϕ(s) ds ,

L∞1(ϕ)(t′)=−i

∫t′

0
U(t′− s)ϕ(s) ds , L∞2(ϕ)(t′)=

p
hL∞1(ϕ)(t′) ,

Lqq(ϕ)(t′)=−i

∫t′

0
aG(V )U(t′− s)

p
hϕ(s) ds , q ∈ {2,1} ,

L1∞(ϕ)(t′)=−ih

∫t′

0
aG(V )U(t′− s)a∗

G(V )ϕ(s) ds ,
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and

f h
∞(t′)=−i

∫t′

0
U(t′− s)a∗

G(V )
p

hU(s)uh
G,t0

ds ,

f h
2 (t′)=−iaG(V )

∫t′

0
U(t′− s)a∗

G(V )
p

hU(s)uh
G,t0

ds

︸ ︷︷ ︸

f h
2,1(t′)

+aG(V )U(t′)uh
G,t0

︸ ︷︷ ︸

f h
2,2(t′)

.

Theorem 5.1 provides a framework in which L is a contraction and we will use it twice

while inverting






uh
∞

uh
2

uh
1




= (Id−L)−1






f h
∞

f h
2
0




=






0

f h
2,2

0




+ (Id−L)−1






f h
∞

f h
2,1

0




+ (Id−L)−1L






0

f h
2,2

0






and then using the Neumann expansion (Id− L)−1 =
∑∞

k=0 Lk for different values of t0

and of the parameter γ in Theorem 5.1. The following result is an easy consequence of

Theorem 5.1.

Proposition 5.2. Assume that the initial datum uh
G,0 for t0 = 0 in (109) satisfies the

uniform bound ‖e2α1N uh
G,0‖L2

zL2
yG

≤ Cα1 for all h ∈]0, h0[ . Then there exists T̂α1 > 0 and

C̃α1 > 0 , δα1 > 0 , such that

a) The following weighted estimate

‖eα1N uh
G(t)‖L2

zL2
yG

≤ C̃α1

holds true for all t ∈ Ih

T̂α1

=]− T̂α1
h

,
T̂α1

h
[ and all h ∈]0, h0[ .

b) For t0 ∈ Ih

T̂α1

, uh
G

(t0 +δ/h) admits in e−
α1
2 N L2

zL2
yG

the following asymptotic expansion

in terms of δ ∈ [−δ1,δ1] ,

uh
G(t0+δ/h)=U(δ/h)uh

G(t0)
︸ ︷︷ ︸

O (1)

−i
p

h

∫δ/h

0
U(δ/h− s)[a∗

G(V )+aG(V )]U(s)uh
G(t0) ds

︸ ︷︷ ︸

O (|δ|1/2)

−h

∫δ/h

0

∫s

0
U(δ/h− s)[a∗

G(V )+aG(V )]U(s− s′)[a∗
G(V )+aG(V )]U(s′)uh

G(t0) ds′ ds

︸ ︷︷ ︸

O (|δ|)

+O (|δ|3/2)

where v(h,δ)=O (|δ|k/2) , k = 0,1,2,3 , means ‖e
α1
2 Nv(h,δ)‖L2

zL2
yG

≤ C̃α1 |δ|k/2 uniformly

with respect to h ∈]0, h0[ and t0 ∈ Ih

T̂α1

.

Proof. a) Fix α1 > 0 and apply Theorem 5.1 with α1 replaced by 2α1 . There exists γ =
γ1 > 0 , determined by α1 , C12(V ) and the dimension d ≥ 3 , such that the operator L is a

contraction in E h
−2α1,2α1,γ1

. The system (110) for t0 = 0 admits a unique solution with the

norm M in E h
−2α1,2α1,γ1

estimated by

M(uh
∞, uh

2 , uh
1).Cα1 (111)
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and the solution uh
G

to (18) equals

uh
G(t)=U(t)uh

G,0+uh
∞(t) .

With Tα1 = γ1(2α1 −α1)= γ1α1 , the estimate (111) says in particular

∀t ∈ Ih
Tα1

, ‖eα1N uh
∞(t)‖L2

zL2
yG
. Cα1

√

|ht|
√

Tα1 −|ht|
.

By taking T̂α1 =
Tα1

2 with |ht| ≤ Tα1
2 when t ∈ IT̂h

α1
and with

‖eα1NU(t)uh
G,0‖L2

zL2
yG

≤ ‖eα1 uh
G,0‖L2

zL2
yG

≤ Cα1 ,

we finally obtain

∀t ∈ Ih

T̂α1
, ‖eα1N uh

G(t)‖L2
zL2

yG
. C̃α1 ,

for C̃α1 large enough.

b) With a) the initial datum uh
G,t0

= uh
G

(t0) of (109) fulfils the assumptions of Theorem 4.1

after time translation t′ = t− t0 and where t′ ∈ Ih
T

means t ∈ t0+ Ih
T

. For any γ> 0 small

enough and by setting Tα = γ(α1−α) for α∈ [0,α1] we know that the system (110) satisfies

‖L‖L (E h
−α1 ,α1 ,γ) . γ1/2 , M( f h

∞, f h
2,1,0).Cα1γ

1/2 , M(0, f h
2,2,0).Cα1 ,

while uh
G

(t′+ t0)=U(t′)uh
G

(t0)+uh
∞(t′) for t′ ∈ Ih

Tα
.

In particular





uh
∞

uh
2

uh
1




=






0

f h
2,2

0




+ (Id−L)−1






f h
∞

f h
2,1

0




+ (Id−L)−1L






0

f h
2,2

0






leads to





uh
∞

uh
2

uh
1




=






f h
∞+L∞2( f h

2,2)+L∞∞( f h
∞+L∞2( f h

2,2))+L∞2( f h
2,1+L22( f h

2,2))

f h
2,2+ f h

2,1 +L22( f h
2,2)+L22( f h

2,1 +L22( f h
2,2))

L1∞( f h
∞+L∞2( f h

2,2))




+O (γ3/2)

in E h
−α1,α1,γ . By using the first line with α= α1

2 , and by setting

vh(t′)=U(t′)uh
G(t0)+ [ f h

∞(t′)+L∞2( f h
2,2)](t′)

+L∞∞[ f h
∞+L∞2( f h

2,2)](t′)+L∞2[ f h
2,1+L22( f h

2,2)](t′)

the difference uh
G

(t0+ t′)−vh(t′) satisfies satisfies

∀t′ ∈ Ih
T α1

2

, ‖e
α1
2 N [uh

G(t0+ t′)−vh(t′)]‖L2
zL2

yG
. γ3/2

√

|ht′|
√

T0−|ht′|
,

where T α1
2
= γα1

2 . For δ=±
T α1

2
2 =±γα1

4 we obtain

‖e
α1
2 N[uh

G(t0 +δ/h)−vh(δ/h)]‖L2
zL2

yG
=O (|δ|3/2) .

It now suffices to specify all the terms of vh(δ/h):

• The first one is nothing but U(δ/h)uh
G

(t0) with an O (1)-norm.
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• The second term

f h
∞(δ/h)+L∞2( f h

2,2)(δ/h)=−i

∫δ/h

0
U(δ/h− s)

p
h[a∗

G(V )+aG(V )]U(s)uh
G(t0) ds

has an O (δ1/2)-norm.

• All the other terms have an O (δ)-norm and equal

L∞∞( f h
∞)(δ/h)=−h

∫δ/h

0

∫s

0
U(δ/h− s)a∗

G(V )U(s− s′)a∗
G(V )U(s′)uh

G(t0) ds′ds ,

L∞∞(L∞2( f h
2,2))(δ/h)=−h

∫δ/h

0

∫s

0
U(δ/h− s)a∗

G(V )U(s− s′)aG(V )U(s′)uh
G(t0) ds′ds ,

L∞2( f h
2,1)(δ/h)=−h

∫δ/h

0

∫s

0
U(δ/h− s)aG(V )U(s− s′)a∗

G(V )U(s′)uh
G(t0) ds′ds ,

L∞2(L22( f h
2,2))(δ/h)=−h

∫δ/h

0

∫s

0
U(δ/h− s)aG(V )U(s− s′)aG(V )U(s′)uh

G(t0) ds′ds .

This ends the proof.

6 Semiclassical measures

We will check here that semiclassical (or Wigner) measures for our model problem pre-

sented in Section 2.3 can be defined simultaneously for all macroscopic times t ∈]−T̂α1 , T̂α1[ .

6.1 Framework

Below are reviewed a few properties of semiclassical measures or Wigner measures. We

refer the reader e.g. to [CdV][Ger][GMMP][HMR][LiPa][Sch] for various presentations of

those now well known objects.

a) The Anti-Wick quantization on R
d is defined by

aA−Wick(hx,Dx)=
∫

T∗Rd
a(X ) |ϕh

X 〉〈ϕh
X |

dX

(2πh)d

is defined for any a ∈L∞(T∗
R

d , dx;C) with

ϕh
X0

(x)=
hd/4

πd/4
eiξ0·(x−

x0
2h

)e−
h(x− x0

h
)2

2 , X0 = (x0,ξ0) ∈ T∗
R

d .

It is a non negative quantization for which

(a ≥0)⇒ (aA−Wick(hx,Dx)≥ 0) and ‖aA−Wick(hx,Dx)‖L (L2(Rd ,dx;C)) ≤‖a‖L∞ .

A natural separable subspace of L∞(T∗
R

d ;C) is

C 0
0 (T∗

R
d;C)=

{

a ∈C 0(T∗
R

d ;C) , lim
X→∞

a(X )= 0
}

resp. C 0(T∗
R

d ⊔ {∞} ;C)=C 0
0 (T∗

R
d ;C)⊕C 1=

{

a ∈C 0(T∗
R

d;C) , lim
X→∞

a(X )∈C

}

,

endowed with the C 0 norm, of which the dual is the space Mb(T∗
R

d;C) (resp.

Mb(T∗
R

d ⊔ {∞} ;C)) of bounded Radon measures on T∗
R

d (resp. T∗
R

d ⊔ {∞}) .

45



b) For a bounded family (̺h)h∈]0,h0[ of normal states ̺h ∈ L 1(L2(Rd , dx;C)) , ̺h ≥ 0 ,

Tr[̺h] = 1 , the set of semiclassical measures on T∗
R

d (resp. T∗
R

d ⊔ {∞}) is defined

as the weak∗ limit point in Mb(T∗
R

d ;R+) (resp. Mb(T∗
R

d⊔{∞} ;R+)) of σWick(̺h)
(2πh)d with

σWick(̺h)(X )= 〈ϕh
X , ̺hϕ

h
X 〉L2(Rd ) =Tr

[

̺h|ϕh
X 〉〈ϕh

X |
]

.

This is extended by linearity for any bounded family (̺h)h∈]0,h0[ in L 1(L2(Rd, dx;C)) .

The set of semiclassical measures is denoted by

M (̺h, h ∈]0, h0[) ,

and when h is restricted to a set E ⊂]0, h0[ , 0 ∈ E , we use

M (̺h, h ∈E ) .

After recalling
∫

T∗Rd
a(X )σWick(̺h)(X )

dX

(2πh)d
=Tr

[

aA−Wick(hx,Dx)̺h

]

,

semiclassical measures µ ∈M (̺h, h ∈]0, h0[) are characterized by the existence of a

sequence (hk)k∈N∗ , hk ∈ E such that

lim
k→∞

hk = 0,

lim
k→∞

Tr
[

aA−Wick(hkx,Dx)̺hk

]

=
∫

T∗Rd
a(X ) dµ(X ) , ∀a ∈D ,

lim
k→∞

Tr
[

̺hk

]

=µ(T∗
R

d ⊔ {∞})=µ(T∗
R

d)+µ(∞) ,

where D is any dense set of C 0
0 (T∗

R
d ;C) .

d) After choosing D = C ∞
0 (T∗

R
d ;C) and by recalling ‖aA−Wick(hx,Dx)− aWeyl(hx,Dx)‖ =

O (h) , for any a ∈ S(1, dx2 + dξ2) ⊃ C ∞
0 (T∗

R
d ;C) , semiclassical measures are char-

acterized by

∀a ∈C ∞
0 (T∗

R
d ;C) , lim

k→∞
Tr

[

aWeyl(hkx,Dx)̺hk

]

=
∫

T∗Rd
a(X ) dµ(X ) ,

or

∀P ∈ T∗
R

d , lim
k→∞

Tr
[

τ
hk

P
̺hk

]

=
∫

T∗Rd
ei(pξ·x−px·ξ) dµ(x,ξ) ,

with

τh
P = (ei(pξ·x−px·ξ))Weyl(hx,Dx)= ei(pξ·(hx)−px·Dx) , P = (px, pξ) .

The compactification T∗
R

d ⊔ {∞} is just a way to count the mass of (̺hk
)k∈N∗ which

is not caught by the compactly supported obervables a ∈C ∞
0 (T∗

R
d ;C) .

e) Semiclassical measures are transformed by the dual action of semiclassical Fourier

integral operator on aWeyl(hx,Dx) , a ∈C ∞
0 (T∗

R
d ;C) .

f) When M (̺h,1, h ∈ E ) =
{

µ1
}

and M (̺h,2, h ∈ E ) =
{

µ2
}

the total variation between µ1

and µ2 is estimated by

|µ2 −µ1|( T∗
R

d
︸ ︷︷ ︸

or T∗Rd⊔{∞}

)≤ 4liminf
h→0

‖̺h,1 −̺h,2‖L 1 .
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g) When (Λ, dΛ) is a metric space and (̺h(λ))h∈]0,h0[,λ∈Λ is a bounded family in L 1(L2(Rd , dx;C)) ,

semiclassical measures can be defined simultaneously for all λ ∈ Λ , if for any se-

quence (hn)n∈N , limn→∞ hn = 0+ , there exists a subsequence (hnk
)k∈N such that

∀λ ∈Λ ,∃µλ ∈Mb(T∗
R

d ⊔ {∞}) ,

lim
k→∞

Tr
[

aA−Wick(hnk
x,Dx)̺hnk

(λ)
]

=
∫

T∗Rd⊔{∞}
a(X ) dµλ(X ) .

By assuming (Λ, dΛ) separable, sufficient conditions for this property are either

• For all given a ∈ C ∞
0 (T∗

R
d ;C) , Tr

[

aWeyl(hx,Dx)̺h(λ)
]

is an equicontinuous

family of continuous functions from Λ to C , or

• The map (P,λ) 7→Tr
[

τh
P
̺h(λ)

]

is an equicontinuous family of continuous func-

tions from T∗
R

d ×Λ to C .

For the first characterization, apply a diagonal extraction process for a dense count-

able subset of (Λ, dΛ) (and a dense countable subset of C 0
0 (T∗

R
d) lying in C ∞

0 (T∗
R

d;C))

and then apply the various characterisations of elements of M (̺h(λ) , h ∈E ) .

Like in our problem, semiclassical measures can be defined for bounded families ̺h ∈
L 1(L2(Rd ×Z′, dx⊗dz′;C)) after using observables aWeyl(hx,Dx)⊗ IdL2

z
.

When (̺h)h∈]0,h0[ is a family of states, ̺h ≥ 0 and Tr[̺h] = 1 , the relationship with the

study of pure states can be done in two ways:

• Firstly by writing a general state as a convex combination of pure states, provided

that this convex decomposition is explicit enough to follow the behaviour as h → 0+ .

• Secondly by writing ̺h = ̺1/2
h

̺1/2
h

and taking Ψh = ̺1/2
h

∈L 2(L2(Rd×Z′, dx⊗dz′;C))∼
L2(Rd×Z′× Ẑ, dx⊗dz′⊗dẑ;C) where Ẑ is another copy of Rd×Z′ with dẑ = dx⊗dz′ .

Then

Tr
[

(aWeyl(hx,Dx)⊗ IdL2
z′

)̺h

]

= 〈Ψh , (aWeyl(hx,Dx)⊗ IdL2
z′ ,ẑ

)Ψh〉 .

6.2 Equicontinuity

The following result, which is the first useful information about semiclassical measures,

before computing them, comes from the equicontinuity directly deduced from Proposi-

tion 5.2. The unitary transforms introduced in Section 2.3 and Section 3 in order to

transform (18) into (96) and aWeyl(hx,Dx)⊗ Id into aWeyl(−hDξ,ξ−D yG
) are not recalled

here and the results are directly formulated for the initial problem (18) and the semiclas-

sical observables aWeyl(hx,Dx)⊗ Id .

Proposition 6.1. Assume

V ∈ Lr′σ (Rd , dx;R)∩H2(Rd;R) , r′σ =
2d

d+2
, d ≥ 3,

and let UV (t)= e−it(−∆x+
p

hV ) like in Subsection 2.3.

Assume that there exists α1 > 0 such that ̺h(0) ∈ L 1(L2(Rd ×Ω, dx⊗G ;C)) , ̺h(0) ≥ 0 ,

Tr[̺h(0)]= 1 satisfies

∃Cα1 > 0, ∀h ∈]0, h0[ , Tr
[

eα1N̺h(0)eα1N
]

≤ Cα1 .

Then there exists T̂α1 > 0 such that elements of M (̺h(t), h ∈]0, h0[) can be defined simulta-

neously for all macroscopic times t ∈]− T̂α1 , T̂α1[ when ̺h(t)=UV ( t
h

)̺h(0)U∗
V

( t
h

) .
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Proof. When U(s)= e−is(−∆x) denotes the free unitary transform , the time evolved observ-

able U∗( s
h

)[aWeyl(hx,Dx)⊗ IdL2
ω
]U( s

h
) equals exactly aWeyl(hx,Dx, s)⊗ IdL2

ω
with

a(x,ξ, s)= a(x+2ξs,ξ) .

It is clearly equicontinuous in h ∈]0, h0[ with respect to s ∈ [−T̂α1 , T̂α1] in L (L2
x,ω) for any

given a ∈C ∞
0 (T∗

R
d;C) :

‖aWeyl(hx,Dx, s)−aWeyl(hx,Dx,0)‖L (L2
x,ω) ≤ Ca|s| .

We drop the tensorization with IdL2 . With

Tr
[

aWeyl(hx,Dx)̺h(t+δ)
]

−Tr
[

aWeyl(hx,Dx)̺h(t)
]

=Tr
[

aWeyl(hx,Dx,δ)U∗(
δ

h
)UV (

δ

h
)̺h(t)U∗

V (
δ

h
)U(

δ

h
)
]

−Tr
[

aWeyl(hx,Dx,0)̺h(t)
]

it thus suffices to check, uniformly with respect to (h, t)∈]0, h0[×]−T̂α1 , T̂α1[ , the estimate

‖U∗(
δ

h
)UV (

δ

h
)̺h(t)U∗

V (
δ

h
)U(

δ

h
)−̺h(t)‖L 1 = oδ→0(1) . (112)

We now use the decomposition ̺h(0)= ̺h(0)1/2̺h(0)1/2 and consider the evolution

UV (
t

h
)̺h(0)1/2 ∈L 2(L2(Rd ×Ω, dx⊗G ;C))∼ L2(Rd ×Ω× Ẑ, dx⊗G ⊗dẑ;C)

with Ẑ =R
d ×Ω , dẑ= dx⊗G .

The estimate (112) is done as soon as

‖U∗(
δ

h
)UV (

δ

h
)[UV (

t

h
)̺h(0)1/2]− [UV (

t

h
)̺h(0)1/2]‖L2

x,ω,ẑ
= oδ→0(1)

uniformly with respect to (h, t)∈]0, h0[×]− T̂α1 , T̂α1[ .

This problem is now translated in a problem in

L2(Rd × Ẑ,
dξ

(2π)d
⊗dẑ;C)

︸ ︷︷ ︸

vacuum

⊕L2
sym(Rd

yG
×Z1; d yG ⊗dz1;C)

by the unitary transform UG associated with the center of mass yG of Section 3 , the

translation invariance and its Fourier variable ξ ∈R
d and the relative coordinates Y ′ ∈R .

The variable z1 ∈ Z1 is nothing but z1 = (ξ,Y ′, ẑ)∈R
d×R× Ẑ with dz1 = dξ

(2π)d ⊗µ⊗dẑ . The

subscript sym refers to the symmetry in the variable Y ′ ∈ R . All the assumptions of

Theorem 5.1 have been checked in Section 5. In particular we can use Proposition 5.2-b)

with

uh
G(

t

h
)=UV (

t

h
)̺h(0)1/2 and

t

h
∈ Ih

T̂α1
.

It says in particular

uh
G(

t

h
+

δ

h
)=U(

δ

h
)uh

G(
t

h
)+O (|δ|1/2) ,

uniformly with respect to (h, t
h

) ∈]0, h0[×Ih

T̂α1

, and therefore

‖U∗(
δ

h
)UV (

δ

h
)[UV (

t

h
)̺h(0)1/2]− [UV (

t

h
)̺h(0)1/2]‖L2

x,ω,ẑ
=Oδ→0(|δ|1/2)

uniformly with respect to (h, t)∈]0, h0[×]− T̂α1 , T̂α1[ .

This ends the proof.
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7 Approximations

With our number estimates stated in Section 5, various approximations can be consid-

ered for the general class of initial data (̺h(0))h∈]0,h0[ , ̺h(0) ∈ L 1(L2(Rd ×Ω, dx⊗G ;C)) ,

̺h(0) ≥ 0 , Tr[̺h(0)] = 1 under the sole additional assumption Tr[eα1N̺h(0)eα1N ] ≤ Cα1 .

Before computing the evolution of the semiclassical measures (µt)t∈]−T̂α1 ,T̂α1 [ given by

Proposition 6.1 (this will be done in a subsequent article), it provides useful a priori in-

formation for them.

7.1 Truncation with respect to the number operator N

For ε> 0 , let χε : [0,+∞)→ [0,1] be a decaying function such that

∀k ∈N ,∀ε∈]0,1[ ,∃Ck,ε> 0, sup
s∈[0,+∞)

skχε(s)≤ Ck,ε , (113)

∀α1 > 0,∃Cα1 > 0,∀ε∈]0,1[ , sup
s∈[0,+∞)

e−α1s(1−χε(s))≤ Cα1 ×ε . (114)

Examples are

χε(s)= 1[0,ε−1](s) and χε(s)= e−εs .

Then the operators

aG,ε(V )= χε(N)aG(V )χε(N) , a∗
G,ε(V )= χε(N)a∗

G(V )χε(N)

are bounded operators on

F2 = L2(Z′,dz′;Γ(L2(Rd, d y;C)))= L2
z,sym = L2

z0
⊕L2

z1,symL2
yG

according to (56) and
p

h(aG,ε(V )+a∗
G,ε(V )) is an Oε(

p
h) bounded self-adjoint perturbation

of (ξ−D yG
)2 . Additionally for ε> 0 the estimates of Proposition 3.6 hold true when aG(V )

and a∗
G

(V ) are replaced by aG,ε(V ) and a∗
G,ε(V ) . Actually, (39) with n > 1 and (37) with

n >0 become

‖aG,ε(V ) fG,n‖L2
z′ ,Y ′

n−1
L

p
yG

≤ ‖V‖Lr′χε(n−1)2
p

n‖ fG,n‖L2
z′ ,Y ′

n
L

q
yG

≤Cε‖V‖Lr′ ‖ fG,n‖L2
z′ ,Y ′

n
L

q
yG

(115)

‖a∗
G,ε(V ) fG,n‖L2

z′ ,Y ′
n+1

L
q′
yG

≤ ‖V‖Lr′χε(n)2
p

n+1‖ fG,n‖L2
z′ ,Y ′

n
L

p′
yG

≤Cε‖V‖Lr′ ‖ fG,n‖L2
z′ ,Y ′

n
L

p′
yG

(116)

when V ∈ Lq′
(Rd ;C)∩Lr′(Rd;C) , 1

r′ =
1
2 +

1
q′ − 1

p′ , p′, q′ ∈ [1,2] . All the analysis can thus be

carried out with aG(V ) and a∗
G

(V ) replaced by aG,ε(V ) and a∗
G,ε(V ) , either with estimates

which are uniform in ε ∈]0,1[ , or by replacing the N-dependent estimates by constants

Cε depending on ε ∈]0,1[ .

In particular the solution vh
G,ε to







i∂tv
h
G,ε = (ξ−D yG

)2vh
G,ε+

p
h[a∗

G,ε(V )+aG,ε(V )]vh
G,ε ,

vh
G,ε(t =0)= vh

G,ε,0 = uh
G,0 ,

(117)

satisfies the same properties as the solution uh
G

to (96) stated in Theorem 5.1 and Propo-

sition 5.2, uniformly with respect to ε ∈]0,1[ .
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Proposition 7.1. Assume ‖e2α1N uh
G,0‖L2

zL2
yG

≤Cα1 for all h ∈]0, h0[ like in Proposition 5.2.

There exists Ĉα1 > 0 and T̂α1 > 0 such that the solutions uh
G

to (96) and vh
G,ε to (117) for

ε ∈]0,1[ , satisfy

‖uh
G(t)−vh

G,ε(t)‖L2
zL2

yG
≤ Ĉα1ε

for all t ∈ Ih

T̂α

=]− T̂α1
h

,
T̂α1

h
[ .

Additionally the statement b) of Proposition 5.2 holds true when uh
G

, aG(V ) , a∗
G

(V ) are

replaced by vh
G,ε , aG,ε(V ) , a∗

G,ε(V ) .

Proof. The statements a) and b) of Proposition 5.2 hold true uniformly with respect to

ε ∈]0,1[ for vh
G,ε as a consequence of the previous arguments.

In particular vh
G,ε(t)=U( t

h
)uh

G,0 +vh
∞,ε where (vh

∞,ε,v
h
2,ε,v

h
1,ε) solves the system






vh
∞,ε

vh
2,ε

vh
1,ε




= Lε






vh
∞,ε

vh
2,ε

vh
1,ε




+






f h
∞,ε

f h
2,ε

0




 , Lε =






L∞∞ ,ε L∞2,ε L∞1,ε

0 L22,ε 0

L1∞,ε 0 L11,ε




 , (118)

with

f h
ε (t)=−i

∫t

0
U(t)U(s)∗a∗

G,ε(V )
p

hU(s)uh
G,0 ds , (119)

f h
2,ε(t)=−i aG,ε(V )

∫t

0
U(t)U(s)∗a∗

G,ε(V )
p

hU(s)uh
G,0 ds+aG,ε(V )U(t)uh

G,0 , (120)

and where the entries Lε are the same as the ones of L with aG(V ) and a∗
G

(V ) replaced by

aG,ε(V ) and a∗
G,ε(V ) . When χε(s)= e−εs , one recovers the system for uh

G
by taking ε= 0 .

We start now with the equation for uh
G

uh
G(t)=U(

t

h
)uh

G,0− i
p

h

∫ t
h

0
U(t− s)[aG(V )+a∗

G(V )]uh
G(s) ds ,

which implies

χε(N)uh
G(t)=U(

t

h
)χε(N)uh

G,0 − i
p

h

∫ t
h

0
U(

t

h
− s)χε(N)[aG(V )+a∗

G(V )]χε(N)2uh
G(s) ds

− i
p

hχε(N)
∫ t

h

0
U(

t

h
− s)[aG(V )+a∗

G(V )](1−χ2
ε (N))uh

G(s) ds .

The function wh
G,ε(t)= χε(N)uh

G
(t) solves

wh
G,ε(t)=U(

t

h
)χε(N)uh

G,0− i
p

h

∫ t
h

0
U(t− s)[aG,ε(V )+a∗

G,ε(V )]wh
G,ε(s) ds+ gh

∞,ε (121)

with gh
∞,ε =−i

p
hχε(N)

∫ t
h

0
U(t− s)[aG(V )+a∗

G(V )](1−χ2
ε(N))uh

G(s) ds . (122)

The system for (wh
∞,ε,w

h
2,ε,w

h
1,ε) after decomposing wh

G,ε(t)=U( t
h

)χε(N)uh
G,0 +wh

∞,ε(t) is






wh
∞,ε

wh
2,ε

wh
1,ε




= Lε






wh
∞,ε

wh
2,ε

wh
1,ε




+






f̃ h
∞,ε

f̃ h
2,ε

0




+






gh
∞,ε

0

0




 ,
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where f̃ h
∞,ε and f̃ h

2,ε have the same expressions as (119)(120) with uh
G,0 replaced by χε(N)uh

G,0 .

By taking the difference with (118), and because ‖Lε‖L (E0,α1 ,γ) ≤ 1/2 for γ> 0 small enough,

the proof is done as soon as the three norms

‖uh
G(t)−χε(N)uh

G(t)‖L2
zL2

yG
(123)

M( f̃ h
∞,ε− f h

∞,ε, f̃ h
2,ε− f h

2,ε,0) (124)

M(gh
∞,ε,0,0) , (125)

are bounded by Ĉα1ε .

Because the time interval is restricted to Ih

T̂α1

with T̂α1 < Tα1 , the weight
√

Tα1 −|ht| or
√

Tα1 −τ used in Definition 4.4 or in Proposition 4.5 can be forgotten now (simply multiply

f h
q,ε, f̃ h

q,ε, q ∈ {∞,2} and gh
∞,ε by 1I T̂α1

h

(t)).

The estimate of (123) is obvious since

‖(1−χε(N))uh
G(t)‖L2

zL2
yG

≤ sup
s≥0

|(1−χε(s))e−α1s|
︸ ︷︷ ︸

O (ε)

×‖eα1N uh
G(t)‖L2

zL2
yG

︸ ︷︷ ︸

≤C̃α1

.

The estimate of (124) is very similar. Actually in the proof of Theorem 5.1 we checked

M( f h
∞, f h

2 ,0). ‖eα1N uh
G,0‖L2

zL2
yG

. It gives now

M( f̃ h
∞,ε− f h

∞,ε, f̃ h
2,ε− f h

2,ε,0). ‖eα1N(χε(N)−1)uh
G,0‖L2

zL2
yG

≤ Ĉα1ε .

For (125) let us first decompose gh
∞,ε as

gh
∞,ε = gh

∞,1,ε+ gh
∞,2,ε

with gh
∞,1,ε =−i

p
hχε(N)

∫ t
h

0
U(t− s)a∗

G(V ) (1−χ2
ε (N)) uh

G(s) ds

and gh
∞,2,ε =−i

p
hχε(N)

∫ t
h

0
U(t− s)aG(V ) (1−χ2

ε (N)) uh
G(s) ds .

The estimate of gh
∞,1,ε follows the method for the bound of M( f h

∞,0,0) in the proof of

Theorem 5.1, where we simply used the uniform bound in time for ‖U(s)eα1N uh
G,0‖L2

zL2
yG

.

With

sup
t

‖(1−χ2
ε (N))uh

G(t)‖L2
zL2

yG
≤ sup

s≥0
|(1−χ2

ε (s))e−α1s|
︸ ︷︷ ︸

O (ε)

×‖eα1N uh
G(t)‖L2

zL2
yG

︸ ︷︷ ︸

≤C̃α1

,

this gives

M(gh
∞,1,ε,0,0)≤ Ĉα1ε .

For gh
∞,2,ε , remember firstly that the assumption is ‖e2α1N uh

G,0‖L2
zL2

yG
≤ Cα1 and by pos-

sibly reducing T̂α1 , we may assume ‖e
3α1

2 N uG,h(t)‖L2
zL2

yG
≤ C̃α1 . We now use the obvious

relation aG(V )φ(N)=φ(N +1)aG(V ) and write

gh
∞,2,ε =−iχε(N)e−

α1
2 (N+1)(1−χ2

ε (N +1))e
α1
2 (N+1)

∫ t
h

0
U(t− s)

p
haG(V )uh

G(s) ds .

Remember that the equivalent system (96) says
p

haG(V )uh
G

(t) = uh
1(t)+

p
huh

2(t) with

M(0, uh
2 , uh

1).Cα1 . The above equality becomes

gh
∞,2,ε(t)= χε(N)(1−χ2

ε(N +1))e−
α1
2 (N+1)e

α1
2 (N+1)[L∞1(uh

1)+L∞2(uh
2)] .
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The bounds for L∞1 and L∞2 in the Theorem 5.1, lead to

‖|ht|−1/2e
α1
2 (N+1)[L∞1,ε(u

h
1 )+L∞2,ε(u

h
2)](t)‖L∞(Ih

T̂α1
;L2

zL2
yG

) .Cα1 .

With

‖χε(N)(1−χ2
ε (N +1))e−

α1
2 (N+1)‖L (L2

zL2
yG

) ≤ sup
s≥0

|(1−χ2
ε (s))e−

α1
2 s| =O (ε) ,

this proves

M(gh
∞,2,ε,0,0)≤ Ĉα1ε .

Let us go back to our initial problem and let us compare the evolution of states for

the dynamics U( t
h

) = e−it(−∆x+
p

hV ) for ε = 0 and the case ε > 0 where χε(N)V χε(N) is a

bounded self-adjoint perturbation of −∆x . Set in particular

UV ,ε = e−it(−∆x+
p

hVε) with Vε = χε(N)V χε(N) . (126)

Proposition 7.2. Assume like in Proposition 6.1

V ∈ Lr′σ (Rd , dx;R)∩H2(Rd ;R) , r′σ =
2d

d+2
, d ≥ 3,

and assume that there exists α1 > 0 such that ̺h(0) ∈L 1(L2(Rd ×Ω, dx⊗G ;C)) , ̺h(0)≥ 0 ,

Tr[̺h(0)]= 1 satisfies

∃Cα1 > 0, ∀h ∈]0, h0[ , Tr
[

eα1N̺h(0)eα1N
]

≤ Cα1 .

Call ̺h(t) = UV ( t
h

)̺h(0)U∗
V

( t
h

) and ̺h,ε(t) = UV ,ε(
t
h

)̺h(0)U∗
V ,ε(

t
h

) . When the subset E ⊂
]0, h0[ , 0 ∈ E , is chosen such that

∀t ∈]− T̂α1 , T̂α1[ , M (̺h(t), h ∈E )=
{

µt

}

and M (̺h,ε(t), h ∈E )=
{

µt,ε
}

Then the total variation of µt −µt,ε is estimated by

∀t ∈]− T̂α1 , T̂α1[ , |µt −µt,ε|( T∗
R

d
︸ ︷︷ ︸

or T∗Rd⊔{∞}

)≤ C′
α1
ε ,

for some constant C′
α1

> 0 determined by α1 > 0 .

Proof. From

̺h(t)−̺h,ε(t)=
[

UV (
t

h
)̺h(0)1/2 −UV ,ε(

t

h
)̺h(0)1/2

]

̺h(0)1/2U∗
V (

t

h
)

+UV ,ε(
t

h
)̺h(0)1/2[̺h(0)1/2U∗

V (
t

h
)−̺h(0)1/2U∗

V ,ε(
t

h
)]

we deduce

|µ(t)−µε(t)|(T∗
R

d ∪ {∞})≤ 4 liminf
h∈E ,h→0

‖̺h(t)−̺h,ε(t)‖L 1 ≤ 8 liminf
h∈E ,h→0

‖Ψh(t)−Ψh
ε (t)‖L2

x,ω,ẑ

with Ψh
ε (t)=UV ,ε( t

h
)̺h(0)1/2 ∈L 2(L2(Rd×Ω, dx⊗G ;C))∼ L2(Rd×Ω×Ẑ, dx⊗G⊗dẑ;C) with

Ẑ =R
d ×Ω , dẑ = dx⊗G .

But Proposition 7.1 implies

∀t ∈]− T̂α1 , T̂α1[ , ‖Ψh(t)−Ψh
ε (t)‖L2

x,ω,ẑ
≤ Ĉα1ε .
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7.2 Asymptotic conservation of energy

The result of this paragraph is a consequence of the approximation of the UV dynamics

by the one of UVε in terms of wave functions in Proposition 7.1, states and semiclassical

measures in Proposition 7.2

Proposition 7.3. Assume like in Proposition 6.1

V ∈ Lr′σ (Rd , dx;R)∩H2(Rd ;R) , r′σ =
2d

d+2
, d ≥ 3,

and assume that there exists α1 > 0 such that ̺h(0) ∈L 1(L2(Rd ×Ω, dx⊗G ;C)) , ̺h(0)≥ 0 ,

Tr[̺h(0)]= 1 satisfies

∃Cα1 > 0, ∀h ∈]0, h0[ , Tr
[

eα1N̺h(0)eα1N
]

≤ Cα1 .

Call ̺h(t)=UV ( t
h

)̺h(0)U∗
V

( t
h

) and let the subset E ⊂]0, h0[ , 0 ∈ E , be such that

∀t ∈]− T̂α1 , T̂α1[ , M (̺h(t), h ∈E )=
{

µt

}

with the additional assumption at time t = 0 ,

suppµ0 ⊂
{

(x,ξ)∈ T∗
R

d , |ξ|2 ∈ F
}

(127)

where F is a closed subset of R . Then for all t ∈]− T̂α1 , T̂α1[ , the support of µt restricted to

T∗
R

d satisfies

suppµt

∣
∣
T∗Rd ⊂

{

(x,ξ)∈ T∗
R

d , |ξ|2 ∈ F
}

.

Proof. For ε> 0 and z ∈C\R the resolvent estimate

‖[z+∆x]−1− [z− (−∆x +
p

hVε)]
−1‖L (L2

x,ω) ≤
Cε

p
h

|Im z|2

with Vε = χε(N)V χε(N) ∈ L (L2
x,ω) as in (126) combined with Helffer-Sjöstrand formula

[HeSj] gives

∀ε> 0,∀χ ∈C ∞
0 (R;C) ,∃Cχ,ε> 0, ‖χ(−∆x)−χ(−∆x +

p
hVε)‖L (L2

x,ω) ≤Cχ,ε
p

h .

The semiclassical calculus then implies
∥
∥
∥χ(−∆x +

p
hVε)aWeyl(hx,Dx)χ(−∆x +

p
hVε)− [χ2(|ξ|2)a]Weyl(hx,Dx)

∥
∥
∥

L (L2
x,ω)

=Oa,χ,ε(
p

h)

for all a ∈C ∞
0 (T∗

R
d ;C) and all χ ∈C ∞

0 (R;C) .

Hence, the assumption (127) implies

∀χ ∈C ∞
0 (R\ F; [0,1]) , lim

h∈E ,h→0
‖χ(−∆x +

p
hVε)̺h(0)χ(−∆x +

p
hVε)‖L 1(L2

x,ω) = 0,

and therefore

∀χ ∈C ∞
0 (R\F; [0,1]) , ∀t ∈]−T̂α1 , T̂α1[ , lim

h∈E ,h→0
‖χ(−∆x+

p
hVε)̺h,ε(t)χ(−∆x+

p
hVε)‖L 1(L2

x,ω) = 0,

with ̺h,ε(t)=UVε (
t
h

)̺h(0)U∗
Vε

( t
h

) and UVε (t)= e−it(−∆x+
p

hVε) .

When E ′ ⊂ E , 0 ∈ E ′ , is such that

M (̺h,ε(t) , h ∈E ′)=
{

µt,ε
}

,
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Proposition 7.2 tells us

|µt −µt,ε|(T∗
R

d)≤ C′
α1
ε .

while

∫

T∗Rd
a(x,ξ) |χ|2(|ξ|2) dµt,ε(x,ξ)

= lim
h∈E ′,h→0

Tr
[

χ(−∆x +
p

hVε)aWeyl(hx,Dx)χ(−∆x +
p

hVε)̺h,ε(t)
]

= 0,

for a ∈C ∞
0 (T∗

R
d;C) and χ∈C ∞

0 (R\ F; [0,1]) . We deduce

∀a ∈C ∞
0 (T∗

R
d;C) ,∀χ∈C ∞

0 (R\F; [0,1]) ,∀t ∈]−T̂α1, T̂α1[ ,
∫

T∗Rd
a(x,ξ)χ2(|ξ|2) dµt(x,ξ)= 0,

which yields the result.

7.3 Changing V

The formulation of Theorem 5.1 uh
G

(t)=UV (t)uh
G,0 =U( t

h
)uh

G,0+uh
∞(t) where

(

uh
q

)

q∈{∞,2,1} is

a solution of a fixed point problem, solved in Proposition 4.5, where only ‖V‖
Lr′σ , r′σ= 2d

d+2 ,

is used, allows to consider perturbations of V , which can be done separately in the the

terms aG(V ) and a∗
G

(V ) and with complex valued perturbations.

Remember that our state ̺h(t)=UV ( t
h

)̺h(0)U∗
V

( t
h

) is written

̺h(t)= [UV (
t

h
)̺h(0)1/2][̺h(0)1/2U∗

V (
t

h
)] ,

and the link with the fixed point problem is done after setting

U(t)uh
G,0+uh

∞(t)= uh
G(t)=UV (

t

h
)̺h(0)1/2 in L 2(L2

x,ω)∼ L2
z,yG

,

where the last identification is done via the unitary transform UG of Section 3 , omitted

here and explained in the proof of Proposition 6.1.

A generalization is done by writing for a pair Ṽ = (V1,V2) ∈ Lr′σ (Rd , d y;C)2 ,

̺h,Ṽ (t)= uh

G,Ṽ
(

t

h
)[uh

G,Ṽ
(

t

h
)]∗ ∈L 1(L2

x,ω) , (128)

where uh

G,Ṽ
(t) = U(t)̺h(0)1/2 + uh

∞,Ṽ
(t) and

(

uh

q,Ṽ

)

q∈{∞,2,1} solves the fixed point problem

(59)(60)(61) with f h
1 (t)= 0 and f h

∞ and f h
2 given by

f h
∞(t)= f h

∞,Ṽ
(t)=−i

∫t

0
U(t)U(s)∗a∗

G(V1)
p

hU(s)uh
G,0 ds , (129)

f h
2 (t)= f2,Ṽ (t)=−i aG(V2)

∫t

0
U(t)U(s)∗a∗

G(V1)
p

hU(s)uh
G,0 ds+aG(V2)U(t)uh

G,0 . (130)

This fixed point problem will be written







uh

∞,Ṽ

uh

2,Ṽ

uh

1,Ṽ






= LṼ







uh

∞,Ṽ

uh

2,Ṽ

uh

1,Ṽ






+







f h

∞,Ṽ

f h

2,Ṽ

0







. (131)
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Proposition 7.4. For two pairs Ṽk = (V1,k,V2,k) ∈ Lr′σ (Rd, d y;C)2 , for ‖eα1N uh
G,0‖ ≤ Cα1

and by choosing T̂α1 > 0 small enough, the two solutions to (131) with the right-hand sides

given by (129)(130) satisfy

∀t ∈]− T̂α1 , T̂α1[ , ‖uh

∞,Ṽ2
(

t

h
)−uh

∞,Ṽ1
(

t

h
)‖L2

z,yG
≤C

[

‖V1,2−V1,1‖Lr′σ +‖V2,2−V2,1‖Lr′σ

]

for some constant C > 0 given by α1 > 0 , Cα1 , the dimension d , and maxi, j ‖Vi, j‖Lr′σ .

Proof. It suffices to notice that the difference vh = uh

Ṽ2
− uh

Ṽ1
with uh

Ṽk

=
(

uh

q,Ṽk

)

q∈{∞,2,1} ,

k = 1,2 , solves

vh −LṼ1
(vh)= (LṼ2

−LṼ1
)(uh

Ṽ2
)+







f h

∞,Ṽ2
− f h

∞,Ṽ1

f h

2,Ṽ2
− f h

2,Ṽ1

0







.

Estimates for all the terms of the right-hand side have essentially been proved for Propo-

sition 4.5 and for Theorem 5.1. Although they are written for V1 =V2 real-valued in The-

orem 5.1 the generalization is straightforward (like in Proposition 4.5) and upper bounds

are proportional the Lr′σ of the potential which is either (V1,2 −V1,1) or (V2,2 −V2,1) .

The time interval ]−Tα1 ,Tα1[=]−2T̂α1 ,2T̂α1[ is actually chosen like in Proposition 4.5

such that ‖LṼ1
‖L (Eα1 ,−α1 ,γ) ≤ 1

2 and this ends the proof.

For a general pair Ṽ = (V1,V2) ∈ Lr′σ (Rd, d y;C)2 , the trace-class operator ̺h

Ṽ
(t) is no

more a state and neither self-adjoint. However it remains uniformly bounded in L 1(L2
x,ω)

and complex-valued semiclassical measures µṼ (t) make sense for t ∈]− T̂α1 , T̂α1[ . More-

over the results of Proposition 5.2 and Proposition 6.1 can be adapted mutatis mutandis

for such a general pair, so that semiclassical measures (extraction process) can be defined

simultaneously for all t ∈]T̂α1, T̂α1[ .

The above comparison result can be translated in terms of trace-class operators and

asymptotically for semiclassical measures.

Proposition 7.5. Assume

V ∈ Lr′σ (Rd , dx;R)∩H2(Rd ;R) , V1,V2 ∈ Lr′σ (Rd , dx;C) , r′σ =
2d

d+2
, d ≥ 3,

and assume that there exists α1 > 0 such that ̺h(0) ∈L 1(L2(Rd ×Ω, dx⊗G ;C)) , ̺h(0)≥ 0 ,

Tr[̺h(0)]= 1 satisfies

∃Cα1 > 0, ∀h ∈]0, h0[ , Tr
[

eα1N̺h(0)eα1N
]

≤ Cα1 .

Let ̺h(t)=UV ( t
h

)̺(0)U∗
V

( t
h

) and let ̺h,Ṽ (t) be defined by (128). Then

∃C > 0, ∀t ∈]− T̂α1 , T̂α1[ , ‖̺h(t)−̺h,Ṽ (t)‖L 1(L2
x,ω) ≤ C

[

‖V1 −V‖
Lr′σ +‖V2 −V‖

Lr′σ

]

.

When the subset E ⊂]0, h0[ , 0 ∈ E , is chosen such that

∀t ∈]− T̂α1 , T̂α1[ , M (̺h(t), h ∈E )=
{

µt

}

and M (̺h,Ṽ (t), h ∈E )=
{

µt,Ṽ

}

Then the total variation of µt −µt,Ṽ is estimated by

∃C′ > 0, ∀t ∈]− T̂α1 , T̂α1[ , |µt −µt,Ṽ |( T∗
R

d
︸ ︷︷ ︸

or T∗Rd⊔{∞}

)≤ C′ [‖V1 −V‖
Lr′σ +‖V2 −V‖

Lr′σ

]

.
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Proof. It suffices to write

̺h,Ṽ (t)−̺h(t)=
[

uh

G,Ṽ
(

t

h
)−uh

G(
t

h
)
]

[uh

G,Ṽ
(

t

h
)]∗+ [uh

G(
t

h
)]

[

uh

G,Ṽ
(

t

h
)−uh

G(
t

h
)
]∗

and to remember that Hilbert-Schmidt norms correspond to L2
z,yG

-norms estimated in

Proposition 7.4.

7.4 Quantum dynamics with low regularity

We conclude with an easy application of Proposition 7.4 which says that the dynamics

(UV (t))t∈R is actually well defined under the sole assumption

V ∈ Lr′σ (Rd ;R) , r′σ =
2d

d+2
d ≥ 3, (132)

with good approximations when Vn ∈ Lr′σ (Rd ;R)∩H2(Rd ;R) satisfies limn→∞ ‖Vn−V‖
Lr′σ =

0 .

Proposition 7.6. Let V belong to Lr′σ (Rd ;R) and let (Vn)n∈N be a sequence in Lr′σ (Rd;R)∩
H2(Rd ;R) such that limn→∞ ‖V −Vn‖Lr′σ = 0 . Then for any t ∈R the unitary operator UVn

(t)

converges strongly to a unitary operator UV (t) .

Therefore (UV (t))t∈R is a strongly continous unitary group in L2(Rd×Z′′, dx⊗dz′′;Γ(L2(Rd, d y;C)))=
L2

z,symL2
yG

with a self-adjoint generator denoted (−∆x +
p

hV ,D(−∆x+
p

hV )) .

The convergence (−∆x +
p

hVn,D(−∆x+
p

hVn)) to (−∆x +
p

hV ,D(−∆x+
p

hV )) holds in the

strong resolvent sense.

Remark 7.7. Although the dynamics (UV (t))t∈R and its self-adjoint generator (−∆x +p
hV ,D(−∆x +

p
hV )) is well defined for V ∈ Lr′σ (Rd ;R) , we have no information on the do-

main D(−∆x +
p

hV ) . The approximation process by Vn ∈ Lr′σ (Rd ;R)∩H2(Rd ;R) for which

a core of ∆x +
p

hVn is given by Proposition 4.4 in [Bre] recalled in Lemma 2.2, provides a

substitute for the analysis.

It could be interesting to see if this Schrödinger type approach relying on endpoint

Strichartz estimates could be applied to other quantum field theoretic problem and whether

it would bring additional information of tools as compared with the euclidean approach

(see [Sim] and refences therein).

Proof. Actually we can work here with h =1 . The convergence of

UVn
(t)uG,0 =U(t)uG,0+u∞,Vn

(t)

is deduced from the convergence (see Proposition 7.4) of u∞,Vn
(t) to u∞,V (t) when eα1N uG,0 ∈

L2
z,symL2

yG
for some α1 > 0 .

From ‖UVn
(t)uG,0‖L2

z,sym L2
yG

= ‖uG,0‖L2
z,sym L2

yG

we deduce ‖UV (t)uG,0‖L2
z,sym L2

yG

= ‖uG,0‖L2
z,sym L2

yG

.

This finally provides the extension of UV (t)uG,0 for any uG,0 ∈ L2
z,symL2

yG
with the conver-

gence of UVn
(t)uG,0 to UV (t)uG,0 , because e−α1N L2

z,symL2
yG

is dense in L2
z,symL2

yG
. Passing

from the strong convergence of unitary groups to the strong resolvent convergence of gen-

erators is standard.
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