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Stochastic data-driven parameterization of unresolved mesoscale

eddies

Long Li∗ Bruno Deremble† Noé Lahaye∗ Etienne Mémin∗

Abstract

In this work, a stochastic representation based on a physical transport principle is proposed to
account for mesoscale eddy effects on the large-scale oceanic circulation. This stochastic framework
arises from a decomposition of the Lagrangian velocity into a smooth-in-time component and a
highly oscillating noise term. One important characteristic of this random model is that it conserves
the total energy of the resolved flow for any realization. Such an energy-preserving representation is
successfully implemented in a well established multi-layered quasi-geostrophic dynamical core. The
empirical spatial correlation of the unresolved noise is calibrated from the eddy-resolving simulation
data. In particular, a stationary correction drift can be introduced in the noise through Girsanov
transformation. This non intuitive term appears to be important in reproducing on a coarse mesh
the eastwards jet of the wind-driven double-gyre circulation. In addition, a projection method
has been proposed to constrain the noise living along the iso-surfaces of the vertical stratification.
The resulting noise enables us to improve the intrinsic low-frequency variability of the large-scale
current.

1 Introduction

Ocean mesoscale eddies contain a large proportion of energy and have an important impact on large-
scale circulations. They are found everywhere and are particularly intensive in the western boundary
currents such as the Gulf Stream and the Kuroshio. However, these eddies are generally not resolved
in ocean general circulation models, since the deformation radius in the ocean is at most of the order
of 100 km. In particular, the effects of the mesoscale eddies need to be properly parameterized in
coarse-resolution ocean models.

The most successful parameterization of mesoscale effect is based on the eddy-induced advection
scheme (Gent and McWilliams, 1990; Gent et al., 1995; Griffies, 1998), which consists in mimicking
the impact of the baroclinic instability by flattening the isopycnal surfaces to transfer the available
potential energy of the resolved flow to the eddy kinetic energy at the sub-grid scales. However, such
scheme does not account for the backscattering of kinetic energy from small to large scales (Bachman,
2019). Classical eddy viscosity models are introduced in coarse models to mimic the mixing action
of the unresolved scales. The associated energy dissipation mechanism is often represented by some
functional operators (Leith, 1971; Griffies and Hallberg, 2000; Bachman et al., 2017) that depend
on the resolved flow. These approaches seem to improve the effective resolution of eddy-permitting
models. Nevertheless, they still lead to excessive decreases of the resolved kinetic energy in large-scale
ocean models. The lack of variability due to energy missing is particularly detrimental in ensemble
forecasting and data assimilation applications (Karspeck et al., 2013; Franzke et al., 2015).
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To address these shortcomings, stochastic parameterizations are becoming more and more popular
and several schemes have been devised and studied for ocean circulation models. These schemes in-
troduce energy backscattering across scales and enable to increase the internal ocean variability. For
instance, Berloff (2005) developed a random-forcing model based on the dynamical decomposition of
the flow into a large-scale component and an eddy components; Jansen and Held (2014) proposed a
stochastic forcing in the form of a negative Laplacian viscosity to inject dissipated energy back to
the resolved flow; Grooms and Majda (2014); Grooms et al. (2015) proposed a stochastic superpa-
rameterization scheme that includes stochastic Reynolds stress terms to backscatter kinetic energy;
Porta Mana and Zanna (2014); Zanna et al. (2017) proposed an eddy parameterization based on a
non-Newtonian stress which depends on the partially resolved scales and their variability.

We propose here a specific stochastic representation of the unresolved flow dynamics based on
the location uncertainty (LU) framework (Mémin, 2014). This representation introduces a random
unresolved flow component and relies on a stochastic transport principle. Similar approaches based on
the same decomposition have also been recently proposed by Holm (2015); Cotter et al. (2019, 2020);
Gugole and Franzke (2019). This kind of random models enable to consider systems that are less
dissipative than their deterministic counterparts. Nevertheless, the ability of such models to represent
faithfully the uncertainties associated to the actual unresolved small scales highly depends on the
definition of the random component and on its evolution in time. Unsurprisingly, stationarity/time-
varying and homogeneity/inhomogeneity characteristics of the unresolved flow component have strong
influences on the numerical results. For instance, Bauer et al. (2020a) illustrates that the noise
inhomogeneity induces a structuration of the large-scale flow reminiscent to the action of the vortex
force associated to surface wave-induced Stokes drift; Bauer et al. (2020b) shows that the introduction
of inhomogeneous noise into the barotropic quasi-geostrophic (QG) model enables us to reproduce
accurately, on a coarse mesh, the high order statistics of the eddy-resolving data; a stochastic shallow
water model preserving the resolved total energy has been proposed by Brecht et al. (2021) and
the results show that the stochastic parameterization provides a good trade-off between model error
representation and ensemble spread.

In this work, we investigate the LU formulation for the baroclinic QG model (Hogg et al., 2004)
within an idealized double-gyre circulation configuration. In particular, we focus on the reproduction
of the eastwards jet as well as the prediction of the low-frequency variability for the proposed random
model on a coarse resolution grid, for cases in which the baroclinic instability is not resolved. Another,
important aspect, concerns the ability to include in the noise representation a stationary drift com-
ponent associated to the temporal mean of the high-resolution fluctuations. As shown in this paper
such stationary drift can be elegantly introduced in the noise through Girsanov transformation. In
addition, a projection method has been proposed to update in time the noise along the iso-surfaces of
the stratification.

The remainder of this paper is structured as follows. Section 2 describes the framework of LU and
presents the derived stochastic QG model. Section 3 explains the discretization of the proposed QG
model and the parameterization method for the unresolved noise. Section 4 discusses the numerical
results with some statistical diagnosis and energetic analysis. In Section 5 we draw some conclusions
and provide an outlook for future works. In the Appendices we demonstrate the energy conservation of
the random system and explore the energy conversion between the ensemble-mean and the ensemble-
eddy components.
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2 Continuous models

In this section, we first review the general setting of Location Uncertainty (LU) (Mémin, 2014), we
then present the resulting stochastic Boussinesq quasi-geostrophic (QG) model for a continuously
stratified ocean, finally we complete the random formulation by including a time-correlated drift into
the unresolved flow component through the Girsanov transformation.

2.1 Stochastic flow

The evolution of Lagrangian particle trajectory (Xt) under LU is described by the following stochastic
differential equation (SDE):

dXt(x) = v
(
Xt(x), t

)
dt+ σ

(
Xt(x), t

)
dBt, X0(x) = x ∈ D, (2.1)

where v denotes the time-smooth resolved velocity that is both spatially and temporally correlated,
σdBt stands for the fast oscillating unresolved flow component (also called noise in the following)
that is correlated in space yet uncorrelated in time, and D ⊂ Rd (d = 2 or 3) is a bounded spatial
domain.

Mathematically, {Bt}0≤t≤T is an Id-cylindrical Brownian motion (Da Prato and Zabczyk, 2014) on
a filtered probability space (Ω,F , {Ft}0≤t≤T ,P)1 and takes values in the Hilbert space H := (L2(D))d.
Informally, one can consider its time-derivative as a space-time “white noise” (in a distribution sense)
with independent components (Bi

t)i=1,...,d.
The spatial structure of the unresolved flow component is modeled by the correlation operator, σ,

which is not necessarily deterministic. In the most general case it is random and time-dependent with
some regularity conditions. More precisely, for each (ω, t) ∈ Ω × [0, T ], σ(·, t)[•] is assumed to be a
Hilbert-Schmidt integral operator on H with a bounded matrix kernel σ̆ = (σ̆ij)i,j=1,...,d such that

σ(x, t)f =

∫
D
σ̆(x,y, t)f(y) dy, f ∈ H, x ∈ D. (2.2)

The composition of σ(·, t)[•] and its adjoint σ∗(·, t)[•] is a trace class operator on H and admits
eigenfunctions ξn(·, t) with eigenvalues λn(t) satisfying

∑
n∈N λn(t) < +∞. Then, the noise can be

equally defined by the following spectral decomposition:

σ(x, t) dBt =
∑
n∈N

λ1/2n (t)ξn(x, t) dβn(t), (2.3)

where βn are independent (one-dimensional) standard Brownian motions.
In addition, we assume that the operator-space-valued process {σ(·, t)[•]}0≤t≤T is stochastically

integrable, i.e. P
[ ∫ T

0

∑
n∈N λn(t) dt < +∞

]
= 1. As such, the stochastic integral {

∫ t
0 σ(·, s) dBs}0≤t≤T

is a H-valued Gaussian process of zero mean and of bounded (global) variance under the probability
measure P:

EP

[∫ t

0
σ(·, s) dBs

]
= 0, EP

[∥∥∥ ∫ t

0
σ(·, s) dBs

∥∥∥2
H

]
< +∞. (2.4)

1Ω is a set of samples, F is a σ-field (a collection of subsets of Ω), {Ft}0≤t≤T is a filtration (a family of sub σ-fields
of F that are continuously indexed in time and ordered non-decreasingly), and P is a probability measure.
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Moreover, the point-wise (x ∈ D) and path-wise (ω ∈ Ω) strength of the unresolved flow component at
each instant (t ∈ [0, T ]) is measured by the matrix kernel of the composite operator σσ∗, and denoted
by a(x, t), namely

a(x, t) :=

∫
D
σ̆(x,y, t)σ̆T (y,x, t) dy =

∑
n∈N

λn(t)
(
ξnξ

T
n

)
(x, t). (2.5)

As shown in Bauer et al. (2020a), the process
∫ t
0 a(x, s) ds actually corresponds to the quadratic

variation (Da Prato and Zabczyk, 2014) of
∫ t
0 σ(x, s) dBs, and it is a continuous random process

of finite variation (hence time differentiable). In the particular case of a nonrandom σ, a reduces
then to the local variance of the noise according to the Itô isometry (Da Prato and Zabczyk, 2014).
Physically, the symmetric non-negative tensor a represents the (possibly random) friction coefficients
of the unresolved fluid motions and the eigenvalues λn have the unit of m2/s.

2.2 Stochastic transport

The evolution law of a random tracer Θ with extensive property (e.g. temperature, salinity, buoyancy)
transported by the stochastic flow, Θ(Xt+δt, t + δt) = Θ(Xt, t) with δt an infinitely small time
variation, is derived by Mémin (2014); Bauer et al. (2020a) using the generalized Itô formula (Kunita,
1997). It is described by the following stochastic partial differential equation (SPDE):

DtΘ = dtΘ+ (v⋆ dt+ σdBt) · ∇Θ− 1

2
∇ · (a∇Θ)dt = 0, (2.6)

in which Dt is introduced as a stochastic transport operator and dtΘ(x) := Θ(x, t + δt) − Θ(x, t)
stands for the (forward) time-increment of Θ at a fixed point x ∈ D.

This SPDE encompasses physically meaningful terms. For instance, the third term describes the
tracer’s advection by the unresolved flow component. As shown in Resseguier et al. (2017a); Bauer
et al. (2020a), the resulting multiplicative noise σdBt ·∇Θ continuously backscatters random energy
to the system through the quadratic variation 1/2 (∇Θ) · (a∇Θ) of the random tracer. The last term
in (2.6) depicts tracer’s diffusion due to the mixing of the unresolved scales. In particular, under
specific noise definitions (Mémin, 2014), the resulting diffusion can be connected to the functional
eddy viscosity as introduced in many large-scale circulation models (Smagorinsky, 1963; Redi, 1982).

As an additional feature of interest, there exists an effective advection velocity v⋆ in (2.6) which
is defined as

v⋆ = v − 1

2
∇ · a+ σ∗(∇ · σ). (2.7)

This statistical eddy-induced velocity drift captures the action of inhomogeneity of the random field
on the transported tracer and the possible divergence of the unresolved flow component. Bauer et al.
(2020a) shows that the turbophoresis term 1/2∇·a can be interpreted as a generalization of the Stokes
drift, which occurs, for example, in the Langmuir circulation (Craik and Leibovich, 1976; Leibovich,
1980).

Many useful properties of the stochastic transport operator Dt have been explored by Resseguier
et al. (2017a, 2020); Li (2021). In particular, if a random tracer is transported by the incompressible
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stochastic flow under suitable boundary conditions, then the path-wise p-th moment (p ≥ 1) of the
tracer is materially and integrally invariant, namely

Dt

(
1

p
Θp

)
= 0, dt

∫
D

1

p
Θp dx = 0. (2.8)

2.3 Stochastic QG model

The derivation of the stochastic geophysical models under the LU framework follows almost exactly the
same path as the deterministic derivation (Vallis, 2017). In particular, a stochastic Euler-Boussinesq
model has been derived by Resseguier et al. (2017b); Bauer et al. (2020a) for large-scale atmospheric
and oceanic circulations, and reads:

Momentum equations

Dtv + fk × (udt+ σhdBt) = (bdt+ dbσt )k −∇(p dt+ dpσt ), (2.9a)

Continuity equations

∇ · v⋆ = 0, ∇ · σdBt = 0, (2.9b)

Thermodynamic equation

Dtb+N2(w⋆ dt+ σzdBt) =
1

2
∇ · (a·zN

2) dt, (2.9c)

where v = (u, w)T , σdBt = (σhdBt, σzdBt)
T , k = (0, 0, 1)T , f = f0 + βy is the Coriolis parameter

using beta-plane approximation, p and dpσt /dt (in a distribution sense) are the time-smooth component
and the fast oscillating noise of the pressure fluctuations rescaled by the background density ρ0,
N2(z) = −g∂zρ(z)/ρ0 is the Brunt-Väisälä frequency with g the gravity value and ρ the stationary
density in equilibrium that only depend on height, b(x, t) = −gρ′(x, t)/ρ0 is the resolved buoyancy
associated with the density anomaly ρ′, dbσt /dt is a zero-mean noise that models the unresolved
buoyancy fluctuations and a·z denotes the z-column vector of tensor a. The term dbσt can be seen as
a thermodynamics noise coming from the nonlinear mapping law of state applied to the noise term of
salinity and temperature transports. It is of the same nature as the noise term introduced in Brankart
(2013).

From the system (2.9) a diverse set of approximated models under LU can be obtained through
nondimensionalization and asymptotic approach with proper scaling. However, the noise introduces
an additional degree of freedom that must be appropriately accounted for (Brecht et al., 2021; Bauer
et al., 2020b; Resseguier et al., 2017b,c). The horizontal components of the quadratic variation are
first scaled as ah ∼ ϵ UL, where U and L are typical velocity and length scales, and the factor ϵ
is proportional to the ratio between the eddy kinetic energy (EKE) and the mean kinetic energy
(MKE) and to the ratio between the small-scale correlation time and the large-scale advection time.
From the definitions (2.2), (2.3) and (2.5), the horizontal components of the noise can be scaled as
σhdBt ∼ ϵ1/2L. The greater this scaling number ϵ, the larger the quadratic variation, hence the
stronger the path-wise noise. As shown in Resseguier et al. (2017b,c), using different levels of noise in
the stochastic system allows us to model different physical regimes of the large-scale flow.

In this work, we only consider the “moderate” horizontal uncertainty, ϵ = O(1) or ϵRo = O(Ro)
with a small Rossby number Ro = U/(f0L) ≪ 1, in order to maintain the classical geostrophic balance.
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Besides, to keep the assumption of flat isopycnal (small variation of stratification) in the QG theory,
Resseguier et al. (2017b) proposed to scale the ratio between the vertical scale and the horizontal
scale of the noise as σzdBt/σhdBt ∼ (H/L)(Ro/Bu) with the height scale H ≪ L and the Burger
number Bu = (Ld/L)

2 = O(1), where Ld stands for the scale of deformation radius. Moreover, the
unresolved pressure and buoyancy are scaled by dpσt ∼ Φ = ϵ1/2f0L

2 and dbσt ∼ Φ/H. All the resolved
variables (u, w, p, b,N2) are scaled as in the classical framework (Vallis, 2017) and the variation of
Coriolis parameter stays small, i.e. βL < f0.

Expanding the resolved variables (v, p, b) in power series of the small Rossby number and truncating
the equations at zeroth and first orders, then restoring the dimensions of variables, the following QG
system can be derived:

Momentum equations

Dh
t u+ f0k × ua dt+ βyk × (u dt+ σhdBt) = −∇hpa dt, (2.10a)

Buoyancy equation

Dh
t b+N2wa dt = 0, (2.10b)

Continuity equation

∇h · ua + ∂zwa = 0, (2.10c)

where u and p denote the geostrophic components of the resolved velocity and pressure, (ua, wa)
T and

pa denote the ageostrophic components, and Dh
t stands for the horizontal component of the stochastic

transport operator, which is defined as

Dh
tΘ = dtΘ+ (u⋆ dt+ σhdBt) · ∇hΘ− 1

2
∇h · (ah∇hΘ)dt (2.10d)

with u⋆ := u− 1/2∇h · ah and ∇h = (∂x, ∂y)
T . The geostrophic component and the noise satisfy the

following equilibrium:

Geostrophic balances and martingale pressure equilibrium

u =
1

f0
∇⊥

h p, σhdBt =
1

f0
∇⊥

h dp
σ
t , ∇h · (u⋆ − u) = 0, (2.10e)

Hydrostatic balances

b = ∂zp, dbσt = ∂zdp
σ
t , (2.10f)

where ∇⊥
h = (−∂y, ∂x)T . For sake of conciseness of the notations, we drop the horizontal subscript

h in the following. Combining the above equilibrium, the thermal wind balances, ∂zu ⊥ ∇b and
∂zσdBt ⊥ ∇dbσt , can be deduced. In this work, we only focus on noise fully satisfying the martingale
pressure equilibrium. It means that we model the mesoscale flow as a stochastic component given a
large-scale flow. However, such random equilibrium is not necessary in a general setting and could be
easily relaxed.

In order to represent the previous random system in terms of potential vorticity (PV) in the
same way as in the classical framework (Vallis, 2017), we first take the (horizontal) curl of the first-
order momentum equations (2.10a), then sum the resulting equation with the vertical derivative of
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the buoyancy equation (2.10b) rescaled by f0/N
2, together with the equilibrium (2.10e), (2.10f) and

(2.10c), to obtain finally

Stochastic evolution of PV

Dtq =
∑
i=1,2

−J
(
(u⋆ dt+ σdBt)

i, ui
)
+

1

2
∇ ·

(
∂⊥
xi
a∇ui

)
dt−∇ · (a∇f) dt

− f0
N2

∂z(u
⋆ dt+ σdBt) · ∇b+

f0
2N2

∇ · (∂za∇b) dt, (2.11a)

From PV to streamfunction

q = ∇2ψ + ∂z

( f0
N2

b
)
+ βy, b = f0∂zψ (2.11b)

Incompressible constraints

u = ∇⊥ψ, ∇ · σdBt = ∇ · (u⋆ − u) = 0, (2.11c)

where q denotes the PV, ψ := p/f0 stands for the streamfunction of the resolved flow, J(f, g) =
∂xf∂yg − ∂xg∂yf stands for the Jacobian operator and ∇2 = ∂2xx + ∂2yy is the two-dimensional (2D)
Laplacian operator. Note that in the deterministic setting, the sources and sinks of PV in (2.11a)
cancels due to the anti-symmetry of the Jacobian operator, J(ui, ui) = 0, and to the thermal wind
balance, ∂zu ⊥ ∇b. However, it should be noted that the presence of sub-grid terms in a large-
scale deterministic Boussinesq system leads also in general to additional terms in the RHS of the PV
equation. The additional terms in the RHS of (2.11a) are coming exactly from the same sources of
difficulty inherent to large-scale flow dynamics representations (i.e. non commutation of curl operator
with the sub-grid model, breaking of the Jacobian anti-symmetry as well as possibly non commutation
of coarsening processes with derivatives).

2.4 Energy conservation and transfers

One important characteristic of the random system (2.10) or (2.11) is that it conserves path-wise
(i.e. for each realization) the total energy of the resolved geostrophic flow (under natural boundary
conditions), namely

dt

∫
D

1

2

(
|u|2 + b2

N2

)
dx =

(∫
D
wabdx−

∫
D
wabdx

)
dt = 0. (2.12)

The demonstration can be found in 5. We remark that this conservation property is consistent with the
energy conservation of the stochastic barotropic QG system (Bauer et al., 2020a) and of the stochastic
rotating shallow-water system (Brecht et al., 2021).

The energy conversions between the ensemble-mean and ensemble-eddy components are in addition
explored in 5. Based on the decompositions u = E[u] + (u−E[u]) := u+u′ and b = b+ b′, the mean
kinetic energy (MKE), the eddy kinetic energy (EKE), the mean potential energy (MPE) and the eddy
potential energy (EPE) are respectively defined by 1/2⟨|u|2⟩, 1/2⟨|u′|2⟩, 1/2⟨(b/N)2⟩ and 1/2⟨(b′/N)2⟩,
where ⟨·⟩ denotes the integration over domain for simplicity. The energy conversions of the proposed
random model (2.10) are summarized in the following diagram.
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MKE EKE

MPE EPE

−
〈[
∇u, (u⋆)′u′

]
F

〉
+ 1/2

〈[
∇u, a∇u+ a′∇u′

]
F

〉
+
〈[
∇u, (u⋆)′u′

]
F

〉
− 1/2

〈[
∇u, a∇u+ a′∇u′

]
F

〉

−
〈
(∇b/N2) · (u⋆)′b′

〉
+ 1/2

〈
(∇b/N2) · (a∇b+ a′∇b′)

〉
+
〈
(∇b/N2) · (u⋆)′b′

〉
− 1/2

〈
(∇b/N2) · (a∇b+ a′∇b′)

〉

−
〈 bw a

〉
+
〈 bw a

〉

−
〈 b′ w

′ a〉
+
〈 b′ w

′ a〉

Here, [A,B]F = Tr(ATB) stands for the Frobenius inner product of the tensors A and B. The
ensemble-mean of the path-wise energy conservation (2.12) can be recovered by summing all the
conversion terms.

Compared to the energy budget of the classical deterministic system, the random system provides
additional conversion terms between the mean and eddy components. In the general setting with
σ random, the classical geostrophic Reynolds stress (Bachman, 2019) is modified to (u⋆)′u′ due to
the possibly inhomogeneous nature of the noise. This term includes an additional term related to
the Ito-Stokes drift that can be positive or negative depending on its alignment with the large-scale
velocity component. The fact that a dt = Var(σdBt) is symmetric and non-negative definite, ensures
that the integral

〈[
∇u, a∇u

]
F

〉
(resp.

〈[
∇b, a∇b

]
F

〉
) is always positive, hence provides a positive

transfer from MKE to EKE (resp. from MPE to EPE). When the correlation tensor σ is nonrandom,
only this term remains in addition to the term related to the classical geostrophic Reynolds stress. As
the stochastic system (2.10) does not contain vertical noise component, it does not explicitly modify
the conversion mechanisms between KE and PE as observed in the classical system. Nevertheless, the
effect of the stochastic terms on this energy transfers is implicitly accounted via the time-integration
of the resolved variables b and wa.

2.5 Girsanov transformation

The previous formulations (2.10) and (2.11) consist of only a zero-mean and temporally uncorrelated
noise. However, this might not be enough in practice and including a mean or time-correlated com-
ponent of the unresolved velocity field could be of crucial importance to obtain a relevant model.
For instance, the eddy parameterization proposed by Zanna et al. (2017) is decomposed into a deter-
ministic term based on the negative Laplacian of the PV transport and a zero-mean stochastic term.
For the double-gyre circulation configuration, the considered deterministic parameterization allows
to reproduce the eastwards jet for the coarse-resolution model, while the additional stochastic terms
enhance the gyres circulation and improves the flow variability. Similarly, the random-forcing model
proposed by Berloff (2005) consists in a space-time correlated stochastic process to enhance the jet
extension.

The slow components of the sub-grid scales can be provided by adequate high-pass filtering of
high-resolution data on the coarse grid. We aim in this work at investigating the incorporation of such
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slow components within the LU framework. However, the derivation of LU models (Mémin, 2014;
Resseguier et al., 2017a; Bauer et al., 2020a) relies on the martingale properties of the centered noise
and we need hence to properly handle non centred Brownian terms. The Girsanov transformation
(Da Prato and Zabczyk, 2014) provides a theoretical tool that fully warrants such a superposition:
by a change of the probability measure, the composed noise can be centered with respect to a new
probability measure while the additional drift term appears, which pulls back time-correlated sub-
grid-scale components into the dynamical system. The associated mathematical description is given
as follows.

Let Γt be an H-valued Ft-predictable process satisfying EP

[
exp(12

∫
T

0 ∥Γt∥2H dt)
]
< +∞, then the

process {B̃t := Bt +
∫ t
0 Γs ds}0≤t≤T is an H-valued cylindrical Wiener process on (Ω,F , {Ft}0≤t≤T , P̃)

by a change of the probability measure:

dP̃
dP

= exp
(
−
∫ T

0
⟨Γt, dBt⟩H − 1

2

∫ T

0
∥Γt∥2H dt

)
, (2.13)

where ⟨f , g⟩
H
=
∫
D(f

Tg)(x) dx denotes the inner product on H = (L2(D))d. Under this new prob-

ability measure P̃, the previous system (2.11) must be adapted to the modified noise σdB̃t with
EP̃[σdB̃t] = 0 by a correction of the effective drift

ũ⋆ := u⋆ − σΓt. (2.14)

Hereafter, the resulting stochastic system will be adopted with σΓt referred to as the Girsanov drift.

3 Numerical models

In this section, we first describe the discretization of the continuous stochastic QG system (2.11) (under
a simplification) that will be used later for the numerical simulations. Then, we present numerical
methods to estimate the spatial correlation functions of the unresolved flow component based on the
spectral decomposition (2.3).

3.1 Discrete QG model

We consider here a vertically discretized QG model. This formulation is quite common in geophysical
fluid dynamics and the derivation follows the standard methods (Vallis, 2017; McWilliams, 2006). As
illustrated in Figure 1, such model consists of n ocean layers with constant thickness Hk and density
ρk in each layer k. The prognostic variables (qk, ψk,uk,σk,ak) are assumed to be layer-averaged
quantities.

We first apply finite differences for the buoyancy frequency N2 and anomaly b on the interface
between layers k and k + 1 (for k = 1, . . . , n− 1):

bk =
f0(ψk − ψk+1)

(Hk +Hk+1)/2
, N2

k =
g′k

(Hk +Hk+1)/2
, (3.1)

where g′k := −g(ρk − ρk+1)/ρ0 is introduced as the reduced gravity across the interface k. Applying
subsequently finite differences for the stratification term ∂z(f0b/N

2) with the zero boundary conditions
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at ocean surface and bottom, b0/N
2
0 = bn/N

2
n = 0, the Helmholtz equation (2.11b) can be vertically

discretized by

∇2ψk +
f20
Hk

(ψk−1 − ψk

g′k−1

− ψk − ψk+1

g′k

)
= qk − βy. (3.2a)

In this work, we adopt the dynamical core of the QG coupled model (Q-GCM) developed by Hogg et al.
(2003), which integrates numerically the state variables q and ψ. In order to reduce the inaccuracy of
numerical discretization, we do not include the PV sources and sinks (RHS terms of (2.11a)) in this
work.

These terms are naturally considered when working in u-b formulations such as in the primitive
equations dynamical core (Bachman, 2019) or for multi-layers shallow water systems (Adcroft et al.,
2019). In our case, for the type of noises considered (with moderated amplitude so as to respect the
QG scaling performed in this work) these additional noise terms are small but leads to additional
numerical difficulties. For stronger noise, with de facto other scalings with potential modification of
the hydrostatic balances these additional noise terms have to be considered in the PV equation.

Taking account the numerical dissipation and the vertical entrainment ek (across interfaces), the
simplified stochastic evolution of PV reads

D̃k
t qk =

(
(A2∇2 −A4∇4)(∇2ψ) +

f0
Hk

(ek−1 − ek)

)
dt, (3.2b)

where D̃k
t denotes the k-th layer stochastic transport operator under the probability measure P̃ (hence

includes the Girsanov drift described in Section 2.5, ∇4 = ∇2(∇2) is the bi-Laplacian operator asso-
ciated with the dissipation coefficient A4.

As for the spatial discretization, we propose to use a a conservative flux form ∇ · (uq) that
corresponds exactly to the 9-points Arakawa Jacobian scheme (Arakawa and Lamb, 1981) of J(ψ, q), in

which the zonal and meridional components of the advection flux are defined as 2/3
(
ux

y
qx
)
+1/3

(
uxqd

y)
and 2/3

(
vy

x
qy
)
+ 1/3

(
vxqd

y)
. Here, ·x, ·y and ·d denote the central averaging operations in the zonal,

meridional and diagonal directions respectively. We then apply it for the advection of PV by all the
additional drift (such as the noise). On the other hand, we employ simply a central winding scheme
to discretize the inhomogeneous diffusion term ∇ · (a∇q). We adopt a stochastic Leapfrog scheme
(Ewald and Témam, 2005) for the time-stepping of (3.2b). The inversion of the modified Helmholtz
equation (2.11b) is carried out with a discrete Fourier transform method (Hogg et al., 2003).

The vertical entrainment e in the classical QG models (Berloff et al., 2007; Marshall et al., 2012;
Grooms et al., 2015; Zanna et al., 2017) accounts only for the Ekman pumping from the upper and
bottom boundary layers, e0 = ∇⊥ · τ/f0 and en = 1/2 δek∇2ψn, where τ denotes a given surface wind
stress and δek stands for a prescribed thickness of the bottom Ekman layer. In the Q-GCM formulation
(Hogg et al., 2004), an additional entrainment e1 is considered due to the Ekman pumping of mixed
layer temperature. This will be further detailed in Section 4.3.

3.2 Parameterizations of unresolved flow

This section describes the numerical methods of the parameterization for the unresolved flow structure.
We first review the empirical orthogonal functions (EOF) method which relies on an assumption of
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Figure 1: Illustration for the vertical discretization of a three-layered QG system.

quasi-stationarity of the noise covariance. To relax this stationarity constraint, we then propose a
projection method enabling to update on-line the noise spatial correlations.

Let {uHR(x, ti)}i=1,...,N be the finite set of velocity snapshots provided by a high-resolution (HR)
simulation. We first build the spatial local fluctuations uf (x, ti) of each snapshot at the coarse-grid
points. In particular, for the QG system, one can first perform a high-pass filtering with a 2D Gaussian
convolution kernel G on each HR streamfunction ψHR, to obtain the streamfunction fluctuations,
ψf (x, ti) =

(
(I − G) ⋆ ψHR

)
(x, ti) (only for the coarse-grid points x). Then, the geostrophic velocity

fluctuations can be derived by uf = ∇⊥
LRψf .

We next center the data set by u′
f = uf −uf

t (with •t the temporal mean) and perform the EOF
procedure (Sirovich, 1987) to get a set of orthogonal temporal modes {αn}n=1,...,N and orthonormal
spatial modes {ϕn}n=1,...,N satisfying

u′
f (x, ti) =

N∑
n=1

αn(ti)ϕn(x), (3.3)

where ⟨ϕm,ϕn⟩H = δm,n, αmαn
t = λnδm,n, H := L2(D) and D = A× [−H, 0] denotes the 3D domain

with the horizontal area A and the total depth H.
Truncating subsequently the modes (with M ≪ N) and rescaling them by a small-scale decorrela-

tion time τ , the k-th layer noise and its variance are built by

σk(x) dB̃t = τ1/2
M∑
n=1

λ1/2n ϕn,k(x) dβn(t), (3.4a)

ak(x) = τ

M∑
n=1

λnϕn,k(x)ϕ
T
n,k(x). (3.4b)

Note that this time scale τ is used to match the fact that the noise in (2.1) admits unit of meter. In
practice, we often consider the coarse-grid simulation time-step ∆tLR.
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In this work, we simply propose to represent the Girsanov drift by the temporal mean of the
unresolved eddies, that is

σk(x)Γt =
N∑

n=1

⟨uf
t,ϕn⟩Hϕn,k(x). (3.4c)

We remark that in future works this stationary drift term could be generalized to slowly varying
fluctuation components or to drift correction with respect to observation (Dufée et al., 2022).

The previous EOF procedure is an efficient off-line learning method, yet it relies on a strong
stationary assumption, and hence leads to a sequence of random flow fields with no connection with
the resolved dynamics. In the following, we propose an novel approach that project the EOF-based
noise on a resolved state variable. In order to enforce the noise to act only on the resolved momentum
(2.10a) and provide efficient backscattering of KE, we consider constraining the noise along the iso-
surfaces of the stratification, σ̃dB̃t ⊥ ∇∂z b̃ with b̃ := f0b/N

2. This projection procedure reads

σ̃k(x, t) dB̃t = A1/2Pk(x, t) σk(x) dB̃t, Pk := I2 −
∇(∂z b̃)k

(
∇(∂z b̃)k

)T
|∇(∂z b̃)k|2

, (3.5)

where σkdB̃t is generated as in (3.4a) and A is a scaling factor to ensure that the noise amplitude
is projection invariant. From the definition of the noise quadratic variation (2.5), tensor a defined
through (3.4b) is updated as ãk = APk ak P

T
k . In the next section, we show that the resulting

non-stationary noise leads to significant improvement of variability for coarse-resolution simulations.

4 Numerical results

In this section, we discuss and compare numerical results of several models run within different con-
figurations. The objective consists in improving the variability of low-order models at low Reynolds
numbers flow, and in the particular case of unresolved baroclinic instabilities.

4.1 Model configurations

We consider here a finite box ocean at mid-latitude driven by an idealized (stationary and symmetric)
wind stress τ = (−τ0 cos(2πy)/Ly, 0)

T . A mixed horizontal boundary condition is used for the k-th
layer streamfunction: ψk|∂A = fk(t) and ∂2nψk|∂A = −(αbc/∆x)∂nψk|∂A (same for the 4-th order
derivative). Here, fk is a time-dependent function constrained by mass conservation (McWilliams,
1977), ∆x stands for the horizontal resolution and αbc is a nondimensional coefficient associated to
the slip boundary conditions (Haidvogel et al., 1992).

A deterministic eddy-resolving (∆x = 5 km) model is first simulated and referred to as the refer-
ences (REF ). It is then compared to several coarse-resolution (∆x = 40 km, 80 km, 120 km) models:
the benchmark deterministic model (DET ), two stochastic models with a stationary EOF-based noise
(STO-EOF ) and a non-stationary projection noise (STO-EOF-P). The eddy-resolving model starts
from a quiescent initial condition, whereas spin-up conditions downsampled from REF (after 90-years
integration) are adopted for all the coarse-resolution models. The common parameters for all the
simulations are listed in Table 1, whereas resolution dependent parameters are presented separately
in Table 2.
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Parameters Value Description

X × Y (3840× 4800) km Domain size
Hk (350, 750, 2900) m Mean layer thickness
ρ 1000 kg m3 Density
g′k (0.025, 0.0125) m s−2 Reduced gravity
δek 2 m Bottom Ekman layer thickness
τ0 2× 10−5 m2 s−2 Wind stress magnitude
αbc 0.2 Mixed boundary condition coefficient
f0 9.375× 10−5 s−1 Mean Coriolis parameter
β 1.754× 10−11 (m s)−1 Coriolis parameter gradient
Ld (39, 22) km Baroclinic Rossby radii

Table 1: Common parameters for all the models.

∆x (km) ∆t (s) A4 (m4 s−1)

5 600 2× 109

40 1200 5× 1011

80 1440 5× 1012

120 1800 1× 1013

Table 2: Values of grid varying parameters.

Snapshots of the relative vorticity on the two top layers are shown in Figure 2. The dynamics
of REF model is mainly characterized by the energetic eastward jet with adjacent recirculations
and by the fast westward Rossby waves. The former results from the most active mesoscale eddies
effect through baroclinic instability. However, this instability cannot be resolved once the horizontal
resolution is similar or greater than the baroclinic deformation radius maximum (39 km here). For
instance, without any eddy parameterization, the DET (40 km) simulation only generates a smooth
field due to an over-dissipation effect.

To calibrate the structure of the unresolved flow (noise and Girsanov drift), the REF data are
sampled at each day during the first ten years after the spin-up, this is followed by the procedure
presented in Section 3.2 with a fixed 200 km wide Gaussian filter. Considering the computational
cost, we employ only 50 EOFs to build the noises (3.4a) for the stochastic simulations at different
resolutions. However, the eigenvalues of these truncated EOFs are amplified in order to capture 95
% energy of the full set of modes. An example of the first EOF (

√
λ1ϕ1) and the noise variance (a

defined in (3.4b)) is illustrated by Figure 3. The noise structure is mainly characterized by the most
energetic fluctuations in the jet region.

Including the additional advection of PV by the calibrated unresolved flow component, both STO-
EOF and STO-EOF-P models are able to reproduce the eastward jet on the coarse mesh, and the
latter seems to enhance fluctuations everywhere. For instance, such result is illustrated at a resolution
of 40 km by Figure 2. The ability of these coarse models to reproduce the statistical properties of the
REF model will be diagnosed and analyzed more precisely in the next section.
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Figure 2: Snapshots of relative vorticity (divided by f0) for the two upper layers (by rows) provided by different
simulations (by columns) after 60-years integration.
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Figure 3: Illustration for noise’s first EOF (zonal and meridional components in first two sub-figures) and for noise’s
variance (diagonal components in last two sub-figures) at resolution 40 km.
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Figure 4: Comparison of time-mean contour of barotropic (top row) and first baroclinic (bottom row) streamfunctions
for different models (by columns). Note that 1 Sv = 106 m3/s.

4.2 Statistical diagnostics

To investigate the prediction of the long-term statistics, we sample the data (streamfunction) of each
run at 15-day intervals over the 120 years (after the spin-up) and compute the statistics over the last
100 years.

We first compare the temporal mean of the modal streamfunctions for both coarse models to that
subsampled (in space) of the eddy-resolving model. From Figure 4, we observe that both barotropic
and baroclinic modal mean of the REF characterize the eastwards jet, and the two stochastic models
(at 40 km) enable to reproduce qualitatively the local structures of both vertical modes predicted by
the REF. Conversely, the DET model can only capture the symmetric double-gyre structure.

To quantify the models’ statistics at different resolutions, we then employ the spatial root-mean-
square error (RMSE) of the temporal mean and the standard deviation (std) between each coarse
model and the subsampled REF one. To assess in a single measure the mean and the variance
reconstruction, we adopt the Gaussian relative entropy (GRE) proposed by Grooms et al. (2015) that
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Figure 5: Comparison of variability measures (by sub-figures) for different coarse models (by colors and groups in each
sub-figure). Note that the y-axis of the last sub-figure is in log-scale due to poor variability of the DET models.
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Figure 6: Temporal mean of vertically integrated KE spectra for different models (by colors) at different resolutions (by
sub-figures).

is defined as

GRE =
1

|D|

∫
D

1

2

((
ψM

t − ψR
t)2

σ2[ψM]
+
σ2[ψR]

σ2[ψM]
− 1− log

(σ2[ψR]

σ2[ψM]

))
dx, (4.1)

where σ denotes the std, ψM (resp. ψR) stands for the streamfunction of the coarse model (resp. for
that subsampled from the REF ).

These three global criterion are computed for all the coarse models at different resolutions and the
results are summarized in Figure 5. For all the resolutions tested the two random models have lower
errors than the DET model both in terms of mean and std. In addition, the STO-EOF-P models
enable to reduce the RMSE of the std and the GRE, which means an improvement on the prediction
of variability.

We investigate subsequently the models’ variability based on the energy analysis. The time-
averaged KE spectra provided by different models are compared in Figure 6. Unsurprisingly, compared
to the REF, the DET coarse models produce a severe lack of resolved KE (Arbic et al., 2013; Kjellsson
and Zanna, 2017) due to the excessive dissipation without any eddy parameterization. Both stochastic
models bring more energy over all the wavenumbers, particularly at large scales. Moreover, when the
resolution increases (from 120 km to 40 km), their spectra slopes in the inertial range become more
and more closer to that of the REF model.

We compare finally the energy decomposition as described in Section 2 for all the models. However,
we focus only on a single realization here and the eddy-mean decomposition of u and b is simply build
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Figure 7: Comparison of the global MKE, EKE, MPE and EPE (by sub-figures) for different coarse models (by colors
and groups in each sub-figure). The corresponding values of the REF model: MKE = 0.23 J/m3, EKE = 0.62 J/m3,
MPE = 4.01 J/m3 and EPE = 0.34 J/m3.

from a global time-average. From Figure 7, we observe that both random models have higher MKE
and MPE than the DET model. In particular, at resolution 40 km, they are almost at the same
order as that of the REF model. Compared to the STO-EOF models, STO-EOF-P models produce
globally higher EKE and EPE at all the different resolutions. However, they remain much lower than
that of the REF ones.

Furthermore, the horizontal density of the EKE and EPE provided by different models are com-
pared in Figure 8. It shows that the STO-EOF-P model improves locally the eddy energy almost
everywhere except in the jet region. A more precise parameterization of the unresolved flow is re-
quired to explore in future works to improve locally the energy transfers.

In summary, the diagnostic results of this section demonstrate that including the unresolved flow
structure inferred from the data into the proposed random models enable to reproduce on the coarse
mesh the mean flow of the eddy-resolving simulation. In addition, as performed here through a
projection onto the iso-surfaces of vertical stratification, providing an adequate dynamics for the
unresolved flow structure is of crucial importance to increase the variability of the coarse models.

4.3 Including mixed layer dynamics

In this section, we follow further the Q-GCM formulation (Hogg et al., 2004) to embed a mixed layer
(of thickness Hm = 100 m) in the upper QG layer. This brings an additional diabatic forcing into
the PV equation (3.2b) due to the Ekman pumping of sea surface temperature (SST). The vertical
velocity across the first ocean interface is e1 = −1/2 (∆mT/∆1T ) e0, where ∆mT = Tm − T1 (resp.
∆1T = T1 − T2) denotes the temperature difference across the bottom boundary of the mixed layer
(resp. of the upper QG layer). Here, the QG potential temperature are fixed to be (287, 282, 276) K.

The additional forcing e1 evolves in time as the SST does. In the present work, we only considered
the geostrophic component of the unresolved noise in the mixed layer. In this case, the stochastic
evolution of SST reads

D̃m
t Tm + Tm∇ · um dt =

(
(K2∇2 −K4∇4)Tm +

Tm + T1
2Hm

e0

)
dt, (4.2)

where um = ∇⊥ψ1−τ⊥/(f0Hm) is the divergent mixed layer velocity, D̃m
t is the mixed layer stochastic
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Figure 8: Comparison of the vertically-integrated EKE density (top row) and EPE density (bottom row) for different
models (by columns). Note that the colorbar of coarse-resolution (40 km) models is different than that of the REF model
(5 km).
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Figure 9: Snapshots of relative vorticity (divided by f0) for the two upper layers (by rows) provided by different
simulations (by columns) after 60-years integration.

transport operator under probability measure P̃ (associated to um), K2 = 100 m2/s and K4 = A4 (see
values in Table 2). Note that this shallow-water type equation is derived by vertical integration of a
3D heat equation. Equation (4.2) is numerically discretized by the central winding scheme (in space)
and the stochastic Leapfroq scheme (in time).

As shown in Figure 9, the inclusion of the additional forcing coming from the SST evolution
generates more small-scale eddies almost everywhere in REF. The improvements of the two stochastic
models observed in the previous test case still hold here, namely the zonal jet is reproduced and
perturbed. In addition, the variability of the gyres seems also to be enhanced in this case.

Subsequently, an analogue procedure is performed for all the coarse-resolution models in this
configuration. For instance, the results of the time-mean streamfunctions at 40 km are provided in
Figures 10 and a conclusion consistent with the previous test case is recovered.

As illustrated in Figure 11, the STO-EOF-P models, with a noise along the iso-surfaces of vertical
stratification, involves an additional SST random forcing that brings an higher KE backscattering
than the stationary noise model at both resolutions. This seems to highlight the importance of the
non-stationary characteristic of the noise brought by the projection.

19



0 500 1000 1500 2000 2500 3000 3500
x (km)

0
10

00
20

00
30

00
40

00
y 

(k
m

)

REF (5 km)

25.0 12.5 0.0 12.5 25.0
(Sv/km)

0 500 1000 1500 2000 2500 3000 3500
x (km)

0
10

00
20

00
30

00
40

00
y 

(k
m

)

DET (40 km)

25.0 12.5 0.0 12.5 25.0
(Sv/km)

0 500 1000 1500 2000 2500 3000 3500
x (km)

0
10

00
20

00
30

00
40

00
y 

(k
m

)

STO-EOF (40 km)

25.0 12.5 0.0 12.5 25.0
(Sv/km)

0 500 1000 1500 2000 2500 3000 3500
x (km)

0
10

00
20

00
30

00
40

00
y 

(k
m

)

STO-EOF-P (40 km)

25.0 12.5 0.0 12.5 25.0
(Sv/km)

0 500 1000 1500 2000 2500 3000 3500
x (km)

0
10

00
20

00
30

00
40

00
y 

(k
m

)

REF (5 km)

50 25 0 25 50
(Sv/km)

0 500 1000 1500 2000 2500 3000 3500
x (km)

0
10

00
20

00
30

00
40

00
y 

(k
m

)

DET (40 km)

50 25 0 25 50
(Sv/km)

0 500 1000 1500 2000 2500 3000 3500
x (km)

0
10

00
20

00
30

00
40

00
y 

(k
m

)

STO-EOF (40 km)

50 25 0 25 50
(Sv/km)

0 500 1000 1500 2000 2500 3000 3500
x (km)

0
10

00
20

00
30

00
40

00
y 

(k
m

)

STO-EOF-P (40 km)

50 25 0 25 50
(Sv/km)

Figure 10: Comparison of time-mean contour of barotropic (top row) and first baroclinic (bottom row) streamfunctions
for different models (by columns).
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Figure 11: Temporal mean of vertically integrated KE spectra for different models (by colors) at different resolutions
(by sub-figures).
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Figure 12: Comparison of variability measures (by sub-figures) for different coarse models (by colors and groups in each
sub-figure). The EKE of the REF model is 8.26 J/m3.

As shown in Figure 12, the STO-EOF-P models provide the best results for all the metrics of
variability at different resolutions. The local structures of the eddy energy are also better than those
recovered in the other coarse models, which is demonstrated by Figure 13.

5 Conclusions

A stochastic parameterization of the unresolved eddy field is successfully implemented in a well-known
QG model. The empirical spatial correlation of the small-scale noise has been first estimated from
eddy-resolving simulation data. An additional correction drift that is fully justified in the stochastic
setting considered and ensuing from a change of probability measure has been introduced. This non
intuitive term seems quite important in the reproduction of the eastward jet within the wind-driven
double-gyre circulation. In addition, a projection method has been proposed to constrain the noise
living along the iso-surfaces of the vertical stratification. The resulting non-stationary noise model
enables us to improve the intrinsic variability of the large-scale resolved flow. This improvement
has been demonstrated through some statistical criterion. We have highlighted that both stationary
and non-stationary noise models provide improvements at ocean climatic scale in terms of variability
metrics, compared to a corresponding deterministic coarse model. At that resolution, the effects of
the mesoscale eddies within the ocean basin at midlatitude (of deformation radius around 30 ∼ 40
km) are better represented by the random models, even though the baroclinic instability can not be
resolved.

The numerical results presented in this work encourage us to implement the proposed random
model on more complex and realistic flow configurations. A following study for a fully coupled model
of the ocean and atmosphere (Hogg et al., 2003) is already in progress. Including random forcing into
the bottom layer of the atmosphere leads to an unsteady wind stress and to a random diabatic forcing
due to Ekman pumping of the sea surface temperature (SST) in both atmospheric and oceanic mixed
layers. Thus, it will be interesting to verify the response of the ocean dynamics in terms of variability
and energy to these highly variable forcing, and particularly to compare the results to a stationary
wind forced ocean dynamics as well as to an unforced dynamics. The stochastic primitive Boussinesq
models (2.9) could then be tested. However, in that case the random pressure term in the LU model
has to be a priori modeled or computed based on proper scaling of hydrostasy.

Another possible research axis focuses on new parameterization methods for the unresolved flow

21



500 1000 1500 2000 2500 3000 3500
x (km)

10
00

20
00

30
00

40
00

y 
(k

m
)

REF (5 km)

0.0 10.0 20.0 30.0 40.0 50.0
(J/m3)

500 1000 1500 2000 2500 3000 3500
x (km)

10
00

20
00

30
00

40
00

y 
(k

m
)

DET (40 km)

0.0 5.0 10.0 15.0 20.0
(J/m3)

500 1000 1500 2000 2500 3000 3500
x (km)

10
00

20
00

30
00

40
00

y 
(k

m
)

STO-EOF (40 km)

0.0 5.0 10.0 15.0 20.0
(J/m3)

500 1000 1500 2000 2500 3000 3500
x (km)

10
00

20
00

30
00

40
00

y 
(k

m
)

STO-EOF-P (40 km)

0.0 5.0 10.0 15.0 20.0
(J/m3)

0 500 1000 1500 2000 2500 3000 3500
x (km)

0
10

00
20

00
30

00
40

00
y 

(k
m

)

REF (5 km)

0.0 10.0 20.0 30.0 40.0 50.0
(J/m3)

0 500 1000 1500 2000 2500 3000 3500
x (km)

0
10

00
20

00
30

00
40

00
y 

(k
m

)

DET (40 km)

0.0 5.0 10.0 15.0 20.0
(J/m3)

0 500 1000 1500 2000 2500 3000 3500
x (km)

0
10

00
20

00
30

00
40

00
y 

(k
m

)

STO-EOF (40 km)

0.0 5.0 10.0 15.0 20.0
(J/m3)

0 500 1000 1500 2000 2500 3000 3500
x (km)

0
10

00
20

00
30

00
40

00
y 

(k
m

)

STO-EOF-P (40 km)

0.0 5.0 10.0 15.0 20.0
(J/m3)

Figure 13: Comparison of the vertically-integrated EKE density (top row) and EPE density (bottom row) for different
models (by columns).
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component. On the one hand, techniques relying on the dynamic mode decomposition (Schmid,
2010; Gugole and Franzke, 2020), or on the spectral analysis of the Koopman operator (Mezić, 2013;
Giannakis, 2019) could be explored in practice to estimate the dynamics of the noise and the Girsanov
drift from high-resolution data. The objective will consist in evaluating their ability to characterize
the long-terms impacts of some small-scale events.

Preliminary very encouraging results for the same stochastic QG model as the one studied in the
present work can be found in Li et al. (2022). On the other hand, it is also interesting to design
adequate noises that provide efficient energy conversion (Bachman, 2019; Jansen et al., 2019) based
on the analysis presented in this work. The objective is to release the APE through the noise quadratic
variation (2.10b) and to backscatter the unresolved KE to the resolved KE through the advection of
momentum by the noise (2.10a).

Data Availability Statement

The source codes to reproduce the results are available at https://github.com/matlong/qgcm_lu, all
the coarse-resolution data can be found in https://doi.org/10.5281/zenodo.6818751, and the high-
resolution data can be either reproduced by the restart files or accessed by contacting the corresponding
author.
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Appendix A. Conservation of path-wise energy

In this section, we show that the stochastic Boussinesq QG system (2.9), without considering the beta
effect on the noise, preserves along time the global energy of the resolved geostrophic flow component
for each realization. To this end, we first recall the Itô’s integration-by-part formula Kunita (1997):
let dtX = F dt + G dBt and dtY = F ′ dt + G′ dBt be two S(P)DEs driven by a Brownian motion B
satisfying E[GdBt] = E[G′dBt] = 0, then

dt(XY ) = XdtY + Y dtX + d⟨X,Y ⟩t
= XdtY + Y dtX +GG′ dt, (5.1)

where ⟨X,Y ⟩t
P
= limn→+∞

∑pn
i=1

(
Xn

ti − Xn
ti−1

)(
Y n
ti − Y n

ti−1

)
stands for the joint quadratic variation

between the processes X and Y with 0 = tn0 < tn1 < · · · < tnpn = t a partition of the interval [0, t],
and the limit, if it exists, is defined in the sense of convergence in probability. In particular, we have
⟨B,B⟩t = t.

We now expand equation (2.10a) for the resolved geostrophic velocity u = (u, v)T and equation
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(2.10b) for the resolved buoyancy b,

dtu = −(u⋆ dt+ σdBt) · ∇u+
(1
2
∇ · (a∇u) + f0va + βyv − ∂xpa

)
dt (5.2a)

dtv = −(u⋆ dt+ σdBt) · ∇v +
(1
2
∇ · (a∇v)− f0ua − βyu− ∂ypa

)
dt (5.2b)

dtb = −(u⋆ dt+ σdBt) · ∇b+
1

2
∇ · (a∇b) dt−N2wa dt, (5.2c)

together with the geostrophic equilibrium (2.10e), the hydrostatic balances (2.10f) and the continuity
equation (2.10c). Note that adt corresponds to the quadratic variation of the noise σdBt, which
is a defined in (2.5). Applying equation (5.1) for the density of APE, b2/(2N2), and integrating
subsequently over the ocean domain D = A× [0,−H], we have∫

D
dt

( b2

2N2

)
dx =

∫
D

1

N2

(
bdtb+

1

2
d⟨b, b⟩t

)
dx

=

∫
D

1

N2

(
− b(u⋆ dt+ σdBt) · ∇b+

1

2
b∇ · (a∇b) dt

−N2wabdt+
1

2
(∇b) · a∇bdt

)
dx

= −
∫
D
∇ ·

(
(u⋆ dt+ σdBt)

b2

2N2

)
dx−

∫
D
wabdxdt

= −
∫
D
wabdx dt, (5.3)

where the third equality results from the geostrophic balances (2.10e) and the last equality comes
from the divergence theorem with ideal boundary conditions, u · n |∂A = σdBt · n |∂A = 0 (which
leads to u⋆ ·n |∂A = 0 from equations (2.7) and (2.5)). Similarly to the previous calculation, one can
show that ∫

D
dt

(u2
2

)
dx =

∫
D
u(f0va + βyv − ∂xpa) dx dt, (5.4a)∫

D
dt

(v2
2

)
dx = −

∫
D
v(f0ua + βyu+ ∂ypa) dx dt. (5.4b)

Summing these two equations, we deduce the evolution of KE:∫
D
dt

( |u|2
2

)
dx = −

∫
D

(
(∇⊥p) · u⊥

a +∇ · (upa)
)
dx dt

= −
∫
D

(
∇⊥ · (pu⊥

a )− p∇ · ua

)
dx dt

= −
∫
A

∫ 0

−H
p∂zwa dz dAdt

= −
∫
A

([
pwa

]0
−H

−
∫ 0

−H
wa∂zp dz

)
dAdt

=

∫
D
wabdx dt, (5.5)
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where the first equality comes from the geostrophic balances (2.10e), the third equality results from
both the Stokes theorem with ideal boundary condition of ua and the continuity equation (2.10c), the
fourth equality derives from the vertical integration-by-parts formula, and the last equality is based
on both the vertical boundary conditions, wa(z = 0) = wa(z = −H) = 0 and the hydrostatic balances
(2.10f). Finally, by summing equations (5.5) and (5.3), one show that the stochastic system (5.2)
conserves the path-wise total energy of the resolved geostrophic flow component, namely

dt

∫
D

1

2

(
|u|2 + b2

N2

)
dx =

∫
D
dt

( |u|2
2

)
dx+

∫
D
dt

( b2

2N2

)
dx = 0. (5.6)

Since this conservation property is path-wise, it holds also for their ensemble-mean.

Appendix B. Conversion of ensemble energies

In this section, we show briefly the conversions between the ensemble-variance and the energy of the
ensemble-mean. To that end, we first decompose each prognostic variable Θ (could be u, v, b or a)
of (5.2) into a mean component Θ := E[Θ] and an eddy component Θ′ := Θ − E[Θ]. The other
time-smooth components F dt apart from the geostrophic transport operator are decomposed in the
same way. For instance, F = −N2(wa +w′

a) in the buoyancy equation. However, the noise is only an
eddy component since E[σdBt] = 0. Substituting such decomposition into equations (5.2) and taking
subsequently the ensemble-mean of the expanded equation, we obtain

∂tΘ = F − u⋆ · ∇Θ+
1

2
∇ ·

(
a∇Θ

)
− (u⋆)′ · ∇Θ′ +

1

2
∇ · (a′∇Θ′), (5.7a)

where the second and the third terms on the RHS describe the mean-mean interactions, whereas the
last two terms represent the effect of eddy-eddy interactions on the ensemble-mean component. Under
natural boundary conditions, on can easily show the time evolution of the global energy for Θ:

d

dt

∫
D

Θ
2

2
dx =

∫
D
F Θdx+

∫
D
(u⋆)′Θ′ · ∇Θdx

− 1

2

∫
D

(
∇Θ

)
·
(
a∇Θ+ a′∇Θ′

)
dx. (5.7b)

Applying this result for u and v (resp. for b) together with (5.5) (resp. with (5.3)), one can deduce
the evolution of the MKE (resp. MPE), and the conversion terms are summarized in the diagram in
Section 2.4.

Subtracting next (5.7a) from (5.2), we deduce the evolution of Θ′:

dtΘ
′ =−

(
u⋆ · ∇Θ′ − 1

2
∇ ·

(
a∇Θ′))dt

−
(
(u⋆)′ dt+ σdBt

)
· ∇Θ− 1

2
∇ ·

(
a′∇Θ

)
dt+ F ′ dt

−
(
(u⋆)′ dt+ σdBt

)
· ∇Θ′ − 1

2
∇ ·

(
a′∇Θ′) dt

+
(
(u⋆)′ · ∇Θ′ − 1

2
∇ · (a′∇Θ′)

)
dt, (5.8a)
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where the first two lines describe the eddy-mean interactions, whereas the last two lines represent the
effect of eddy-eddy interactions on the ensemble-eddy component. To evaluate the ensemble-mean of
the energy for Θ′, the Itô’s integration-by-part formula (5.1) is required again. In this case, one can
first show that the mean of the joint quadratic variation process for Θ′ reads

d⟨Θ′,Θ′⟩t = (∇Θ′) · (a∇Θ′) + (∇Θ′) · (a′∇Θ′) + (∇Θ′) · (a′∇Θ)

+ (∇Θ) · (a′∇Θ′) + (∇Θ) · (a∇Θ). (5.8b)

Subsequently, we can deduce the evolution of the global variance for Θ, namely

d

dt

∫
D

(Θ′)2

2
dx =

∫
D
F ′Θ′ dx−

∫
D
(u⋆)′Θ′ · ∇Θdx

+
1

2

∫
D
∇(Θ) · (a∇Θ+ a′∇Θ′) dx. (5.8c)

Applying similarly this result for u and v (resp. for b), we can deduce the evolution of the EKE (resp.
EPE), and the results are shown in the diagram in Section 2.4.
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