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Abstract. The present paper addresses the convergence of a first-order in time incremental projection scheme for the time-
dependent incompressible Navier–Stokes equations to a weak solution. We prove the convergence of the approximate so-
lutions obtained by a semi-discrete scheme and a fully discrete scheme using a staggered finite volume scheme on non
uniform rectangular meshes. Some first a priori estimates on the approximate solutions yield their existence. Compactness
arguments, relying on these estimates, together with some estimates on the translates of the discrete time derivatives, are
then developed to obtain convergence (up to the extraction of a subsequence), when the time step tends to zero in the
semi-discrete scheme and when the space and time steps tend to zero in the fully discrete scheme; the approximate solutions
are thus shown to converge to a limit function which is then shown to be a weak solution to the continuous problem by
passing to the limit in these schemes.
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1. Introduction

The incompressible Navier–Stokes equations for a homogeneous fluid read:

∂tu + (u · ∇)u − Δu + ∇p = f in (0, T ) × Ω, (1a)

divu = 0 in (0, T ) × Ω, (1b)

where the density and the viscosity are set to one for the sake of simplicity, and where

T > 0, and Ω is a connected, open and bounded subset of R
d,

d ∈ {2, 3}, with a Lipschitz boundary ∂Ω.
(2)

The variables u and p are respectively the velocity and the pressure in the flow, and Eqs. (1a) and
(1b) respectively enforce the momentum conservation and the incompressibility of the flow. This system
is supplemented with the boundary condition

u = 0 on (0, T ) × ∂Ω, (3)

and the initial condition

u(0) = u0 in Ω. (4)

The function u0 is the initial datum for the velocity and the function f is the source term. Throughout
the paper, we shall assume that

f ∈ L2((0, T ) × Ω)d and u0 ∈ E(Ω), (5)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00021-023-00810-x&domain=pdf
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where E(Ω) is the subset of H1
0 (Ω)d of divergence-free functions, defined by

E(Ω) = {u ∈ H1
0 (Ω)d such that divu = 0}. (6)

Let us also introduce the subset of L2(Ω)d of divergence-free functions

V (Ω) = {u ∈ L2(Ω)d such that
∫

Ω

u · ∇ξ dx = 0 for any ξ ∈ H1(Ω)}. (7)

Note that in fact, the initial condition is assumed to be in E(Ω) for the sake of simplicity. It could be
considered in L2(Ω)d only by projecting it on V (Ω), see Remark 2.2.

Let us define the weak solutions of Problem (1)–(4) in the sense of Leray [17].

Definition 1.1. (Weak solution) Under the assumptions (2) and (5), a function u ∈ L2(0, T ;E(Ω)) ∩
L∞(0, T ;L2(Ω)d) is a weak solution of the problem (1)–(4) if

−
∫ T

0

∫
Ω

u · ∂tv dx dt +
∫ T

0

∫
Ω

(u · ∇)u · v dx dt +
∫ T

0

∫
Ω

∇u : ∇v dx dt

=
∫

Ω

u0 · v(0, ·) dx +
∫ T

0

∫
Ω

f · v dx dt (8)

for any v in V(Ω) =
{
w ∈ C∞

c (Ω × [0, T ))d, divw = 0 in Ω × (0, T )
}
.

The first projection method to solve the system (1) was designed over 50 years ago, and is known as
the Chorin-Temam algorithm [4,23,24]. It consists in a prediction step based on a linearized momentum
equation without the pressure gradient, and a pressure correction step that enforces the divergence-free
constraint. This method and its variants are now often referred to (following [13]) as non incremental
projection schemes, in opposition to the incremental projection schemes that were obtained by adding
the old pressure gradient in the prediction step (see [12] for a first-order in time scheme and [25] for a
second-order in time scheme). These latter schemes are indeed incremental in the sense that the correction
step may now be seen as solving an equation on the time increment of the pressure. They seem to be
much more efficient from a computational point of view [13] and have been the object of several error
analyses, under some regularity assumptions on the solution of the continuous problem and in the semi
discrete setting, see [13] and references therein.

The non incremental schemes have been the object of some analyses in the fully discrete setting. In [1]
some error estimates are derived for a non incremental scheme with a discretization by the finite element,
under some regularity assumptions on the exact solution. In [15], the approximate solutions of a fully
discrete non incremental scheme with a uniform staggered discretization are shown to converge to a weak
solution under the condition that h ≤ δt3−α where h and δt are respectively the mesh size and the time
step and 0 < α ≤ 2.

However, to our knowledge, up to now, no proof of convergence exists for the fully discrete incremental
projection schemes, even though they are the most used in practice. The purpose of the present work
is therefore to fill this gap and to show the convergence of the incremental projection method with a
discretization by a staggered finite volume scheme based on a (non uniform) Marker-And-Cell (MAC)
grid, without any regularity assumption on the exact solution.

The Marker-And-Cell scheme, introduced in the middle of the sixties (see [14]), is one of the most
popular methods (see e.g. [19] and [26]) for the approximation of the Navier–Stokes equations in the
engineering framework, because of its simplicity, its efficiency and its remarkable mathematical properties.
Although originally presented as a finite difference scheme on uniform meshes, the MAC scheme used
in this paper is in fact a finite volume scheme and as such can be used on non uniform meshes. The
convergence analysis of the staggered finite volume scheme on the MAC mesh using a fully implicit time
scheme may be found in [11], and we shall use several tools developed therein. We also refer to this latter
paper for some more references on the MAC scheme.

The paper is organized as follows. Section 2 deals with the convergence analysis for the semi-discrete
projection algorithm. The fully discrete scheme is analysed in Sect. 3; we only give the main ingredients
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of the staggered space discretization that we use, and which is often referred to as the MAC scheme. To
avoid a lengthy description, the precise definitions of the now classical discrete MAC operators are to be
found in [11]. In the appendix, we give some useful technical lemmas. Before starting the analysis of the
semi-discrete and fully discrete schemes, we wish to recall, for the sake of clarity, that:

• In a Banach space E equipped with a norm ‖ · ‖E , a sequence (un)n∈N ⊂ E is said to converge
to u ∈ E if ‖un − u‖E → 0 as n → +∞, while it is said to weakly converge to u ∈ E if for any
continuous linear form T ∈ E′, one has T (un) → T (u) as n → +∞.

• A sequence (Tn)n∈N ⊂ E′ is said to �-weakly converge to T ∈ E′ if for any u ∈ E, one has
Tn(u) → T (u) as n → +∞.

• If E = Lp(Ω), where 1 ≤ p < +∞ and Ω is an open set of Rd, the space E′ is identified to Lq(Ω),
q = p/(p − 1).

• For T > 0 and E = L1((0, T ), L2(Ω)), the space L∞((0, T ), L2(Ω)) is identified with E′.

2. Analysis of the Time Semi-Discrete Incremental Projection Scheme

We consider a partition of the time interval [0, T ], which we suppose uniform to alleviate the notations,
so that the assumptions read:

N ≥ 1, δtN =
T

N
, tnN = n δtN for n ∈ �0, N�. (9)

2.1. The Time Semi-Discrete Scheme

Under the assumptions (9), the usual first-order time semi-discrete incremental projection scheme (see
[21]) reads:

Initialization:

Let u0
N = u0 ∈ E(Ω) and p0

N = 0. (10a)
Solve for 0 ≤ n ≤ N − 1 :
Prediction step:
1

δtN
(ũn+1

N − un
N ) + (un

N · ∇)ũn+1
N + ∇pn

N − Δũn+1
N = fn+1

N in Ω, (10b)

ũn+1
N = 0 on ∂Ω. (10c)

Correction step:
1

δtN
(un+1

N − ũn+1
N ) + ∇(pn+1

N − pn
N ) = 0 in Ω, (10d)

divun+1
N = 0 in Ω and un+1

N · n = 0 on ∂Ω, (10e)∫
Ω

pn+1
N dx = 0, (10f)

where n stands for the outward normal unit vector to the boundary ∂Ω and fn+1
N ∈ L2(Ω)d is defined

by

fn+1
N (x) =

1
δtN

∫ tn+1

tn

f(t,x) dt, for a.e. x ∈ Ω.

Let us briefly account for the existence of a solution at each step of this algorithm.
noindent Prediction Step—A weak form of Eqs. (10b)–(10c) reads

Find ũn+1
N ∈ H1

0 (Ω)d such that for any ϕ ∈ H1
0 (Ω)d ∩ L∞(Ω)d,
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1
δtN

∫
Ω

ũn+1
N · ϕ dx +

∫
Ω

(un
N · ∇)ũn+1

N · ϕ dx +
∫

Ω

∇ũn+1
N : ∇ϕ dx

=
1

δtN

∫
Ω

un
N · ϕ dx +

∫
Ω

pn
Ndivϕ dx +

∫
Ω

fn+1
N · ϕ dx. (11)

The correction step (see below) enforces that, at the previous iteration, un
N ∈ V (Ω), where V (Ω) is the

space of L2-divergence-free functions defined by (7) and pn
N ∈ H1(Ω) ∩ L2

0(Ω), where L2
0(Ω) is the set of

zero mean value L2 functions; the existence and the uniqueness of ũn+1
N is then a consequence of Lemma

A.1.
Correction Step—Applying the divergence operator to (10d), a weak form of Eqs. (10d)–(10e) reads

Find pn+1
N ∈ H1(Ω) such that ψn+1

N = pn+1
N − pn

N ∈ H1(Ω) satisfies : (12a)∫
Ω

∇ψn+1
N · ∇ϕ dx =

1
δtN

∫
Ω

ũn+1
N · ∇ϕ dx, for any ϕ ∈ H1(Ω), (12b)

Set un+1
N = ũn+1

N − δtN∇ψn+1
N . (12c)

If (pn+1
N ,un+1

N ) satisfies (12), then
∫
Ω

un+1
N · ∇ϕ dx = 0 for any ϕ ∈ H1(Ω), so that un+1

N ∈ V (Ω). The
existence of (un+1

N , pn+1
N ) ∈ V (Ω) × H1(Ω) satisfying (12) is then a consequence of the decomposition

result of Lemma A.2 given in the appendix. Indeed, this correction step is the decomposition stated in
Lemma A.2 applied to the predicted velocity ũn+1. Note that pn+1

N is uniquely defined thanks to (10f).
We may thus state the following existence result and define the approximate solutions obtained by

the projection scheme (10).

Definition 2.1 (Approximate solutions, semi-discrete case). Under the assumptions (2),(5) and (9). There
exists a unique (ũn

N ,un
N , pn

N )n∈�1,N� ⊂ H1
0 (Ω)d × V (Ω) × H1(Ω) ∩ L2

0(Ω) satisfying (10). We then define
the functions uN : (0, T ) → V (Ω) and ũN : (0, T ) → H1

0 (Ω)d by

uN (t) =
N−1∑
n=0

1(tn
N ,tn+1

N ](t)u
n
N , ũN (t) =

N−1∑
n=0

1(tn
N ,tn+1

N ](t)ũ
n+1
N , (13)

where (ũn
N )n∈�1,N� and (un

N )n∈�1,N� are the solution to (10), where 1A denotes the indicator function of
a given set A.

Remark 2.1. (On the boundary conditions) The original homogeneous Dirichlet boundary conditions (3)
of the strong formulation (1) is imposed on the weak solution through the functional space H1

0 (Ω)d.
Note that this condition is only imposed on the predicted velocity in the algorithm (10). Indeed, the
corrected velocity does not satisfy the full Dirichlet condition (3) but only the no slip condition imposed
by (10e). The compactness of the sequence of predicted velocities (ũN )N≥1 together with the convergence
of (uN − ũN )N≥1 towards zero in L2 as the time step tends to zero will be the mean to prove that the
Dirichlet boundary condition is finally satisfied on the limit of the numerical approximations. Note also
that there is no need for a boundary condition on the pressure in the correction step. In fact, it can be
inferred from (12) that the incremental pressure ψn+1 = pn+1 −pn satisfies a Poisson equation on Ω with
a Neumann boundary condition on the boundary. We refer to [20] for an interesting discussion on these
boundary conditions.

Remark 2.2. (On the initial condition) In fact, the existence of a solution (see Lemma A.1) only requires
the initial velocity u0

N to be in V (Ω), so that the assumption on the initial condition u0 ∈ E(Ω) can
be relaxed to u0 ∈ L2(Ω)d by taking u0 = PV (Ω)u0 as the orthogonal projection of u0 onto the closed
subspace V (Ω) of L2(Ω)d, also known as the Leray projector. In this case, u0

N can be computed as
u0 = u0 − ∇ψ where ψ ∈ H1(Ω) is a solution (unique, up to a constant) of the following problem (see
Lemma A.2)

ψ ∈ H1(Ω),
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∫
Ω

∇ψ · ∇ϕ dx =
∫

Ω

u0 · ∇ϕ dx, for any ϕ ∈ H1(Ω).

Remark 2.3. (A useful identity) The following identity, obtained by summing (10b) at step n and (10d)
at step n − 1, will be used in the proof of convergence.

1
δtN

(ũn+1
N − ũn

N ) + (un
N · ∇)ũn+1

N + ∇(2pn
N − pn−1

N ) − Δũn+1
N

= fn+1
N ,∀n ∈ �1, N − 1�. (15)

Theorem 2.1 (Convergence of the semi-discrete in time projection algorithm). Under the assumptions
(2), (5), (9), let uN and ũN be the solution of the projection algorithm (10) as given in Definition 2.1.
Then there exists ū ∈ L2(0, T ;E(Ω)) ∩ L∞(0, T ;L2(Ω)d) such that up to a subsequence,

• the sequence (ũN )N≥1 converges to ū in L2(0, T ;L2(Ω)d) and weakly in L2(0, T ;H1
0 (Ω)d),

• the sequence (uN )N≥1 converges to ū in L2(0, T ;L2(Ω)d) and �-weakly in L∞(0, T ;L2(Ω)d).

Moreover the function ū is a weak solution to (1) in the sense of Definition 1.1.

Proof. Here are the main steps of the proof; each step is detailed in one of the following paragraphs.

• Step 1: first estimates and weak convergence (detailed in Sect. 2.2). By Lemma 2.2 below, we get
that there exists C1, depending only on |Ω|, ‖u0‖L2(Ω)d and ‖f‖L2((0,T )×Ω)d , such that the sequences
(ũN )N≥1 and (uN )N≥1 defined by (13) satisfy

sup
N≥1

‖ũN‖L2(0,T ;H1
0 (Ω)d) ≤ C1 and sup

N≥1
‖uN‖L∞(0,T ;L2(Ω)d) ≤ C1, (16)

‖uN − ũN‖L2(0,T ;L2(Ω)d) ≤ C1

√
δtN for any N ≥ 1. (17)

Owing to (16), there exist some subsequences, still denoted by (uN )N≥1 and (ũN )N≥1, that converge
respectively �-weakly in L∞(0, T ;L2(Ω)d) and weakly in L2(0, T ;H1

0 (Ω)d). Thanks to (17), the
subsequences (uN )N≥1 and (ũN )N≥1 converge to the same limit ū weakly in L2(0, T ;L2(Ω)d). It
follows that ū ∈ L∞(0, T ;L2(Ω)d) ∩ L2(0, T ;H1

0 (Ω)d); passing to the limit in (10e) then yields that
ū ∈ L∞(0, T ;L2(Ω)d) ∩ L2(0, T ;E(Ω)).

There remains to show that ū is a weak solution in the sense of Definition 1.1 and in particular that
ū satisfies (8). Unfortunately, the weak convergence is not sufficient to pass to the limit in the scheme,
because of the nonlinear convection term. Hence we first need to get some compactness on one of the
subsequences (since, by (17), their difference tends to 0 in the L2 norm).

• Step 2: compactness and convergence in L2 (detailed in Sect. 2.3). This is the tricky part of the proof.
Since the sequence (ũN )N≥1 is bounded in L2(0, T ;H1

0 (Ω)d), some estimates on the discrete time
derivative would be sufficient to obtain the convergence in L2(0, T ;L2(Ω)d) by a Kolmogorov-like
theorem. A difficulty to obtain this estimate arises from the presence of the pressure gradient in Eq.
(10b), which needs to be “killed” by multiplying this latter equation by a divergence-free function.
This function ϕ should also be regular enough so that the nonlinear divergence term makes sense:
hence we choose ϕ ∈ W 1,3

0 (Ω)d such that divϕ = 0, and define the following semi-norm on L2(Ω)d:

|w|∗,1 = sup{
∫

Ω

w · v dx, v ∈ W (Ω), ‖v‖W 1,3
0 (Ω)d ≤ 1}, (18a)

with W (Ω) = {ϕ ∈ W 1,3
0 (Ω)d :

∫
Ω

ϕ · ∇ξ dx = 0,∀ξ ∈ H1(Ω)}. (18b)

Estimates on the L2(| · |∗,1) semi-norm of the time translates of the predicted velocity ũN are
then obtained from the semi-discrete momentum equation (10b): see Lemma 2.3. Note that this
is only an intermediate result; indeed, in order to gain compactness, we need an estimate on the
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time translates of the predicted velocity in the L2(L2) norm. The idea is then to first introduce the
following semi-norm on L2(Ω)d.

|v|∗,0 = sup{
∫

Ω

v · ϕ dx, ϕ ∈ V (Ω), ‖ϕ‖L2(Ω)d = 1} = ‖PV (Ω)v‖L2(Ω)d , (19)

where PV (Ω) is the Leray projector (i.e. the orthogonal projection operator onto the space V (Ω) of
L2 divergence-free functions defined by (7). Then, thanks to a Lions-like lemma (Lemma 2.4 below),
we get that

∀ε > 0, ∃Cε > 0, ∀w ∈ H1
0 (Ω)d, ‖PV (Ω)w‖L2(Ω)d ≤ ε‖w‖H1

0 (Ω)d + Cε|w|∗,1. (20)

In order to show that the L2(L2) norm of the time translates of ũN tends to 0, we remark that if
v ∈ V (Ω), then |v|∗,0 = ||v||L2(Ω)d and conclude thanks to (17), see Lemma 2.5.

• Step 3: convergence towards the weak solution (detailed in Sect. 2.4). Owing to a Kolmogorov-
type theorem (see e.g. [9, Corollary 4.41]), the estimates of steps 1 and 2 yield that there exist
subsequences, still denoted by (uN )N≥1 and (ũN )N≥1, that converge to ū in L2(0, T ;L2(Ω)d).
In Sect. 2.4, we pass to the limit in the scheme to obtain that ū satisfies (8); therefore ū is a weak
solution to (1) in the sense of Definition 1.1.

�

Remark 2.4. (Uniqueness and convergence of the whole sequence) In the case where uniqueness of the
solution is known, the whole sequence converges; this is for instance the case in the two dimensional
setting [17], see e.g. [3, Chapter 5, Sect. 1.3] for more discussions on this subject.

2.2. Proof of Step 1: Energy Estimates and Weak Convergence

Lemma 2.2 (Energy estimates). Under the assumptions (2), (5) and (9), the functions uN and ũN defined
by (13) satisfy (16) and (17), with C1 depending only on |Ω|, ‖u0‖L2(Ω)d and ‖f‖L2((0,T )×Ω)d .

Proof. Noting that ũN satisfies (11) and using Lemma A.1 with α = 1
δtN

, we have for n ∈ �0, N − 1�

1
2δtN

‖ũn+1
N ‖2

L2(Ω)d − 1
2δtN

‖un
N‖2

L2(Ω)d +
1

2δtN
‖ũn+1

N − un
N‖2

L2(Ω)d

+
∫

Ω

∇pn
N · ũn+1

N dx + ‖ũn+1
N ‖2

H1
0 (Ω)d ≤

∫
Ω

fn+1
N · ũn+1

N dx. (21)

Re-ordering relation (10d) such that the terms of n-th and (n+1)-th time level are respectively on the
left and right hand sides, squaring it, integrating over Ω, multiplying by δtN

2 and owing to un+1
N ∈ V (Ω),

we get that for n ∈ �0, N − 1�

1
2δtN

‖un+1
N ‖2

L2(Ω)d +
δtN
2

‖∇pn+1
N ‖2

L2(Ω)d =
1

2δtN
‖ũn+1

N ‖2
L2(Ω)d

+
δtN
2

‖∇pn
N‖2

L2(Ω)d −
∫

Ω

ũn+1
N · ∇pn

N dx.

Summing this latter relation with (21) yields for n ∈ �0, N − 1�

1
2δtN

(
‖un+1

N ‖2
L2(Ω)d − ‖un

N‖2
L2(Ω)d

)
+

δtN
2

(
‖∇pn+1

N ‖2
L2(Ω)d − ‖∇pn

N‖2
L2(Ω)d

)

+
1

2δtN
‖ũn+1

N − un
N‖2

L2(Ω)d + ‖ũn+1
N ‖2

H1
0 (Ω)d ≤

∫
Ω

fn+1
N · ũn+1

N dx.

We then get Relations (16) by summing over the time steps, using the Cauchy–Schwarz and Poincaré
inequalities. �
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2.3. Proof of Step 2: Compactness and L2 Convergence

Following Step 2 of the sketch of proof of Theorem 2.1, we start by the following lemma.

Lemma 2.3 (A first estimate on the time translates). Under the Assumptions (2), (5) and (9), there
exists C2 only depending on |Ω|, ‖u0‖L2(Ω)d and ‖f‖L2((0,T )×Ω)d such that for any N ≥ 1 and for any
τ ∈ (0, T ),

∫ T−τ

0

|ũN (t + τ) − ũN (t)|2∗,1 dt ≤ C2τ(τ + δtN ),

where | · |∗,1 is the semi-norm defined by (18).

Proof. Let N ≥ 2 and τ ∈ (0, T ) (for N = 1 the quantity we have to estimate is zero). Let (χn
N,τ )n∈�1,N−1�

be the family of measurable functions defined for n ∈ �1, N − 1� and t ∈ R by χn
N,τ (t) = 1(tn

N −τ,tn
N ](t),

then

ũN (t + τ) − ũN (t) =
N−1∑
n=1

χn
N,τ (t)(ũn+1

N − ũn
N ),∀t ∈ (0, T − τ). (22)

Owing to (15),

ũN (t + τ) − ũN (t) = δtN

N−1∑
n=1

χn
N,τ (t) Δũn+1

N − δtN

N−1∑
n=1

χn
N,τ (t)(un

N · ∇)ũn+1
N

−δtN

N−1∑
n=1

χn
N,τ (t) ∇(2pn

N − pn−1
N ) + δtN

N−1∑
n=1

χn
N,τ (t)fn+1

N .

Let ϕ ∈ W (Ω) (defined in (18)) and A(t) =
∫

Ω

(
ũN (t + τ) − ũN (t)

) · ϕ dx, so that

A(t) = Ad(t) + Ac(t) + Ap(t) + Af (t) with

Ad(t) = −
N−1∑
n=1

χn
N,τ (t)δtN

∫
Ω

∇ũn+1
N : ∇ϕ dx,

Ac(t) =
N−1∑
n=1

χn
N,τ (t)δtN

∫
Ω

(ũn+1
N · ∇)ϕ · un

N dx,

Ap(t) =
N−1∑
n=1

χn
N,τ (t)δtN

∫
Ω

(2pn
N − pn−1

N )divϕ dx,

Af (t) =
N−1∑
n=1

χn
N,τ (t)δtN

∫
Ω

fn+1
N · ϕ dx.

By Hölder’s inequality,

Ad(t) ≤ |Ω|1/6‖ϕ‖W 1,3
0 (Ω)d

N−1∑
n=1

χn
N,τ (t)δtN‖ũn+1

N ‖H1
0 (Ω)d . (23)

Since H1
0 (Ω) ⊂ L6(Ω), using Hölder’s inequality with exponents 2, 6 and 3, (1

2 + 1
6 + 1

3 = 1), thanks to
the bounds (16) we obtain

Ac(t) ≤
N−1∑
n=1

χn
N,τ (t)δtN‖un

N‖L2(Ω)d‖ũn+1
N ‖L6(Ω)d‖ϕ‖W 1,3

0 (Ω)d
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≤ C1C2,1‖ϕ‖W 1,3
0 (Ω)d

N−1∑
n=1

χn
N,τ (t)δtN‖ũn+1

N ‖H1
0 (Ω)d , (24)

where C2,1 depending only on |Ω| is such that

‖v‖L6(Ω)d ≤ C2,1‖v‖H1
0 (Ω)d , for any v ∈ H1

0 (Ω)d.

Since divϕ = 0, clearly Ap(t) = 0. Next, we note that

Af (t) ≤ C2,2|Ω|1/6‖ϕ‖W 1,3
0 (Ω)d

N−1∑
n=1

χn
N,τ (t)δtN‖fn+1

N ‖L2(Ω)d , (25)

where C2,2 depending only on |Ω| is such that

‖ϕ‖L3(Ω)d ≤ C2,2‖ϕ‖W 1,3
0 (Ω)d , for any ϕ ∈ W 1,3

0 (Ω)d.

Summing Eqs. (23), (24), (25), we obtain

A(t) ≤ C‖ϕ‖W 1,3
0 (Ω)d

N−1∑
n=1

χn
N,τ (t)δtN (‖ũn+1

N ‖H1
0 (Ω)d + ‖fn+1

N ‖L2(Ω)d)

where C = |Ω|1/6 + C2,2|Ω|1/6 + C1C2,1. This implies

|ũN (t + τ) − ũN (t)|∗,1 ≤ C

N−1∑
n=1

χn
N,τ (t)δtN (‖ũn+1

N ‖H1
0 (Ω)d + ‖fn+1

N ‖L2(Ω)d).

Since
∑N−1

n=1 χn
N,τ (t)δtN ≤ τ + δtN for any t ∈ (0, T − τ) we then obtain

|ũ(t + τ) − ũ(t)|2∗,1 ≤ 2C2(τ + δtN )
N−1∑
n=1

χn
N,τ (t)δtN (‖ũn+1

N ‖2
H1

0 (Ω)d + ‖fn+1
N ‖2

L2(Ω)d).

Noting that
∫ T−τ

0
χn

N,τ (t) dt ≤ τ for any n ∈ �1, N − 1� yields
∫ T−τ

0

|ũN (t + τ) − ũN (t)|2∗,1 dt

≤ 2C2(τ + δtN )
N−1∑
n=1

δtN (‖ũn+1
N ‖2

H1
0 (Ω)d + ‖fn+1

N ‖2
L2(Ω)d)

∫ T−τ

0

χn
N,τ (t) dt

≤ 2C2(τ + δtN )τ(‖ũN‖2
L2(0,T :H1

0 (Ω)d) + ‖f‖2
L2((0,T )×Ω)d) ≤ C2τ(τ + δtN ),

which gives the expected result. �

The following lemma is a generalization of a lemma due to J.-L. Lions [18], written for norms on
Banach spaces, to the semi-norms which we use here.

Lemma 2.4 (Lions-like, semi-discrete case). Let Ω be an open bounded connected subset of R
d with a

Lipschitz boundary. Then (20) holds.

Proof. Let ε > 0; let us show by contradiction that there exists Cε > 0 such that for any w ∈ H1
0 (Ω)d

|w|∗,0 = ‖PV (Ω)w‖L2(Ω)d ≤ ε‖w‖H1
0 (Ω)d + Cε|w|∗,1.

Suppose that this is not so, then there exists ε > 0 and a sequence (wn)n≥0 of functions of H1
0 (Ω)d such

that

‖PV (Ω)wn‖L2(Ω)d > ε‖wn‖H1
0 (Ω)d + n|wn|∗,1.

By a homogeneity argument, we may choose ‖PV (Ω)wn‖L2(Ω)d = 1; it then follows from the latter
inequality that the sequence (wn)n≥0 is bounded in H1

0 (Ω)d and that |wn|∗,1 → 0 as n → +∞. This
implies that as n → +∞, up to a subsequence, (wn)n≥0 converges in L2(Ω)d to w ∈ H1

0 (Ω)d. The
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continuity of the Leray projection PV (Ω) implies that PV (Ω)wn → PV (Ω)w in L2(Ω)d and in particular
‖PV (Ω)w‖L2(Ω)d = 1. By definition of |wn|∗,1 we have for any ϕ ∈ W (Ω)∫

Ω

wn · ϕ dx ≤ |wn|∗,1‖ϕ‖W 1,3
0 (Ω)d .

We then obtain ∫
Ω

PV (Ω)wn · ϕ dx =
∫

Ω

wn · ϕ dx ≤ |wn|∗,1‖ϕ‖W 1,3
0 (Ω)d .

Passing to the limit in this inequality yields that∫
Ω

PV (Ω)w · ϕ dx = 0, for any ϕ ∈ W (Ω).

By the density Lemma A.4, we get that PV (Ω)w = 0, which contradicts the fact that ‖PV (Ω)w‖L2(Ω)d = 1.
�

Lemma 2.5 (L2 estimate on the time translates). Under assumptions (2), (5) and (9), the sequence
(ũN )N≥1 satisfies∫ T−τ

0

‖ũN (t + τ) − ũN (t)‖2
L2(Ω)d dt → 0 as τ → 0, uniformly with respect to N, (26)

and is therefore relatively compact in L2(0, T ;L2(Ω)d).

Proof. By the triangle inequality,∫ T−τ

0

‖ũN (t + τ) − ũN (t)‖2
2 dt ≤ 2(AN (τ) + BN (τ)), with

AN (τ) =
∫ T−τ

0

‖(ũN − uN )(t + τ) − (ũN − uN )(t)‖2
2 dt,

BN (τ) =
∫ T−τ

0

‖uN (t + τ) − uN (t)‖2
2 dt.

For any fixed N ∈ N, AN (τ) → 0 as τ → 0, and thanks to (17), this convergence is uniform with respect
to N . Let us then show that BN (τ) → 0 as τ → 0 uniformly with respect to N .

Since uN (t) ∈ V (Ω) for any t ∈ (0, T ) we have for any t ∈ (0, T − τ)

‖uN (t + τ) − uN (t)‖L2(Ω)d = sup
v∈V (Ω)

‖v‖
L2(Ω)d=1

∫
Ω

(uN (t + τ) − uN (t)) · v dx

≤ ‖(uN − ũN )(t + τ) − (uN − ũN )(t)‖L2(Ω)d + sup
v∈V (Ω)

‖v‖
L2(Ω)d=1

∫
Ω

(ũN (t + τ) − ũN (t)) · v dx,

so that

BN (τ) ≤ 2AN (τ) + 2
∫ T−τ

0

|ũN (t + τ) − ũN (t)|2∗,0 dt.

Let ε > 0; thanks to Lemma 2.4, there exists Cε > 0 such that for any N ≥ 1 and for any t ∈ (0, T − τ),

|ũN (t + τ) − ũN (t)|∗,0 ≤ ε‖ũN (t + τ) − ũN (t)‖H1
0 (Ω)d + Cε|ũN (t + τ) − ũN (t)|∗,1,

and in particular for any N ≥ 1 and τ ∈ (0, T ),∫ T−τ

0

|ũN (t + τ) − ũN (t)|2∗,0 dt ≤ 2ε2

∫ T−τ

0

‖ũN (t + τ) − ũN (t)‖2
H1

0 (Ω)d dt

+2C2
ε

∫ T−τ

0

|ũN (t + τ) − ũN (t)|2∗,1 dt.
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Thus, owing to Lemmas 2.2 and 2.3, for any N ≥ 1 and τ ∈ (0, T ),∫ T−τ

0

|ũN (t + τ) − ũN (t)|2∗,0 dt ≤ 8ε2C1 + 2C2
ε

∫ T−τ

0

|ũN (t + τ) − ũN (t)|2∗,1 dt.

Step 2. Thanks to Lemma we have for any N ≥ 1 and τ ∈ (0, T )∫ T−τ

0

|ũN (t + τ) − ũN (t)|2∗,1 dt ≤ C2τ(τ + δtN )

which gives for any N ≥ 1 and τ ∈ (0, T )∫ T−τ

0

|ũN (t + τ) − ũN (t)|2∗,0 dt ≤ 8C2
1ε2 + 2C2

ε C2τ(τ + δtN ),

and therefore, for any N ≥ 1 and τ ∈ (0, T ),

BN (τ) ≤ 2AN (τ) + 16C2
1ε2 + 4C2

ε C2τ(τ + δtN ).

Now let ζ > 0 be given, and let:
• τ0 > 0 such that for any τ ∈ (0, τ0), 2AN (τ) ≤ ζ for any N ≥ 1;
• ε > 0 such that 16C2

1ε2 ≤ ζ;
• τ̃0 > 0 such that for any τ ∈ (0, τ̃0) and N ≥ 1, 4C2

ε C2τ(τ + δtN ) ≤ ζ.
We then obtain that BN (τ) ≤ 3ζ for any τ ∈ (0,min(τ0, τ̃0)) and N ≥ 1 which implies that BN (τ) → 0

as τ → 0, uniformly with respect to N . The proof of (26) is thus complete. The relative compactness of
the sequences ũN and uN follows by a Kolmogorov-like theorem (see e.g. [9, Corollary 4.40]) and (17).

�
Remark 2.5 The estimate (26). implies the existence of a subsequence still denoted by (ũN )N≥1 that
converges to ū in L2(0, T ;L2(Ω)d) and the estimate (17) implies that (uN )N≥1 converges to ū in
L2(0, T ;L2(Ω)d).

2.4. Proof of Step 3: Convergence to a Weak Solution

By Lemma 2.5, up to a subsequence, the sequence of predicted velocities (ũN )N≥1 converges to some limit
ū ∈ L2(0, T ;L2(Ω)d), and owing to (17), so does the sequence (uN )N≥1. There remains to check that ū is a
weak solution to (1) in the sense of Definition 1.1. This is a result that we call “Lax-Wendroff consistency”,
following the famous paper [16] see e.g. [7]: assuming that the approximate solutions converge boundedly
to a limit, this limit is a weak solution to the continuous problem.

Lemma 2.6. (Lax–Wendroff consistency of the semi-discrete scheme) Under the assumptions (2), (5) and
(9), let (ũN )N≥1 ⊂ L2(0, T ;H1

0 (Ω)d) and (uN )N≥1 ⊂ L∞(0, T ;L2(Ω)d) be sequences of solutions to the
semi-discrete scheme (10) (see Definition 2.1). Let ū ∈ L2(0, T ;H1

0 (Ω)d) ∩ L∞(0, T ;L2(Ω)d) such that
ũN → ū weakly in L2(0, T ;H1

0 (Ω)d) and uN → ū weakly in L2(0, T ;L2(Ω)d) as N → +∞. Then the
function ū is a weak solution to (1) in the sense of Definition 1.1.

Proof. Let ϕ ∈ C∞
c ([0, T ) × Ω)d such that divϕ = 0 in (0, T ) × Ω. Let (ϕn

N )n∈�0,N� be the sequence
of functions of E(Ω) defined by ϕn

N (x) = ϕ(tnN ,x), for any x ∈ Ω, and let ϕN : (0, T ) → E(Ω) and
fN : (0, T ) → L2(Ω)d be defined by

ϕN (t) =
N−1∑
n=0

1(tn
N ,tn+1

N ](t)ϕ
n+1
N , fN (t) =

N−1∑
n=0

1(tn
N ,tn+1

N ](t)f
n+1
N .

The regularity of f and ϕ implies that:

‖fN − f‖L2((0,T )×Ω)d → 0,
‖ϕN − ϕ‖L∞((0,T )×Ω)d → 0,
‖∇ϕN − ∇ϕ‖L∞((0,T )×Ω)d×d → 0,

⎫⎬
⎭ as N → +∞.
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Multiplying (10b) by δtNϕn+1
N , integrating over Ω, observing that un+1

N = PV (Ω)(ũ
n+1
N ) for any n ∈

�0, N − 1� and summing over n ∈ �0, N − 1� yields
N−1∑
n=0

∫
Ω

(un+1
N − un

N ) · ϕn+1
N dx +

∫ T

0

∫
Ω

(uN · ∇)ũN · ϕN dx dt

+
∫ T

0

∫
Ω

∇ũN : ∇ϕN dx dt =
∫ T

0

∫
Ω

fN · ϕN dx dt. (27)

Since ϕN
N = 0 in Ω, the first term of the left hand side reads
N−1∑
n=0

∫
Ω

(un+1
N − un

N ) · ϕn+1
N dx = −

N−1∑
n=0

∫
Ω

un
N · (ϕn+1

N − ϕn
N ) dx −

∫
Ω

u0 · ϕ(0, ·) dx.

Therefore, by the regularity of ϕ and owing to the convergence of (uN )N≥1 to ū in L2(0, T ;L2(Ω)d), we
obtain

lim
N→+∞

N−1∑
n=0

∫
Ω

(un+1
N − un

N ) · ϕn+1
N dx = −

∫ T

0

∫
Ω

ū · ∂tϕ dx −
∫

Ω

u0 · ϕ(0, ·) dx. (28)

The weak convergence of the sequence (∇ũN )N≥1 in L2(0, T ;L2(Ω)d×d), the convergence of the sequence
(uN )N≥1 in L2(0, T ;L2(Ω)d), the convergence of the sequence (ϕN )N≥1 in L∞((0, T ) × Ω)d yield that

lim
N→+∞

∫ T

0

∫
Ω

(uN · ∇)ũN · ϕN dx dt =
∫ T

0

∫
Ω

(ū · ∇)ū · ϕ dx dt. (29)

The weak convergence of the sequence (∇ũN )N≥1 in L2(0, T ;L2(Ω)d×d) and the convergence of the
sequence (∇ϕN )N≥1 in L2(0, T ;L2(Ω)d×d) imply that

lim
N→+∞

∫ T

0

∫
Ω

∇ũN : ∇ϕN dx dt =
∫ T

0

∫
Ω

∇ū : ∇ϕ dx dt. (30)

The convergence of the sequences (fN )N≥1 and (ϕN )N≥1 in L2(0, T ;L2(Ω)d) then yields that

lim
N→+∞

∫ T

0

∫
Ω

fN · ϕN dx dt =
∫ T

0

∫
Ω

f · ϕ dx dt. (31)

Owing to (28)–(31) and passing to the limit in (27) gives the expected result. �

3. Analysis of the Fully Discrete Projection Scheme

Our purpose is now to adapt the proof of convergence of the semi-discrete case to the fully discrete case.
We choose as an example of space discretization a staggered discretization on a (possibly non uniform)
rectangular grid in R

d. The resulting scheme, often referred to as a MAC scheme, was analysed in [11] for
a time-implicit scheme. The idea here is to prove its convergence for the incremental projection scheme.
We consider the following assumptions on Ω and on the time-space discretization, indexed by N (in the
convergence analysis, the time and space steps will tend to 0 as N tends to +∞).

Ω is an open, bounded, connected subset of Rd, constructed as

a union of rectangular domains: Ω =
˚︷ ︷

∪r
i=1Ωi with 1 ≤ r < +∞ and

where for i ∈ �1, r�, Ωi is a closed rectangle (if d = 2) or rectangular

parallelepiped (if d = 3) whose faces are orthogonal to the vectors of

the canonical basis {e(i), i = 1, . . . , d} of Rd. (32a)
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T > 0, N ≥ 1, δtN =
T

N
, tnN = n δtN for n ∈ �0, N�. (32b)

For N ≥ 1,DN = (MN , EN ) is a MAC discretization in the sense of

[11,Definition 2.1], with MN (resp. EN ) the set of cells (resp. faces). (32c)

We denote by hN = maxK∈MN
diamK the space step and recall that the regularity parameter of the

mesh is defined by

θN = max
{ |σ|

|σ′| , σ ∈ E(i), σ′ ∈ E(j), i, j ∈ �1, d�, i �= j
}

, (33)

with | · | the Lebesgue measure on R
d, d = 1, 2 or 3.

Note that at this step, we are considering one integer N only, that is only one (uniform in time)
discretization δtN = T

N and one discretization mesh DN , which is also indexed by N . This might seem
strange, but the index N is in fact used in the convergence analysis for which a sequence (DN , δtN )N≥1

will be considered, with hN , δtN → 0 as N → +∞.
We refer to [11] for the precise definition ot the discrete spaces and operators. The approximate

pressure belongs to the set LN (Ω) of functions that are piecewise constant on the so called primal cells K
of the (primal) mesh MN that is LN = {∑

K∈MN
pK1K with (pK)K∈MN

∈ R
MN }. Denoting by EN (K)

the set of faces of a given cell K ∈ MN , and by σ = K|L an interface between two neighbouring cells K
and L, a dual cell Dσ with σ ∈ EN ∩ EN (K) is defined by

Dσ =

{
[xK ,xL] × σ, for σ = K|L ⊂ Ω,

[xK ,xK,∂Ω] × σ, for σ ⊂ ∂Ω.

where xK denotes the mass center of K and xK,∂Ω the orthogonal projection of xK on ∂Ω. We thus
define d = 2 or 3 dual meshes of the primal mesh.

3.1. The Fully Discrete Scheme

The space discretization of the time-discrete scheme (10) reads:

Initialization:

(u0
N,i)i=1,2,3 with u0

N,i =
∑

σ∈E(i)
N

1
|σ|

∫
σ

u0,i(s) ds 1Dσ
, i = 1, 2, 3, (34a)

p0 = 0.

Solve for 0 ≤ n ≤ N − 1,

Prediction step
1

δtN
(ũn+1

N − un
N ) + CN (ũn+1

N )un
N − ΔN ũn+1

N + ∇Npn
N = fn+1

N in Ω, (34b)

(ũn+1
N )σ = 0, ∀σ ∈ Eext. (34c)

Correction step :
1

δtN
(un+1

N − ũn+1
N ) + ∇N (pn+1

N − pn
N ) = 0 in Ω, (34d)

divNun+1
N = 0 in Ω, (34e)

(un+1
N )σ = 0, ∀σ ∈ Eext, (34f)∑

K∈M
|K| pn+1

K = 0. (34g)



JMFM Convergence of the Fully Discrete Incremental Projection.. Page 13 of 26 63

In this algorithm, the terms CN (ũn+1
N )un

N , -ΔN ũn+1
N , ∇Npn

N and divNun+1
N are the MAC discretization of

the terms (un
N ·∇)ũn+1

N , Δũn+1
N , ∇pn

N and divun+1
N in the algorithm (10) and are defined in [11, Sect. 2].

In (34b), the vector function fn+1
N is defined by its components (fn+1

N,i )i∈�1,d� where fn+1
N,i is the piecewise

constant function from (0, T ) × Ω to R
d defined by

fn+1
N (x) =

1
|Dσ|

1
δtN

∫
Dσ

∫ tn+1

tn

f(t,x) dt dx, for a.e. x ∈ Dσ, σ ∈ E(i)
N,int.

The function fn+1
N thus belongs to HN = Πd

i=1H
(i)
N , where H

(i)
N is the set of functions that are piecewise

constant on the dual cells Dσ with σ ∈ E(i)
N , and E(i)

N denotes the set of faces of the mesh that are
orthogonal to e(i), that is H

(i)
N = {∑

σ∈E(i)
N

uσ1Dσ
with (uσ)

σ∈E(i)
N

∈ R
E(i)

N }.
First remark that the discrete no slip boundary conditions (34c) and (34f) are equivalent to requiring

that ũn+1
N and un+1

N both belong to the space HN,0(Ω) =
∏d

i=1 H
(i)
N,0(Ω), with H

(i)
N,0 =

{
v ∈ H

(i)
N , v(x) =

0 for a.e. x ∈ Dσ, for any σ ∈ E(i)
ext}. We define EN (Ω) = {v ∈ HN,0(Ω) : divNv = 0} (see [11, Sect. 2] for

the definition of the discrete MAC divergence divN ). Thanks to the discrete duality of the divergence and
gradient operators [11, Lemma 2.4], the space EN (Ω) may also be defined as EN (Ω) = {v ∈ HN,0(Ω) :∫
Ω

v · ∇Nw dx = 0, ∀w ∈ LN (Ω)}. We denote by PEN
: L2(Ω)d → L2(Ω)d the orthogonal projection in

L2(Ω)d onto the space EN (Ω). Note that since u0 ∈ E(Ω), we also have u0
N ∈ EN (Ω).

Let us briefly account for the existence of a solution at each step of this algorithm.
Prediction Step—The existence of the predicted velocity follows from Lemma B.1.
Correction Step—A weak form of the correction step (34d) which computes a divergence-free velocity
and an associated pressure reads

ψn+1
N = pn+1

N − pn
N ∈ LN (Ω),

∫
Ω

ψn+1
N dx = 0, (35a)

∫
Ω

∇Nψn+1
N · ∇Nq dx = δtN

∫
Ω

ũn+1
N · ∇Nq dx, for any q ∈ LN (Ω), (35b)

un+1
N = ũn+1

N − 1
δtN

∇Nψn+1
N . (35c)

Note that if (pn+1
N ,un+1

N ) satisfies (35), then
∫
Ω

un+1
N · ∇Nq dx = 0 for any q ∈ LN (Ω), so that un+1 ∈

EN (Ω).
We may then define the approximate solutions as follows.

Definition 3.1 (Approximate solutions, discrete case). Under the assumptions (5) and (32), there exists
a unique (ũn

N ,un
N , pn

N )n∈�1,N� ⊂ HN,0(Ω) × EN (Ω) × LN (Ω) satisfying (34). The approximate corrected
and predicted velocities may thus be defined by uN : (0, T ) → EN (Ω) and ũ : (0, T ) → HN,0(Ω) defined
by

uN (t) =
N−1∑
n=0

1(tn
N ,tn+1

N ](t)u
n
N , ũN (t) =

N−1∑
n=0

1(tn
N ,tn+1

N ](t)ũ
n+1
N . (36)

Remark 3.1. (On the boundary conditions) The original homogeneous Dirichlet boundary conditions (3)
of the strong formulation (1) is not imposed by the space HN,0(Ω), which only imposes the no slip
condition. However, it is imposed on the predicted velocity in (34c) by the definition of the discrete
Laplace operator, see (8)–(10) in [11, Sect. 2]. As in the semi-discrete case, it is not imposed in the
correction step (34g)–(34d).

Note also that, as in the semi-discrete case, there is no need for a boundary condition on the pressure
in the correction step. In fact, it can be inferred from (35) that the incremental pressure ψn+1 = pn+1−pn

satisfies a discrete Poisson equation on Ω with a Neumann boundary condition on the boundary.
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Remark 3.2. (On the initial condition) If the initial condition u0 ∈ E(Ω) is relaxed to u0 ∈ L2(Ω)d as in
Remark 2.2, the discrete initial condition should be taken as u0 = PEN

u0, where PEN
is the orthogonal

projector in L2(Ω) onto EN (Ω).

Remark 3.3. (A useful identity, fully discrete case) As in the semi-discrete case, summing (34b) at the
n-th time step and (34d) at the (n − 1)-th time step, we get the discrete equivalence of (15), that will be
used twice in the course of the proof of convergence.

1
δtN

(ũn+1
N − ũn

N ) + CN (ũn+1
N )un + ∇N (2pn

N − pn−1
N )

−ΔN ũn+1
N = fn+1

N , n ∈ �1, N − 1� (37)

Let us now state the convergence of the algorithm (34) as the time step δtN and the mesh step hN

tend to 0 (or N = T
δtN

→ +∞); the proof of this result is the object of the following sections.

Theorem 3.1 (Convergence of the fully discrete projection algorithm). Under the assumptions (5), let
(δtN ,DN ) be a sequence of time space discretizations satisfying (32), such that hN → 0 as N → +∞ and
such that the mesh regularity parameter θN defined by (33) remains bounded, that is

∃θ > 0 : θN ≤ θ,∀N ≥ 1. (38)

Let uN : (0, T ) → EN (Ω) and ũN : (0, T ) → HN,0(Ω) be the approximate predicted and corrected velocities
defined by the scheme (34) and Definition 3.1. Then there exists ū ∈ L2(0, T ;E(Ω)) ∩ L∞(0, T ;L2(Ω)d)
such that up to a subsequence,

• ũN → ū in L2(0, T ;L2(Ω)d) as N → +∞,
• ∇N ũN → ∇ū weakly in L2((0, T ) × Ω)d×d,
• uN → ū in L2(0, T ;L2(Ω)d) and �-weakly in L∞(0, T ;L2(Ω)d) as N → +∞.
Moreover the function ū is a weak solution to (1) in the sense of Definition 1.1.

Proof. We give here the main steps of the proof, which follows that of the semi-discrete case; these steps
are detailed in the following paragraphs.

• Step 1: first estimates and weak convergence (detailed in Sect. 3.2). Let us define, for q ∈ N
∗, a

discrete W 1,q
0 (Ω)d-norm for the discrete velocity fields. For v ∈ HN,0(Ω) with values (vσ)σ∈E let

‖v‖q
1,q,N =

d∑
i=1

∑
ε=σ|σ′∈Ẽ(i)

int

|ε| |vσ − vσ′ |q
dq−1

ε

+
d∑

i=1

∑
ε∈Ẽ(i)

ext.∩Ẽ(Dσ)

|ε| |vσ|q
dq−1

ε

. (39)

From the energy estimates of Lemma 3.2 below, we get that the approximate velocities (ũN )N≥1

and (uN )N≥1 given in Definition 3.1 satisfy

sup
N≥1

‖ũN‖L2(0,T ;H N,0(Ω)) ≤ C3, (40)

sup
N≥1

‖uN‖L∞(0,T ;L2(Ω)d) ≤ C3, (41)

‖uN − ũN‖L2(0,T ;L2(Ω)d) ≤ C3

√
δtN for any N ≥ 1, (42)

where

‖v‖2
L2(0,T ;H N,0(Ω)) =

N−1∑
n=0

δt ‖vn+1‖2
1,2,N ,

‖v‖L∞(0,T ;L2(Ω)d) = max
{

‖vn+1‖L2(Ω)d , n ∈ �0, N − 1�
}

.

and ‖ · ‖1,2,N is the discrete H1
0 norm defined by (39) with q = 2.

In particular, (42) yields that

uN − ũN → 0 in L2(0, T ;L2(Ω)d) as N → +∞. (43)
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Owing to (40)–(41), there exist subsequences still denoted by (uN )N≥1 and (ũN )N≥1 that converge
respectively �-weakly in L∞(0, T ;L2(Ω)d) and weakly in L2(0, T ; L2(Ω)d). By (43), the subsequences
(uN )N≥1 and (ũN )N≥1 converge to the same limit ū weakly in L2(0, T ;L2(Ω)d). From the bound
(40), a classical regularity result (see e.g. [8, Remark 14.1]) yields that ū ∈ L2(0, T ;H1

0 (Ω)d). Passing
to the limit in the mass equation (e.g. by a straightforward adaptation of the first step of the proof
of [11, Theorem 3.13]), it follows that ū ∈ L∞(0, T ;L2(Ω)d) ∩ L2(0, T ;E(Ω)).

There remains to show that ū is a weak solution in the sense of Definition 1.1 and in particular that ū
satisfies (8). The weak convergence is not sufficient to pass to the limit in the scheme, because of the
nonlinear convection term, so that we first need to get some compactness on one of the subsequences
(ũN )N≥1 or (uN )N≥1 (since, by (42), their difference tends to 0 in the L2 norm).

• Step 2: compactness and convergence in L2 (detailed in Sect. 3.3). We adapt Step 2 of the convergence
proof of the semi-discrete case. Using the bound (40) on the sequence (ũN )N≥1, some estimates
on the time translates of the sequence (ũN )N≥1 would be sufficient to obtain the convergence in
L2(0, T ;L2(Ω)d) by a Kolmogorov-like theorem. As in the semi-discrete case, a difficulty arises from
the presence of the (discrete) pressure gradient in Eq. (34b); we get rid of it by multiplying this
latter equation by a discrete divergence-free function. Let us then define the discrete equivalent of
the semi-norm (18) on HN,0(Ω) by:

|w|∗,1,N = sup{
∫

Ω

w · v dx, v ∈ EN (Ω), ‖v‖1,3,N ≤ 1}. (44)

Estimates on the L2(| · |∗,1,N ) semi-norm of the time translates of the predicted velocity ũN are
then obtained from the discrete momentum equation (34b): see Lemma 3.3. Again, this is only an
intermediate result since we seek an estimate on the time translates of the predicted velocity in
the L2(L2) norm. So next, as in the semi-discrete case, we introduce the discrete equivalent of the
semi-norm (19) on HN,0(Ω) by:

∀w ∈ HN,0(Ω), |w|∗,0,N = ‖PEN
w‖L2(Ω)d

= sup{
∫

Ω

w · v dx, v ∈ EN (Ω), ‖v‖L2(Ω)d = 1}. (45)

(recall that PEN
is the orthogonal projection operator onto EN (Ω)). Then, thanks to a discrete

equivalent of the Lions-like lemma 2.4 (see Lemma 3.4 below), we get

for any ε > 0, there exists Cε > 0, there exists Nε ≥ 1, for any N ≥ Nε,

for any w ∈ HN,0(Ω), ‖PEN
w‖L2(Ω)d ≤ ε‖w‖1,2,N + Cε|w|∗,1,N . (46)

From this latter inequality, using Lemma 3.3 below on the time translates of ũN for the L2(| · |∗,1)
semi-norm and the bound (40), we get that the time translates of ũN for the L2(| · |∗,0,N ) semi-norm
also tend to 0 as N → +∞. In order to show that the L2(L2) norm of the time translates of ũN

tend to 0, we remark that if v ∈ EN (Ω), then |v|∗,0,N = ||v||L2(Ω) and conclude thanks to (42), see
Lemma 3.6).

• Step 3: convergence towards the weak solution (detailed in Sect. 3.4) Owing to a discrete Aubin-
Simon-type theorem [9, Théorème 4.53], the estimates of steps 1 and 2 yield that there exist subse-
quences, still denoted by (uN )N≥1 and (ũN )N≥1, that converge to ū in L2(0, T ;L2(Ω)d). By Lemma
3.7 below, passing to the limit in the scheme (34) yields that ū satisfies (8) and, since we have al-
ready shown that ū ∈ L∞(0, T ;L2(Ω)d) ∩ L2(0, T ;E(Ω)), it follows that ū is a weak solution to
(1).

�

Remark 3.4. (Uniqueness and convergence of the whole sequence) If the solution of the continuous prob-
lem is unique, then the whole sequence converges.
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3.2. Proof of Step 1: Energy Estimates and Weak Convergence

We first obtain a discrete equivalent of the L2(0, T ;H1
0 (Ω)d) and L∞(0, T ;L2(Ω)d) estimates for the

predicted and corrected velocities.

Lemma 3.2 (Energy estimates). Under the assumptions (5) and (32), let (ũn
N ,un

N , pn
N )n∈�0,N� ⊂ HN,0(Ω)

× EN (Ω) × LN (Ω) be the solution to problem (34). The following estimate holds for n ∈ �0, N − 1�:

1
2δtN

(
‖un+1

N ‖2
L2(Ω)d − ‖un

N‖2
L2(Ω)d

)

+
δtN
2

(
‖∇Npn+1

N ‖2
L2(Ω)d − ‖∇Npn

N‖2
L2(Ω)d

)

+
1

2δtN
‖ũn+1

N − un
N‖2

L2(Ω)d + ‖ũn+1
N ‖2

1,2,N ≤
∫

Ω

fn+1
N · ũn+1

N dx. (47)

Consequently, there exists C3 depending only on Ω, ‖u0‖L2(Ω)d and ‖f‖L2(Ω)d such that the estimates
(40)–(42) hold.

Proof. By Lemma B.1 with α = 1
δtN

, we have for n ∈ �0, N − 1�

1
2δtN

‖ũn+1
N ‖2

L2(Ω)d − 1
2δtN

‖un
N‖2

L2(Ω)d +
1

2δtN
‖ũn+1

N − un
N‖2

L2(Ω)d

+‖ũn+1
N ‖2

1,2,N −
∫

Ω

pn
NdivN ũn+1

N dx ≤
∫

Ω

fn+1
N · ũn+1

N dx.

Re-ordering relation (34d) such that the terms of n-th and (n + 1)-th time level are respectively on the
left and right hand sides, squaring it, integrating over Ω, multiplying by δtN

2 and owing to (34e) and to
the discrete duality property of the MAC scheme [11, Lemma 2.4], we get

1
2δtN

‖un+1
N ‖2

L2(Ω)d +
δtN
2

‖∇Npn+1
N ‖2

L2(Ω)d =
1

2δtN
‖ũn+1

N ‖2
L2(Ω)d

+
δtN
2

‖∇Npn
N‖2

L2(Ω)d −
∫

Ω

pn
NdivN ũn+1

N dx.

Summing this latter relation with the previous relation yields for n ∈ �0, N − 1�

1
2δtN

(
‖un+1

N ‖2
L2(Ω)d − ‖un

N‖2
L2(Ω)d

)
+

δtN
2

(
‖∇Npn+1

N ‖2
L2(Ω)d − ‖∇Npn

N‖2
L2(Ω)d

)

+
1

2δtN
‖ũn+1

N − un
N‖2

L2(Ω)d + ‖ũn+1
N ‖2

1,2,N ≤
∫

Ω

fn+1
N · ũn+1

N dx.

We then get the relation (47) using the Cauchy-Schwarz inequality and the discrete Poincaré estimate
[8, Lemma 9.1] after summing over the time steps. �

3.3. Estimates on the Time Translates and Compactness

Lemma 3.3 (A first estimate on the time translates). Under the assumptions (5), let (δtN ,DN ) be a se-
quence of time space discretizations satisfying (32), and let uN : (0, T ) → EN (Ω) and ũN : (0, T ) →
HN,0(Ω) be defined by Definition 3.1. There exists C4 > 0 only depending on |Ω|, ‖u0‖L2(Ω)d ,
‖f‖L2((0,T )×Ω)d and θN in a non decreasing way, such that, for any N ≥ 1 and for any τ ∈ (0, T ),

∫ T−τ

0

|ũN (t + τ) − ũN (t)|2∗,1,N dt ≤ C4τ(τ + δtN ).
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Proof. For t ∈ (0, T − τ), ũN (t+ τ)− ũN (t) =
N−1∑
n=1

χn
N,τ (t)(ũn+1

N − ũn
N ), with χn

N,τ defined by (22). From

(37), we thus get that

ũN (t + τ) − ũN (t) = δtN

N−1∑
n=1

χn
N,τ (t)ΔN ũn+1

N − δtN

N−1∑
n=1

χn
N,τ (t)CN (ũn+1

N )un
N

−δtN

N−1∑
n=1

χn
N,τ (t)∇N (2pn

N − pn−1
N ) + δtN

N−1∑
n=1

χn
N,τ (t)fn+1

N .

Let ϕ ∈ EN (Ω) and let

A(t) =
∫

Ω

(
ũN (t + τ) − ũN (t)

) · ϕ dx

= Ad(t) + Ac(t) + Ap(t) + Af (t) with

Ad(t) =
N−1∑
n=1

χn
N,τ (t)δtN

∫
Ω

ΔN ũn+1
N · ϕ dx,

Ac(t) = −
N−1∑
n=1

χn
N,τ (t)δtN

∫
Ω

CN (ũn+1
N )un

N · ϕ dx

Ap(t) =
N−1∑
n=1

χn
N,τ (t)δtN

∫
Ω

(2pn
N − pn−1

N )divNϕ dx,

Af (t) =
N−1∑
n=1

χn
N,τ (t)δtN

∫
Ω

fn+1
N · ϕ dx.

Let us reproduce at the fully discrete level the computations done for each of these terms in the proof
of Lemma 2.3.

By Hölder’s inequality with exponents 2, 6 and 3, we get that

Ad(t) ≤ |Ω|1/6‖ϕ‖1,3,N

N−1∑
n=1

χn
N,τ (t)δtN‖ũn+1

N ‖1,2,N , (48)

and that there exists C4,1 > 0 such that (see e.g. [11, Lemma 3.5] for similar computations)

Ac(t) ≤ C4,1

N−1∑
n=1

χn
N,τ (t)δtN‖un

N‖L2(Ω)d‖ũn+1
N ‖L6(Ω)d‖ϕ‖1,3,N .

By the discrete Sobolev inequality [8, Lemma 9.1], there exists C4,2 depending only on |Ω| and θN in a
nondecreasing way such that (see [8, Lemma 3.5])

‖v‖L6(Ω)d ≤ C4,2‖v‖1,2,N , for any v ∈ HN,0(Ω).

Therefore, thanks to (41) we have

Ac(t) ≤ C3C4,1C4,2‖ϕ‖1,3,N

N−1∑
n=1

χn
N,τ (t)δtN‖ũn+1

N ‖1,2,N , (49)

Again invoking the discrete Sobolev inequality, there exists C4,3 only depending on |Ω| and θN in a
nondecreasing way, such that

‖v‖L3(Ω)d ≤ C4,3‖v‖1,3,N , for any v ∈ HN,0(Ω).
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Consequently,

Af (t) ≤ C4,3|Ω|1/6‖ϕ‖1,3,N

N−1∑
n=1

χn
N,τ (t)δtN‖fn+1

N ‖L2(Ω)d . (50)

Thanks to the fact that ϕ ∈ EN (Ω) and to the discrete duality property stated in [11, Lemma 2.4],
Ap(t) = 0.

Summing Eqs. (48), (50), (49) we obtain

A(t) ≤ C‖ϕ‖1,3,N

N−1∑
n=1

χn
N,τ (t)δtN (‖ũn+1

N ‖1,2,N + ‖fn+1
N ‖L2(Ω)d)

where C = |Ω|1/6 + C4,3|Ω|1/6 + C3C4,1C4,2. This implies

|ũN (t + τ) − ũN (t)|∗,1,N ≤ C
N−1∑
n=1

χn
N,τ (t)δtN (‖ũn+1

N ‖1,2,N + ‖fn+1
N ‖L2(Ω)d).

Using the fact that
∑N−1

n=1 χn
N,τ (t)δtN ≤ τ + δtN for any t ∈ (0, T − τ) we then obtain

|ũ(t + τ) − ũ(t)|2∗,1,N ≤ 2C2(τ + δtN )
N−1∑
n=1

χn
N,τ (t)δtN (‖ũn+1

N ‖2
1,2,N + ‖fn+1

N ‖2
L2(Ω)d).

Using the fact that
∫ T−τ

0
χn

N,τ (t) dt ≤ τ for any n ∈ �1, N − 1� we obtain
∫ T−τ

0

|ũN (t + τ) − ũN (t)|2∗,1,N dt

≤ 2C2(τ + δtN )
N−1∑
n=1

δtN (‖ũn+1
N ‖2

1,2,N + ‖fn+1
N ‖2

L2(Ω)d)
∫ T−τ

0

χn
N,τ (t) dt

≤ 2C2(τ + δtN )τ(‖ũN‖2
L2(0,T :HN,0(Ω)) + ‖f‖2

L2((0,T )×Ω)d) ≤ C2τ(τ + δtN )

which gives the expected result. �

For v = (vi)i∈�1,d� ∈ W 1,1(Ω)d, we define P̃Nv as the vector function with piecewise constant com-
ponents: the i-th component of P̃Nv is constant on each dual cell Dσ, σ ∈ E , and equal to the mean
value of vi on the face σ. By [11, Lemma 3.7], P̃N is a Fortin operator in the sense that it preserves the
divergence; in particular,

v ∈ E(Ω) =⇒ P̃Nv ∈ EN (Ω).

Lemma 3.4 (Lions-like, fully discrete version). Under the assumptions (32a), let (DN )N≥1 be a sequence
of grids of Ω satisfying (32c) and (38), and such that hN → 0 as N → +∞. Then (46) holds.

Proof. Let ε > 0; let us show by contradiction that there exists Cε > 0 and Nε ≥ 1 depending on ε such
that for any N ≥ Nε and for any w ∈ HN,0(Ω)

|w|∗,0,N ≤ ε‖w‖1,2,N + Cε|w|∗,1,N .

Suppose that this is not so, then

∃ε > 0 ∀n ∈ N,∀M ∈ N,∃N ≥ M and ∃wN ∈ HN,0(Ω)
‖PEN

wN‖L2(Ω)d = |wN |∗,0,N > ε‖wN‖1,2,N + N |wN |∗,1,N , for any N ≥ 1.

This in turn implies that (with N0 = 0)

∃ε > 0 ∀n ≥ 1,∃Nn ≥ Nn−1 + 1 and ∃wNn
∈ HN,0(Ω)

‖PEN
wNn

‖L2(Ω)d > ε‖wNn
‖1,2,Nn

+ Nn|wNn
|∗,1,Nn

.
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By a homogeneity argument, we may choose ‖PEN
wNn

‖L2(Ω)d = 1; observing that Nn → +∞ as n →
+∞, it then follows from the latter inequality that the sequence (‖wNn

‖1,2,Nn
)Nn≥1 is bounded and

that |wNn
|∗,1,Nn

→ 0 as n → +∞. Hence there exists a subsequence still denoted by (wNn
)n≥1 that

converges in L2(Ω)d to a function w ∈ H1
0 (Ω)d, see e.g. [6, Theorem 3.1]. Lemma 3.5 given below

then yields that PEN
wNn

→ PV (Ω)w in L2(Ω)d and in particular ‖PV (Ω)w‖L2(Ω)d = 1. (Recall that
PV (Ω) : L2(Ω)d → L2(Ω)d is the orthogonal projection in L2(Ω)d onto the space V (Ω).)

For any ϕ ∈ W (Ω), we have P̃Nn
(ϕ) ∈ EN (Ω). Since wNn

− PENn
wNn

⊥ ENn
and by definition of

|wNn
|∗,1,Nn

, it follows that∫
Ω

PENn
wNn

· P̃Nn
(ϕ) =

∫
Ω

wNn
· P̃Nn

(ϕ) dx ≤ |wNn
|∗,1,Nn

|P̃Nn
(ϕ)|1,3,Nn

.

By the W 1,q stability of the operator P̃Nn
stated in [10, Theorem 1], there exists C5 only depending on

|Ω| and on θNn
in a nondecreasing way, such that

‖P̃Nn
ϕ‖1,3,Nn

≤ C5‖ϕ‖W 1,3
0 (Ω)d , for any ϕ ∈ W 1,3

0 (Ω)d,

and therefore ∫
Ω

PEN
wNn

· P̃Nn
(ϕ) =

∫
Ω

wNn
· P̃Nn

(ϕ) dx ≤ C5|wNn
|∗,1,Nn

‖ϕ‖W 1,3
0 (Ω)d .

Passing to the limit in this inequality yields that∫
Ω

PV (Ω)w · ϕ dx = 0, for any ϕ ∈ W (Ω).

By the density Lemma A.4, we obtain that PV (Ω)w = 0 which contradicts the fact that ‖PV (Ω)w‖L2(Ω)d =
1. �

Lemma 3.5. Under the assumptions of Lemma 3.4, let (vN )N≥1 be a sequence of functions such that
vN ∈ HN,0(Ω) for any N ≥ 1 and (vN )N≥1 converges to v in L2(Ω)d. Then the sequence (PEN

vN )N≥1

converges to PV (Ω)v in L2(Ω)d.

Proof. Using the fact that (vN )N≥1 is bounded in L2(Ω)d we obtain that the sequence (PEN
vN )N≥1 is

bounded in L2(Ω)d. Hence there exists a subsequence still denoted by (PEN
vN )N≥1 that converges to a

function ṽ weakly in L2(Ω)d. Thanks to the discrete duality property stated in [11, Lemma 2.4], we have,
for any ϕ ∈ C∞

c (Rd), ∫
Ω

PEN
vN · ∇N P̃Nϕ dx = 0, for any N ≥ 1.

The discrete gradient ∇N is consistent in the sense of [11, Lemme 2.3] and therefore there exists
C6 ∈ R+ depending only on Ω, ϕ and on θN in a nondecreasing way, such that∣∣∣∣

∫
Ω

PEN
vN · ∇ϕ dx

∣∣∣∣ ≤ C6hN‖PEN
vN‖L2(Ω)d , for any N ≥ 1.

Passing to the limit in the previous identity gives∫
Ω

ṽ · ∇ϕ dx = 0, for any ϕ ∈ C∞
c (Rd).

We then obtain that ṽ ∈ V (Ω). Since P̃N preserves the divergence [11, Lemma 3.7], the following identity
holds for any ϕ ∈ V (Ω) ∩ C1

c (Ω)d

∫
Ω

vN · P̃Nϕ dx =
∫

Ω

PEN
vN · P̃Nϕ dx, for any N ≥ 1.
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Using the weak convergence of the sequence (PEN
)N≥1 in L2(Ω)d and the convergence of the sequence

(P̃Nϕ)N≥1 in L2(Ω)d we obtain∫
Ω

v · ϕ dx =
∫

Ω

ṽ · ϕ dx for any ϕ ∈ V (Ω) ∩ C1
c (Rd)d.

By Lemma A.4 we then get that ṽ = PV (Ω)v and that the sequence (PEN
vN )N≥1 converges to PV (Ω)v

weakly in L2(Ω)d. We can write

‖PEN
vN‖2

L2(Ω)d =
∫

Ω

vN · PEN
vN dx, for any N ≥ 1.

Using the convergence of the sequence (vN )N≥1 to v in L2(Ω)d and the weak convergence of the sequence
(PEN

vN )N≥1 to PV (Ω)v in L2(Ω)d we obtain

lim
N→+∞

‖PEN
vN‖2

L2(Ω)d =
∫

Ω

v · PV (Ω)v dx = ‖PV (Ω)v‖2
L2(Ω)d .

The weak convergence of the sequence (PEN
vN )N≥1 to PV (Ω) in L2(Ω)d and the convergence of the

sequence (‖PEN
vN‖L2(Ω)d)N≥1 to ‖PV (Ω)v‖L2(Ω)d give the expected result. �

As in Lemma 2.5, we can therefore obtain an estimate on the time translates for the L2(0, T ;L2(Ω)d)
norm, and, as a consequence, the L2(0, T ;L2(Ω)d) convergence of the predicted velocities.

Lemma 3.6. Under the assumptions of Theorem 3.1, the sequence (ũN )N≥1 satisfies
∫ T−τ

0

‖ũN (t + τ) − ũN (t)‖2
L2(Ω)d dt → 0 as τ → 0, (51)

uniformly with respect to N , and is therefore relatively compact in L2(0, T ;L2(Ω)d).

Proof. We follow the proof of Lemma 2.5. By the triangle inequality,
∫ T−τ

0

‖ũN (t + τ) − ũN (t)‖2
2 dt ≤ 2(AN (τ) + BN (τ)), with

AN (τ) =
∫ T−τ

0

‖(ũN − uN )(t + τ) − (ũN − uN )(t)‖2
2 dt,

BN (τ) =
∫ T−τ

0

‖uN (t + τ) − uN (t)‖2
2 dt.

For any N , AN (τ) → 0 as τ → 0, but owing to (43), we get that AN (τ) → 0 as τ → 0, uniformly with
respect to N . Let us prove that this is also the case for BN (τ) → 0.

Since uN (t) ∈ EN (Ω) for any t ∈ (0, T ) we have for any t ∈ (0, T − τ)

‖uN (t + τ) − uN (t)‖L2(Ω)d = sup
v∈EN (Ω)

‖v‖
L2(Ω)d=1

∫
Ω

(uN (t + τ) − uN (t)) · v dx

≤ ‖(uN − ũN )(t + τ) − (uN − ũN )(t)‖L2(Ω)d

+ sup
v∈EN (Ω)

‖v‖
L2(Ω)d=1

∫
Ω

(ũN (t + τ) − ũN (t)) · v dx,

so that

BN (τ) ≤ 2AN (τ) + 2
∫ T−τ

0

|ũN (t + τ) − ũN (t)|2∗,0,N dt.
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Now thanks to Lemma 3.4, for any ε > 0, there exists Cε > 0 and Nε ≥ 1 such that for any N ≥ Nε

and for any t ∈ (0, T − τ)

|ũN (t + τ) − ũN (t)|∗,0,N ≤ ε‖ũN (t + τ) − ũN (t)‖1,2,N

+Cε|ũN (t + τ) − ũN (t)|∗,1,N ,

In particular for any N ≥ Nε and for any
∫ T−τ

0

|ũN (t + τ) − ũN (t)|2∗,0,N dt ≤ 2ε2

∫ T−τ

0

‖ũN (t + τ) − ũN (t)‖2
1,2,N dt

+2C2
ε

∫ T−τ

0

|ũN (t + τ) − ũN (t)|2∗,1,N dt.

Therefore, owing to Lemmas 3.2 and 3.3, for any N ≥ Nε and for any τ ∈ (0, T )
∫ T−τ

0

|ũN (t + τ) − ≤̃8C2
3ε2 + 2C2

ε

Hence, for any N ≥ Nε and for any τ ∈ (0, T ),

BN (τ) ≤ 2AN (τ) + 16C3ε
2 + 4C2

ε C4τ(τ + δtN ).

Let ζ > 0 be given, and let:

• τ0 > 0 such that for any τ ∈ (0, τ0), 2AN (τ) ≤ ζ for any N ≥ 1.
• ε > 0 such that 16C2

3ε2 ≤ ζ,
• τ̃0 > 0 such that 2C2

ε C4τ(τ + δtN ) ≤ ζ for any τ ∈ (0, τ̃0) and N ≥ 1.

We then obtain that BN (τ) ≤ 3ζ for any τ ∈ (0,min(τ0, τ̃0)) and N ≥ Nε. Using the fact that BN (τ) → 0
as τ → 0 for any N ≥ 1 we obtain that BN (τ) → 0 as τ → 0, uniformly with respect to N . The proof of
Lemma 3.6 is thus complete. �

3.4. Convergence Towards the Weak Solution

We have proven that the approximate velocities (ũN )N≥1 and (uN )N≥1 converge in L2(0, T ;L2(Ω)d), up
to a subsequence, to a common limit ū ∈ L2(0, T ;H1

0 (Ω)d), there remains to show, as in the semi-discrete
case, that ū is a weak solution to (1) in the sense of Definition 1.1.

Lemma 3.7 (Lax–Wendroff consistency of the discrete scheme). Under the assumptions (5), let (δtN ,DN )
be a sequence of time space discretizations satisfying (32), such that hN → 0 as N → +∞ and let uN :
(0, T ) → EN (Ω) and ũN : (0, T ) → HN,0(Ω) be the approximate predicted and corrected velocities defined
by the scheme (34) and Definition 3.1. Assume that there exists ū ∈ L2(0, T ;H1

0 (Ω)d) ∩ L∞(0, T ;L2(Ω)d)
such that ũN → ū in L2(0, T ;L2(Ω)d) and ũN → ū weakly in L2(0, T ;L2(Ω)d) as N → +∞, and that
the sequence (‖ũN‖L2(0,T ;H N,0(Ω)))N≥1 is bounded. Then the function ū is a weak solution to (1) in the
sense of Definition 1.1.

Proof. Let ϕ ∈ C∞
c (Ω × [0, T ))d, such that divϕ = 0 in Ω × (0, T ). By [11, Lemma 3.7], we have

divN P̃Nϕ(·, tnN ) = 0. Multiplying (34b) by δtNϕn+1
N with ϕn

N = P̃Nϕ(tnN , ·) ∈ EN (Ω), integrating over
Ω, summing over n ∈ �0, N − 1� and observing that un+1

N = PEN
ũn+1

N for any n ∈ �0, N − 1� yields

N−1∑
n=0

∫
Ω

(un+1
N − un

N ) · ϕn+1
N dx dt +

N−1∑
n=0

δtN

∫
Ω

CN (ũn+1
N )un

N · ϕn+1
N dx

−
N−1∑
n=0

δtN

∫
Ω

ΔN ũn+1
N · ϕn+1

N dx =
N−1∑
n=0

δtN

∫
Ω

fn+1
N · ϕn+1

N dx. (52)
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Using the fact that ϕN
N = 0 in Ω, the first term of the left hand side reads

N−1∑
n=0

∫
Ω

(un+1
N − un

N ) · ϕn+1
N dx dt

= −
N−1∑
n=0

∫
Ω

un
N · (ϕn+1

N − ϕn
N ) dx dt −

∫
Ω

u0
N · ϕ0

N dx.

The regularity of ϕ implies that

lim
N→+∞

N−1∑
n=1

ϕn+1
N − ϕn

N

δtN
1(tn

N ,tn+1
N ](·) = ∂tϕ in L∞((0, T ) × Ω)d.

Using the weak convergence of the sequence (uN )N≥1 in L2(0, T ;L2(Ω)d), the uniform convergence of
the sequences (P̃N (ϕ(0, ·)))N≥1 and (P̃Nu0)N≥1 along with (42), we obtain

lim
N→+∞

N−1∑
n=0

∫
Ω

(un+1
N − un

N ) · ϕn+1
N dx dt = −

∫ T

0

∫
Ω

ū · ∂tϕ dx dt −
∫

Ω

u0 · ϕ(·, 0) dx. (53)

Finally, the proof that

lim
N→+∞

−
N−1∑
n=0

δtN

∫
Ω

ΔN ũn+1
N · ϕn+1

N dx =
∫ T

0

∫
Ω

∇ū : ∇ϕ dx dt, (54)

lim
N→+∞

N−1∑
n=0

δtN

∫
Ω

CN (ũn+1
N )un

N · ϕn+1
N dx →

∫ T

0

∫
Ω

(ū · ∇)ū · ϕ dx dt, (55)

and

lim
N→+∞

N−1∑
n=0

δtN

∫
Ω

fn+1
N · ϕn+1

N dx dt =
∫ T

0

∫
Ω

f · ϕ dx dt. (56)

follows the proof of the convergence of the equivalent terms in the proof of [11, Theorem 4.3]. Using
(53)–(56) and passing to the limit in (52) gives the expected result. �
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Appendix A: Some Technical Lemmas

Lemma A.1 (Existence and estimate for the linearized equation). Let Ω be an open bounded connected
subset of Rd with Lipschitz boundary. Let α > 0, u ∈ V (Ω) and T : H1

0 (Ω) → R linear continuous. There
exists a unique ũ ∈ H1

0 (Ω) such that for any v ∈ H1
0 (Ω) ∩ L∞(Ω)

α

∫
Ω

ũv dx +
∫

Ω

(u · ∇ũ)v dx +
∫

Ω

∇ũ · ∇v dx = T (v) (57)
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Moreover ũ satisfies

α‖ũ‖2
L2(Ω) + ‖ũ‖2

H1
0 (Ω) ≤ T (ũ). (58)

Proof. Step 1. Existence of a solution – Using Lemma A.4 there exists a sequence (un)n≥0 of functions
of V (Ω) ∩ C1

c (Ω)d converging to u in L2(Ω)d. Consider the following problem:

Find ũn ∈ H1
0 (Ω) such that for any v ∈ H1

0 (Ω)

α

∫
Ω

ũnv dx +
∫

Ω

(un · ∇ũn)v dx +
∫

Ω

∇ũn · ∇v dx = T (v). (59)

By the Lax-Milgram theorem, there exists a unique ũn ∈ H1
0 (Ω) to this problem; indeed, the left hand-side

of (59) is a bilinear continuous and coercive form on H1
0 (Ω) × H1

0 (Ω) because∫
Ω

(un · ∇v)v dx = 0, for any v ∈ H1
0 (Ω). (60)

Moreover the right hand side in (59) is a linear continuous form on H1
0 (Ω). Setting v = ũn in (59), owing

to (60), we get

α‖ũn‖2
L2(Ω) + ‖ũn‖2

H1
0 (Ω) = T (ũn) for any n ≥ 0. (61)

Therefore, since T : H1
0 (Ω) → R is linear continuous, the sequence (ũn)n≥0 is bounded in H1

0 (Ω) and
converges, up to a subsequence, to ũ ∈ H1

0 (Ω) in L2(Ω) and weakly in H1
0 (Ω). The convergence in L2(Ω)

of the sequence (ũn)n≥0 gives

lim
n→+∞

∫
Ω

ũnv dx =
∫

Ω

ũv dx, for any v ∈ H1
0 (Ω) ∩ L∞(Ω).

The weak convergence in H1
0 (Ω) of the sequence (ũn)n≥0 gives

lim
n→+∞

∫
Ω

∇ũn · ∇v dx =
∫

Ω

∇ũ · ∇v dx, for any v ∈ H1
0 (Ω) ∩ L∞(Ω).

The convergence in L2(Ω) of the sequence (un)n≥0 and the weak convergence in H1
0 (Ω) of the sequence

(ũn)n≥0 gives

lim
n→+∞

∫
Ω

(un · ∇ũn)v dx =
∫

Ω

(u · ∇ũ)v dx, for any ∈ H1
0 (Ω) ∩ L∞(Ω).

Passing to the limit in (59) with v ∈ H1
0 (Ω) ∩ L∞(Ω) gives (57); hence

‖ũ‖2
H1

0 (Ω) ≤ lim inf
n→∞ ‖ũn‖2

H1
0 (Ω)

Passing to the limit (61) gives (58) which concludes the proof of existence of a solution.
Step 2. Uniqueness of a solution – Let ũ ∈ H1

0 (Ω) such that for any v ∈ H1
0 (Ω) ∩ L∞(Ω),

α

∫
Ω

ũ v dx +
∫

Ω

(u · ∇ũ)v dx +
∫

Ω

∇ũ · ∇v dx = 0.

For any k ∈ N, let Tk : R → R be a truncation function defined by Tk(x) = max(min(x, k), 0) for any
x ∈ R; then Tk(ũ) ∈ H1

0 (Ω) ∩ L∞(Ω) and ∇Tk(ũ) = 1{0<ũ<k}∇ũ a.e. in Ω [22, Lemme 1.1]. Thus, we
may take v = Tk(u) as test function:

∀k ∈ N, α

∫
Ω

ũ Tk(ũ) dx +
∫

Ω

(u · ∇ũ)Tk(ũ) dx +
∫

Ω

1{0<ũ<k}‖∇ũ‖2 dx = 0.

Since, for any s ∈ R, (Tk(s))k≥0 converges to max(s, 0) as k → +∞ and |Tk(s)| ≤ |s|, we obtain

lim
k→∞

∫
Ω

ũ Tk(ũ) dx =
∫

Ω

1{ũ>0}ũ2 dx.
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Observing that for any s ∈ R, (T ′
k(s))k≥0 converges to 1R+(s) and |T ′

k(s)| ≤ 1, we obtain

lim
k→∞

∫
Ω

1{0<ũ<k}‖∇ũ‖2 dx =
∫

Ω

1{ũ>0}‖∇ũ‖2 dx.

Let Fk be the primitive of the function Tk such that Fk(0) = 0. Since Fk is Lipschitz-continuous, we
obtain that Fk(ũ) ∈ H1

0 (Ω) and ∇Fk(ũ) = Tk(ũ)∇ũ. Furthermore, u ∈ V (Ω), so that∫
Ω

(u · ∇ũ)Tk(ũ) dx =
∫

Ω

u · ∇Fk(ũ) dx = 0.

We then obtain ∫
Ω

(αũ2 + ‖∇ũ‖2)1{ũ>0} dx = 0,

so that ũ ≤ 0 a.e. in Ω.
A similar reasoning with Rk : R → R defined by Rk(s) = min(max(−k, s), 0) instead of Tk yields∫

Ω

(αũ2 + ‖∇ũ‖2)1{ũ<0} dx = 0,

so that ũ ≥ 0 a.e. in Ω. Finally, ũ = 0 a.e. in Ω and the solution of (57) is unique. �

Let us now give the decomposition result which was used for the proof of existence of a solution to
the correction step (12).

Lemma A.2 (Decomposition of L2 vector fields). Let Ω be an open bounded connected subset of Rd with
Lipschitz boundary. Then for any w ∈ L2(Ω)d there exists a unique (v, ψ) ∈ V (Ω)×H1(Ω)∩L2

0(Ω) such
that w = v + ∇ψ a.e. in Ω.

Proof. Let w ∈ L2(Ω)d and let ψ be the unique solution to the problem

ψ ∈ H1(Ω) ∩ L2
0(Ω),∫

Ω

∇ψ · ∇ξ dx =
∫

Ω

w · ∇ξ dx, for any ξ ∈ H1(Ω) ∩ L2
0(Ω).

Now set v = w − ∇ψ; clearly
∫
Ω

v · ∇ξ dx = 0 so that v ∈ V (Ω), which proves the theorem. �

The following lemma gives a characterisation of the gradient which is used in the proof of Lemma 2.4.
Its proof is a simple consequence of a result of M. E. Bogovskii [2]; we refer to the very clear presentation
of [5] on this subject.

Lemma A.3 (Characterization of the gradient). Let Ω be an open bounded connected subset of Rd with
Lipschitz boundary. Let f ∈ L2(Ω)d such that

∫
Ω

f · ϕ dx = 0 for all ϕ ∈ C∞
c (Ω)d such that divϕ = 0 in

Ω. Then there exists ξ ∈ L2(Ω) such that f = ∇ξ a.e. in Ω.

Proof. We recall that L2
0(Ω) = {q ∈ L2(Ω) such that

∫
Ω

q(x) dx = 0}. A classical result [2] gives the
existence of an linear continuous operator B : L2

0(Ω) → H1
0 (Ω)d such that div(B(q)) = q a.e. in Ω.

Furthermore B(ϕ) ∈ C∞
c (Ω)d for any ϕ ∈ C∞

c (Ω) ∩ L2
0(Ω).

For q ∈ L2
0(Ω) we set T (q) =

∫
Ω

f · B(q) dx. The mapping T is a linear continuous form on L2
0(Ω).

There exists ξ ∈ L2
0(Ω) such that

T (q) =
∫

Ω

f · B(q) dx =
∫

Ω

ξq dx, for any q ∈ L2
0(Ω).

Taking now ϕ ∈ C∞
c (Ω)d, one has divϕ ∈ C∞

c (Ω) ∩ L2
0(Ω) so that ϕ − B(divϕ) ∈ C∞

c (Ω)d and div(ϕ −
B(divϕ)) = 0 in Ω. Then, the hypothesis on f gives

∫
Ω

f · (ϕ − B(divϕ)) dx = 0 which leads to∫
Ω

f · ϕ dx =
∫

Ω

f · B(divϕ) dx =
∫

Ω

ξdivϕ dx,

and we conclude ∇ξ = f (that is the distribution ∇ξ is the function f). �
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A consequence of this lemma is the following interesting per se density result.

Lemma A.4. (Density of divergence-free functions) Let Ω be an open bounded connected subset of R
d,

d = 2 or 3, with Lipschitz boundary. Let V(Ω) = {ϕ ∈ C∞
c (Ω)d divϕ = 0 in Ω}. The closure of V(Ω)

in L2(Ω)d is V (Ω).

Proof. Equipped with the L2(Ω)d-norm, the space V (Ω) is a Hilbert space. In order to prove this density
result, we prove that, in this Hilbert space, V(Ω)⊥ = {0}. Let v ∈ V (Ω) and assume v ∈ V(Ω)⊥. Then,
Lemma A.3 gives the existence of ξ ∈ L2(Ω) such that v = ∇ξ (and then ξ ∈ H1(Ω)). Since v ∈ V (Ω),
ones deduces for ψ ∈ H1(Ω) ∫

Ω

∇ξ · ∇ψ dx =
∫

Ω

v · ∇ψ dx = 0.

In particular this gives
∫
Ω

∇ξ ·∇ξ dx = 0 and then v = ∇ξ = 0. This proves that V(Ω) is dense in V (Ω).
�

Appendix B: Some Discrete Technical Lemmas

Lemma B.1 (Existence and estimate, discrete linearized equation). Under assumptions (32a) and (32c),
let α > 0, u ∈ EN (Ω) and g ∈ HN . There exists a unique ũ ∈ HN,0(Ω) such that

αũ + CN (ũ)u − ΔN ũ = g. (62)

Moreover ũ satisfies

α‖ũ‖2
L2(Ω)d + ‖ũ‖2

1,2,N ≤
∫

Ω

g · ũ dx. (63)

Proof. We remark that Problem (62) is equivalent to the following problem

Find u ∈ HN,0(Ω) such that for any v ∈ HN,0(Ω)∫
Ω

αũ · v dx +
∫

Ω

CN (ũ)u · v dx +
∫

Ω

−ΔNu · v dx =
∫

Ω

g · v dx (64)

where, owing to Lemma [11, Lemma 3.6], the bilinear form of the right hand side is coercive on HN,0(Ω)×
HN,0(Ω). The existence and uniqueness of the solution ũ ∈ HN,0(Ω) then follows by Lax-Milgram
theorem. We take v = ũ in (62) and using [11, Lemma 3.6], we obtain

α‖ũ‖2
L2(Ω)d + ‖ũ‖2

1,2,N ≤
∫

Ω

g · ũ dx

which gives the expected result. �

The following lemma is the discrete version of lemma A.2; it was used for the proof of existence of a
solution to the correction step (35).

Lemma B.2 (Decomposition of HN,0(Ω) vector fields). Under assumptions (32a) and (32c), for any w ∈
HN,0(Ω) there exists (v, ψ) ∈ EN (Ω) × LN (Ω) such that w = v + ∇Nψ a.e. in Ω.

Proof. Let w ∈ HN,0(Ω); since the bilinear form (p, q) �→ ∫
Ω

∇Np ·∇Nq dx is coercive on LN (Ω)∩L2
0(Ω)

(see [8, Lemma 9.2]), there exists a unique solution ψ to the problem

ψ ∈ LN (Ω) ∩ L2
0(Ω),∫

Ω

∇Nψ · ∇Nξ dx =
∫

Ω

w · ∇Nξ dx, for any ξ ∈ LN (Ω) ∩ L2
0(Ω),

so that w = v + ∇Nψ with v ∈ EN (Ω). �
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References

[1] Badia, S., Codina, R.: Convergence analysis of the FEM approximation of the first order projection method for incom-
pressible flows with and without the inf-sup condition. Numer. Math. 107, 533–557 (2007)

[2] Bogovskii, M.: Solution of the first boundary value problem for an equation of continuity of an incompressible medium.
Soviet Math. Dokl. 20, 1094–1098 (1979)

[3] Boyer, F., Fabrie, P.: Mathematical tools for the study of the incompressible Navier–Stokes equations and related
models. Applied Mathematical Sciences 183. Springer (2013)

[4] Chorin, A.J.: On the convergence of discrete approximations to the Navier–Stokes equations. Math. Comput. 23(106),
341–353 (1969)
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[11] Gallouët, T., Herbin, R., Latché, J.-C., Mallem, K.: Convergence of the Marker-and-cell scheme for the incompressible
Navier–Stokes equations on non-uniform grids. Found. Comput. Math. 18, 249–289 (2018)

[12] Goda, K.: A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows.
J. Comput. Phys. 30, 76–95 (1979)

[13] Guermond, J.-L., Minev, P.D., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods
Appl. Mech. Eng. 195, 6011–6045 (2006)

[14] Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface.
Phys. Fluids 8, 2182–2189 (1965)

[15] Kuroki, H., Soga, K.: On convergence of Chorin’s projection method to a Leray–Hopf weak solution. Numer. Math. 146,
401–433 (2020)

[16] Lax, P., Wendroff, B.: Systems of conservation laws. Commun. Pure Appl. Math. 13, 217–237 (1960)
[17] Leray, J.: Essai sur les mouvements plans d’un fluide visqueux que limitent des parois. J. de Math. Pures et Appl. 13,

331–418 (1934)
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