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CONVERGENCE OF THE FULLY DISCRETE INCREMENTAL
PROJECTION SCHEME FOR INCOMPRESSIBLE FLOWS

T. GALLOUET, R. HERBIN, J.C. LATCHE, AND D. MALTESE

ABSTRACT. The present paper addresses the convergence of a first order in
time incremental projection scheme for the time-dependent incompressible
Navier—Stokes equations to a weak solution, without any assumption of ex-
istence or regularity assumptions on the exact solution. We prove the con-
vergence of the approximate solutions obtained by the semi-discrete scheme
and a fully discrete scheme using a staggered finite volume scheme on non
uniform rectangular meshes. Some first a priori estimates on the approxi-
mate solutions yield the existence. Compactness arguments, relying on these
estimates, together with some estimates on the translates of the discrete time
derivatives, are then developed to obtain convergence (up to the extraction of
a subsequence), when the time step tends to zero in the semi-discrete scheme
and when the space and time steps tend to zero in the fully discrete scheme;
the approximate solutions are thus shown to converge to a limit function which
is then shown to be a weak solution to the continuous problem by passing to
the limit in these schemes.

1. INTRODUCTION
The incompressible Navier—Stokes equations for a homogeneous fluid read:
(la) du+ (u-V)u—Au+Vp= fin (0,7) x Q,
(1b) divu =0in (0,7) x Q,

where the density and the viscosity are set to one for the sake of simplicity, and
where

2) T >0, and € is a connected, open and bounded subset of R3,
with a Lipschitz boundary 0.

Note that we only consider the three dimensional setting in this work, but the
analysis may be carried out in a similar (and often somewhat simpler) manner in
the one or two dimensional setting. The variables u and p are respectively the
velocity and the pressure in the flow, and Equns. (Ta) and (IB) respectively enforce
the momentum conservation and the mass conservation and incompressibility of
the flow. This system is supplemented with the boundary condition

(3) u=0on (0,7) x 99,
and the initial condition
(4) u(0) = up in Q.
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The function uy is the initial datum for the velocity and the function f is the source
term. Throughout the paper, we shall assume that

(5) F e L*(0,7) x Q)% and uy € E(Q),
where E() is the subset of H}(Q)? of divergence-free functions, defined by
E(Q) = {u € H}(2)? such that dive = 0}.

Note that in fact, the initial condition is assumed to be in E(2) for the sake of
simplicity. It could be considered in L?(2)® only, see Remark 2.3l
Let us define the weak solutions of Problem (II)-() in the sense of Leray [17].

Definition 1.1 (Weak solution). Under the assumptions @) and @), a function
u € L*0,T; E(Q)) N L>(0,T; L?(2)3) is a weak solution of the problem ()-[©) if

//u (%Udm—//u@u V'Udmdt—l—/ Vu: Vv dx dt
Q Q
/uov dw—l—//f v de dt

for any v in {w € C(Q % [0,T))>, divw =0 a.e. in Q x (0,

The first projection method to solve the system () was des1gned over 50 years
ago, and is known as the Chorin-Temam algorithm [4 21, 22]. It consists in a
prediction step based on a linearized momentum equation without the pressure
gradient, and a pressure correction step that enforces the divergence-free constraint.
This method and its variants are now often referred to (following [I3]) as non
incremental projection schemes, in opposition to the incremental projection schemes
that were obtained by adding the old pressure gradient in the prediction step (see
[12] for a first-order time scheme and [23] of a second order time scheme). These
latter schemes are indeed incremental in the sense that the correction step may
now be seen as solving an equation on the time increment of the pressure. They
seem to be much more efficient from a computational point of view [13] and have
been the object of several error analysis, under some regularity assumptions on
the solution of the continuous problem, in the semi discrete setting, see [13] and
references therein.

The non incremental schemes have been the object of some analyses in the fully
discrete setting. In [I] some error estimates are derived for a non incremental scheme
with a discretization by the finite element, under some regularity assumptions on
the exact solution, In a recent paper the approximate solutions of a fully discrete
non incremental scheme with a uniform staggered discretization [I5] are shown
to converge to a weak solution (and so without any regularity assumption on the
solution of () under the condition that h < §t3~* where h and 6t are respectively
the mesh size and the time step and with 0 < o < 2.

However, to our knowledge, up to now, no proof of convergence exists for the
fully discrete incremental projection schemes, even though they are the most used
in practice. The purpose of the present work is therefore to fill this gap and to
show the convergence of the incremental projection method with a discretization
by a staggered finite volume scheme based on a (non uniform) MAC grid, without
any regularity assumption on the exact solution.

The Marker-And-Cell (MAC) scheme, introduced in the middle of the sixties
(see [14]), is one of the most popular methods (see e.g. [18] and [24]) for the
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approximation of the Navier —Stokes equations in the engineering framework, be-
cause of its simplicity, its efficiency and its remarkable mathematical properties.
Although originally presented as a finite difference scheme on uniform meshes, the
MAC scheme is in fact a finite volume scheme and as such can be used on non
uniform meshes. The convergence analysis of the staggered finite volume scheme
on the MAC mesh using a fully implicit time scheme may be found in [I1], and we
shall use several of the tools developed therein. We also refer to this latter paper
for some more references on studies of the MAC scheme.

The paper is organized as follows. Section [2] deals with the convergence analysis
for the semi-discrete projection algorithm. The fully discrete scheme is analysed in
Section Bt we only give the main ingredients of the staggered space discretization
that we use, and which is often referred to as the MAC scheme. To avoid a lengthy
description, the precise definitions of the now classical discrete MAC operators are
to be found in [I1].

Before starting the analysis of the semi-discrete and fully discrete schemes, we
wish to recall, for the sake of clarity, that:

e In a Banach space E equipped with a norm || - ||, a sequence (up)nen C E
is said to converge to u € E if ||u, — ul]|g — 0 as n — 400, while it is said
to weakly converge to u € E if for any continuous linear form T' € E’, one
has T'(u,) — T'(u) as n — +o0.

e A sequence (Ty,)nen C E' is said to x-weakly converge to T' € E’ if for any
u € E, one has T),(u) — T'(u) as n — +o0.

o If E=LP(Q), where 1 < p < +oc and 2 is an open set of R3, the space E’
is identified to L4(R2), ¢ = p/(p — 1).

e For T >0 and E = L'((0,T), L?(2)), the space L>((0,T), L?(£2)) is iden-
tified with E'.

In the appendix, we give some useful technical lemmas.

2. ANALYSIS OF THE TIME SEMI-DISCRETE INCREMENTAL PROJECTION SCHEME

We consider a partition of the time interval [0, 7], which we suppose uniform to
alleviate the notations, so that the assumptions read:

T
(7) N >1, 5tN:N, R,:nétN fOI‘nG[[O,N]].
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2.1. The time semi-discrete scheme. Under the assumptions ([7), the usual first
order time semi-discrete incremental projection scheme (see [20]) reads:

Initialization:
(8a) Let ul, = up € E(Q) and p% = 0.
Solve for0 <n< N —1:

Prediction step:

1
(8b) Sty — (At —uf) + div(ay @ ul) + Vo - Aaytt = fiT in Q,

(8c) ay™ =0 on 9Q.

Correction step:

1 - .
() R AT+ VR - pk) =00,
(8e) divett = 0in Q and uy™ - n =0 on 0,
(8f) / pitt dz =0,

Q

where n stands for the outward normal unit vector to the boundary 902 and an

(L?(Q))3 is defined by

tn+1

1
() = —/ f(t,x) dt, for a.e. x € Q.
Otn Jen

Let us briefly account for the existence of a solution at each step of this algorithm.
Prediction step — A weak form of Eqns. (8L)-(8d) reads
Find a5 € H}(Q)? such that for any ¢ € C}(Q)?,

1
/~"+1 <,odac—/Q ayt @ ul; Vgodw—f—/V””rl Ve dx

Otn
1 n+1
uN @ dx + Ndlvgo dz + < dx.
~ Sty

The existence of the predlcted velocity is then a consequence of Lemma [AT]
Correction step — A weak form of Eqns. (8d)-(8é) reads
(10a) Find p"' € H'(Q) such that %™ = pt — pl € H'(Q) satisfies :

)

1

(10b) / VYt Vo de = — [ a4t - Vo de, for any ¢ € H(Q),
Q otn Ja

(10c¢) Set uit! = att — Sty Vit

If 'yt satisfies (I0), then Jouy uit -V dx = 0 for any ¢ € H'(Q), so that uly
belongs to the space V(Q) of “L2 divergence-free functions” defined by

(11)  V(Q) = {u € L*(Q)? such that / w-VE¢dx =0 for any € € H(Q)}.
Q
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The existence of (ulyt!,pu™™) € V(Q) x HY(Q) satisfying (IT) is a consequence
of the decomposition result of Lemma given in the appendix. Indeed, this
correction step is the decomposition stated in Lemma [A.2] applied to the predicted
velocity ™. Note that p}i{"l is uniquely defined thanks to (8f).

Remark 2.1. Summing (8D) at step n and Bd) at step n — 1, we obtain for
nel,N —1]
1 - . _ -
(12) E(U}Zv“ —ay) +div(ay™ @ uf) + V(2pk —pi ) - Aay" = fr
We may thus state the following existence result and define the approximate
solutions obtained by the projection scheme ().

Definition 2.1 (Approximate solutions, semi-discrete case). Under the assump-
tions @),E) and (@), there exists (W, ul, Py )neqi,ng C Ho ()2 x V(Q) xH(Q)
satisfying ). We then define the functions uy : (0,T) = V() and ay : (0,T) —
Hi(Q)* by

N-1 N-1
(13) un(t) = Z ]l(t}"bv,t;;“](t)“%a un(t) = Z ]l(t}@v,t’;vﬂ](t)ﬂ?;rla
n=0 n=0

where (Wx)nep,ny and (U )neqi,Ny are a solution to (), where 14 denotes the
indicator function of a given set A.

Remark 2.2 (On the boundary conditions). The original homogeneous Dirichlet
boundary conditions @) of the strong formulation () is imposed on the weak solu-
tion through the functional space H}(2)3. Note that this condition is only imposed
on the predicted velocity in the algorithm (B). Indeed, the corrected velocity does
not satisfy the full Dirichlet condition @) but only the no slip condition imposed by
@B€d). The compactness of the sequence of predicted velocities w together with the
convergence of u — @ towards zero in L? as the time step tends to zero will be the
mean to prove that the Dirichlet boundary condition is finally satisfied on the limit
of the numerical approximations. Note also that there is no need for a boundary
condition on the pressure in the correction step. In fact, it can be inferred from
the correction step ([I0) that the incremental pressure Y"1 = p"*t1 — p" satisfies a
Poisson equation on Q with a Neumann boundary condition on the boundary, but
this is a redundant information that does not need to be implemented. We refer to
[19] for an interesting discussion on these boundary conditions.

Remark 2.3 (On the initial condition). In fact, the existence of a solution (see
Lemma [A1) only requires the initial velocity u; to be in V(2), so that we could
relaz the assumption on the initial condition ug € E(Q) to ug € L*(Q)? and take
u’ = Py ()uo as the orthogonal projection of ug onto the closed subspace V' (§2) of
L2(Q)3, also known as the Leray projection. In this case, uQ; can be computed as
u’ = ug — Vo where p € HY () is a solution (unique, up to a constant) of the
following problem (see Lemma[A.3)

v e HY(Q),
Vi -V dw:/u0~Vgp da, for any ¢ € H'(Q).
Q Q

Theorem 2.1 (Convergence of the semi-discrete in time projection algorithm).
Under the assumptions [2)) and (), consider for N > 1, the time discretization



6 T. GALLOUET, R. HERBIN, J.C. LATCHE, AND D. MALTESE

defined by ([@), and the approzimate solutions uy and Gy of the projection al-
gorithm () as given in Definition 2. Then there exists uw € L?(0,T;E()) N
L(0,T; L?(2)3) such that up to a subsequence,
e the sequence (un)n>1 converges to w in L*(0,T;L*(0)3) and weakly in
L2(0,T5 Hy()?),
e the sequence (un)n>1 converges to w in L*(0,T; L*(Q)?) and x-weakly in
L°(0,T; L2(£2)3).
Moreover the function u is a weak solution to () in the sense of Definition [l

Proof. Here are the main steps of the proof; each step is detailed in one of the
following paragraphs.

e Step 1: first estimates and weak convergence (detailed in section[23). By
Lemma 22 below, we get that there exists C; € R, depending only on |,
lluollz2()s and || f||z2(q)s, such that the sequences (4y)n>1 and (un)n>1
defined by (I3]) satisfy

(15) Sup Nl L2072 (0)3) < (g and sup lunlre=(0,r;r2@)%) < On
(16) sup lun —anllz2(0,7;02(0)%) < oty -

Owing to (), there exist some subsequences, still denoted (uy)n>1
and (@y)n>1, that converge respectively x-weakly in L>(0,T; L?(Q)3) and
weakly in L?(0,T; H}(€2)3). Thanks to (I6), the subsequences (u N)N>1
and (@y)n>1 converge to the same limit u weakly in L?(0,7; L?(Q2)3). 1
follows that w € L>(0,T; L*(Q)3) N L%(0,T; H}(2)?), and passing to the
limit in the mass balance (8f) then yields that w € L°(0,T;L*(2)%) N
L?(0,T; E(Q)).

There remains to show that w is a weak solution in the sense of Definition[[Tland in
particular that u satisfies (@). Unfortunately, the weak convergence is not sufficient
to pass to the limit in the scheme, because of the nonlinear convection term. Hence
we first need to get some compactness on one of the subsequences (since, by (L6,
their difference tends to 0 in the L? norm).

e Step 2: compactness and convergence in L? (detailed in section[Z.3) This is
the tricky part of the proof. Since the sequence (@ )n>1 converges weakly
in L2(0,T; H}(2)3), some estimate on the discrete time derivative would be
sufficient to obtain the convergence in L?(0,T; Hi(Q)?) by a Kolmogorov-
like theorem. A difficulty to obtain this estimate arises from the presence
of the pressure gradient in Equation (8BH]), which needs to be “killed” by
multiplying this latter equation by a divergence-free function. This function
¢ should also be regular enough so that the nonlinear divergence term
makes sense: hence we choose ¢ € L2(0, T} Wol’g(Q)3) such that dive = 0,
and define the following semi-norm on (L?(£2))3:

(17a) |wle1 = sup{/ﬂw -v de, ve W(Q), ||v||W01,3(Q)3 =1},
(I7b)  with W(Q) = {¢ € W3 (Q)® / ¢ VE do = 0,¥¢ € H'(Q)),
Q

Estimates on the L?(]-]. 1) semi-norm of the time translates of the predicted
velocity uy are then obtained from the semi-discrete momentum equation
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(Bh): see Lemma 23l Note that this is only an intermediate result; indeed,
in order to gain compactness, we need an estimate on the time translates
of the predicted velocity in the L?(L?) norm. The idea is then to first
introduce the following semi-norm on (L?(£2))3.

(18) oo =sup{ [ 0 da. ¢ € VIQ). el =1}
where V(Q) is the space of L? divergence-free functions defined by (IIJ).
Note that

(19) |lwl.o = ||PV(Q)wHL2(Q)3 for any w € LQ(Q)B,

where Py (q) is the orthogonal projection operator onto V(2). Then,
thanks to a Lions-like lemma (Lemma 2] below), we get that for any
€ > 0, there exists C: € R, such that

(20) w0 < ellw]l gy ye + Celuwla, Yoo € HY(Q)P.

By (@), we have an L?(0,T; H3(2)?) bound on the predicted velocities; we
have also seen that the time translates of uy for the L%(] - |.,1) semi-norm
tend to 0 as N — +oo (Lemma below). Therefore, by (20), the time
translates of ux for the L?(| - |.0) semi-norm also tend to 0 as N — +oo.
In order to show that the L?(L?) norm of the time translates of @y tend to
0, we remark that if v € V/(Q), then |v|. 0 = ||v||12(q) and conclude thanks

to (), see Lemma [2.5]).

o Step 3: convergence towards the weak solution (detailed in section [24)
Owing to a Kolmogorov-type theorem (see e.g. [9 Corollary 4.41]), the
estimates of steps 1 and 2 yield that there exist subsequences, still denoted
(un)n>1 and (4n)N>1, that converge to @ in L2(0,T; L2(Q2)3).

In section2.4] we pass to the limit in the scheme to obtain that u satisfies
([6); therefore @ is a weak solution to () in the sense of Definition [l

d

Remark 2.4 (Uniqueness and convergence of the whole sequence). In the case
where uniqueness of the solution is known, then the whole sequence converges ; this
is for instance the case in the 2D case [17], see e.g. [3, Chapter 5, Section 1.3] for
more on this subject.

2.2. Proof of step 1: energy estimates and weak convergence.

Lemma 2.2 (Energy estimates). Under the assumptions @), @) and (@), the

functions uy and un defined by ([[3) satisfy (I5) and ([16), with () depending
only on [, |luo| L2 and || f|lL2()s-

Proof. Noting that @y satisfies [@) and using Lemma [AJ] with o = we have

for n € [0, N —1]

1
oty ?

~ N 1 n 1 ~ N n
(21) MH“NHHQN(QP - %HUNHQN(QF + M||uN+1 —uR |72y

~nt1 ~n41)2 +1 =ntl
+/vayv-uf;v da + ||l |\Hé(m3g/9f; Lt da.
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Squaring the relation (8d), integrating over 2, multiplying by &TN and owing to
uit™ € V(Q), we get that for n € [0, N — 1]

1 oty

2oty lu n+1||L2(Q ||VZ7"+1||L2(Q)3 de = 2& ||~n+1||L2(Q)3

L Ot - n
Ik e — [ a3 iy da
Summing this latter relation with [21I)) yields for n € [0, N — 1]

S5 (||uN+1||iz s = lulZagas ) + 2 (IVPE 1320p0 = VPRI 20 )

- - 1~
25t ™ — w72 + @ n+1||H1(Q / Ayt da.

We then get Relations (IE) by summing over the time steps, using the Cauchy-
Schwarz and Poincaré inequalities. O

2.3. Proof of step 2: compactness and L? congergence. Following Step 2 of
the sketch of proof of Theorem 2] we start by the following lemma.

Lemma 2.3 (A first estimate on the time translates). Under the assumptions of
Theorem[Z.1, there exists Co only depending on |, [|uol|(L2())s and || Fl[(z2()ys such
that for any N > 1 and for any 7 € (0,T),

T—1
[ e ) — a0, at < Crtr + o),
0

where | - |«1 is the semi-norm defined by ([IT).

Proof. Let N > 2 and 7 € (0,T) (for N = 1 the quantity we have to estimate
is zero). Let (X%,T)neﬂl, ~N—1] be the family of measurable functions defined for
n€[l,N—1]and t € R by X} ,(t) = Ln, —r¢n)(t), then

N-1
(22) an(t+7)—an(t) = > Xk (O)@y" —ay),vte (0,7 - 7).
n=1

Hence, owing to (I2)),

N-1 N-1
N({Et+T)—an(t) _5tNZXNT (AR — bty ZXNT )div(aytt © ufy)

n=1 n=1
N-1

— Oty ZXNT V(2py —py )+ 0ty ZXNT Fia

n=1
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Let o € W(Q) and A(t) = / (an(t+7) —un(t)) - ¢ do, so that
Q

A(t) = Ad(t) + A (t) + Ap(t) + Ap(t) with

X - (t)dtn Vit : Ve de,
Q

n=1
N-1
Act) =) xR, (t )5tN/ ayt @ul Ve de,
n=1 Q
N-1
A,(8) = 3 X (D5t / (20 — iy )divep da,
n=1
N-1
Ap(t) =) X% 6tN/ Futt
n=1
By the Holder inequality,
N-1
(23) Aa(t) <1210l pllrsays D X OFNIEN | 213 )2
n=1

Since H}(Q) C L%(Q), using Holder’s inequality with exponents 2, 6 and 3 (3 +
1

2+ 1 =1), we get, thanks to the bounds ([5) on uy and uy,
N-1
24) A0 < Y X Otk o 185 s s Il s
n=1
N-1
2,6 n ~n
< qIICs(ob )||90||W01‘3(Q)3 Z XN,T(t)(StN||uN+1||Hé(Q)3
n=1

where ng{aﬁ) € Ry, depending only on [€2], is such that
ol < OS5 vl s, for any v € Hy (@)

Since dive = 0, clearly Ap(t) = 0. Next, we note that

N-1
3 3 n n
(25)  Ag() < CEDIY el s D X (O8I L2,
n=1

where ng{f’) € Ry, depending only on [€2], is such that
(3,3)
[l Ls)s < Csob HLPHWOLS(Q)?’? for any ¢ € Wom(ﬂ)g'

Summing Equations [23), 24)), 25]), we obtain
N-1
A(t) < Cllellwrsq Z ()0t (I g ps + I1F8 I22(0)0)

where C = [Q]/6 + %2 1QV/6 + g% This implies
N-1
an(t+7) = an()la < C Y xR Ot (@Y 1y ) + IFV 1 z2@)2)-

n=1
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Since 21]::11 X, (t)0ty < 7+ 6ty for any ¢ € (0,7 — 7) we then obtain

N—-1
@t +7) @)l < 20%(r +8tn) D X Ot (a5 G 0pe + IF8T 172(0):

n=1

Noting that fOT_T X7+ (t) dt <7 for any n € [1, N — 1] yields

T—1
/ lay (t+7) —an(t)2, dt
0
N-1 T—1
<2C%(7+0tw) 3 Ot (@ 3 s + I1FA 1320p0) / X (1) dt

n=1
<2C%(7 + 5’5N)T(||ﬁN||2L2(0,T:H5(Q)3) + £ 1720y xy2) < Gor (T + dtw)
which gives the expected result. (Il

Lemma 2.4 (Lions-like). Let Q be an open bounded connected subset of R3 with
a Lipschitz boundary. For any € > 0, there exists Ce > 0 such that 20) holds for
any w € H}(Q)3.

Proof. Let € > 0; let us show by contradiction that there exists C. > 0 such that
for any w € Hj(Q)?
(Wl 0 < ellwll gy ) + Celwlsa.

Suppose that this is not so, then there exists ¢ > 0 and a sequence (wp)n>0 of
functions of H} ()3, such that,thanks to ([I9),

1Py @ywnllL2()s = |[wnlso > 6Hwn||H5(Q)3 + 1w

By a homogeneity argument, we may choose || Py )W r2()s = 1; it then follows
from the latter inequality that the sequence (wy,),>0 is bounded in Hg ()3 and
that |wple1 — 0 as n — 4oo0. This implies that as n — 400, up to a subse-
quence, (wy,)n,>0 converges in L*(Q)? to w € H}(Q)3. The continuity of the Leray
projection Py (o) implies that Py oyw, — Py@yw in L?(2)* and in particular
Pv@wlL2(0)s = 1. By definition of |wy|.,1 we have for any ¢ € W ()

/Q Wy - Az < w1 ]|l -
We then obtain
/Q Py ywn - ¢ da = /Q“’" ¢ de < fwnlallllgs @
Passing to the limit in this inequality yields that
/Q Py@w - dz =0, for any ¢ € W(Q).

Owing to Lemma [A:3] this in turn implies that there exists £ € H'(Q) such that
Py yw = VE. Using the fact that Py (q)w € V() we have

”PV(Q)"UH%2(Q)3 = /QPV(Q)'LU - V& dax =0,

which contradicts || Py yw| r2) = 1. O
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Lemma 2.5 (L? estimate on the time translates). Under the assumptions Theorem
2] the sequence (un)n>1 satisfies
T—7

(26) ||11N(t—|—7')—11N(t)||%2(Q)3 dt — 0 as 7 — 0, uniformly with respect to N,
0

and is therefore relatively compact in L*(0,T; L?(2)3).
Proof. By the triangle inequality,

T—1
/ iy (t+7) — an (0|2 dt < 2(An(7) + By(r)), with
0 T—1
An(r) = / (n — un)(t+7) — (i — un) ()3 dt,

T—1
By(r) = / (£ +7) — un (]2 dt.

For any fixed N € N, Ay(7) — 0 as 7 — 0, and thanks to (If), this convergence is
uniform with respect to N. Let us then show that By (7) — 0 as 7 — 0 uniformly
with respect to N.

Since upn (t) € V() for any t € (0,T") we have for any t € (0,7 — 1)

lun(t+7) —un(t)||z2( =  sup / (un(t+7)—un(t)) v de
vev(Q) Jo
||”||L2(Q)3:1

< ||(uN—ﬁN)(t—|—7')—(uN—'&N)(t)HLz(Q)s—|— sup /(be(t—FT)—ﬂN(t))'v dx,
vev(Q) Ja
HUHLQ(Q)3:1

so that -
Ba(r) < 24x(r) + 2/ g (t 4+ 7) — an(B) o it
0

Let € > 0; thanks to Lemma [2.4] there exists C. > 0 such that for any N > 1 and
for any t € (0,7 — 1)

[an(t+7) —an(t)]wo <ellun(t+7) —un )| mp s + Celan(t +7) — an(t)]«1,
and in particular for any N > 1 and 7 € (0,7)

T—1 T—1
| antee ) —an (0B ar <26 [T (1) = ()

T—1
+2C§/ lan(t+7) — an(t) f,l dt.
0

Thus, owing to lemmas and 23]

T—1
[ e — (002 dt < 8 + 202t + i),
0
and therefore, for any N > 1 and 7 € (0,7),

Bn (1) < 2AN(7) 4+ 16(e? + 4C2Cpr (1 + 6t ).
Now let ¢ > 0 be given, and let:

e 7y > 0 such that for any 7 € (0, 79), 2An(7) < { for any N > 1;
e ¢ > 0 such that 16%52 <¢;
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e 7o > 0 such that for any 7 € (0,7) and N > 1, 4C2(gyr (1 + dty) < C.

We then obtain that By (7) < 3¢ for any 7 € (0, min(7g, 7)) and N > 1 which
implies that By (7) — 0 as 7 — 0, uniformly with respect to N. The proof of (26)
is thus complete. The relative compactness of the sequences uy and uy follows by
a Kolmogorov-like theorem (see e.g. [9, Corollary 4.40]) and (I6]). O

2.4. Proof of step 3: convergence to a weak solution. By Lemma 2.5 up
to a subsequence, the sequence of predicted velocities (y)n>1 converges to some
limit w € (L2(0,T; L*(Q)?), and owing to (1), so does the sequence (un)n>1.
There remains to check that @ is a weak solution to (Il) in the sense of Definition
[[T This is a result that we call “Lax-Wendroff consistency”, following the famous
paper [10] see e.g. [7]: assuming that the approximate solutions converge boundedly
to a limit, this limit is a weak solution to the continuous problem.

Lemma 2.6 (Lax-Wendroff consistency of the semi-discrete scheme). *

Let (un)n>1 C L*(0,T; H} (2)3) and (un)n>1 C L(0,T; L2(Q)3) be sequences
of solutions to the semi-discrete scheme [8) for N € N (see Definition [21), and
assume that uw € L*(0,T; H(Q)3) is such that un — u in L*(0,T;L*(Q)3) and
weakly in L*(0,T; HY()3) and aun — u *-weakly in L°°(0,T; L?(Q)3?) as N —
+00. Then the function w is a weak solution to () in the sense of Definition [T

Proof. Let ¢ € {w € C([0,T) x Q)3, dive = 0in(0,T) x Q}. Let (@%)nefo,n]
be the sequence of functions of E(Q2) defined by % (x) = ¢(t%,x), for any z € Q,
and let ¢y : (0,T) — E() and fy : (0,T) — L*(92)3 be defined by

N-1 N-1
pn(t) = Z Lgn gy (D), In(t) = Z Lgn gnen (1) [
n=0 n=0

The regularity of f and ¢ implies that:

| fx = Fllzzco,myx)s — 0,
len — SOHLOO((O,T)xQ)B — 0, as N — 4o0.
Vo — VoL o,r)xa)sxs = 0,

Multiplying (I2) by dty R, integrating over  and summing over n € [1, N — 1]
yields

N-1

T
(27) Z/(ﬂ}‘v“—ﬂ%)-cp’fv d:c—/ /aN®uN;V<pN de dt
Q oty 4 Q

n=1
T T
—|—/ /V'&N:VLdeccdt:/ /fN~cdeccdt.
oty JQ oty JQ

Using the fact that ¢ = 0 in Q the first term of the left hand side reads

N-1 T

S [ -an) e de = [ [ aneh-on ) dode- [ akeef de
/e 0 JQ Q

By the triangle inequality,

/Q&}V-cp?\, d:I::/Quo-cp(O,-) dw—i—/ﬂ('&}v—uo)-go(o,-) dex.
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Since the sequence (tx)n>1 converges to w in L%(0,T; L?(Q)?3), we obtain

lim / ”“—ﬂ de = — / /u8 dx — /u 0,-) de.
N**"Onz i (ORI @i | 0 (0,)

The second term in the left hand-side reads

T T
/ /'&N(XJUN:VgoNd:Bdt:/ /fLN®uN:Vgod:Bdt
Sty JQ 0 Jo

T St
+/ /fLN@)uN:(VgoN—Vgo)dwdt—/ /'&N(X)UN:VgoNdwdt
0o Ja 0 Q

The convergence of the sequence ('&N)NZI in L2(0,7T; L?(2)3), the weak conver-
gence of the sequence (uy)n>1 in L2(0,T; L(Q)?), the convergence of the sequence
(Von)n>1 in L2((0,T) x 2)3*3 implies

N ——+oc0

(29) lim / /uN®uN Vey de dt = / /u@u Ve dz dt.
Sty

The third term in the left hand-side may be written

T T
/ /VfLN:VgoNdwdt:/ /V'&N:chdwdt
Sty JQ o Ja

T Sty
—|—/ /VﬂN:(chN—ch) dx dt—/ /V’[LNZVQON de dt
o Jo 0 Q

The weak convergence of the sequence (Vay)n>1 in L2(0,T; L*(Q)3) and the con-
vergence of the sequence (Vg )n>1 in L?(0,T; L?(Q2)3) implies

T T
(30) lim / / Vuay : Ve dx dt = / / Vu: Ve dx dt
N=oo Jsiy Ja 0 Ja

The right hand-side satisfies

T T
//fN exdodi= [ [ fopdear| [ gy oy daa
Sty 0 Q 0 Q
Sty
0 Q

The convergence of the sequence (fy)n>1 in L?(0,T; L*(Q)3) and the convergence
of the sequence (¢ )n>1 in L2(0,T; L*(Q)3) implies

T T
(31) lim / /fN~goNd:cdt:/ /f-cpdccdt.
N=doo Sy Ja 0 Ja

Using ([28)-(@1I)) and passing to the limit in (27) gives the expected result. O

3. ANALYSIS OF THE FULLY DISCRETE PROJECTION SCHEME

Our purpose is now to adapt the proof of convergence of the semi-discrete case to
the fully discrete case. We choose as an example of space discretization a staggered
discretization on a (possibly non uniform) rectangular grid of R®. The resulting
scheme, often referred to as a MAC scheme, was analysed in [II] for an time-
implicit scheme. The idea here is to prove its convergence for the incremental
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projection scheme. We consider the following assumptions on €2 and on the time-
space discretization, indexed by N (in the convergence analysis, the time and space
steps will tend to 0 as N tends to +00).

T >0, $isan open rectangular subset of R?, with boundary

(32a) faces that are orthogonal to one of the vectors of the canonical basis of
R3, denoted by {e(i),i =1,2,3},
T
Dn = (Mny,En) is a MAC discretization in the sense of
(32¢) 11l Definition 2.1], with My (resp. En) the set of cells (resp. faces),

hy = max diamK is the space step.
N KeMnN P P

th = ndty for n € [0, NJ.

Note that at this step, we are only considering one time step diy = % and one

discretization mesh Dy, which is also indexed by N. This might seem strange, but
it is in view of the convergence analysis for which a sequence (Dy, dty ) n>1 will be
considered, with hy,dty — 0 as N — +oo.

The regularity of the mesh is measured by the following parameter:

(33) Oy :max{@, ce D o ceD i jelL,d], i;éj},

|o”|

with | - | the Lebesgue measure (this notation is used in the following for either the
R? or the R? measure).

We refer to [I1] for the precise definition ot the discrete spaces and opera-
tors. The approximate pressure belongs to the set Ly () of functions that are
piecewise constant on the so called primal cells K of the (primal) mesh My:
p= ZKGMN pr 1. The i-th component of the approximate velocities belongs to

the set HJ(\;)(Q) of functions that are piecewise constant on the dual cells D, € £,
where £(*) denotes the set of faces of the mesh that are orthogonal to e;. Denoting

by £(K) the set of faces of a given cell K € My, and by ¢ = K|L an interface
between two neighbouring cells K and L, a dual cell D, € €N E(K) is defined by

D. — [xxxr] X 0, for 0 = K|L C Q,
7 [.’BK.’BKﬁQ] X o, for o C 9.

where zx denotes the mass center of K and xx so the orthogonal projection of g
on 99 We thus define three dual meshes of €.
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3.1. The fully discrete scheme. The space discretization of the time-discrete
scheme (&) reads:

Initialization:
(34a) uly = (ul;)i=1,2,3 With u}; = /uoZ ds1p,,i=1,2,3,
5( 0) ol
P’ =0.
Solve for 0 <n < N —1,
Prediction step
L —n n ntl
(34b) E(uN“ —ul) + Cn (@ Hul — Ayay ™+ Vph = fott in Q.
(34c) (@yt)e =0, Vo € Eox.
Correction step :
1 ~n 7 n :
(1) (R = @) + VR —pk) =0 in 0
(34e) divyuy™ = 01in Q,

(34f) (uptt)e =0, Yo € Eox,

(34g) > K| pEt =0
KeM
In this algorithm, the terms C’N(uN )uN, ANuN VNpN and dlvNu"Jrl are the
MAC discretization of the terms div(aj ® uy), AuN , Vpj and dlvu’Ji,+1 in
the algorithm (8) and are defined in [11 Section 2]. In ([B4d), the vector function
]’\’,H is defined by its components ( }\l,ﬁ-l,i = 1,2,3) where ]”hLl is the piecewise

constant function from Q x (0,7) to R? defined by

tn+1

}GH(w D, |5tN/ /t f(t,z) dt dz, for a.e. acEDU,UES(Z

Let us briefly account for the existence of a solution at each step of this algorithm.
First remark that the discrete no slip boundary condition ([34d) and (34f) are
equivalent to requiring that the i-th component w; of the approximate predicted

and corrected velocities belongs to the space H](\Zrl,)o = {v € H](\Z,') (Q), v(x) =

0 for a.e. © € Dy, forany o € 5c(:<)c} We then set Hyo(Q) = [[2_, HJ(\;)O(Q)
and Enx(Q2) = {v € Hyo(Q) : divwyv = 0}. (See [I1, Section 2] for the defini-
tion of the discrete MAC divergence divy.) Thanks to the discrete duality of the
divergence and gradient operators [I1] Lemma 2.4], the space En(£2) may also be
defined as Ex () = {v € Hyo(Q) : [yv-Vyw dx =0, Yw € Ly(Q)}.

Note that since ug € E(£2), we also have u%, € En(1Q).
Prediction step — The existence of the predicted velocity follows from Lemma [B.1l
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Correction step — A weak form of the correction step (B4d) which computes a
divergence-free velocity and an associated pressure reads

(35a) M=o =R € In(Q), | YR de =0,
Q
(35Db) VNt - Vg de = 5tN/ ayt - Vg dez, for any ¢ € Ly (),
Q Q
(35C) u?/ﬁrl ,a;i[—l—l 5t VN¢H+1-

Note that if uy"' satisfies (35, then Joun utt . Vg dz = 0 for any ¢ € Ly(9), so
that u"t € En(Q). The existence of (u "+1,p"+1) € En(R2) x Ly() satisfying
@B3) is a consequence of the decomposition result of Lemma (given in the
appendix).

We may then define the approximate solutions as follows.

Definition 3.1 (Approximate solutions, discrete case). Under the assumptions (B
and [B2)), there exists (U, wy, PR )neqi,ng C Hn,0(Q2) X Ex(Q) x Ly (Q) satisfying
B4d)-B4el). The approzimate corrected and predicted velocities may thus be defined
byun :(0,T) = En(Q) and @ : (0,T) — Hy () defined by

(36) uy(t) = Z Ly iy (Dul, ay(t) = Z L 7t7v+1](t)ﬂ7;[+17
n=0 n=0
For a given N > 1 and the associated (uniform) time discretization

(37) Stn = % th = ndtn, n € [0, N],

Remark 3.1 (On the boundary conditions). The original homogeneous Dirichlet
boundary conditions @) of the strong formulation ({l) is not imposed by the space
Hy (), which only imposes the no slip condition. However, it is imposed on the
predicted velocity in [B4d) by the definition of the discrete Laplace operator, see
(8)-(10) in [11], Section 2]. As in the semi-discrete case, it is not imposed in the
correction step ([34g)-(B4d).

Note also that, as in the semi-discrete case, there is mo meed for a boundary
condition on the pressure in the correction step. In fact, it can be inferred from the
correction step that the incremental pressure Y"1 = p"tl — p" satisfies a discrete
Poisson equation on 2 with a Neumann boundary condition on the boundary.

Remark 3.2 (On the initial condition). If the initial condition ug € E(Q) is
relazed to wg € L?(Q)3 as in Remark[Z3, the discrete initial condition should be
taken as the orthogonal projection onto En () of the function u° defined by ([34al).

Remark 3.3. Summing B40) and [B34d), we get the discrete equivalent of ([I2):
1 -~ n n n 77—
(38) @y — ) + Ov(ay™u" + V(20 — i)
— Ayt = it ne [1,N 1]

Let us now state the convergence of the algorithm ([B4]) as the time step oty and
the mesh step hy tend to 0 (or N = % — 400); the proof of this result is the
object of the following sections.
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Theorem 3.1 (Convergence of the fully discrete projection algorithm). Under the
assumption (B, let (6ty, Dn) be a sequence of time space discretizations satisfying
B2), such that hy — 0 as N — +oo and such that the mesh regularity parameter
On defined by B3) remains bounded. Let uy : (0,T) = En(Q) and uy : (0,T) —
Hy () be the approzimate predicted and corrected velocities defined by the scheme
B4) and Definition [Tl Then there exists u € L*(0,T; E(2)) N L>(0,T; L*(Q)3)
such that up to a subsequence,

ay — w in L2(0,T; L?(2)3) as N — +oo,

Vyay — Va weakly in L2((0,T) x ©)3%3.

uy — @ in L2(0,T;L?(Q)3) and *-weakly in L>°(0,T;L*(2)3) as N —
+o0.
Moreover the function @ is a weak solution to ([l) in the sense of Definition [l

Proof. We give here the main steps of the proof, which follows that of the semi-
discrete case; these steps are detailed in the following paragraphs.
o Step 1: first estimates and weak convergence (detailed in Section[3.3). Let
us define, for ¢ € N*, a discrete W, 9(Q)3-norm for the discrete velocity
fields. For v € Hy () with values (vy)oce let

3 3
|vo — vor |1 |vo|?
I D D D = e D DI DR e
=1 e—g|or€Ey) ‘ =1 cef() nE(Dy) °
From the energy estimates of Lemma below, we get that the approxi-
mate velocities (ny)n>1 and (un)n>1 given in Definition B satisfy

(40) J§/u>pl ||f“N||L2(O,T;H[1)1N(Q)) <

41 sup ||uw oo (0.7:L2(0)3) < (P71,

(41) N21|| Nz~ 0,m;22(0)%) < O3

(42) sup lun —anllz2(0,7:02(0)%) < Og6tN,
where

N—-1
ol 2207802 2y = D 8t 10" o s
n=0

ol 0,7:2209%) = max{ o™l p2(gps, n € [0, ¥ =1}

and || - ||1.2,n is the discrete Hi norm defined by ([B9) with p = 2.
In particular, (42)) yields that

(43) uy —ay — 0in L?(0,T; L*(Q)?) as N — +oo.

Owing to (@0)- (@), there exist subsequences still denoted (un)n>1 and
(tn)N>1 that converge x-weakly in L>°(0, T'; L%(Q)3) and weakly in L?(0, T’
L?(2)3) respectively. Moreover, again owing the bound (@) and invoking
the compactness result [6] Theorem 3.1], there exists a subsequence still
denoted by (@n)n>1 that converges in L?(Q2)? to a function u € H}(Q)3,
and such that (Vay)n>1 converges to Va weakly in L2(Q)3. By @3),
the subsequences (un)n>1 and (@y)n>1 converge to the same limit @
weakly in L2(0,T; L*(Q)?). From the bound (@Q), a classical regularity
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result (see e.g. [8, Remark 14.1]) yields that @ € L%(0,T; (Hg(Q2))?). Pass-
ing to the limit in the mass equation (e.g. by a straightforward adapta-
tion of the first step of the proof of [I1, Theorem 3.13]), it follows that
u € L0, T; L?(Q)%) N L2(0,T; E(Q)).

There remains to show that @ is a weak solution in the sense of Defini-

tion [T and in particular that @ satisfies ([@). The weak convergence is not
sufficient to pass to the limit in the scheme, because of the nonlinear con-
vection term, so that we first need to get some compactness on one of the
subsequences (4n)nen or (un)nen (since, by ([I6), their difference tends
to 0 in the L? norm).
Step 2: compactness and convergence in L? (detailed in section [3.3) We
adapt Step 2 of the convergence proof of the semi-discrete case. Using the
bound Q) on the sequence (%y)n>1, some estimate on the discrete time
derivative would be sufficient to obtain the convergence in L*(0,T; H}(£2)?3)
by a Kolmogorov-like theorem. As in the semi-discrete case, a difficulty
arises from the presence of the (discrete) pressure gradient in Equation
[@2); we get rid of it by multiplying this latter equation by a discrete
divergence-free function, chosen as the interpolate of a regular function
@ € L*0,T;(Wy*(2))?) such that dive = 0. Let us then define the
discrete equivalent of the semi-norm (I7) on Hy o(S2) by:

wlory = sup{/ w-v da, v € Ex(Q), [ollisy = 1}
Q

Estimates on the L?(] - |.,1,n) semi-norm of the time translates of the pre-
dicted velocity wy are then obtained from the discrete momentum equation
([@2): see Lemma Again, this is only an intermediate result since we
seek an estimate on the time translates of the predicted velocity in the
L?(L?) norm. So next, as in the semi-discrete case, we introduce the dis-
crete equivalent of the semi-norm |- |0 n-

(45) Yw € Hy (), |wl|son = sup{/ w-vdx, ve Ex(Q), [|v|r2q3 =1}
Q

(46)

(47)

Note that we have the following identity, which is the discrete equivalent
of (IJ).
|wls,0,8 = |PEy@wl L2y, for any w € Hy o(Q),

where Ppg, (o) is the orthogonal projection operator onto En(€2). Then,
thanks to a discrete equivalent of the Lions-like 24] lemma (Lemma [B4]
below), we get that for any € > 0, there exists C. € Ry such that

VN €N, Vw € Hy o, |w|.on < el|w|12n + Ce|lwli 1N

From this latter inequality, using Lemma on the time translates of wy
for the L?(| - |«1) semi-norm and the bound (#Q), we get that the time
translates of wy for the L2(|- |, 0 n) semi-norm also tend to 0 as N — ~+o0.
In order to show that the L?(L?) norm of the time translates of @y tend
to 0, we remark that if v € Ex(Q), then |v|.0,n = |[v]|L2() and conclude
thanks to ([@2)), see Lemma [3.0]).
Step 3: convergence towards the weak solution (detailed in Section [37)
Owing to a discrete Aubin-Simon-type theorem [0 Theoreme 4.53], the
estimates of steps 1 and 2 yield that there exist subsequences, still denoted
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(un)n>1 and (@y)n>1, that converge to w in L?(0,T; L?(Q2)3). Passing to
the limit in the scheme (B4]) then yields that @ satisfies (6l) and in particular
that w is a weak solution to ().

O

Remark 3.4 (Uniqueness and convergence of the whole sequence). If the solution
of the continuous problem is unique, then again the whole sequence converges.

3.2. Energy estimates and weak convergence. We first obtain a discrete equiv-
alent of the L2(0,T; H}(Q)?) and L>(0,T; L?(2)?) estimates for the predicted and
corrected velocity.

Lemma 3.2 (Energy estimates). Under the assumption ), let N > 1, (6ty,Dn)
be a sequence of time space discretization satisfying [32)) and let (u}y, w, P )nefo,N]
C Hn,0(Q) x En(Q) x Ly(2) be a solution to B4)). The following estimate holds
forn e [0,N —1]:

1 n n

(48) g (k™ e ~ k2
oty n n

+ 50 (I9ph W eqeye — IV e e

- - 1~
+ g T = kB + 15 o < [ 4 da

Consequently, there exists C3 depending only on Q, |[uo|| 23, | fllL2()s and O,
in a nondecreasing way, such that the estimates ([@0Q)- [A2l) hold.

Proof. By Lemma [BJ] with o = we have for n € [0, N — 1]

1
oty ?

1 ~n
2ty (| +1||L2(Q 25t a7 Q)3+25t

+ ||'&7]§,+1||%)27N — /QdelvNu e < / f;}“ -fLX{H dz.

@y ! u?r”%?(sz)?’

Squaring the relation (34d), integrating over Q, multiplying by 5tN and owing to

[BZe) and to the discrete duality property of the MAC scheme [I1] Lemma 2.4], we
get

1
26ty

5tN 1

[|u n+1||L2(Q ||VNP"+1||L2(Q 3= T” uy 1||L2 ()3

oty .-
+ 2NN oy — [ pRelivya da.
Q

Summing this latter relation with the previous relation yields for n € [0, N — 1]

1 n n Sty n .
25tN (”uNJrlH%?(Q 3 = ||’u’N||%2(Q)3) + — (HVNP +1||L2(Q 3 — HVNPN”%2(9)3)

- ~ 1 -
g = R + 5 B < [ £ a3 da

We then get the relation [{8) using the Cauchy-Schwarz inequality and the dis-
crete Poincaré estimate [8) Lemma 9.1] after summing over the time steps. O
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3.3. Estimates on the time translates and compactness.

Lemma 3.3 (A first estimate on the time translates). Under the assumptions of
Theorem [T1), there exists Cy > 0 only depending on |Q|, the L*-norm of wo and
the L2-norm of f such that for any N > 1 and for any 7 € (0,T)

T—1
/ [an(t+7,) = an(t, )7 v dt < GQgr(r + ot).
0

N-1
Proof. Fort € (0,T —7), un(t+71)— X+ ( antt —al), with XN+
n=1
defined by (22). Using (38), we thus get that
N-1 N-1
N(E+7) = an(t) =t > xR, (OANTRT =ty Y X (HCN (@xu
n=1 n=1
N—1 N-1
—0tn > xR (VN 2PR — PR ) + 0t D xR (O FT
n=1 n=1

Let ¢ € En(2) and let A(t) = [, (an(t +7) — an(t)) - ¢ de. Since

/ X - (t HANUNT - @ de = / XN () VNaR : Ve da,
Q Q

where Vy is the gradient operator of the velocity defined on each dual rectangular
grid, see [I1] Section 2]), we get that

A(t) = Ag(t) + Aclt) + Ap(t) + Ay (t) with
N-1
Xn 0oty | Vnal™ : Ve da,
Q

n=1
N-1
Ac(t) = — Z X%,T(t)éthN(ﬁxi_l)vu%v 90)
n=1
N-1
A, =D Xk ()5tN/(2pN Py Hdivy e da,
n=1
N-—
Ag(t) = Z (t)dtn / i

with
bn(ayt!), ufy, ) = Cn(ay™uf - ¢.

Let us reproduce at the fully discrete level the computations done for each of these
terms in the proof of Lemma

By a technique similar to that of [I1, Lemma 3.5], we get that

N-1
(49) Aa(t) < 1Y N ellan D X ()3t l|ay e, x-

n=1



CONVERGENCE OF THE PROJECTION SCHEME 21

Using Holder’s inequality with exponents 2, 6 and 3 (% + % + % = 1), we get
(similarly to the estimate of [I1, Lemma 3.5]) that there exists Cs such that
N-1

<CEZXNT )0t a2 laxt | Lo s el v

By the discrete Sobolev inequality [8, Lemma 9.1], there exists Cs € Ry depending
only on || and 6y in a nondecreasing way such that (see [8, Lemma 3.5])

||v||La(Q)3 < Cﬂ”'l)”LQ’g, for any v € Hy o(£2).

Therefore, thanks to the boundedness assumptions on uy and uy,

(50) ) < GnCCElell15.n Z X (O8ty | ah 12,n,

Again invoking the discrete Sobolev inequality, there exists C7 € Ry only de-
pending on || such that

||'U||L3(Q)3 < qﬂHvHL&Na for any v € HNﬁo(Q).

Consequently,
N—-1

(51) ) < G llellian D Xhe (Ot IR L2 (s
n=1

Thanks to the fact that ¢ € Ex(Q) and to the discrete duality property stated
n [I1, Lemma 2.4], A,(t) = 0.
Summing Equations (@9), (&Il), (50) we obtain

N-1
A(t) < Cllelisn > Xi-Odtn(lay™ 12w + 14 2 )2)
n=1
where C' = |Q|1/6 + C{:ﬂ|Q|1/6 + g, This implies
N-1
lan(t+7) = anb)eay <C D xR Ot ([ 12.n + 1FF 2 0))-
n=1

Using the fact that Zn 1 XNT( )oty < T 4 0ty for any ¢ € (0,7 — 7) we then
obtain

N-1

~ ~ ~ 1

@t +7) —a(t)2 1 n < 20%(r+68tn) Y X (00t (NN 7 2n + 158 1 2(0)s)-
n=1

Using the fact that fOTiT XA (t) dt <7 for any n € [1, N — 1] we obtain

T—1
[t~ anF, v di
0
N-1 T—1
< 2C%(7 + dty) Z Stn (1] ~n+1||1 2N+l n+1||L2(Q)3)/0 XN, (1) dt

n=1
<202 (1 + 8tn) (|1 @n 172 0,711 o (0) + 1F T2 (0.7 x0202) < G (7 + i)
which gives the expected result. O
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For v = (v, va,v3) € (L2(Q)3, we define Pyv as the vector function with piece-
wise constant components: the i-th component of Py is constant on each dual cell
D,, 0 € £, and equal to the mean value of v; on the face o. By [11 Lemma 3.7],

P is a Fortin operator in the sense that it preserves the divergence; in particular,
v e E(Q) = Pyv € Ex(Q).

Lemma 3.4 (Lions-like, fully discrete version). Consider a rectangular domain
Q of R® and a sequence of MAC grids (Dn)n>1 of Q satisfying B2d) such that
hy — 0 as N = +o0o and such that the mesh regularity parameter O defined by
B3) remains bounded. Then, for any e > 0, there exists Cc > 0 and N > 1
depending on € such that for any N > N. and for any w € Hyo(Q), {D) is
satisfied.

Proof. Let € > 0; let us show by contradiction that there exists C; > 0 and N. > 1
depending on € such that for any N > N, and for any w € Hy ()

|wlwon < ellwl1,2,8 + Celwls 1 N

Suppose that this is not so, then there exist ¢ > 0 and a subsequence of MAC
grids of € still denoted by (Dy)n>1 and a sequence (wy)n>1 of functions such
that wy € Hy o(2) for any N > 1 and, thanks to (46,

PEr@WN | L20)3 = w08 > el|lwn|12,8 + N|wnls1,n, for any N > 1.

By a homogeneity argument, we may choose ||Pg, ) wn||z2(q)s = 1; it then follows
from the latter inequality that the sequence (]|wn]|1,2,5)n>1 is bounded and that
|lwy|«1,8y — 0 as N — 4o00. Hence there exists a subsequence still denoted by
(wy)n>1 that converges in L?(Q)3 to a function w € HE(Q)3, see e.g. [6, Theorem
3.1]. Lemma 3.3l given below then yields that Pg, ywny — Py yw in L?(2)? and
in particular ||Pyoywlr2(0)ps = 1. (Recall that Py (q) : L*(Q)* — L*(Q)? is the
orthogonal projection in L?(2)® onto the space V(£).)

For any ¢ € W(Q), we have Py (@) € Ex(Q). Since wy — Pey@wn L Ey
and by definition of |w |« 1 N, it follows that

/ PEN(Q)UJN 'ﬁN(SO) = wN 'ﬁN(SO) dx < |wN|*,1,N|73N(90)|1,3,N-
Q Q

By the W14 stability of the operator 73]\; stated in [10, Theorem 1], there exists Cs
only depending on || and on Ay in a nondecreasing way, such that

| Prvan - Pate) = [ wy - Prle) da < Ggrunle el o

- 1,3
IPrellisn < Ggllellweys: for any ¢ € Wy (Q)°.
Passing to the limit in this inequality yields that

/ Py@w - dz =0, for any ¢ € W(Q).
Q

This in turn implies that there exists & € H*(Q2) such that Py gyw = VE. Using
the fact that Py (og)w € V() we have

”PV(Q)wH%%Qﬁ = /Q PV(Q)'LU - V& dax =0,

which contradicts || Py yw| r2) = 1. O
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Lemma 3.5. Let N > 1 and let Dy = (Mny,EN) be a MAC grid of Q in the
sense of [B2d), such that (hy)n>1 converges to zero and such that (On)N>1 S
bounded, with On defined by B3). Let (vn)n>1 be a sequence of functions such
that vy € Hn o(Q) for any N > 1 and (vy)n>1 converges to v in L*(Q)%. Then
the sequence (Pgy()VN)N>1 converges to Py qyv in L2(2)3.

Proof. Using the fact that (vy)n>1 is bounded in L?(Q2)® we obtain that the se-
quence (Pgy(0)vn)n>1 is bounded in L?*(€2)?. Hence there exists a subsequence
still denoted by (Pg, (o)vn)n>1 that converges to a function © weakly in L?(2)3.

Thanks to the discrete duality property stated in [I1], Lemma 2.4], we have, for any
¢ € C&(R?),

/ Pey@vn - VnlIyp de =0, for any N > 1,
Q

where Il is the piecewise constant function defined by Iy y(x | K] / p dx
forall z € K, K € My. The discrete gradient Vi is consistent in the sense of [11],
Lemme 2.3] and therefore there exists Cy € R} depending only on 2 and on 0y in
a nondecreasing way, such that

‘APEN(Q)UN -V dx| < CghNHPEN(Q)'UN”L2(Q)3HV2(PHLOO(Q)3X37 for any N > 1.

Passing to the limit in the previous identity gives
/ ¥V dx =0, for any p € C°(R?).
Q

We then obtain that € V(). Since Py preserves the divergence [II, Lemma
3.7], the following identity holds for any ¢ € V(Q) N CL(Q)3

/ VN ~75Ng0 de = / PEN(Q)'UN -75Ncp dx, for any N > 1.
Q Q
Passing to the limit in the previous identity gives
/v-cpd:vz/'b-cpdwforany<p€V(Q).
Q Q

We then obtain that © = Py (q)v and the sequence (PEN(SZ)UN)Nzl converges to
Py (o)v weakly in L*(Q)?. We can write

||7)EN(Q)UN||2L2(Q)3 = / VN -PEN(Q)UN dx, for any N > 1.
Q

Using the convergence of the sequence (vy)y>1 to v in L?(Q)% and the weak
convergence of the sequence (Pgy 0)vn)n>1 to Py (oyv in L?(Q)* we obtain

Nlirfoo IPE @) vN T2 = /Q’U Py dz = ||Py(0)vl|72 o)

The weak convergence of the sequence (Pgyo)vn)n>1 to Py(q) in L*(Q)® and
convergence of the sequence (||Pgy)vn|lL2@)3)n>1 to [|[Py(a)vllr2()s gives the
expected result.
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Since the predicted velocities are bounded in the || |1 2,5 norm (see Lemma [3.2)),
their | - |« 0,4 semi-norm is controlled by their |- |, 1,5 semi-norm thanks to Lemma
B4l Asin Lemmal2.5 we can therefore obtain an estimate on the time translates for
the L2(0,T; L?(2)?) norm, and, as a consequence, the L2(0,T; L?(2)3) convergence
of the predicted velocities.

Lemma 3.6. Under the assumptions of Theorem [31] the sequence (wn)n>1 satis-

fies
T—1
/ (¢ +7) = @ (8) 22 dE— 0 as 7 — 0,
0
uniformly with respect to N, and is therefore relatively compact in L*(0,T; L2(9)3).
Proof. We follow the proof of Lemma By the triangle inequality,

T—1
/O i (£ 4+ 7) — dun ()2 dt < 2(An(7) + Bx (7)), with
T—1
AN(T):/O [(an —un)(t+7) — (an —un)(t)]3 dt,

T—1
By(r) = / (£ +7) — un (B)]3 dt.

For any N, Ax(7) — 0 as 7 — 0, but owing to 3], we get that Ax(7) — 0 as
7 — 0, uniformly with respect to V. Let us prove that this is also the case for
BN (7’) — 0.

Since un(t) € En(2) for any ¢t € (0,T) we have for any ¢t € (0,7 — 1)

lun(t+7) —un(t)| 23 = sup / (un(t+7)—un(t)) vde
vEEN(Q) Q
”v”L2(§Z)3:1

<|[(uny —an)(t+7) = (uny —an)(®)| L2z +

sup /(ﬂN(t—I—T)—iLN(t))-vdcc,
vEEN () Q
HUHLQ(Q)3:1
so that
T—1
By (1) < 2AN(T) + 2/ Ay (t+7) —an ()2 dt.
0

Now thanks to Lemma [3.4] for any € > 0, there exists C. > 0 and N, > 1 such
that for any N > N, and for any ¢ € (0,7 — 1)

lun(t+7) = an(t)|son S ellun(t+7) —un(t)|12n

+ Os|ﬂN(t + T) - ﬁN(t)|*,l,N;

In particular for any N > N, and for any 7 € (0,7) we have

T—1

T—1
/0 e (t 4+ 7) — i (£)[2 gy dt < 22 / i (t + ) — @ (£)2 5.y dt

T—1
+2C§/ |ﬂN(t+T)—ﬁN(t)|i71yN dt.
0

Therefore, owing to lemmas and B3], for any N > N, and for any 7 € (0,7)
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T—T
/ [an(t+7) —an(t)2 oy dt <8 + 2020 (T + dtn).
0
Hence, for any N > N, and for any 7 € (0,7),

Bn(7) < 24N(7) + 1605 + 4C2 G (7 + Sty ).

Let ¢ > 0 be given, and let:

e 7y > 0 such that for any 7 € (0,79), 2An(7) < ¢ for any N > 1.

e ¢ > 0 such that 16G3e? < (,

e 7o > 0 such that 2C2(gr (7 + dty) < ¢ for any 7 € (0,7) and N > 1.
We then obtain that By (7) < 3¢ for any 7 € (0, min(70,70)) and N > N,. Using
the fact that By(7) — 0 as 7 — 0 for any N > 1 we obtain that By(7) — 0 as
7 — 0, uniformly with respect to N. The proof of Lemma [3.6] is thus complete. [

3.4. Convergence towards the weak solution. Now that we have proven that
the approximate velocities (tn)n>1 and (uy)n>1 converge in L?(0,T; L*(Q)3),
up to a subsequence, to a common limit w € L?(0,T; Hi(Q)?3), there remains to
show, as in the semi-discrete case, that @ is a weak solution to () in the sense of
Definition [[11

Lemma 3.7 (Lax-Wendroff consistency of the discrete scheme). Let (an)n>1 and
(un)n>1 C L2(0,T; L%(2)3) be sequences of solutions to the fully discrete scheme
B4) for N € N (see Definition [31)), and assume that w € (L*(0,T; Hg(Q)3) is
such that ay — u in L*(0,T; L?(Q)3) and uy — u weakly in L*(0,T; L*(Q)3) as
N — +oo, and that the sequence (tn)n>1 is bounded in the L*(|| - ||1.2.n) norm.
Then the function @ is a weak solution to () in the sense of Definition [l

Proof. Let ¢ € C2°([0,T) x )3, such that dive = 0 in Q. Using (348) and (34d)
to obtain (B8) we have for n € [1, N — 1]

1 ~n ~n ~n n n n— ~n n
E(“NJrl — @) + Cn(ay " uf + Vv (2p% —pi 1) — Agyay™ = fit

By Lemma [11], Lemma 3.7] we have divy 75Ncp(t}§,, ) =0. Weset ¢} = 75Ngo(t§§,, )€
En(Q) and multiply the previous identity by dtn¢ly, integrate over €, and sum
over n € [1, N — 1]. This yields

N—-1 N—-1
(52 3 /Q (@ — @) - o dz dt+ 3 Stwby (ul, @l o})
n=1 n=1

N—1 N—1
+ Z 5tN/QV5~NuX,+1 1 Vg oy de = Z 5tN/Qf]\}H o de.
n=1 n=1

Using the fact that ¢ = 0 in Q the first term of the left hand side reads

n=1
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Since ¢% = Pn(9(0,-)) € Ex(Q) and, owing to [@a), ud = Pyug, so that

Z/ﬂ "H—'&’]ﬁ, i dw_—Z/ ant (et — @) da dt
- / Pvuan - Prr(p(0,)) daz — / (@ —ud) - Pr(p(0, ) da.
Q Q

The regularity of cp implies that

- n+1

. N SON : 0 3
Gm Z e Ly niny(-) = Quep in L2((0,T) x Q)%

Using the weak convergence of the sequence (ty)n>1 in L?(0,T; L?(Q)?), the uni-
form convergence of the sequence (Py(¢(0,-)))n>1, the convergence in L?(Q) of

the sequence (Pyug)n>1 and ([@J), we obtain
(53)

NE}IEOO;/Q@}H—&X,)-QON de dt = / /u Opp dae dt — /uo »(0,) de.

Finally, the proof that

(54) lim Z&N/v ay™ Vg o d:c_/ /Vu Ve da dt,

N—+oc0
n=1

N-1

(55) Nhl-li-l Z(SthN (uly, antt o) — — / /u®u Ve dx dt,
——+o0
and
T
56 li ot frrloon d dt:// - dz dt.
(56) Nﬂlm; N/ cp da R

follows the proof of the convergence of the equivalement terms in the proof of[11]
Theorem 4.3]. Using ([B3)-(B6) and passing to the limit in (52]) gives the expected
result. ]

APPENDIX A. SOME TECHNICAL LEMMAS

Lemma A.1 (Existence and estimate for the linearized equation). Let Q be an
open bounded connected subset of R with Lipschitz boundary. Let o > 0 and let
uweV(Q), pe L?(Q) and f € L?(N)3. There exists u € HE ()3 such that

(57) a/ﬁ-’udw—/ﬂ@u:Vwa—i— Vu: Vv dz
Q Q Q

:a/u-vdw—l—/pdivvd:c—l— f-v dx for any v € CH(Q)3.
Q Q Q
Moreover u satisfies

o (0% o
(58) 5”””%2(9)3 - 5”””%2(9)3 + 5”” —uf|72q)

—/pdivu 4 + @2 s S/f-ﬁdw.
Q 0 Q
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Proof. Using Lemma [A4] there exists a sequence (uy,),>0 of functions of V(2) N
CL(Q)3 converging to u in L?(Q)3. Consider the following problem:

Find 4, € Hj(Q)? such that

(59) a/&n-vdw—/'&n®un:V'v+/ViLn:Vvd:c
Q Q Q

za/un-vdw—i—/pdivvdw—i—/f-vd:c, for any v € Hj ()3,
Q Q Q

By the Lax-Milgram theorem, there exists a unique @, € H}(2)3 to this problem;
indeed, the left hand-side of (B9) is a bilinear continuous and coercive form on
HY(Q)? x HE ()3 because

(60) / 4®@u: Vi de =0, for any (@,u) € H}(Q)® x E(Q);
Q

moreover the right hand side in (5J) is a linear continuous form on H}(Q)3.
Take v = @, in (B9); owing to ([@0), we get

a3y + IinZ1 s = a/ w, -, dz + / pdivie, dz +/ o, dz
Q Q Q
which implies
o « [0 ~
(61) 5”“71”%2(51)3 - 5”“71”%2(9)3 + §Hun — Un |72y + ||un||§15(9)3
= / pdiva, d:c—l—/ f - uy, for any n > 0.
Q Q

Therefore, by the Young inequality, the sequence (@,),>0 is bounded in Hg ()3
and in particular passing to a subsequence converges to @ € Hg (2)? in L?(Q)? and
weakly in H}(Q)3. The convergence in L?(Q2)? of the sequence (u,),>0 gives

lim ﬂn-vdm:/ﬂ~vdm, for any v € C1(Q).
Q Q

n—-+o0o

The weak convergence in H} ()3 of the sequence (@, )n>0 gives
lim Vi, : Vv dr = / Vi : Vo dz, for any v € CH(Q).
n—+0o0o Jo Q
The convergence in L*(2)? of the sequence (u,,),>0 and the convergence in L*(Q)?
of the sequence (@, ),>0 gives

lim ﬁn®un:Vvdm:/ﬁ®u:Vvdw, for any v € C1(Q).
n—+oo Jo Q

Passing to the limit in () with v € C}(2)? gives (57). The weak convergence in
H(Q)? of the sequence (@, )n>0 gives

||ﬂ||§15(9)3 < hnniiogf ||"1n|@15(sz)3
Passing to the limit (61]) gives (G8)) which concludes the proof of Lemma[Adl O

Let us now give the decomposition result which was used for the proof of existence
of a solution to the correction step (I0).
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Lemma A.2 (Decomposition of L? vector fields). Let Q be an open bounded con-
nected subset of R® with Lipschitz boundary. Then for any w € L*(2)3 there exists
(v,9) € V() x HY(Q) such that w = v + V1.

Proof. Let 1 be a solution (unique, up to a constant) of the problem

b€ H'(Q),
/vw-vg dwz/w-V§ da, for any ¢ € H'(Q).
Q Q
Then w = v + V¢ with [, v- V¢ dz = 0 for any £ € H'(Q). O

The following lemma gives a characterisation of the gradient which is used in the
proof of Lemma 24l TIts proof is a simple consequence of a result of M. E. Bogovskii
[2] and refer to the very clear presentation of [5] for more on this subject.

Lemma A.3 (Characterization of the gradient). Let Q be an open bounded con-
nected subset of R® with Lipschitz boundary. Let f € L*(Q)* such that [, f-¢ dx =
0 for all p € C°(2)3 such that divep = 0 in Q. Then there exists £ € L*(Q) such
that f = VE.

Proof. We recall that L§(€2) = {q € L*(Q) such that [, ¢(x) dz = 0}. A classical
result [2] gives the existence of an linear continuous operator B : L3(2) — Ha(Q)3
such that div(B(q)) = ¢ a.e. in Q. Furthermore B(p) € C(Q)? for any ¢ €
C2°(Q) N L3(%).

For q € L§(Q) weset T(q) = [, f-B(q) d. The mapping T is a linear continuous
form on L3(9). There exists £ € LZ(Q) such that

T(q) = /Qf -B(q) de = /Qﬁq dx, for any ¢q € L%(Q).

Taking now ¢ € C°(Q)3, one has divep € C°(Q) N LE(2) so that ¢ — B(dive) €
C22(Q)? and div(e — B(dive)) = 0 in . Then, the hypothesis on f gives [, f -
(¢ — B(dive)) de = 0 which leads to

/ f-pde= / f - B(divep) de = / &dive da,
Q Q Q
and we conclude V& = f (that is the distribution V¢ is the function f). d

A consequence of this lemma is the following interesting per se density result.

Lemma A.4 (Density of divergence-free functions). Let £ be an open bounded con-
nected subset of R® with Lipschitz boundary. Let V(Q) = {p € C°(Q)? such that divep =
0 in Q}. The closure of V(Q) in L*(Q)3 is V(Q).

Proof. Equipped with the L?()3-norm, the space V'(Q2) is a Hilbert space. In order
to prove this density result, we prove that, in this Hibert space, V(Q)+ = {0}.

Let v € V() and assume v € V(Q)*. Then, Lemma [A.3] gives the existence of
¢ € L*(9) such that v = V¢ (and then £ € H'(2)). Since v € V(Q), ones deduces
for ¢ € H(Q)

/QV§-V1/Jd:c:/Q'U-V1/)dw:O.

In particular this gives fQ V¢ - VE de = 0 and then v = V& = 0. This proves that
V() is dense in V(Q). O
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APPENDIX B. SOME DISCRETE TECHNICAL LEMMAS

We assume that €2 is an open rectangular parallelepiped. In addition, we assume
that the edges (respectively the faces) of Q are orthogonal to one vector of the
canonical basis of R3.

Lemma B.1 (Existence and estimate, discrete linearized equation). Let Dy =
(Mn,EN) be a MAC grid of Q indexed by N > 1, and let « > 0. Let u € En(2),
p € Ln(Q) and fy € Hno(Q). There exists a unique & € Hy () such that

(62) a/ﬁ-'v dz +bn(u,u,v)+ [ Vyu:Vyv de
Q Q

:a/u-vdm—l—/pdiva de+ | f-vdex, for any v € Hyo(Q).
Q Q Q

Moreover u satisfies
Q. ! Q.
(63) 5”“”%2(9)3 - 5”“”%2(9)3 + 5”“ — [ 72q)s
—/pdiVN'& dz + [|al|f ¢ < / Fn -4 de.
Q Q

Proof. The weak formulation of (G2)) reads:

(64) a/ @'t v de + by (u, a"tv) + | Vet Vo de
Q Q

= a/ u" v de+ / p" divyv de + [ fy - v da for any v € Hy o().
Q Q Q

This formulation is equivalent to the form (B34B). The existence of a unique @ €
Hy o(?) satisfying (62]) is consequence of the that fact the left hand-side in ([62)) is
a bilinear continuous and coercive form on Hy o(£2) x Hy o(£2) and the right hand
side in (62)) is a linear continuous form on Hy ¢(€2). More precisely the left-hand
side is coercive as a consequence of Lemma [I1, Lemma 3.6]. We take v = @ in
([©2) and using [II, Lemma 3.6], we obtain

allaf7zq)p + @l 20 < a/ w- @ de + / pdivya dz + [ f-udz
Q Q Q

which implies
@ ~n2
§HUHL2(Q)3 - HUHL2(Q st g HU UHL?(Q s ||u||1 2,

< / pdivya de + | f-u dx.
Q Q

which gives the expected result. O

The following lemma is the discrete version of lemma[A2] which was used for the
proof of existence of a solution to the correction step (33)).

Lemma B.2 (Decomposition of Hy o(2) vector fields). Let D = (M, &) be a MAC
grid of Q. Then for any w € Hy () there exists (v,9) € Enx(2) x Ln(Q2) such
that w = v + V.
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Proof. Let v be a solution (unique, up to a constant) of

P e LN(Q),
VN -VnéEde = | w-Vy€ da, for any € € Ly(Q).
Q Q
Then w = v 4+ Vyy with v € Ex(Q). O
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