Supplementary information for

The nanomechanical properties of non-crosslinked calcium aluminosilicate hydrate: the influences of tetrahedral Al and curing age

Jiaqi Li^{1,*}, Wenxin Zhang², Paula Sanz-Camacho³, Mathieu Duttine³, David Gardner⁴, Carlo Carraro⁴, Roya Maboudian⁴, Thomas Huthwelker⁵

¹ Atmospheric, Earth, and Energy Division, Lawrence Livermore National Laboratory, United States, 94550

² Division of Engineering and Applied Science, California Institute of Technology, Pasadena, United States, 91125

³ CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB UMR 5026, F-33600, Pessac, France.

⁴ Department of Chemical and Biomolecular Engineering, University of California, Berkeley, United States, 94720

⁵ Paul Scherrer Institut, Swiss Light Source, Villigen, Switzerland

*Corresponding author. Email: <u>li88@llnl.gov</u> Address: Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California, United States, 94550

Fig.S1 shows the enlargement of Fig.2 for comparison. The asymmetric nature of the Al^{IV} resonance of poorly crystalline materials is most likely governed by a distribution in ²⁷Al quadrupole coupling parameters or chemical shifts. The Al/Si=0.1 C-A-S-H sample has no Al^V., while the Al/Si=0.0.5 metastable C-A-S-H has.

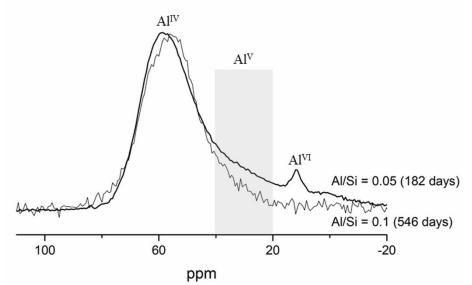


Fig.S1 ²⁷Al NMR spectra of non-cross-linked C-A-S-H (Ca/Si=1.0) for comparison. The Al/Si =0.05 sample shows a better signal-to-noise ratio due to its higher quantity for the measurement relative to the Al/Si =0.1 sample (limited available quantity).