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Abstract

Machine Learning algorithms must run on large amounts of data in order to produce powerful
classification, regression, and clustering models. The larger the size of the data required to run
these algorithms, the higher the execution time of these algorithms. Programmers of machine
learning-related applications can take advantage of the rise of multi/many core architectures to re-
duce this long runtime. However, these programmers may find it difficult to write efficient parallel
programs that run on these architectures because they used to implemente these algorithms se-
quentially. It is therefore difficult to write low-level parallel code specific to the platform. Several
DSLs have already been proposed in the context of parallelizing Machine Learning algorithms.
But most of them are embedded in high level languages such as Python (case of Qjam) or Scala
(case of OptiML). In order for such an (embedded) DSL to produce code with good performances
(execution time and speedup), the host language must have intrinsic characteristics allowing to
have them. In this paper, we propose FastML, a Domain Specific Language embedded in the C
language. The idea of FastML is to offer to the programmer learning primitives (such as gradient
descent) already parallelized according to the Map-Reduce model, that he will just have to call by
specifying the parameters, depending on the Machine Learning algorithm he wants to implement.
The first experiments carried out on a machine with 8 cores and 8GB of RAM show that FastML
gives promising results in terms of speedup compared to the OptiML DSL and the Scikit-learn
platform. For example, with kmeans, FastML produces 4x as speedup (with 7 cores) compared to
1x for Scikit-learn and 0.70x for OptiML.
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I INTRODUCTION

Machine Learning a sub-branch of Artificial Intelligence that consists in making algorithms
automatically learn to perform a task from data. Once trained, the models can be used to
solve problems such as regression, classification or clustering on new data with minimal human
intervention. Applications include: drug detection, cyber security, automatic driving, genetics,
speech recognition. For better inference on data in these applications, the algorithms need to be
run on large amounts of data; but the larger the amount of data needed for this execution, the
higher the execution time of these algorithms.

For two decades, the solution of increasing the frequency of single-core processors has allowed
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to increase the speed of applications. However, since 2003, this solution is no longer feasible
due to the problems of power consumption and heat dissipation that have limited the increase in
the clock frequency of processors. Thus, several suppliers of processors have moved to models
where several processing units, called core of processor are used: We speak of multi/many-core
processor.

Another solution to reduce this execution time is the use of these multi/many-core processors
which are more and more preponderant and which have the advantage of having several low-
frequency computing units. However, the programmer encounters difficulties in writing effi-
cient parallel programs that run on these architectures. One way to simplify the job is to choose
a language that provides implicit parallelization. This way, the programmer will not have to
worry about how to parallelize his algorithm. For that, we will use a DSL approach (Domain
Specific Language). DSLs are languages designed to solve problems in a particular domain. An
example of a DSL is Structured Query Language (SQL), for database queries.

Several DSLs have already been proposed in the context of parallelization of Machine Learning
algorithms. But most of them are embedded in high-level languages such as Python (in the
case of Qjam) or Scala (in the case of OptiML). Thus, their performance in terms of execution
time or speedup is dependent on that of the host language. For such an (embedded) DSL to
produce code with good performance (execution time and speedup), the host language must
have intrinsic characteristics that allow it to do so. These are characteristics that allow the
programmer to optimize his code. Some languages like C have these characteristics.

In this article, we propose FastML, a DSL embedded in the C language for the parallelization of
algorithms of the Machine Learning. The algorithms concerned by this parallelization are those
corresponding to the statistical query model [5] and the paradigm used for the parallelization is
the Map-Reduce paradigm [11].

This paper is structured as follows: In section II, we present the background on parallel pro-
gramming and on DSLs and the related work, in section III, a detailed presentation of FastML;
in section IV, we present our experiments, the results obtained and their interpretations and
finally, we conclude this work and present some perspectives in section V.

I BACKGROUND

2.1 parallel programming

Traditionally, software is based on sequential calculations: A problem is broken down into
instructions; these instructions are executed sequentially one after the other by a single proces-
sor. Parallelization refers to being able to perform multiple tasks simultaneously in order to
reduce application execution time. There are three (03) major parallelization techniques [12]
. instruction level parallelization, task level parallelization and data level parallelization. The
last one considered in this paper, consists of dividing the initial dataset into several blocks, and
simultaneously executing a task on these different data blocks.

To make it possible to run parallel programs, specific machine architectures have been devel-
oped. The different types of architecture are characterized by the different models of intercon-
nection between processors and memory. Among these architectures, we have SMPs (Symmet-
ric Multiprocessors), cc-NUMA (non-uniform memory access coherent cache), clusters or clus-
ters, grids, graphics processors GPU (Graphic Processing Unit), FPGA (Field Programmable



Gate Array) and multi/many core systems. A multi/many core processor is made up of at least
two (02) computing units (cores) etched on a single chip. A many-core processor is often con-
sidered as a multi-core processor, with more than 30 cores. Each core can execute a thread at a
given time.

Parallel programming models are programming techniques that make it possible to exploit the
architectures mentioned above. More precisely, a parallel programming model expresses the
way in which a parallel application will be programmed. Models based on distributed memory
and shared memory architectures [12] are the most widely used for parallel programming. In
shared memory systems, all of the parallel machine’s processors share the same memory space
through which they can exchange information through memory reads and writes. On these
machines, mechanisms are provided to create processes. The programmer then manages the
synchronization between the processes using low-level primitives such as locks, semaphores,
etc. On multi/many core architectures, several libraries have been developed to provide these
mechanisms among which, Cilk, Intel TBB, OpenMp, and POSIX Thread.

The efficiency due to parallelization is often measured by:

* Speedup: this is the ratio between the execution time of the sequential program and the
execution time of the parallel program.

« Efficiency: this is the ratio between speedup and the number of computing units.

* Scalability: This expresses the increase in efficiency with the number of compute units.

2.2 DSLs

To write computer applications, we need a language that will mediate between humans and ma-
chines and vice versa. In computer science, programming languages are divided into two: GPLs
(General Purpose Language) designed to solve general problems (Java, C, Python ...) and DSLs
(Domain Specific Language) designed to solve problems in a specific domain; (OptiML[15],
QJAM[16] Green-marl, Galois ...).

There are two categories of DSLs:

 external or stand-alone DSLs: They have their compilers or interpreters independent of
other languages.

* Embedded DSLs: they are usually implemented in a host language as a library. FastML
proposed in this paper is embedded in C.

2.3 Related work

Since the advent of multi-core systems, several works have been done in the field of machine
learning parallelization algorithms:

Cheng-Tao Chu et al.[10] adapt the MapReduce paradigm to demonstrate how 10 machine
learning algorithms can be parallelized on multi-core systems. Among others, locally weighted
linear regression (LWLR), k-means, logistic regression (LR), naive Bayes (NB), SVM, ICA,
PCA, gaussian discriminant analysis (GDA), EM, and backpropagation (NN). FastML was in-
spired by this adaptation.

Juan Batiz-Benet et al. [16] present Qjam, a python framework for the rapid prototyping of
parallelization of machine learning algorithms. That is, Qjam doesn’t care about the final ex-
ecution time. The idea behind FastML was to do a DSL that does more than the prototyping
(produce also programs that use the full potential of the machine).



Tiark Rompf et al. [15] present Optiml, DSL for the parallelization of machine learning algo-
rithms which aims to bridge the gap between algorithms and heterogeneous hardware in order
to provide a productive and efficient programming environment. Although it seems efficient,
OptiML is embedded in scala, which is a high level language compared to C. We expect that a
parallel DSL embedded in C like FastML may produce more efficient programs.

Chu et al (2007) OptiML Qjam
(2011) (2012)

Implemented

Code
avialable
Prototyping

Hight level
implemented language
Usability

number of code
lines

As shown in the table above, for the DSLs proposed in the literature, the Qjam code is not
available, which makes it difficult to compare. As for OptiML, although its number of lines of
code is small, it remains quite difficult to use, which may explain the fact that since its release
in 2011, it is very little used, and even worse, very little known.

We hope that the DSL we propose in this article will be easy to use, popular and embedded in a
low-level language.

III  FASTML PRESENTATION

We proposed FastML !, a DSL embedded in C for the parallelization of Machine Learning
algorithms. In this section, we present in detail FastML starting with the idea of paralleliza-
tion behind it, its architecture, then its programming interface and finally an example of two
algorithms implemented with FastML (Linear regression and Logistic regression).

3.1 Parallelization idea behind FastML

The idea of FastML is to offer programmers learning primitives (such as gradient descent) al-
ready parallelized according to the Map-Reduce model. All they have to do is call them by
specifying the parameters, depending on the Machine Learning algorithm they want to im-
plement. In this paper, we parallelize two categories of learning algorithms; those based on
gradient descent and those based on distance calculation. The principle consists in separating
the dataset, and assigning different fragments to different threads, while making sure during the
aggregation that the result (in term of accuracy) of the algorithm is maintained, compared to the
sequential version of this algorithm.

'FastML is avialable at https://gitlab.com/gnelnanvou/fastml.git



3.2 FastML Architecture

We modeled FastML parallelisation on Google’s Map-Reduce architecture [11]. The Map-
Reduce is a programming model that provides a framework to automate parallel computing on
big data. This is the "divide, share and rule" model. That means, the resolution of a problem
is done by dividing the data set into several blocks or fragments, and assigning these fragments
to the available computing nodes which will perform the same operation on it in parallel. It
is based on two main operations, which are MAP which specifies the operation that will be
performed on different data fragments and REDUCE which is the operation of aggregating the
results of the different mappers (nodes performing the MAP operation) to produce the final
result.

In order to allow Machine Learning application developers to take advantage of multicore sys-
tems, FastML provides for them a set of parallelized learning functions commonly used in
Machine Learning. For a Machine Learning algorithm to be implemented, the programmer just
needs to identify the ideal learning function and call it by filling in the necessary parameters.

< Function Mapper |

.[.jeﬁrlitiﬂﬂ ~ .'_'-,,_121
FastML <
~——_,Master
< Function Reduce ).-3
O definion [ A
—_ - A 5

v |
Mapper Mapper Mapper Mapper

Figure 1: FastML parallelisation architecture

Figure 1 shows the FastML parallelisation architecture. In order to make parallelisation using
FastML, the following steps shown in figure 1 are respected:

1. The user defines his dataset.

2. The user defines the task that will run on different compute nodes (Mapper function).

3. The user defines how the intermediate results will be aggregated to produce the final result
(Reduce function).

4. The FastML engine divides the dataset into fragments and creates threads that will operate
on these fragments.

5. The FastML engine aggregates the intermediate results and makes the final results avail-
able to the programmer.

3.3 FastML programming interface

Since FastML is embedded in C, its syntax is therefore similar to that of the C language. How-
ever, the FastML code must be written according to the formalism described below:



* Base type: in addition to the base types of the C language ( int, float, double, char ...),
FastML defines two new types matrice and matriceChar. These are the double and string
matrices, respectively. They support some operations such as copy(), ones(), sum(), prod-
uct(), freeMatrice() ... Each matrice or matricechar has three (03) entities: n the number
of rows, m the number of columns and contenu which the matrix itself.

* Dataset Definition: The dataset is defined in matrix form. They are four (04) prim-
itives used to read a file dataset and to load it in a matrices: readMatrice (matrice *
data, char * filename), readMatrice_char (matricechar * data, char * filename), read-
Datas(matrice * data, matrice * label, char * filename ,int nberOfColumn) and read-
Datas_char(matricechar * data, matricechar * label, char * filename ,int nberOfCol-
umn).

* FastML project content: The FastML project contains a set of files. The matrix.h file
contains the signatures of the functions and operations supported by the types matrix and
matrixchar. The file dsl.h contains operations specific to our DSL. These are some func-
tions (already parallelized) used for Machine Learning which the programmer just has to
call by filling in the parameters. We will find for example the stochastic gradient descent,
used for the learning of many Machine Learning algorithms. In the files fonctions.h and
fonctions.c the programmer has to place respectively the signatures of his own functions
and the code of these functions to finally make the call in the file main.c. Once completed,
compilation and execution is done like any C project.

3.4 Implementation Examples

Here we present the outline of the Linear and Logistic Regression and Kmeans implementation
using FastML. We use stochastic gradient descent to train both algorithms. In red, the keywords
and types of the C language, in brow, the types specific to FastML, in green, the operations
specific to the latter and in black, the functions and operations specific to the programmer.



3.4.1 Linear Regression
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matrice linearRegressionAlgorithm (double alpha,

int n_epoch, char x filename) {
matrice X,Y,aux;
readDatas (&aux, &Y, filename, 12) ;
X = ones(aux.n,1l);
concatColoumn (&X, aux) ;
freeMatrice (&aux) ;
top_ (&w_time_parl, &tz);
matrice w = SGD( X, Y,means_square_error,

means_square_error_gradient,
alpha, seuil, n_epoch);

top_ (&w_time_par2,&tz);

double seuil,

work_time_par = cpu_time_ (w_time_parl, w_time_par2);

printf (" “temps d’execution Regression Logistique avec %d

threads=%11d.%0311dms", N_THREADS,

work_time_par/1000, work_time_par%$1000);

freeMatrice (&X) ;
freeMatrice (&Y);

return w;




3.4.2 Logistic Regression
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matrice logisticRegressionAlgorithm (double alpha, double seuil,

int n_epoch, char x filename) {
matrice X,Y,aux;

(&aux, &Y, filename, 12);

X = (aux.n,1);
(&X, aux) ;
(&aux) ;
for (int 1 = 0; 1 < Y.n; i++){
Y.contenu[i] [0] = (Y.contenu[i][0]<=5)0:1;

(&w_time_parl, &tz);
matrice w = ( X, Y,cross_entropy_binaryclass,

cross_entropy_binaryclass_gradien,
alpha, seuil, n_epoch);

(&w_time_par2,&tz);
work_time_par = (w_time_parl, w_time_par?2);

printf (" ~temps d’execution Regression Logistique avec %d
threads=%11d.%0311dms", N_THREADS,
work_time_par/1000, work_time_par%$1000);

(&X);
(&Y);

return w;




3.4.3 Kmeans

1 matrice % kmeans (int k,int n_epoch,double seuil,char % filename) {
2 matrice X;
3 (&X, filename) ;
4 matrice * clusters = (matrice x)malloc(k x sizeof (matrice));
5 matrice * old_clusters;
6 (clusters, X, k);
7 int iter = 1;
8 double error = seuil;
9 (&w_time_parl, &tz);
10 while (n_epoch >= iter && error >= seuil) {
11 matrice index = (X, clusters, k)
old_clusters = clusters;
12 clusters = update_centroid (X, index, k);
13 (&index) ;
14 error = calcul_erreur (old_clusters,clusters, k);
15 printf ("Epoch %d : error = %4.10f",iter,error);
16 iter++;
17 }
18 (&w_time_par2,&tz);
19 work_time_par = cpu_time_(w_time_parl, w_time_par2);
20 printf ("temps d’execution Kmeans avec %d threads
= %11d.%0311dms",N_THREADS,
work_time_par/1000, work_time_par%1000);
21 return clusters;
22}

The linear and logistic regression are almost similar. The gradient descent called in lines 8 and
11 respectively in the linear and logistic regression code marks the small difference. Indeed,
in this function the third and fourth parameters represent respectively the loss function used
and the gradient of this one. For example, for linear regression, it is the mean square error.
For the Kmeans algorithm, a particular function "determineBestCluster" allows to compute the
distances in parallel, and determine for each point the cluster to which it is closer.

In the following section, we present our experiments by comparing them with the results ob-
tained with the famous DSL OptiML and Scikit-learn tool.
IV PRELIMINARY RESULTS WITH FASTML

In this section, we present the experimentation environment and for linear and logistic regres-
sion and Kmeans algorithm, the speedup gotten with FastML in comparison with the speedup
gotten with OptiML and Scikit-learn.



4.1 Experimentation environment

For this preliminary results, the experiments were done on a user multi-core machine with the
following characteristics: 8 cores at 2.20 GHz, 8 GB Ram.

We implemented and executed the linear regression, the logistic regression and Kmeans algo-
rithm with FastML, OptiML and Scikit-learn. We used the wineQuality dataset from the UCI
Machine Learning repository.

4.2 Improving Speedup with FastML
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Figure 4: Kmeans Speedup

Figure 2, 3 and 4 show the speedup of logistic and linear regression and Kmeans algorithms
implemented with FastML, OptiML and Scikit-learn respectively. The executions were made
with different numbers of cores, from one (sequential execution) to height cores.

We note that the speedup gotten with FastML (4x for Kmeans and 2.1x for linear regression) is
greater than the speedup gotten both with OptiML (1x for Kmeans and 0.70x for linear regres-
sion) and Scikit-learn (0.73x for Kmeans and 1.00x for linear regression). These results means
that, for these algorithms, the parallelization with FastML is better than the parallelization with
OptiML.
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V  CONCLUSION AND REFERENCES

This paper proposes a Domain Specific Language embedded in the C language called FastML.
The idea of FastML is to offer to the programmer already parallelized learning primitives (such
as gradient descent) according to the Map-Reduce model. We test FastML on three machine
learning algorithms: linear regression, logistic regression and kmeans. The experiments car-
ried out on a user machine with 8 cores show that FastML gives promising results in terms
of speedup compared to the OptiML DSL and the Scikit-learn platform. For example, with
kmeans, FastML produces 4x as speedup (with 7 cores) compared to 1x for Scikit-learn and
0.70x for OptiML.

In this paper, we did not measure the ease of programming with FastML compared to other
DSLs and platforms. This should be done later in this work. As future work, we plan to include
other famous machine learning algorithms in the study.
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