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Introduction

It is well known that the study of plane curves and trajectories described by the following general equation

𝑟(𝜃) = 𝑎 (1 + 𝑒 cos 𝑘𝜃) 1 𝑚 (1) 
Where 𝑎 is a length 𝑒 is a positive number 𝑚 and 𝑘 are unidimensional numbers with 𝑚 ≠ 0 𝜃 is the polar angle is an old and important topic of classical physics, and particularly of celestial mechanics (see for example [START_REF] Lynden-Bell | Analytic central orbits and their transformation group MNRAS on[END_REF]). Indeed, depending on the choice of constants, this equation can describe a wide variety of fundamental curves. Let us quote for example, of course the ellipses but also famous curves such as the lemniscates, cardioids, etc.. Moreover the study of the cases corresponding to 𝑘 = 1, 𝑚 = 1 (ellipse described from one of its foci, keplerian orbit) and to 𝑘 = 2, 𝑚 = 2 (ellipse described from its center, two-dimensional harmonic oscillator) as well as the question of their reciprocal transformation, naturally remains a major concern of physicists, from the founding fathers [START_REF] Hall | Planetary Motion and the Duality of Force Laws[END_REF] to the present day (see for example [START_REF] Collas | Equivalent potentials in classical[END_REF]). Finally, let us quote, for example, the cases corresponding to 𝑚 = 1 , 𝑘 ≠ 1 which represents the trajectories studied in the famous "revolving theorem" [START_REF] Lynden-Bell | On the shapes of Newton's Revolving Orbits Not[END_REF].

However the study of the curves resulting from this equation presents another interest, this time in one of the fields of geometry. It is indeed possible to extract from it classes of generalized conic curves, as it is for example presented in reference [START_REF] Apostol | New Horizons in Geometry[END_REF]. This approach, as the geometrical study of these classes of curve, represent another important topic of mathematics, with historically the works, among others, of famous physicists and mathematicians such as Descartes, Maxwell, etc.

The paper can be seen as a contribution to both topics, and presents several original results. One of them concerns the establishment of a class of generalized conic. The common geometric property of these curves is related to the direction of their radius of curvature, as we present it in the first part of the article. The class of curves accepts several fundamental lines, such cardioïds, Lemniscates, and as a limiting case, the logarithmic spirals.

A second interest of the paper concerns the geometrical study of this class of curve. In particular, several graphic methods (which often seem original) to draw the radii of curvatures and the tangents to the curves are detailed. Moreover, relations of geometric transformations and symetries are highlighted, with the establishement of relations of inversion.

In the next part of the paper we adopt this time a physical point of view, and no longer simply geometric. We indeed consider these curves as the possible trajectories of a point particle subjected to a central force field. This field of force is determined, using a classical approach, known as Sciacci's theorem. It is shown that these forces can be described by a single and simple formula, which connects three fundamental potentials of Physics. Note this result is probably the most interesting and important of the article.

Finally, in the last part of the article, we discuss our results and present possible contemporary applications. Indeed, we suggest several of them, in particular in celestial mechanics, with the presentation of a precession phenomena due to weak modifications of the central force field. We also link our work with several recent publications, in the field of astrodynamics.

As can be seen, this work is therefore a contribution to classical mechanics and applied mathematics, which sheds original light on some of its historical concerns. For this reason, the reader will regularly recognize great authors of classical physics and will find references, which we will try to highlight as best as possible.

-Geometric

As we presented it, the class of curves is defined by a generalization of a property of the classical conic curve. This property concerns the intersection 𝐼 of its radius of curvature with its semi major axis (Figure 1). In fact, this relation is simply given with 𝐹𝐼 = 𝑒𝑟 (2) This property is naturally already known, and a geometric demonstration can be found in reference [START_REF] Lebossé | Géométrie, classe de mathématiques[END_REF]. However, we present an analytical proof, to illustrate further reasoning.

Proof

Consider a moving point 𝑀 which describes a plane arbitrary curve around the origin of a polar system of coordinate (𝐹; 𝑒 𝑟 ሬሬሬԦ; 𝑒 𝜃 ሬሬሬሬԦ). The angle 𝜃 is definite by

(𝑋 Ԧ ; 𝑒 𝑟 ሬሬሬԦ) = 𝜃
Where (𝐹; 𝑋 Ԧ ; 𝑌 ሬԦ ) is a second system of coordinate, Cartesian and fix this time.

coordinate are thus given by 𝐹𝑀 ሬሬሬሬሬሬԦ = 𝑟𝑒 𝑟 ሬሬሬԦ

Using the classical change of variable we obtain

{ 𝑢 = 1 𝑟 𝑢 ′ = 𝑑 𝑑𝜃 𝑢 }
We note that a vector 𝑇 ሬԦ tangential to the curve can be given with 𝑇 ሬԦ = -𝑢′𝑒 𝑅 ሬሬሬሬԦ + 𝑢𝑒 𝜃 ሬሬሬሬԦ

To describe the curve we write the following condition: Normal vector 𝑁 ሬ ሬԦ is directed toward a point 𝐼 located on 𝐹𝑋 Ԧ axis such

𝐹𝐼 ሬሬሬሬԦ = - 𝑒 𝑢 𝑋 Ԧ
In the polar system of coordinate, we obtain now

𝐹𝐼 ሬሬሬሬԦ = - 𝑒 𝑢 𝑋 Ԧ = - 𝑒 𝑢 (cos 𝜃 𝑒 𝑅 ሬሬሬሬԦ -sin 𝜃 𝑒 𝜃 ሬሬሬሬԦ)
And, consequently

𝐼𝑀 ሬሬሬሬሬԦ = 𝐼𝐹 ሬሬሬሬԦ + 𝐹𝑀 ሬሬሬሬሬሬԦ = 1 𝑢 [1 + 𝑒 𝑐𝑜𝑠 𝜃) 𝑒 𝑅 ሬሬሬሬԦ -𝑒 𝑠𝑖𝑛 𝜃 𝑒 𝜃 ሬሬሬሬԦ]
We write thus the scalar product 𝐼𝑀 ሬሬሬሬሬԦ . 𝑇 ሬԦ = 0 And we obtain the differential equation

𝑢′(1 + 𝑒 𝑐𝑜𝑠 𝜃) + 𝑢𝑒 𝑠𝑖𝑛 𝜃 = 0 (3) Whose solving is 𝑢 = 𝐶 1 (1 + 𝑒𝑐𝑜𝑠𝜃)
Trajectory is well a conic, whose point 𝐹 is one of the foci and 𝑒 its eccentricity.

Generalized conic curves

To obtain classes of curves we make a precession on the initial ellipse of an angle 𝛼 around one of its foci. We generalize previously property considering this time that point 𝐼 is located on a rotating vector 𝑥 Ԧ (Figure 2). We definite the system of coordinate (𝐹; 𝑥 Ԧ; 𝑦 Ԧ) by

(𝑋, ሬሬሬԦ 𝑥 Ԧ) = 𝛼

And we introduce a scalar relation 𝐹𝐼 = 𝑒′𝑟

Where 𝑒′ is given, if the system doesn't precess, with the relation We obtain after simplification the differential equation 𝑢 ′ + 𝑢 ′ 𝑒 ′ (cos 𝜃 cos 𝛼 + 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛼) + 𝑢𝑒′(𝑐𝑜𝑠𝛼 𝑠𝑖𝑛 𝜃 -𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝜃) = 0 (4)

𝑒 ′ =
Note it is the same differential equation if 𝛼 = 0.

Solving

To solve equation ( 4) we need to introduce a relationships which links angles 𝜃 and 𝛼 : A correct and simple solution, is given with

𝛼 = 𝑛𝜃 + 𝛽
Where 𝑛 is a rational number and 𝛽 a constant angle. Indeed, with this solution the solving leads for 𝑛 = 0 to the initial conic, with a phase shift 𝛽. As we introduced it, doing variations around this expression, we obtained a class of curves, using

𝑒 ′ = 𝑓(𝑒, 𝑛) (5) 

Class of generalized conic trajectories

With previously relation we obtained two families of solutions, depending on 𝑛 : To simplify we choose 𝛽 = 0, which leads to

𝑟(𝜃) = 𝐶′ 1 (1 + 𝑒′ cos 𝜃(𝑛 -1)) 1 1-𝑛 (7)
The function is periodic. Knowing our initials conditions we identify the constants 𝐶′ 1 and 𝑒′ We can again determine the constant using the initial condition

{ 𝑟 𝑚𝑖𝑛 = 𝑎(1 -𝑒) = 𝐶 ′ 1 (1 + 𝑒 ′ ) 1 1-𝑛 𝑟 𝑚𝑎𝑥 = 𝑎(1 + 𝑒) = 𝐶′ 1 (1 -𝑒′) 1 1-𝑛 } And obtain { 𝑒 ′ = (1 + 𝑒) 1-𝑛 -(1 -𝑒) 1-𝑛 (1 + 𝑒) 1-𝑛 + (1 -𝑒) 1-𝑛 (8.1) 𝐶′ 1 = 𝑎(1 -𝑒 2 ) [ 2 (1 + 𝑒) 1-𝑛 + (1 -𝑒) 1-𝑛 ]
𝑟(𝜃 = 0) = 𝑎(1 -𝑒) = 𝐶 2 2.

mathematical expression

The class of generalized conic can thus be written

{ 𝑛 ≠ 1 𝑟(𝜃) = 𝐶 ′ 1 (1 + 𝑒 ′ cos(𝜃(𝑛 -1) + 𝛽)) 1 1-𝑛 (9.1) 𝑛 = 1 𝑟(𝜃) = 𝑎(1 -𝑒)𝑒 -𝑒′ sin 𝛽 1+𝑒 cos 𝛽 𝜃 (9.2) }
Where 𝐶 ′ 1 and 𝑒′ are defined in the general case by (8).

geometric consequences

The polar curves corresponding to the equation (9.1) have a common geometric property. As presented in section 2.2, it concerns a relationship of proportionality connecting the radial distance to the location of the intersection of the radius with a rotating axis, defined by the relation

𝛼 = 𝑛𝜃 + 𝛽
the angles being defined as presented previously. The distance between the origin 𝑂 of the system of coordinate and the point of intersection 𝐼 is given by the relation

𝑂𝐼 = 𝑒′𝑂𝑀

Where 𝑒′ is definite with relation [START_REF]Construction de la tangente en un point -GeoGebra[END_REF]. This geometric property leads to the possibility of graphically determining the direction of the radius of curvature, and therefore of the tangent to the curve. It is obviously a fundamental geometric property, which does not seem to have always been noticed, in most of the cases. To illustrate it, we present in this part some examples. Let us first consider the simplest cases, corresponding to the eccentricities of the initial conic equal to 1 ( 𝑒 = 𝑒 ′ = 1 ). An interesting case is of course the cardioid curve [7] which we present in figure 3.1 :

The axis of the radius of curvature (𝐼𝑀) is here simply drawn by reporting the distance 𝑂𝑀 on the axis corresponding on 𝛼 = 2𝜃, and the direction of the tangent in M is directly deduced therefrom. This construction method can be compared with other methods that we encounter in the literature (see for example reference [START_REF]Construction de la tangente en un point -GeoGebra[END_REF]) and seems, at least to our knowledge, original.

A similar result can also be presented for the prestigious Lemniscate of Bernouilli [START_REF]Lemniscate de Bernoulli[END_REF], considering this time the relation 𝛼 = 5𝜃 (Figure 3. O However, This result can be extended to all initial eccentricities between 0 and 1, but considering that the distance is no longer equal. An example is detailed in figure 3.3, corresponding to an ellipse, and where the two circles of radius 𝑂𝑀and 𝑒′𝑂𝑀 are drawn :
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Note again that others methods of graphical constructions corresponding on this curve can be found in reference [START_REF]Construction à la règle et au compas de la tangente à une ellipse, sans utiliser les foyers(pagesperso-orange[END_REF].

To conclude this part, we consider as a final example the case of a more exotic curve, which is drawn in figure 3. 

Generalisation of the property

By considering these results, it is possible to propose their generalization and to present a geometrical method of construction of the tangents of this class of curves. According to results presented in section 2.2, it consists to draw on the same graph the curve describes by the point 𝐼. This associated curve is thus the locus of these points of intersection and should be not confused with the evolute of the curve. The expression of this associated curve is given by : [START_REF]Construction à la règle et au compas de la tangente à une ellipse, sans utiliser les foyers(pagesperso-orange[END_REF] This method is particularly simple when the eccentricity of the initial conic is equal to 1. In this case, the circle of radius 𝑂𝑀 (in dotted line in following figures) intersects with the associated curve at 𝐼. (𝐼𝑀) is the direction of the radius of curvature. Consider again, for example, the case of a cardioïd curve 𝐶 1 given by 𝑟 = 1 -cos 𝜃 Curve 𝐶 2 (associated curve) is given in this case by the relation When initial eccentricity isn't equal to 1, a solution is to draw a third curve corresponding on |𝑒′|𝐶′ 1 , i.e. an homothetic curve of center 0. An example of the method is presented in Figure 3.7.

𝑟(𝜃) = -𝑒 ′ 𝐶 ′ 1 (1 + 𝑒 ′ cos (𝜃 (𝑛 -1) 𝑛 )) 1 1-𝑛
𝑟 ′ = 1 -cos 𝜃 2
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𝛼 𝜃 (𝑇)

A remarkable case concerns the ellipse define from its center (𝑛 = -1). Consider the curve 𝐶 1 given by

𝑟 = 1 √1 + 𝑒′ cos 2𝜃
Eccentricity of this ellipse 𝑒 𝐻 is linked to 𝑒′ and 𝑒 by

{ 𝑒 ′ = 𝑒 𝐻 2 2 -𝑒 𝐻 2 𝑒 = 1 -√1 -𝑒 𝐻 2 1 -√1 -𝑒 𝐻 2 } (11)
Associated curve 𝐶 2 is here define using (10) (𝐼𝑀) is the direction of the radius of curvature of 𝐶 1

Geometric transformation

Another fundamental concern of the study of curve classes is the determination of symmetry relations and geometric transformations. In our case, we were able to highlight a relation of transformation between the curves whose values of n are symmetric with respect to 1. Indeed, consider two generalized conics of parameters 𝐺𝐶 1 {𝐶 11 , 𝑛 1 , 𝑒 11 } and 𝐺𝐶 2 {𝐶 12 , 𝑛 2 , 𝑒 12 }, where parameters of intial conic {𝑎, 𝑒} are conserved and which are linked with the relation

1 -𝑛 1 = 𝑛 2 -1
Which is therefore equivalent to saying that 𝑛 1 and 𝑛 1 are symmetric around the central value 𝑛 = 1.

We can rewrite it

𝑛 1 = 2 -𝑛 2 (12) 
Writing the expression of these generalized conics

{ 𝑟 1 (𝜃) = 𝐶′ 11
(1 + 𝑒′ 11 cos 𝜃(𝑛 1 -1))

1 1-𝑛 1 𝑟 2 (𝜃) = 𝐶′ 12 (1 + 𝑒 ′ 12 cos(𝜃(1 -𝑛 2 )) 1 1-𝑛 2 }
Consider now the parameters 𝑒′of the two generalized conics

𝑒 ′ 11 = (1 + 𝑒) 1-𝑛 1 -(1 -𝑒) 1-𝑛 1 (1 + 𝑒) 1-𝑛 1 + (1 -𝑒) 1-𝑛 1 = (1 + 𝑒) 𝑛 2 -1 -(1 -𝑒) 𝑛 2-1 (1 + 𝑒) 𝑛 2-1 + (1 -𝑒) 𝑛 2-1 = -𝑒 ′ 12
They are conserved, apart from sign. Having now a look to the second parameter,

𝐶′ 11 = 𝑎(1 -𝑒 2 ) [ 2 (1 + 𝑒) 1-𝑛 1 + (1 -𝑒) 1-𝑛 1 ] 1 1-𝑛 1 ⁄ = 𝑎(1 -𝑒 2 ) [ 2 (1 + 𝑒) 𝑛 2 -1 + (1 -𝑒) 𝑛 2 -1 ] 1 𝑛 2 -1 ⁄ Finally 𝐶′ 11 = 𝑎 2 (1 -𝑒 2 ) 𝐶′ 12 Synthetizing the results [ 𝑛 1 -1 = -(𝑛 2 -1) 𝑒 ′ 1 = -𝑒 ′ 2 𝐶′ 11 = 𝑎 2 (1 -𝑒 2 ) 𝐶′ 12 ]
It indicates the two associated conics 𝐺𝐶 1 and 𝐺𝐶 2 are linked with two successive geometric transformations, that we detail in the following.

Inversion

First of them is an inversion, which we can describe by

𝑟 → 𝑎 2 (1 -𝑒 2 ) 𝑟
i.e. an inversion whose center is the origin of the system of coordinate. Calling it 𝑂 , the image 𝑀′ 2 of a point 𝑀 1 located on one of the generalized conic 𝐺𝐶 1 can thus be defined with

𝑂𝑀 1 . 𝑂𝑀′ 2 = 𝑎 2 (1 -𝑒 2 )
And is consequently the inverse of 𝑀 1 with respect to the reference circle (𝑂, 𝑟 = 𝑎√(1 -𝑒 2 )). We note this transformation of inversion as follows 𝐼(𝑂, √(1 -𝑒 2 )) 𝑀′ 2 is located on an intermediary generalized conic 𝐺𝐶′ 2 {𝐶 12 , 𝑛 2 , 𝑒 11 }, given thus with Several points can be highlighted on these figures. In particular, the curves are bounded between two radius, depending on the choice of the parameters of the initial conic, and corresponding on 𝑎(1 -𝑒) ≤ 𝑟 ≤ 𝑎(1 + 𝑒). Moreover, we can notice that the two associated generalized conics and the reference circle intersect at the same point, which is a property of this geometrical transformation.

In fact, these results were known when 𝑒′ is equal to 1. For example, it is well known that "the image under inversion of a line not through the center of inversion is a circle passing through" this center, which corresponding here to the associated curves (𝑛 1 = -1, 𝑛 2 = 2) when 𝑒 = 1. Another classical case is the Lemniscate of Bernouilli, whose image is an hyperbolae (𝑛 1 = -3, 𝑛 2 = 5) [START_REF]Lemniscate de Bernoulli[END_REF]. But it appears that the general cases have not been detailed (corresponding on 𝑒 ≠ 1).

Rotation

To obtain 𝐺𝐶 2 we need to make a second geometric transformation, this time a rotation around 𝑂 and of angle given by 𝜋 𝑛 1 -1 = 𝜋 1 -𝑛 2 Indeed, with this transformation we obtain 𝐶′ 12

(1 -𝑒 ′ 12 cos(𝜃(1 -𝑛 2 ))

1 1-𝑛 2 → 𝐶′ 12
(1 + 𝑒 ′ 12 cos(𝜃(1 -𝑛 2 ))

1 1-𝑛 2 = 𝑟 2
Noting this geometric transformation 𝑅 𝑂,𝑛 1 -1 we obtain thus

𝐺𝐶′ 2 𝑅 𝑂,𝑛 1 -1 → 𝐺𝐶 2

Synthesis

Finally, the associated conic can be linked by the two successive transformations

𝐺𝐶 1 𝐼 → 𝐺𝐶′ 2 𝑅 → 𝐺𝐶 2
We present an illustration in Figure 5. As presented in (9.2) the solution is a logarithmic spiral, also called "equiangular spiral", because its slope angle is constant. In our case the expression is given by 𝑟(𝜃) = 𝑎(1 -𝑒). 𝑒 𝑒 "sin 𝛽 1+𝑒′ cos 𝛽 𝜃

As previously, we can illustrate the geometric properties contained in differential equation ( 4). The leading coefficient of this curve is 𝛾 = 𝑟 𝑟′ = 1 + 𝑒′ cos 𝛽 𝑒′ sin 𝛽 If we now have a look on this coefficient in the general case defined by ( 7 Consider now a precession of the abscissa axis on an angle (𝜃 -𝛽) (axe (𝑂𝐼 ′ ) on the Figure). The intersection of the radius of curvature of 𝐶 1 intersects with this axis as such manner that relation of proportionality is maintained, and is therefore the geometric consequence of equation ( 4). These points of intersection 𝐼, 𝐼 ′ , 𝐼 ′′ .. draw to their whole a logarithmic spiral 𝐶 2 given by 𝑟 = -𝑒(1 -𝑒)𝑒 0.7(𝜋-𝛽+𝜃) By considering these results, we can again suggest an original method of construction of the tangents to this kind of curves: Considering a logarithmic spiral 𝐶 1 given by 𝑟 = 𝑎𝑒 𝑘𝜃 We seek to determine the corresponding angle 𝛽. So we pose the equation

𝑘 = sin 𝛽 1 + cos 𝛽 Solving leads to sin 𝛽 = 2𝑘 1 + 𝑘 2
Associated curve 𝐶 2 is by 𝑟 = -𝑎𝑒 𝑘(𝜋-𝛽+𝜃) i.e. a second logarithmic curve. Drawing the two curves on the same graph, we deduce the direction of the radius of curvature as previously. Consider for example the case 𝑎 = 1, 𝑘 = 2 (Figure 6.2). We obtain sin 𝛽 = 4/5. We draw thus 𝑟 = -𝑒 2(𝜋-sin -1 ( 4 
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To conclude this geometrical study, we have a brief look on the relation of transformation. We know that the transform of the spiral by the inversion is another spiral given here by

𝑟 = 𝑎(1 + 𝑒)𝑒 - 𝑒′ sin 𝛽 1+𝑒′ cos 𝛽 𝜃
It is interesting to note that the curves corresponding on the central value 𝑛 = 1 have consequently an unique property inside the class : they are the only curves whose nature isn't modified by the relation of inversion. Moreover, they are the only curves to which correspond associated curves of the same nature.

Dynamics

As we have evoked it in the introduction, we adopt in this second part a physical point of view. Indeed, we consider now the previously curves as possible trajectories of a point particle submitted to a field of central force.

.1 Law of central Forces

Central forces can be determined using the laws of dynamics, but it is generally easier to determine the forces knowing the trajectory than the inverse. It exists several methods based on this approach. In particular, historically, Newton detailed several methods based on geometrical considerations [START_REF] Nauenberg | Newton's graphical method for central force orbit[END_REF]. In the 19 th the Italian mathematician and ballistician Siacci wrote a theorem [START_REF] Siacci | moto per linea piana Atti[END_REF] (recently generalized [START_REF] Casey | Siacci's resolution of the acceleration vector for a space curve[END_REF]), which provides that the central acceleration can be written

𝑎 𝑟 ሬሬሬሬԦ = - 𝐶 2 𝑝 3 𝑑𝑝 𝑑𝑟 𝑒 𝑟 ሬሬሬԦ
Where 𝐶 is the constant of area given by 𝐶 = 𝑟 2 𝜃 ̇ And 𝑝 is the pedal curve of the trajectory, given by

𝑝 = 𝑟 2 √𝑟 2 + 𝑟′ 2 With 𝑟 ′ = 𝑑𝑟 𝑑𝜃
We consider the polar curve corresponding on

𝑟(𝜃) = 𝐶′ 1 (1 + 𝑒′ cos 𝜃(𝑛 -1)) 1 1-𝑛 Pedal curve is 𝑝(𝜃) = 𝐶′ 1 (1 + 𝑒′ cos(𝑛 -1)𝜃) 𝑛 𝑛-1 ⁄ √ (1 + 𝑒 ′ 2 + 2𝑒′ cos 𝑛𝜃)
Using the relation

𝑑𝑝 𝑑𝑟 = 𝑑𝜃 𝑑𝑟 𝑑𝑝 𝑑𝜃 = 𝑝′ 𝑟′
We obtain the central acceleration, which after reorganization of the terms, becomes

𝐹 𝑟 ሬሬሬԦ = -𝐶 2 𝐶 ′ 1 2𝑛-2 [(1 + 𝑛) 𝐶 ′ 1 1-𝑛 𝑟 2+𝑛 -𝑛 (1 -𝑒 ′ 2 ) 𝑟 2𝑛+1 ] 𝑒 𝑟 ሬሬሬԦ (13) 
And central forces (per mass unity) can finally be rewritten under the form

𝐹 = [-(1 + 𝑛) 𝐴 𝑟 𝑛+2 + 𝐵 𝑟 2𝑛+1 (1 -𝑒′ 2 )] (14) 
Where 𝐴 and 𝐵 are two positive constant. We see the value 𝑛 = 1 isn't here forbidden and is corresponding to an inverse cubic force, which is natural because the logarithmic spiral is one of the curve of Cotes [START_REF]Fundamental of celestial mechanics J[END_REF].

Particular cases

The previously law of central forces seems not have been obtained until today, at least at our knowledge. It is interesting to note it is the sum of two central forces except for three fundamentals cases, corresponding on 𝑛 =-1, 𝑛 = 0 and 𝑛 = 1. Forces are thus conservative for these three cases, such we can write a power law of potentials using

𝑉(𝑟) = -∫ 𝐹𝑑𝑟 Thus 𝑉(𝑟) = - 𝐴 𝑟 1+𝑛 + 1 2 𝐵 𝑟 2𝑛 (1 -𝑒 ′ 2 ) ( 15 
)
Listing them for the three fundamental cases in tab 1.

𝑛 = -1 Harmonic oscillator 𝑉(𝑟) = 1 2 𝐾𝑟 2 𝑟(𝜃) = 𝑎 √(1 + 𝑒′ cos 2𝜃) 𝑛 = 0 Keplerian orbit 𝑉(𝑟) = - 𝐴 𝑟 𝑟(𝜃) = 𝑎 1 + 𝑒 cos 𝜃 𝑛 = 1 Logarithmic Spiral trajectory 𝑉(𝑟) = 𝐵 𝑟 2 𝑟(𝜃) = 𝑎𝑒 𝑘𝜃
Tab 1. The three fundamental and conservative potentials Formulae (15) allows thus to link in only one relation these three fundamental potentials of Physics. In the others cases we know that, with respect for the Bertrand's theorem [15], the combination of central forces is not conservative, except for 𝑒 = 1. Indeed, using (8.1) we see that in this case 𝑒′is also equal to 1 and the law of force becomes simply

𝐹 = -(1 + 𝑛) 𝐴 𝑟 𝑛+2
In these limiting cases we can thus write the corresponding potentials

𝑉(𝑟) = - 𝐴 𝑟 1+𝑛 (15)
We reobtain here a well-known series of trajectories, where we can distinguish, for example, the cardioid, circle passing through the origin, Lemnicaste.. We can consider these cases as generalized parabola of the class of curves. Note that this time this law of potential was already known (formulae valuable except for limiting case 𝑛 = -1 [START_REF] Lynden-Bell | Analytic central orbits and their transformation group MNRAS on[END_REF]). 

Associated curves

We have also investigated the taw of central force corresponding on the associated curves define by relation [START_REF]Construction à la règle et au compas de la tangente à une ellipse, sans utiliser les foyers(pagesperso-orange[END_REF], using again the Siacci's theorem. The law of central we obtained can this time be written as follows:

𝐹 Ԧ = - 𝐶 2 𝐶 ′ 1 2𝑛-2 𝑛 2 [(1 + 𝑛) 𝐶 ′ 1 1-𝑛 𝑟 2+𝑛 -𝑛 (1 -𝑒 ′ 2 ) 𝑟 1+2𝑛 (𝑛 2 -1) + 𝐶 ′ 1 2-2𝑛 𝑟 3 ] 𝑒 𝑟 ሬሬሬԦ ( 16 
)
That we can rewrite using three constants 𝐴′, 𝐵′, 𝐶′ linked together

𝐹 Ԧ = - 1 𝑛 2 [(1 + 𝑛) 𝐵′ 𝑟 2+𝑛 -𝑛(1 -𝑒 2 ) 𝐶 ′ 𝑟 1+2𝑛 + (𝑛 2 -1) 𝐴′ 𝑟 3 ] 𝑒 𝑟 ሬሬሬԦ (17) 
This second law of central force excludes thus the value 𝑛 = 0, which is natural since there are no curves associated to the Keplerian orbit. Note that for 𝑛 = -1, we reobtain an attractive restoring force, which is an agreement with the results presented in section 2.5.1 (the associated curve of an ellipse defined with respect to its center, i.e. a two-dimensional harmonic oscillator, is another ellipse of same eccentricity).

Moreover, having a look on previously law of central force [START_REF] Casey | Siacci's resolution of the acceleration vector for a space curve[END_REF], we note the difference is basically due to the addition of an inverse cubic force.

Discussion and Physical applications

As we introduced it, the paper can be viewed as multidisciplinary and compatible with several areas of Physics, naturally mathematical Physics but also general Physics, classical and celestial Mechanics. In particular, it presents advances in the field of geometry, with the presentation of a class of generalized conics and some of its properties. But some results can also be related to different physical concerns. In this discussion, we want consider a part of them and place them into the framework of modern investigations.

Combinations of central forces

The results we have obtained can in particular be linked to a popular problem of study, which led to the investigation of certain types of force laws for which differential equation is solvable in terms of known functions. We think in particular to the work of Whittaker [START_REF] Whittaker | A Treatise on the Analytical Dynamics of Particles and Rigid Bodies[END_REF], who have studied the cases of central forces given with 𝐹 = 𝑎𝑟 𝑛 And who established that corresponding differential equations are solvable in terms of circular functions if 𝑛 ∈ {1, -2, -3} (that we also reobtain) and by elliptic functions if

𝑛 ∈ {7, -5, -4,0,3,5, - 3 2 , - 5 2 , - 1 3 , - 5 3 , - 7 3 } 
Later, others works examined the question of linear combinations of this kind of central forces and, after a generalization of Whittaker's results, obtained 6 combinations of forces which can be integrated in terms of known functions [START_REF] Broucke | Notes on the central forces 𝑟 𝑛[END_REF], [START_REF] Mahomed | Applications of Symmetries to Central Force Problems[END_REF]. The results which are presented in the paper can thus be linked to these classical studied, and provide the original result that the general law of combination of central forces given with

𝐹 = -𝐶 2 𝐶 ′ 1 2𝑛-2 [(1 + 𝑛) 𝐶 ′ 1 1-𝑛 𝑟 2+𝑛 -𝑛 (1 -𝑒 ′ 2 ) 𝑟 2𝑛+1 ]
(where 𝐶′ 1 is a length, 𝐶 the constant of areas) leads to the class of generalized conic trajectories presented in [START_REF]Lemniscate de Bernoulli[END_REF]. A large part of new solutions can thus be added to the already known solutions. See for example certain remarkable trajectories in the following tab 2. Tab 2. Several closed generalized conic trajectories and corresponding central forces.

Others solutions concern the second class of curves we have obtained, defined in relation ( 10) and ( 16). We present certain trajectories in following table: 

Astrodynamics

The determination of central forces depending on the radial distance isn't "only" a theoretical concern but is a major preoccupation of the astrodynamics. Indeed, the determination of exact analytical solutions making it possible to describe orbits represents progress in this field. For example, this kind of results is relevant for the determination of spacecraft trajectories propelled by thrust system. The thrust required to follow this trajectory can then, in certain cases, be computed. For this reason, works are regularly published in the literature devoted to astrodynamics. See for example, among them, references [START_REF] Broucke | Notes on the central forces 𝑟 𝑛[END_REF] but also [START_REF] Roa | New analytic solution with continuous thrust: Generalized logarithmic spirals[END_REF] and [START_REF] Roa | Nonconservative extension of Keplerian integrals and a new class of integrable system[END_REF].

About our work, some trajectories present an interest in this field. Indeed, comparable trajectories have already been studied, for example the logaritmic spiral [START_REF] Hoyt Bacon | Logarithmic spiral: An ideal trajectory for the interplanetary vehicle with engines of low sustained thrust[END_REF] and more generally the curves of Cotes and their generalization [START_REF] Roa | New analytic solution with continuous thrust: Generalized logarithmic spirals[END_REF]. A study of another fundamental case, evoked in this paper, the generalized cardioïd, can be found in [START_REF] Roa | Nonconservative extension of Keplerian integrals and a new class of integrable system[END_REF], But, if we have reobtained a part of these trajectories, we have, in addition, presented a large number of other exact solutions. In particular, the trajectories we obtained offer a wide variety of possibilities. For example, they partly depend on the eccentricity of the initial conic and can therefore be quasi-circular or parabolic. Moreover, some of them are closed and are therefore periodic. For these reasons, This class of curves can present a progress in the field, despite the fact that we cannot know which trajectory exactly could be particularly interesting.

Celestial Mechanics: Precession phenomenon

Another interest concerns the precession of orbits of celestial bodies. The study of these precessions is naturally a major preoccupation of the celestial mechanics. For example, considering an historical point of view, the attempts to understand the precession of the Moon's orbits led to the establishment of the famous revolving theorem, which is still a contemporary preoccupation of the scientific community [START_REF] Lynden-Bell | On the shapes of Newton's Revolving Orbits Not[END_REF].

Another classical example concerns naturally the precession of Mercury and the validation of General Gravity. More recently, this phenomenon remains crucial to test the large varieties of alternative theories of Gravity, which have been published these last decades. It is the reason for why, nowadays, papers are regularly published about this question. For example, references [START_REF] Mahomed | Applications of Symmetries to Central Force Problems[END_REF] concerns the modern investigations about consequences of alternative potential of gravity (for example logarithmic potential, or others) on trajectories, especially on precession phenomenon.

This preoccupation is also present in our work. Indeed, we have showed that a precession around one of the foci of a Keplerian conic is due to a modification of the law of central force. For example, in Tab.4 we present the precession corresponding on the progressive transformation of 𝑛 0 → -1: And make a series for 𝑛 → 0 at the first order. We obtain an expression of the central force which can be written under the form

𝐹 = - 𝐴 𝑟 2 + 𝑛 𝐵 𝑟 2 [𝐿𝑛 𝑟 𝐶′ 1 + 𝑟 𝐶 ′ 1 (1 -𝑒′ 2 )]
The expression is thus corresponding on the precession presented in the paper, when this kind of small perturbation is added to the classical inverse square force.

Conclusion and perspective

Several original results have been established. Generalizing a property of an initial conic, we have obtained the mathematical expression of an original class of curves, among them certain well known cases. This class of curves presents interesting geometric properties, in particular an internal inversion relationship. Moreover, it is possible to define a family of associated curves, which describes the fundamental geometric properties of the curves.

Knowing the mathematical expressions of the curves, we have extracted two laws of central forces which are, at our knowledge, unknown in the general case. One of them allows to link in only one formulae three fundamental potentials. These results contribute to improve the knowledge of the relationships between trajectories and central forces. They may have physical applications, particularly in the fields of celestial mechanics and astrodynamics. But more generally, they can represent progress in some fundamental areas such applied mathematics, geometry and general Physics.

In this general paper, we have not study these trajectories comprehensively. Later works should develop the mathematical study of the class of curves, with likely a particular attention to the geometric transformation. The study of the dynamics of trajectories could also be deepened, with particular attention to the possible physical applications.
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 41 General case : For 𝑛 ≠ 1 : solutions are given with the relation 𝑢(𝜃) = 𝐶 1 (1 + 𝑒′ cos((𝑛 -1)𝜃 + 𝛽)
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 3132 Fig 3.1. Cardioïd. 𝑛 = 2. The perpendicular to the tangent (𝑇) to the curve at M intersects at I such that: 𝑂𝐼 = 𝑂𝑀 and 𝛼 = 2𝜃
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 3334 Fig 3.3. Ellipse. 𝑛 = -1. The perpendicular to the tangent (𝑇) to the curve at M intersects at I such that: 𝑂𝐼 = 𝑒′𝑂𝑀 and 𝛼 = -𝜃
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 3536 Fig.3.5. 𝑛 = 2. The cardioïd 𝐶 1 is drawn with its associated curve 𝐶 2 . 𝑂𝑀 = 𝑂𝐼. (𝐼𝑀) is the direction of the radius of curvature of 𝐶 1

Fig 3

 3 Fig 3.7. .𝑛 = 0.5, 𝑒 = 0.9, 𝑒 ′ = 0.628. 𝐶 1 is drawn with its homothetic curve 𝐶 11 and its associated curve 𝐶 2 . 𝑂𝑀′ = 𝑂𝐼. 2𝛼 = 𝜃. (𝐼𝑀) is the direction of the radius of curvature of 𝐶 1 , (𝑇) the tangent at 𝑀.
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 38 Fig.3.8. 𝑛 = -1, 𝑒 = 0.4, 𝑒 ′ = 0.689 the ellipse 𝐶 1 is drawn with its associated curve 𝐶 2 . 𝑂𝑀" = 𝑂𝐼.
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 412 Fig 4. M' is the image of M with the tranformation of inversion I. 𝐶 𝑟 is the circle of reference centered at O, 𝐶 the circle of diameter OM. 𝐺𝐶 1 is an ellipse whose foci is located at 𝑂, 𝐺𝐶′ 2 its image (generalized cardioïd). 𝑀 1 and 𝑀 2 are invariable points and located at the intersections of 𝐺𝐶 1 , 𝐺𝐶′ 2 and 𝐶 𝑟
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 41 Fig 4.1 {𝑒 = 0.4, 𝑛 1 = -3, 𝑛 2 = 5} {𝑒 = 0.4, 𝑛 1 = -2, 𝑛 2 = 4}
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 527 Figure 5. Initial conic 𝐺𝐶 1 {𝑎 = 1, 𝑒 = 0.7, 𝑛 = -2} is modified by two successive geometric transformations in 𝐺𝐶 2 {𝑎 = 1, 𝑒 = 0.7, 𝑛 = 4}

  Fig. . 𝑒 = 0.7, 𝛽 = 𝜋 2 ⁄ . (𝑀′𝐼′) and (𝑀𝐼) are parallel because 𝜃 = 𝜋 2 ⁄ .(𝐼𝑀) is the direction of the radius of curvature of 𝐶 𝑂 , (𝐼 ′ 𝑀 ′ ) and (𝐼 ′′ 𝑀 ′′ ) of 𝐶 1 .

5 ⁄Fig. 6 .

 56 Fig.6.2. the spiral 𝐶 1 is drawn with its associated curve 𝐶 2 . 𝑂𝑀 = 𝑂𝐼. (𝐼𝑀) is the direction of the radius of curvature of 𝐶 1
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 7172 Fig 7.1 cardioîd and its genenalized form (𝑛 = 2)

Fig 7 . 3

 73 Fig 7.3 Lemniscate of Bernouilli and its generalized form (𝑛 = 5)

Tab 3 .

 3 Several associated curves and central forces

  Precession this time around the center of the ellipse 𝑛 = -1Harmonic oscillator 𝐹 = -𝐴𝑟 Eccentricity 𝑒 𝐻 of the conic is linked to 𝑒 by[START_REF] Nauenberg | Newton's graphical method for central force orbit[END_REF] Consider now the expression of the force given by 𝐹 = -𝐶 2 𝐶 ′

  

  

  

.4.2 particular case : For

  𝑛 = 1 and 𝛽 ≠ 0 : Solution is a circle or a logarithmic spiral given by

	2𝑢(𝜃) = 𝐶 2 𝑒	𝑒′ sin 𝛽 1+𝑒 cos 𝛽	𝜃
			⁄ 1 1-𝑛	(8.2) }
	6