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The fractional quantum Hall effect (FQHE) is known to host anyons, quasiparticles whose statis-
tics is intermediate between bosonic and fermionic. We show here that Hong-Ou-Mandel (HOM)
interferences between excitations created by narrow voltage pulses on the edge states of a FQHE
system at low temperature show a direct signature of anyonic statistics. The width of the HOM dip
is universally fixed by the thermal time scale, independently of the intrinsic width of the excited
fractional wavepackets. This universal width can be related to the anyonic braiding of the incoming
excitations with thermal fluctuations created at the quantum point contact. We show that this
effect could be realistically observed with periodic trains of narrow voltage pulses using current
experimental techniques.

Fractional quantum Hall effect (FQHE) is an impor-
tant example of a many-body system where electronic
correlations have an essential impact.[1] When a frac-
tion ν of the states of the lowest Landau level is occu-
pied, the system reaches a state which cannot be under-
stood without electronic interactions. The well-known
Laughlin wavefunction describes the highly correlated
ground state of the FQHE when ν = 1/(2n + 1) for n
integer. The fundamental excitations of the FQHE are
anyons: quasiparticles which bear a fractional charge,
and obey fractional statistics.[2, 3] In a given Laughlin
state, when two anyons are exchanged, the system ac-
quires a phase exp(iπν), to be contrasted with the ±1
of bosonic/fermionic statistics. More complex fractions
exist beyond the Laughlin series. They are described
with more involved states than the Laughlin wavefunc-
tion, with correspondingly more complex statistics. In
particular, some states are believed to obey non-Abelian
statistics, which could have important consequences for
applications in quantum computing [4].

Experimental demonstration of these exceptional prop-
erties have lead to an intense activity. A fractional
charge e/3 was observed for the Laughlin state with
ν = 1/3 more than twenty years ago, by measuring the
shot noise across a quantum point contact (QPC) in the
tunneling regime, where individual fractional quasiparti-
cles can tunnel between opposite edge states.[5–8] Frac-
tional statistics, however, has proved more difficult to
observe. Only very recently, two different experiments
have been able to clearly show specific signatures di-
rectly associated with the fractional statistics of anyonic
quasiparticles.[9, 10]

Electronic transport in FQHE occurs only through chi-
ral edge modes, traveling at the boundary of the system,
which can be used as 1d electron beams, equivalent to the
light beams for photons. The growing field of electronic
quantum optics aims at using these edge states to real-
ize transport experiments inspired from setups involving
photons in quantum optics.[11] An important example
is the Hong-Ou-Mandel (HOM) interference experiment,

where two identical photons are sent with a controlled
time delay on a beam-splitter. There, the intensity corre-
lations gives useful information on the photon coherence
properties.[12] It has been performed a few years ago for
electron collision in the integer QHE, where it was shown
to give precious information on the electronic wavepack-
ets and on the many-body electronic state.[13–15]

In this work, we show that using narrow periodic pulses
of voltage, periodically exciting fractional charges, and
measuring the HOM noise at the output of a QPC, one
obtains a signal which is directly related to the any-
onic statistics. To this aim, we first explain the unique
properties of the time-dependent tunneling current at
a QPC when a single fractional quasiparticle is inci-
dent, which are associated with braiding of the fractional
quasiparticle with the thermal anyonic excitations occur-
ring at the QPC. Our quantitative predictions, obtained
with perturbative calculations performed using the non-
equilibrium Keldysh Green function formalism, could be
checked with current experimental techniques, providing
a relatively easy path for the study of fractional statistics.

We consider a FQH bar, with Laughlin filling fac-
tor ν = 1/(2n + 1) for n integer, and describe
the edge states in terms of the bosonic Hamiltonian
H0 = vF

4π

∫
dx
∑
µ=R,L(∂xφµ)2 where φR and φL are the

bosonic fields describing the right- and left-moving edge
states [16] and vF is their propagation velocity along the
edges. The quasiparticle (QP) operator is related to the
bosonic field through a bosonization identity ψR/L(x) =

UR/L/(2πa)e±ikF xe−i
√
νφR/L(x) with a a small cutoff pa-

rameter and UR/L a Klein factor. The presence of a QPC
(located at x = 0), in the weak backscattering regime,
allows the tunneling of individual QP of charge e∗ = νe
between the two edges. This is described by the tunnel-
ing Hamiltonian HT = Γψ†R(0)ψL(0)+H.c. See Fig. 1 for
a sketch of the setup.

To better understand the importance of the anyonic
statistics for tunneling at the QPC, let us first con-
sider the somewhat simpler situation where a single QP
of charge e∗ is incoming on the R edge. To this aim,



2

VR(t)

VL(t)

e
*

e
*

IT

ϕR

ϕL

FQHEFQHE

FIG. 1. Schematic view of the setup. A Hall bar in the Laugh-
lin series, whose edge states are described by the bosonic fields
φR and φL, is equipped with a QPC at position x = 0. The
right- and left-moving edges are driven respectively by the
time-dependent potential VR(t) and VL(t), resulting in a tun-
neling current IT in between edges at the position of the QPC.

when computing physical quantities (current, etc.), we
replace the ground state by a prepared state |ϕ〉 =

ψ†R(−x0,−T )|0〉 where a single QP has been added at
an initial time −T < 0. Without loss of generality, we
choose x0 = vFT , such that the QP reaches the QPC
position at t = 0. We now proceed with the perturba-
tive calculation of the mean tunneling current 〈IT (t)〉 at
the QPC, using standard Keldysh Green function for-
malism. The tunneling current operator is given by
IT (t) = ie∗(Γψ†R(0, t)ψL(0, t) − H.c.). To lowest order
in Γ, the mean current is given by [17]

〈IT (t)〉 = − i
2

∫
dt′
∑
η,η′

η′
〈
ϕ
∣∣∣TK IT (tη)HT

(
t′η
′
)∣∣∣ϕ〉 ,

(1)

where TK is time-ordering along the Keldysh contour,
and η, η′ = ± are Keldysh indices. Using the bosonized
form of the quasiparticle operators, and keeping in mind
that x0 = vFT , we have

〈IT (t)〉 = Γ2 e
∗

2

∫
dt′
∑
η,η′

η′
[
G
(
σηη

′

tt′ (t− t′)
)]2

×
[
G(−t′)G(t)

G(t′)G(−t)
− G(t′)G(−t)
G(−t′)G(t)

]
,

(2)

with

G(t) =
1

2πa

[
sinh(iπa/(βvF ))

sinh(iπa/(βvF )− πt/β)

]ν
, (3)

where G(σηη
′

tt′ (t − t′)) = G(0; tη, t′η
′
) =

〈0|TKψ†(0, tη)ψ(0, t′η
′
)|0〉, with σηη

′

tt′ = sign(t −
t′)(η + η′)/2 + (η′ − η)/2 accounting for the effect of
time-ordering along the Keldysh contour. G is the

quasiparticle Green function (identical for right and left
movers), directly obtained from its bosonic counterpart,
with β the inverse temperature. Note that the power ν
leads to a slow decay of this Green function at long times
since ν < 1. In the limit of vanishing cutoff a → 0, it
is easy to check that G(t)/G(−t) = exp(−sign(t)× iπν).
This directly arises from the nontrivial exchange prop-
erties of anyonic quasiparticles, exploiting their linear
dispersion along the edge.[17] It follows that the last
factor of Eq. (2) can be simplified as

G(−t′)G(t)

G(t′)G(−t)
= exp

(
−i ν

∫ t

t′
dτ 2πδ(τ)

)
. (4)

The current can thus be written as

〈IT (t)〉 = 2ie∗Γ2

∫ t

−∞
dt′ sin

(
2πν

∫ t

t′
dτ δ(τ)

)
×
[
G(t− t′)2 − G(t′ − t)2

]
. (5)

One readily sees from Eq. (5) that the tunneling cur-
rent has remarkable properties, which are unique to frac-
tional charge tunneling in the FQHE (see supplemental
material for the complete analytical expression). It is of
course zero for t < 0, i.e. before the arrival of the e∗

QP. On the other hand, for t > 0, the t′ integration is
restricted to the negative portion of the real axis, and
the current is simply proportional to sin(2πν). This, in
turn leads to a non-zero current even for a time t taken
long after the e∗ QP has reached the QPC position, as a
consequence of the slow decay in time of the Green func-
tion G(t − t′). Indeed, the current slowly decreases at

first, as ∼ β1−2ν
{

Cte− ν
1−2ν [1− exp(−2πνt/β)]

1−2ν
}

,

for times t smaller than the thermal time scale τTh = ~β,
before vanishing exponentially for times larger than τTh.
The mean current thus remains finite for a long time in-
terval, set by the thermal time scale. It is important to
stress out that this is in sharp contrast with the case of
an electron charge incoming on the QPC, since even for
fractional edge states, the mean tunneling current is non-
zero only at the specific time that the electron reaches the
position of the QPC. [17]

This nontrivial behavior of the tunneling current after
the arrival of a single QP of charge e∗ can be directly
linked to the anyonic statistics of the fractional excita-
tions. The phase 2πν occurring for t′ < 0 < t can be
understood qualitatively from Eq. (1) by considering the
time-ordering of the right-moving edge operators (ψR,

ψ†R). From the expressions of |ϕ〉, IT and HT , one readily
sees that the average current in Eq. (1) involves a contri-

bution of the form TψR(0)ψ†R(t)ψR(t′)ψ†R(0), as the pre-
pared state ensures that the QP reaches the QPC at time
0. For t > 0 and t′ < 0, the time ordering thus requires
to bring both ψR(0) and ψ†R(0) between the operators at
t and t′, yielding twice a phase πν. On the opposite, if
t and t′ have the same sign, one can easily see that the
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exchanges needed for the ordering now contribute with
opposite phases, thus giving a zero net result. An equiva-
lent point of view, developed in Refs. [18–20] is to see the
expression of Eq. (1) as the interference between a pro-
cess where a quasiparticle/quasihole (QP/QH) excitation
is created at the location of the QPC at time t′, before
the passage of the e∗ QP, and another where the QP/QH
is created at time t, after the passage of the e∗ QP. In
both points of view, the tunneling current is non-zero be-
cause of the braiding of the incoming fractional QP with
a thermal QP/QH excitation created at the QPC. This
braiding results from the anyonic statistics, giving a non-
trivial phase πν when two quasiparticles are exchanged.

As there is currently no experimental way to emit a
single fractional QP in a controlled manner, [21] the pre-
pared state used here is not directly achievable in prac-
tice. However, this is not a fundamental obstacle, as we
now show that the same tunneling current, with the same
signature of fractional statistics, can be obtained by ap-
plying a short voltage pulse which excites a fractional
average charge. This is a highly nontrivial statement, as
it is known that such a voltage pulse does not create the
same many-body state as the one obtained by adding a
single quasiparticle on top of the ground state.[22]

The presence of an external time-dependent voltage
bias leads to an extra term in the total Hamiltonian, of

the form HV = − 2e
√
ν

vF
V (x, t)∂xφR. The voltage can be

taken into account by using the following transformation:

φ(x, t) = φ(0)(x, t) + e
√
ν

∫ t

−∞
dt′ V (x′, t′), (6)

with x′ = x − vF (t − t′) and where φ(0)(x, t) is the
equilibrium bosonic field.[22] Assuming that the volt-
age is applied on a long contact, we can simplify∫ t
−∞dt

′V (vF (t′ − t), t′) '
∫ t
−∞dt

′V (t′). This leads to a
time-dependent tunneling amplitude at the QPC Γ(t) =

Γexp[ie∗
∫ t
−∞ dt′V (t′)]. Proceeding with the perturbative

calculation of the tunneling current, one gets [17]

〈IT (t)〉 = 2ie∗Γ2

∫ t

−∞
dt′ sin

(
e∗
∫ t

t′
dt′′V (t′′)

)
×
[
G(t− t′)2 − G(t′ − t)2

]
. (7)

One can thus readily recover the result of Eq. (5), pro-
vided that one chooses a voltage pulse with the shape
V (t) = 2π

e δ(t), which excites a mean charge e∗ = νe.
The tunneling current 〈IT (t)〉 is the same for a single QP
of charge e∗ arriving on the QPC, or when applying a
very short voltage pulse V (t) exciting a mean charge e∗.

This picture is further generalized by considering a
voltage V (t) composed of several short pulses of charge
e∗. There, the phase of the sine term counts the num-
ber of fractional charges e∗ that have passed through the
QPC, each of them contributing a phase 2πν. This then
has important consequences for the tunneling current.

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-0.1
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FIG. 2. Mean current 〈IT (t)〉 (in units of e/β) as a function
of t (in units of β) corresponding to Eq. (7) with ν = 1/3,
for a random ensemble of short pulses of width β/100, each
carrying a charge e/3. The arrival times at the QPC are
shown as dashed vertical lines (pulses for t < −0.4β are not
shown). Inset: same figure for pulses carrying a charge e.

For example, at filling factor ν = 1/3, when two short
fractionally charged pulses arrive at the QPC with a time
delay much smaller than the thermal scale, the main con-
tribution to the current in Eq. (7) comes with a factor
sin(4π/3) < 0, making it negative. As an illustration,
Fig. 2 shows the current for an ensemble of short pulses
(each with a charge e∗, and a width δt� β). The dashed
lines show the arrival times of the pulses at the QPC. We
see that the current decreases slowly in absolute value
after each pulse reaches the QPC, reflecting the slow de-
crease of the QP Green function G. More interestingly,
the value of the current depends on the history of the
pulses applied at earlier times. In particular, as argued
above, the current can be negative when two pulses ar-
rive at closely separated times (e.g. for t between 0.2
and 0.4β). The inset of Fig. 2 shows the equivalent pic-
ture when similar pulses, but carrying a charge e rather
than e∗, are incident on the QPC. One can see that the
current is non-zero only when the pulse is precisely at
the QPC position, and that there is no effect related to
the pulses at earlier times. Note that the same expres-
sion for the tunneling current, Eq. (7), can also be used
to describe a random stream of pulses, which allows one
to recover exactly the results of Ref. [23] describing the
collision between two Poissonian streams of charges e∗.

While the use of voltage pulses is routinely performed,
the measurement of time-dependent currents still consti-
tutes an experimental challenge in quantum Hall junc-
tions. We now propose a simpler alternative, within
grasp of modern experiments, in order to reveal the ef-
fect of anyonic statistics. This relies on the measurement
of the HOM noise, i.e. the current correlations resulting
from two individual voltage pulses of fractional charge
colliding at the QPC with a controllable time delay.

Let us first consider two narrow pulses of charge e∗,
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each conveniently represented as a delta function in time,
incoming on the two inputs of the QPC. The tunneling
current noise is defined as

S(t, t′) =
〈
TK δIT (t−) δIT (t′+)

〉
, (8)

with δIT (t) = IT (t)−〈IT (t)〉, and ± are Keldysh indices.
The HOM noise is the zero-frequency tunneling noise,
when two pulses are incident on the QPC with a given
time delay δt. It serves as a measure of the interference
between the colliding excitations at the QPC. It can be
written as [17]

SHOM (δt) =
1

2SHBT

∫ ∞
−∞
dtdt′ G(t′ − t)2

× {cos [2πνfδt (t, t′)]− 1} , (9)

where the function fδt(t, t
′) is 1 if only one of the times t

or t′ is in the interval [−δt/2, δt/2], and 0 otherwise, and
normalization is given by twice the value of the Hanbury-
Brown Twiss (HBT) noise SHBT [24].

A very good approximation of Eq. (9), which turns out
to be exact in the limit δt/β → 0, is given by the formula

SHOM (δt)
δt�τTh−→ 1− exp

(
−2πν

|δt|
β

)
. (10)

This result shows a behavior typical of a HOM dip for
long and short time delays. For very large |δt|, it satu-
rates to 1 as the two incident charges e∗ reach the QPC
at very distant times and do not interfere at all, there-
fore reproducing twice the amount of the HBT noise. For
δt = 0, the HOM dip drops all the way to 0, as a result of
perfect interference between the two identical incoming
charges. The most important result, however, is the be-
havior at intermediate δt: Eq. (10) shows that the width
of the HOM dip is ∼ β, set by the thermal time scale
τTh, independently of the width of the incoming pulses.
This is in sharp contrast with the conventional HOM
dip, for example between electronic wavepackets in the
integer QHE [14, 25], where the dip width is directly
proportional to that of the incoming wavepacket. This
striking result can be understood from our discussion of
the tunneling current above. Indeed, we showed that,
as a consequence of anyonic statistics and the braiding
with thermal excitations, a single charge e∗ reaching the
QPC creates a nonzero current up to times ∼ β after the
tunneling event occurred. Two charges incident on both
inputs of the QPC thus interfere up to times set by the
thermal time scale, which explains the width of the HOM
dip.

The observation of a HOM dip of width ∼ β, when
sending two fractionally charged short pulses (temporal
width� τTh) can thus provide a direct proof of the any-
onic statistics of these fractional charges. Experimen-
tally, however, it is not yet possible to measure the noise
from individual charges, and one has to resort to using

a periodic signal. We now show how a realistic periodic
voltage bias with frequency ω, sending pulses of charge
q e (with non-integer q), can be used to observe the HOM
dip of width ∼ β. For illustrative purposes, we consider
a periodic voltage V (t) consisting of Lorentzian pulses,
also known as levitons, [26–29] but the results are inde-
pendent of the actual shape of the voltage potential, as
long as the pulse width is small compared to β. We use
the Floquet formalism, where the essential ingredients
are the coefficients pl, which correspond to the Fourier
coefficients of the phase φ(t) = e∗

∫ t
−∞ dt′VAC(t′) cre-

ated by the AC part of the time-dependent voltage V (t).
The DC part of the voltage leads to a mean charge qe in-
jected per period, with q = e∗VDC/ω. We consider that
the voltages VR(t) and VL(t), which are applied on the
right and left edge respectively, differ by a time-shift δt
only, so that

VL(t) = VR(t− δt) =
VDC
π

∑
k

η

η2 + (t/T0 − k)2
, (11)

where T0 = 2π/ω is the period of the drive, and η is
the finesse, which describes the width of the Lorentzian
relative to the period of the drive [17].

The results for the normalized HOM noise for a pe-
riodic Lorentzian drive, in the case of a filling factor
ν = 1/3, are shown in Fig. 3. Here, we have chosen
realistic values for the experimental parameters, with a
frequency ω = 1 × 2π GHz, and a finesse η = 0.01. [30]
The black dotted line shows the shape of the narrow
Lorentzian pulse over one period, thus highlighting the
width of the incoming wavepackets. The full curves show
the HOM dip as a function of the time-shift δt. In panel
a), the average charge per pulse is fixed to qe = e/3, and
the temperature T is varied from 250mK down to 25mK.
One can readily see that, while the width of the HOM dip
is close to that of the Lorentzian pulse at T =250mK, it
significantly increases as the temperature is lowered, ulti-
mately being much larger at T =25mK. Since it is rather
easy experimentally to modulate the injected charge per
period qe, we consider, in panel b), a fixed temperature
T =25mK, and an injected charge per period which varies
from qe = e down to qe = e/3. There, the width of the
HOM dip is similar to that of the incoming pulse for q = 1
(corresponding to the injection of a full electron per pe-
riod on each edge), before increasing substantially as q
is lowered, recovering a wide HOM dip for q = 1/3. The
thick dashed line corresponds to the analytical prediction
of Eq. (10) for T = 25mK. This shows a very good agree-
ment with the full numerical result obtained for q = 1/3,
with only a small underestimation of the width of the dip
associated with the assumption of infinitely sharp pulses.

In conclusion, we have shown that the anyonic statis-
tics of quasiparticles in the FQHE has direct conse-
quences on the HOM interference of excitations created
by narrow voltage pulses. Contrarily to the usual picture,
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FIG. 3. HOM noise as a function of δt for a filling factor
ν = 1/3, for V (t) made of voltage pulses with Lorentzian
shape of finesse η = 0.01, with ω = 2π/T0 = 2πGHz. a):
each pulse carry a fractional charge e/3, and the temperature
in mK is indicated near each curve. b): temperature is 25mK,
and the charge of each pulse (in units of e) is shown near each
curve. The thick dashed line shows the theoretical prediction
of Eq. (10) for two infinitely narrow pulses at temperature
T =25mK. The dotted curve shows the shape of V (t) over
one period for the chosen value of the finesse η.

where the width of the HOM dip is trivially related to the
temporal extension of the incoming excitations, here the
width of the dip is fixed by the thermal scale, which can
be much larger at low temperature. We have shown how
this can be explained by the anyonic braiding of the in-
coming quasiparticles with thermal excitations naturally
occurring at the QPC. Our proposal could be realized
with current experimental techniques, and could lead to
an original and relatively simple way to observe directly
the consequences of anyonic statistics in the FQHE. A
natural extension of this work would be to consider more
exotic fractions of the FQHE, where several edge states
carrying different QP are present, like ν = 2/5 or ν = 2/3
[31, 32], and which can even obey non-Abelian statistics
as in ν = 5/2 [4, 33–35].
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Supplemental material

GREEN FUNCTIONS AND THEIR PROPERTIES

The quasiparticle Green function is defined as

GR/L
(
x, x′; tη, t′η

′
)

=
〈
TKψ

†
R/L (x, tη)ψR/L

(
x′, t′η

′
)〉

. (S1)

Using the properties of time ordering, and the linear dispersion along the edge, this can be recast under the simplified
form

GR/L
(
x, x′; tη, t′η

′
)

= GR/L
(
σηη

′

tt′

(
t− t′ ∓ x− x′

vF

))
, (S2)

where σηη
′

tt′ = sign(t− t′)(η + η′)/2 + (η′ − η)/2 and

GR/L(t) =
〈
ψ†R/L(0, t)ψR/L(0, 0)

〉
. (S3)

Invoking the bosonization identity, this is further reduced as

GR/L(t) =
1

2πa

〈
e
i
√
νφ†
R/L

(0,t)
e−i
√
νφR/L(0,0)

〉
=

1

2πa
eνGR/L(t), (S4)

where we introduced the bosonic Green function GR/L(t) =
〈
φ†R/L(0, t)φR/L(0, 0)

〉
.

From the free Hamiltonian H0, one can readily extract the corresponding Green function for the bosonic modes as

GR/L(t) = − log

 sinh
(
i πaβvF −

πt
β

)
sinh

(
i πaβvF

)
 , (S5)

so that the quasiparticle Green function ultimately reads

GR/L(t) =
1

2πa

 sinh
(
i πaβvF

)
sinh

(
i πaβvF −

πt
β

)
ν (S6)

One can easily show that this Green function is identical for right- and left-movers, so that we can safely drop the
R/L subscript from this point onward.

As anyons obey fractional statistics, they show nontrivial exchange properties which ensure that, at equal time, one
has

ψ†R(0, t)ψR(x, t) = e−iπνSign(x)ψR(x, t)ψ†R(0, t) (S7)

Making use of the linear dispersion along the edge, this is rewritten as

ψ†R(0, t)ψR

(
0, t− x

vF

)
= e−iπνSign(x)ψR

(
0, t− x

vF

)
ψ†R(0, t) (S8)

Since this is valid for any set of parameters (x, t), one can choose x = vF t, without loss of generality. Taking then the
quantum average, this yields 〈

ψ†R(0, t)ψR(0, 0)
〉

= e−iπνSign(t)
〈
ψR(0, 0)ψ†R(0, t)

〉
G(t) = e−iπνSign(t)G(−t) (S9)

It follows that the value of the ratio G(t)/G(−t) can be viewed as a direct consequence of the exchange statistics of
anyons.
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COMPUTING THE TUNNELING CURRENT

Tunneling current when injecting a single quasiparticle

The tunneling current operator reads IT (t) = ie∗(Γψ†R(0, t)ψL(0, t)−H.c.). Here, we consider the situation where a

single quasiparticle is incoming along the right edge, described by a prepared state of the form |ϕ〉 = ψ†R(−x0,−T )|0〉.
To lowest order in Γ, the mean current is thus given by

〈IT (t)〉 = − i
2

∫
dt′
∑
η,η′

η′
〈
ϕ
∣∣∣TK IT (tη)HT

(
t′η
′
)∣∣∣ϕ〉

=
e∗

2

∫
dt′
∑
ε,ε′

∑
η,η′

εη′〈0|TK ψR(−x0,−T −)
(

Γψ†R(0, tη)ψL(0, tη)
)(ε)

×
(

Γψ†R(0, t′η
′
)ψL(0, t′η

′
)
)(ε′)

ψ†R(−x0,−T +)|0〉 (S10)

where ε = ± is used to include the Hermitian conjugated terms, such that for ε = +, one has for any operator O,
O(+) = O while for ε = −, one has O(−) = O†.

Here, TK ensures the time-ordering along the Keldysh contour, and η, η′ = ± are Keldysh indices. Note that we
consider the injection of QP to have happened in the distant past. The Kelsdysh indices added to the times −T have
been chosen to ensure that the ψR(−x0,−T −) and ψ†R(−x0,−T +) operators remain in the same position after time
ordering, independently of the values of t and t′, for T large enough. In particular, keeping in mind that x0 = vFT
(corresponding to a quasiparticle reaching the QPC at t = 0), this allows us to simplify some of the resulting Green
functions as

G(−x0, 0;−T −, tη) = G(−t) (S11)

G(0,−x0; tη,−T +) = G(t), (S12)

independently of η and t, provided that t� T .
Using the bosonized form of the quasiparticle operators, we have

〈IT (t)〉 = Γ2 e
∗

2

∫
dt′
∑
ε

∑
η,η′

εη′
[
G
(
σηη

′

tt′ (t− t′)
)]2(G(−t′)G(t)

G(t′)G(−t)

)ε
(S13)

Using the properties of the Green function derived in Eq. (S9), this then becomes

〈IT (t)〉 = 2ie∗Γ2

∫ t

−∞
dt′ sin

(
2πν

∫ t

t′
dτ δ(τ)

)
×
[
G(t− t′)2 − G(t′ − t)2

]
(S14)

Changing the integration variable to τ = −t′, and using the expression of the Green function, we get:

〈IT (t)〉 = θ(t)2ie∗
Γ2

(2πa)2
sin(2πν)

∫ ∞
0

dτ

[(
sinh(iπTτ0)

sinh(πT (iτ0 − t− τ)

)2ν

−
(

sinh(iπTτ0)

sinh(πT (iτ0 + t+ τ)

)2ν
]

(S15)

where τ0 = a/vF , T = 1/(kBβ) is the temperature, and we use kB = ~ = 1. Defining the reduced variables α = πTτ0,
u = πTτ and z = πTt, the first term in the integral can be written as∫ ∞

0

du

(
sinh(iα)

sinh(iα− z − u)

)2ν

=

∫ ∞
0

du

(
eiα − e−iα

−e−iαez
1

1− e2iαe−2ze−2u

)2ν

e−2ν u (S16)

=
(
e−z

(
1− e2iα

))2ν ∫ ∞
0

du
(
1− e2iαe−2ze−2u

)−2ν
e−2ν u (S17)

=
1

2

(
e−z

(
1− e2iα

))2ν (1

ν

)
2F1

(
2ν, ν, ν + 1, e2iα−2z

)
(S18)

where 2F1 is the hypergeometric function. Using this result, the current can eventually be recast as

〈IT (t)〉 = θ(t) 2e∗
(

Γ

2πvF τ0

)2
sin(2πν)

2πνT
e−2νπTt (2 sin(πTτ0))

2ν

× 2Im
[

2F1

(
2ν, ν, ν + 1, e−2νπTte−2iπTτ0

)
eiπν(1−2Tτ0)

]
(S19)
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Taking then the leading order in the cutoff parameter τ0 leads to

〈IT (t)〉 = θ(t) 2e∗
(

Γ

2πvF

)2

τ2ν−2
0

2 sin(πν) sin(2πν)

ν
e−2νπTt(2πT )2ν−1

2F1

(
2ν, ν, ν + 1, e−2νπTt

)
(S20)

We see that this is a function of 2νπT t = 2νπt/β, which implies that the typical length scale for this function is ∼ β.
The behavior of the current in the two limits t � β and t � β is obtained by using the asymptotic behavior of the
hypergeometric function:

2F1

(
2ν, ν, ν + 1, e−2νπTt

)
=

{
ν Γ(ν)2

Γ(2ν)
sin(πν)
sin(2πν) −

ν
1−2ν

(
1− e−2νπTt

)
t� β

1 + 2ν2

ν+1e
−2νπTt t� β

. (S21)

Tunneling current when injecting a single electron

It is instructive to repeat the same kind of derivation, only this time considering the situation where a single electron
is incoming along the right edge. The prepared state now takes the form |ϕ〉 = Ψ†R(−x0,−T )|0〉, where the electron

operator ΨR satisfies the bosonization identity ΨR(x) = UR
2πae

ikF xe
−i 1√

ν
φR(x)

.
Following a similar derivation to the one above, one obtains instead of Eq. (S13), the following expression for the

tunneling current

〈IT (t)〉 = Γ2 e
∗

2

∫
dt′
∑
η,η′

εη′
[
G
(
σηη

′

tt′ (t− t′)
)]2 [(G(−t′)G(t)

G(t′)G(−t)

)1/ν

−
(
G(t′)G(−t)
G(−t′)G(t)

)1/ν
]

(S22)

From the properties of the quasiparticle Green function, Eq. (S9), one readily sees that for t 6= 0(
G(−t′)G(t)

G(t′)G(−t)

)1/ν

= exp

(
−i
∫ t

t′
dτ 2πδ(τ)

)
= 1, (S23)

so that the tunneling current vanishes at all times t 6= 0 and is nonzero only at the specific time that the electron
reaches the QPC.

Tunneling current in the presence of a time-dependent voltage

In the presence of a voltage bias, the tunneling part of the Hamiltonian can be written as

HT (t) = Γ exp

[
ie∗
∫ t

−∞
dt′ V (t′)

]
ψ†R(0, t)ψL(0, t) + H.c. (S24)

where it now contains the effect of the applied votlage V (t).
The tunneling current operator now reads

IT (t) = ie∗
(

Γ exp

[
ie∗
∫ t

−∞
dt′ V (t′)

]
ψ†R(0, t)ψL(0, t)−H.c.

)
. (S25)

Taking the quantum average, the mean tunneling current is given in full generality by

〈IT (t)〉 =
ie∗

2

∑
η

∑
ε

ε

〈
TK

(
Γ exp

[
ie∗
∫ t

−∞
dt′ V (t′)

]
ψ†R(0, tη)ψL(0, tη)

)(ε)

× exp

−i∑
η′

η′
∫ ∞
−∞
dt′ HT (t′η

′
)

〉 (S26)

where the sum on ε = ± is used to represent the Hermitian conjugate, and η, η′ = ± are Keldysh indices.
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Performing a perturbative expansion in the tunneling amplitude Γ, this gives up to second order

〈IT (t)〉 =
e∗

2
Γ2
∑
η,η′

∑
ε

εη′
∫ ∞
−∞
dt′ exp

[
i ε e∗

∫ t

−∞
dt′ V (t′)

]〈
TKψ

†
R(0, tη)ψR(0, t′η

′
)
〉〈

TKψL(0, tη)ψ†L(0, t′η
′
)
〉

(S27)

Using the expression for the quasiparticle Green function, and performing explicitly the sum on the Keldysh indices
η and η′, one eventually gets

〈IT (t)〉 = 2ie∗Γ2

∫ t

−∞
dt′ sin

(
e∗
∫ t

t′
dt′′V (t′′)

)[
G(t− t′)2 − G(t′ − t)2

]
. (S28)

where the Keldysh summations end up restricting the t′ integral from −∞ to t.

COMPUTING THE NOISE

General expression

The current noise is defined as:

S(t, t′) =
〈
TKδIT (t−) δIT (t′+)

〉
(S29)

with δIT (t) = IT (t)− 〈IT (t)〉, and ± are Keldysh indices.
In the presence of a voltage bias applied to both edges, the tunneling part of the Hamiltonian can be written as

HT (t) = Γ exp

[
ie∗
∫ t

−∞
dt′ (VR(t′)− VL(t′))

]
ψ†R(0, t)ψL(0, t) + H.c. (S30)

where we applied a standard gauge transformation in order to reabsorb the effect of the voltage drives into the
tunneling amplitude. In this situation, the tunneling current operator reads

IT (t) = ie∗
(

Γ exp

[
ie∗
∫ t

−∞
dt′ (VR(t′)− VL(t′))

]
ψ†R(0, t)ψL(0, t)−H.c.

)
. (S31)

Substituting this back into Eq. (S29), one readily obtains, up to lowest order in the tunneling amplitude Γ

S(t, t′) = 2

(
e∗Γ

2πa

)2

cos

(
e∗
∫ t

t′
dt′′(VR(t′′)− VL(t′′))

)
G(t− t′)2. (S32)

In what follows, we focus on the Hanbury-Brown Twiss (HBT) and the Hong-Ou-Mandel (HOM) setups, corresponding
respectively to applying a single voltage drive, or to applying both of them.

HOM noise for two narrow pulses of average charge e∗

We consider here the case of two infinitely short pulses so that both VR(t) and VL(t) are composed of a single delta
function, with a time-shift δt between them. Focusing on pulses of average charge e∗, one can thus write

VR(t) =
2π

e
δ

(
t+

δt

2

)
VL(t) =

2π

e
δ

(
t− δt

2

)
. (S33)

The cosine factor entering the expression for the noise in Eq. (S32) then simply reduces to either cos(2πν) or to 1,
depending on the values of t and t′, so that we write it as cos [2πνfδt(t, t

′)]. The newly defined function fδt(t, t
′) is 1

if one of the times t or t′ is in the interval [−δt/2, δt/2] while the other one is not, and reduces to 0 otherwise.
The HOM noise is defined as the zero-frequency noise due to the collision of these two excitations, as a function of

the time-interval δt. Focusing on the zero-frequency contribution, and filtering out the equilibrium thermal noise (by
subtracting the value in the absence of voltage drives), one has for the un-normalized HOM noise

SHOM = S(VR, VL)− S(0, 0) = 2

(
e∗Γ

2πa

)2 ∫ ∞
−∞
dt

∫ ∞
−∞
dt′ {cos [2πνfδt(t, t

′)]− 1} G(t− t′)2 (S34)
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Similarly, one can work out the expression for the corresponding noise when only one of the drives is present. The
resulting HBT noise reads

SHBT = S(VR, 0)− S(0, 0) = 2

(
e∗Γ

2πa

)2 ∫ ∞
−∞
dt

∫ ∞
−∞
dt′
[
cos

(
2πν

1− sign(t× t′)
2

)
− 1

]
G(t− t′)2 (S35)

The standard HOM noise ratio is then defined as the ratio of the un-normalized HOM noise to twice the HBT
noise, so that

SHOM (δt) =
SHOM
2SHBT

=

∫
dtdt′ {cos [2πνfδt(t, t

′)]− 1} e2νG(t′−t)

2
∫
dtdt′

[
cos
(

2πν 1−sign(t×t′)
2

)
− 1
]
e2νG(t′−t)

(S36)

Substituting the actual value of fδt(t, t
′), this can be further rewritten as

SHOM (δt) =

∫ |δt|
0

dt
∫∞

0
dt′
[
e2νG(t+t′) + e2νG(−t−t′)

]
∫∞

0
dt
∫∞

0
dt′
[
e2νG(t+t′) + e2νG(−t−t′)

]
=

Re
[∫ |δt|

0
dt
∫∞

0
dt′e2νG(t+t′)

]
Re
[∫∞

0
dt
∫∞

0
dt′e2νG(t+t′)

]
= 1− Re [I (δ)]

Re [I (0)]
(S37)

where we introduced

I (δ) =

∫ ∞
0

dz z

(
sinh(iα)

sinh(iα− z − δ)

)2ν

(S38)

with the reduced variable δ = π |δt| /β, and the infinitesimal α = πτ0/β.
This integral can be worked out as

I (δ) = −1

4

(
1− e2iα

)2ν
e−2νδ∂γ

[
1

ν + γ
2F1

(
2ν, ν + γ; ν + γ + 1; e2iαe−2δ

)]
γ=0

(S39)

where one clearly sees that for δ � 1, the exponential prefactor dominates, so that

I (δ) '
δ�1

e−2νδI (0) (S40)

It follows that, in the regime where |δt|/β → 0, one has

SHOM (δt) −→
|δt|/β→0

1− e−2πν
|δt|
β (S41)

HOM noise for two narrow pulses of average charge qe

The previous results can be easily extended to the case of pulses carrying a different charge. We now define

VR(t) =
2πq

νe
δ

(
t+

δt

2

)
VL(t) =

2πq

νe
δ

(
t− δt

2

)
. (S42)

Following the lines of the previous calculation, one can similarly obtain an expression for the HOM noise ratio as

SHOM (δt) =

∫
dtdt′ {cos [2πqfδt(t, t

′)]− 1} e2νG(t′−t)

2
∫
dtdt′

[
cos
(

2πq 1−sign(t×t′)
2

)
− 1
]
e2νG(t′−t)

(S43)

Interestingly, while the resulting integrals are finite for different domains in time, they always contain a prefactor
cos(2πq) − 1. For q /∈ Z, this prefactor simplifies between numerator and denominator, leaving us with the same
expression as Eq. (S37), independently of q. This, however, is specific to the very short pulse situation, as a finite
extent leads to slightly different contributions for the numerator and denominator, which depend on q in a nontrivial
way.
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HOM noise in the Floquet formalism

The applied voltages on the right and left edges are now given by periodic Lorentzian pulses. They are identical
except for a time-shift δt, so that

VL(t) = VR(t− δt) =
VDC
π

∑
k

η

η2 + (t/T0 − k)2
(S44)

In the Floquet formalism, the essential ingredients are the coefficients pl, which are the Fourier components of the
accumulated phase φ(t) = e∗

∫ t
−∞ dt′VAC(t′) created by the AC part of the time-dependent voltage. In practice, it is

convenient to introduce the time-dependent voltage Vdiff(t) = VR(t)−VL(t) which naturally appears in the expression
of the noise.

Starting back from the general expression of Eq. (S32), and inserting the pl coefficients associated with a generic
drive V (t) (this allows us to replace V with VR, VL or Vdiff), one can write

S(t, t′) = 2

(
e∗Γ

2πa

)2

cos

[
e∗
∫ t

t′
dt′′V (t′′)

]
G(t− t′)2

=

(
e∗Γ

2πa

)2∑
l,m

p∗l pm

(
eie
∗VDC(t−t′)eilωte−imωt

′
+ e−ie

∗VDC(t−t′)e−imωteilωt
′
)
G(t− t′)2 (S45)

where ω = 2π
T0

is the frequency of the drive.
In this Floquet formalism, the zero-frequency noise is now defined as

S =

∫
dτ

∫ T0

0

dt̄

T0
S
(
t̄+

τ

2
, t̄− τ

2

)
(S46)

which becomes

S =

∫
dτ

∫ T0

0

dt̄

T0

(
e∗Γ

2πa

)2∑
l,m

p∗l pm

(
eie
∗VDCτeilω(t̄+ τ

2 )e−imω(t̄− τ2 ) + e−ie
∗VDCτe−imω(t̄+ τ

2 )eilω(t̄− τ2 )
)
G(τ)2

= 2

(
e∗Γ

2πa

)2∑
l

|pl|2
∫
dτ cos [(l + q)ωτ ]G(τ)2 (S47)

where we introduced the average charge q = e∗VDC
ω injected by the drive over one period.

Introducing the coefficients pdiff,l for the voltage difference Vdiff(t), as well as the coefficients pL,l and pR,l corre-
sponding to VL(t) and VR(t) applied individually, and noticing that VR,DC = VL,DC = qω

e∗ , while Vdiff,DC = 0, one
finally has for the HOM noise ratio

SHOM (δt) =
SHOM
2SHBT

=

∑
l F (pdiff,l, 0)− |Γ(ν)|2∑

l [F (pL,l, q) + F (pR,l, q)]− 2 |Γ(ν)|2
(S48)

with

F (pl, q) = |pl|2
∣∣∣∣Γ(ν + i

l + q

2πθ

)∣∣∣∣2 cosh

(
l + q

2θ

)
(S49)

and θ = kBT/~ω is the reduced temperature. Note that this expression is very general and can describe any kind of
periodic potentials, provided that one uses the correct corresponding expressions of the pl coefficients.
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