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ABSTRACT

The Independent Component Analysis (ICA) has been re-
cently introduced as a reliable alternative to identify canon-
ical scattering mechanisms within PolSAR images. This
paper addresses an overview of the most important aspects
for applying such methods on real data. A new geometric
classification algorithm is proposed by combining the polar
decomposition and by adjusting the conventional k-means
mean and distance with their counterpart on the Riemannian
manifold. This algorithm is tested using P-band airborne
PolSAR data acquired for the ESA campaign TropiSAR cam-
paign.

Index Terms— Incoherent Target Decomposition, ICA,
PolSAR, data analysis

1. INTRODUCTION

Polarimetric Synthetic Aperture Radar (SAR) images can be
used for several applications, for example for land cover clas-
sification. With current SAR sensors being able to emit or
receive two orthogonal polarizations, the polarimetric target
decompositions are PolSAR image interpretation techniques
relying on the study of the interaction between the targeted
area and the transmitted waveform. In this context, the Inco-
herent Target Decomposition (ICTD) theory assumes that the
scattering process is a combination of coherent speckle and
random vector scattering effects [1, 2]. Polarimetric target de-
composition is a PolSAR image interpretation technique that
relies on the analysis of the interaction between the illumi-
nated area and the transmitted waveform, considering each
polarimetric state of the latter. More specifically, it enables
the description of an image cell as a sum of canonical scat-
tering mechanisms (also called as target vectors) making it
more intuitive to understand the behavior of the clutter and
therefore to analyze it [1].

In the remaining parts of this paper, Section 2 is dedicated
to a short review of the ICA-ICTD framework and to the in-
troduction of a new classification algorithm, while Section 3
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presents results obtained using real PolSAR data. Lastly, Sec-
tion 4 provides some directions for further investigation.

2. INCOHERENT TARGET DECOMPOSITION
TECHNIQUES FOR POLSAR DATA

ICTD algorithms can be split in two stages: the decomposi-
tion of an image pixel into basic target vectors and the correct
retrieval of quantitative information from them (parametriza-
tion). In this paper, we propose a comparative analysis of
three ICTD techniques: Cloude and Pottier’s H/α, Touzi’s
TSVM and ICA based ICTD.

The combined use of the Eigenvector approach with
Cloude and Pottier’s parametrisation gave rise to one of the
most employed and most traditional classification schemes
in PolSAR data analysis, the H/α feature space [3]. The en-
tropy, H, measures the degree of randomness of the scattering
phenomenon, given as a function of the eigenvalues of the
coherence matrix. Each eigenvector correspond to a scatter-
ing mechanism within the image cell and therefore each one
will provide a different α angle. The authors in [3] state that
the best estimate of such parameter to represent the image
cell is an weighted average based on the eigenvalues of the
coherence matrix.

The parameters H and α are plotted in a plane, originat-
ing the so called H/α feature space. Upon the introduction
of the aforementioned method, Cloude and Pottier suggested
the partitioning of the plane in 9 regions, based on the po-
larimetric behavior of known type of natural phenomenons.
Therefore, once the H and the average α parameters are ex-
tracted from the target polarimetric signature, it is straightfor-
ward to classify it as one of the corresponding type of scat-
tering mechanisms. Many works are based on such method,
from geophysical parameters inversion algorithms (in varied
regions from the globe) to detection and classification algo-
rithms. Having a remarkable correspondence to ground truth,
the usage of this unsupervised technique has had very few im-
provements since its conception. It has been shown in [4] that
the Independent Component Analysis (ICA) provides addi-
tional information: unconstrained by the orthogonality condi-



tion between the estimated scattering mechanisms that com-
pose the PolSAR clutter under analysis, ICA is not subject to
the unfeasible region in the H/α plane, increasing the range of
possible natural phenomenons depicted in this feature space.

In [5], a novel strategy to polarimetric ICTD was in-
troduced by selecting the Independent Component Analy-
sis (ICA) to identify the canonical scattering mechanisms
within an image cell. The proposed ICA was able to retrieve
non-orthogonal scatterer types [6, 4]. This ICA-ICTD de-
composition can be applied either locally (inside a sliding
neighborhood) or globally (using a redefined classification
map).

In the local approach, by applying the MMSE filter [7]
on each of the ICA derived rotation invariant scattering vec-
tors, we have shown in [8] that spatial resolution can be bet-
ter preserved with respect to the conventional PolSAR boxcar
speckle filter.

The ICA based ICTD decomposition is based on the es-
timation of the mixing matrix A (Eq. 1). There are several
criteria for determining the elements of A in order to ensure
the mutual independence of the sources in s. The common
factor for all the applied methods is the assumption that at
most one of the sources is Gaussian.
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The selected Complex Fast-ICA algorithm is based on a
bottom-up approach: emphasizing the non-gaussanity of the
sources by maximizing an arbitrary nonlinear contrast func-
tion (Eq. 2) whose extrema coincides with the independent
component.

JG(w) = E{G(|wHx|2)} (2)

The performances of the algorithm depend strongly on the
choice of the nonlinear function G(y), which is supposed to
be suited to the particular application. Therefore, here we
have used the kurtosis criterion in deriving independent target
vectors:

G1(y) =
1

2
y2. (3)

In this case, the contrast functions becomes essentially a mea-
sure of the fourth statistical moment of the source. As its
value in case of the Gaussian variable equals zero, by max-
imizing the kurtosis of each of the sources, we ensure their
independence.

The result of the incoherent target decomposition is the set
of target vectors representing elementary scatterers and a set
of scalars, providing their proportion in the total scattering. In
our case, the target vectors of the independent scatterers are
the columns of the estimated mixing matrix A = WH. The
contribution to the total backscattering (m) is computed as a
square root of the maximal eigenvalue of the derived Graves
matrix.

Being based on Kennaugh-Huynen condiagonalization
projected onto the Pauli basis, the TSVM [9] allows parametriza-
tion of the target vector in terms of rotation angle (ψ), maxi-
mum amplitude (m), target helicity (τm), symmetric scatter-
ing type magnitude (αs) and symmetric scattering type phase
(Φαs ), among which the last four are roll-invariant:

k = m|k|mejΦs

1 0 0
0 cos 2ψ − sin 2ψ
0 sin 2ψ cos 2ψ

 cosαs cos 2τm
sinαsejΦαs

−j cosαs sin 2τm

 . (4)

Using these parameters, it is eventually possible to rep-
resent the obtained independent target vectors on either sym-
metric or non-symmetric target Poincaré sphere. In the ICA
case, they do not necessarily form an orthogonal basis.

2.1. Global approach: classification on the Riemannian
manifold using the polar decomposition

In the global approach, one may think to classify directly the
mixing matrices derived by the Fast-ICA, however there is not
a well established metric for the general linear group. Instead
we propose here to consider the polar decomposition of the
original 2× 2 scattering matrices, following [10].

The right polar decomposition of scatter matrix S is given
by:

S = UP, (5)

where U is a unitary matrix and S =
√
SHS is a Hermi-

tian matrix. The unitary factor is unique if S is non-singular,
which is the practical case of PolSAR data due to the presence
of speckle and thermal noise in the scattering matrices.

Further on, we concentrate on the Hermitian factor P and
we discard the unitary factor from Eq. 5. Therefore, each
pixel of the PolSAR image yields a Hermitian matrix Pi lying
on the Riemannian manifold of positive matrices [11].

Exploiting this geometry, we first replace the complex
multilooking by computing the Riemannian barycenter within
a local neighborhood of the current pixel in order to remove
the speckle. Second, we cluster the pixels using, for example,
a modified k-means algorithm, where the mean and distance
are replaced by their counterpart on the Riemannian manifold
of positive definite matrices.

Specifically, in this manifold we adopt the widely used
affine-invariant metric for two tangent vectors V and W, de-
fined by

⟨V,W⟩P = Tr(P−1VP−1W). (6)

It follows the distance between two points on the manifold
(positive definite matrices), given by

d2(X,Y) = ||log(X−1/2YX1/2||2F , (7)

and the barycenter (geometric mean) of a set of points, which
is the unique solution of

B = argminG
∑
i

d2(Xi,G). (8)



3. POLSAR EXPERIMENTAL RESULTS

The PolSAR dataset was acquired by the French Aerospace
Lab (ONERA), in 2009, over the French Guiana, in the frame
of the ESA campaign TropiSAR. With local processing, Fig.
2-(a),(b),(c),(d) shows the Touzi’s roll invariant TSVM pa-
rameters computed by ICA MMSE speckle filtering, as com-
pared to the ones obtained by applying the boxcar filter and
PCA from Fig. 1-(a),(b),(c),(d).

(a)

(b)

(c)

(d)

Fig. 1. Paracou P-band airborne dataset, TSVM parameters
after PCA boxcar speckle filtering: (a) entropy, (b) symmet-
ric scattering type magnitude, (c) helicity and (d) symmetric
scattering type phase.

As an example, we propose to analyse the results by rep-
resenting the derived TSVM parameters of symmetric targets
on the Poincaré sphere (helicity equal 0). It can be observed
in Fig. 3-(a),(b) that the second and the third most dominant
mechanism (represented in blue and green, respectively) oc-
cupy different position onto the sphere, thus meaning that the
non-orthogonality of ICA will produce different mechanisms,
indeed.

Regarding the global approach, we propose in Fig. 4 a
comparison between complex multilooking and Riemanian
barycenter as an estimate of the local 2 × 2 Hermitian fac-
tor of scattering matrix. The size of the local neighborhood
is 7 × 7. One can observe in Fig. 4-(b) that derived result is
more robust to the inherent speckle noise.

(a)

(b)

(c)

(d)

Fig. 2. Paracou P-band airborne dataset, TSVM parameters
after ICA MMSE speckle filtering: (a) entropy, (b) symmet-
ric scattering type magnitude, (c) helicity and (d) symmetric
scattering type phase.

(a) (b)

Fig. 3. Paracou P-band airborne dataset, Poincaré sphere rep-
resentation of symmetric targets: (a) PCA with boxcar, (b)
MMSE with ICA.



(a)

(b)

(c)

Fig. 4. Paracou P-band airborne datase, 7× 7 local neighbor-
hood: (a) first element of the scattering matrix |S1,1|2 (in dB)
obtained by complex multilooking, (b) first element of the
Hermitian factor |P1,1|2 (in dB) derived as the local barycen-
ter and (c) Riemanian k-means classification map.

Finally, we illustrate in Fig. 4-(c) the classification map,
in slant range, obtained using the proposed modified k-means
classifier with random initialization and N = 8 classes. This
can be re-sampled in ground range as proposed in [12].

4. CONCLUSION

This paper presented an overview of the most important as-
pects for applying ICA based incoherent target decomposi-
tions on real PolSAR data. Based on the coupling between
the polar decomposition and the Riemanian k-means cluster-
ing, we have proposed a new classification algorithm for the
global analysis of such data. Results have been illustrated us-
ing P band airborne PolSAR data over forested areas.

Further developments will be addressed to take into ac-
count also the left polar decomposition and to combine it in
the final classification result.
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