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Abstract—Exploring polarimetric diversity of Synthetic
Aperture Radar (SAR) data is directly applicable to conven-
tional monostatic cases. For this, the mostly used convention
is the Backscatter Alignment. While establishing important
advantages for the monostatic case (possibility to have
equal values on the cross-polarimetric channels), it has been
proven to introduce some difficulties for the bistatic case.
This appears in relation to the so-called conjugate similarity
operation, when (mathematically) asymmetric scattering
matrices occur. In this paper, we propose the detailed algo-
rithm which provides a solution to the conjugate similarity
operation, in the case of general scattering matrices. The
proposed algorithm is based on the real representation
matrix transformation. Further, we investigate the charac-
terization of canonical bistatic scatterers (three elementary
targets). Raw bistatic polarimetric signals are obtained
by using simulations with a computationally electromag-
netic (EM) software, capable of complete EM analysis.
The eigenvalue classification illustrates the potential of
additional information brought using the proposed Real
Representation Scattering Matrix (RRSM). The presence
of complex eigenvalues is investigated in relation to the
bistatic angle and one nonreciprocity parameter.

Index Terms—Real representation, scattering matrix,
polarimetry, bistatic, consimilarity, conjugate similarity,
nonreciprocity factor, full-polarimetric, computational elec-
tromagnetic.

I. INTRODUCTION

IN radar polarimetry, the scattering matrix, S ∈ C2×2,
of coherent targets, completely describes the transfor-
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mations occurred to the incident electric field during the
scattering phenomenon.

In compliance with IEEE standards, the polarization
is an antenna property and the scattering process in
radar is often described considering a so-called ”an-
tenna oriented” convention. In the framework of this
convention, compared to the optical one, the scattered
versor is geometrically oriented as from the antenna
to the target, i.e., a reversal of 180o from the general
right-handed geometric description [1]. This is known
as the Backscatter Alignment (BSA), while the more
common coordinate system used in optics goes under the
name of Forward Scattering Alignment (FSA) [2]. The
geometrical representations for BSA and FSA will not
be included here, but the interested reader can consult
texts as [1], [2].

Because in radar theory, the vector on the receiver
path is reversed in direction, this will mathematically
be modelled by the conjugation operation. In this re-
gard, the basis change relations of the two conven-
tions (radar vs. optical), are slightly different. While
the Optical Polarimetry Theory operates with similarity
transformations performed on the Jones matrix, the Radar
Polarimetry Theory under BSA operates with conjugate
similarity transformations performed on the Sinclair ma-
trix. Also an equivalence relation of complex matrices,
the con(jugate) similarity differs from the (conventional)
similarity operation [3] and we dedicate Subsection III-A
for comparing the two.

In practical implementations, under the use of sim-
plifying assumptions, the consimilarity transformation
reduces to more particular cases, so this equivalence
relation under BSA, has rarely been used in its gener-
alized form. We refer here to the case of all monostatic
systems, where the symmetry of the scattering matrix is
generally claimed under BSA (i.e, equal values for the
cross-polarized elements). This appears as consequence
of an equal travel path of the incidence/scattered wave
when assuming a medium with unchanged properties
between transmitter (Tx) / receiver (Rx) and target (Tg)
elements [4]. Such matrix is often referred as a recipro-
cal scattering matrix, i.e, symmetric in a mathematical
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sense. Under the reciprocity simplification, the general
conjugate similarity operation transforms to a so-called
unitary congruence transformation [5].

For extracting descriptive parameters directly from
a scattering matrix, coherent decomposition techniques
are used. The coherent decomposition of nonreciprocal
scattering matrices has been investigated in the literature
using the Singular Value Decomposition (SVD) [6], [7].
This allows one to decompose the scattering matrix by
means of two unitary transformations, one characterizing
the Tx-Tg path and one the Tg-Rx path. The unitarity of
the transformation matrices on each path imposes that
the vectors describing the transformation are orthogonal.
However, from a physical point of view, different proper-
ties of the medium may not allow for preservation of the
unitary property of transformation matrices associated
to the two paths. With the consimilarity operation, a
restriction of the model is that the two transformation
matrices on each path are conjugate pairs. According
to Lüneburg, the radar polarization vectors (i.e., the
columns of the transformation matrix), even if related
by a complex conjugation operation (i.e., a change in the
sense of rotation), describe the same state of polarization
[8].

The SVD method has been introduced specifically for
the bistatic case and some well-known coherent models
based on a product decomposition have been extended
for incorporating this operation. We mention here the
extended Kennaugh [9], [10], the Huynen (and Huynen
Fork representation) [6], [11]–[13] and the Target Scatter-
ing Vector Model (TSVM) [14]. The extension is math-
ematically justified in all works by the general property
that unitary congruence is considered a particular case
of SVD.

Here, for a more comprehensive methodology for
decomposing the scattering matrix via the con(jugate)
similarity operation, irrespective of its compliance with
the reciprocity theorem, we propose the use of a real
representation scattering matrix (RRSM) computation
framework [15]. Some elementary definitions and prop-
erties are presented in Section III and Annex B.

One can emphasize that the two mathematical models
(SVD and consimilarity) may represent both only partic-
ular transformation (considering the constraints discussed
above for each case) when dealing with general bistatic
representations. While the present work concentrates on
the consimilarity relation and will not deal directly with
the connection between these two models, with the SVD
being currently the de facto method of coherent bistatic
radar polarimetry, the comparison was inevitable.

In this paper, we introduce the detailed algorithm for
solving the general conjugate similarity transformation
for radar. The proposed algorithm is based on the real
representation (RR) of scattering matrices.

The RR analysis of four complex matrix types allows
us to illustrate some interesting mathematical properties
of their associated eigenvalues. In practice, we propose
to analyse scattering matrices of elementary targets in
the bistatic case. Three canonical scattering targets are
simulated, and we explore the connection between non-
reciprocity of scattering matrices and RRSM eigenvalues
classification.

Throughout the paper AT , A∗ and AH represent
the transpose, complex conjugate and complex conjugate
transpose operations of a complex matrix (A ∈ Cn×n).
A matrix is represented in uppercase boldface letters (A)
and a vector in lowercase boldface (a) (with accent for
unitary vectors, â). Operators Re(·) and Im(·) are used
in extracting the real and imaginary components of any
scalar, vector or matrix.

Aside from this introduction, the paper contains four
more sections. Section II is dedicated to a state-of-
the-art analysis of general bistatic polarimetric practical
systems. We mention there both previous implementa-
tions, as well as some forthcoming bistatic systems (to
present polarimetric capabilities) under development with
different spatial companies. While some of these projects
are aimed only with partial polarimetric capabilities, they
present nonetheless prospects of an increased interest in
future bistatic polarimetric missions.

In Section III, we introduce the general definition and
particularities of the real representation scattering matrix
(RRSM). As one expects to encounter both reciprocal
and nonreciprocal scattering matrices in dealing with
bistatic polarimetric real scattering scenarios, we con-
sider four particular forms for a complex matrix and
discuss the general types of eigenvalues expected for
their RRSM. Section IV offers a general overview of the
full-wave bistatic simulated results, while conclusions,
interpretations and highlights can be found in Section V.

II. BISTATIC POLARIMETRY SYSTEMS - STATE OF ART

In a bistatic configuration, the transmitter (Tx) and
receiver (Rx) are no longer co-located, but placed in two
separate positions. For a fixed target, we define a so-
called bistatic angle (β) parameter between the Tx and
Rx line-of-sight (LOS) directions. An important advan-
tage of bistatic configurations is the possibility to obtain
enhanced or complementary target signatures, compared
to monostatic geometries. Combined with a polarimetric
diversity, the amount of information acquired by bistatic
systems may be significant. Recent years have been fruit-
ful for constructing and exploiting bistatic / multistatic
experimental radar designs, leading to the point that,
for example, spaceborne-spaceborne configurations with
large separation between Tx and Rx elements are at the
moment viable projects under implementation.
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TABLE I
Extensive list of full-polarimetric bistatic missions and platforms.

Bistatic configuration Ref. Tx System
(Institution/Campaign)

Rx System
(Institution/Campaign) Acq. Band

Geometries capable of large bistatic angles (β > 10o):

spaceborne-airborne [16], [17] TerraSAR-X (DLR) F-SAR (DLR) X-Band

spaceborne-groundbased [18], [19] TerraSAR-X (DLR) Hitchhiker (ZESS - University
of Siegen) X-Band

[20] ASTRA 1KR, DVB-S(2) SABBIA (Fraunhofer FHR) Ku-Band

airborne-groundbased [21], [22] Ingara (Australian DSTO) passive Rx (X-Band) L & X Bands

groundbased-groundbased [23] TARA (TU Delft) PARSAX (TU Delft) S-Band

[24] KAPRI-Tx (GAMMA
Remote Sensing)

KAPRI-Rx (GAMMA
Remote Sensing) Ku-Band

Geometries with smaller bistatic angles (β ≤ 10o):

airborne-airborne [25], [26] BelSAR (MetaSensing) BelSAR (MetaSensing) L-Band

Quasi-monostatic:

airborne-airborne [27] N-SAR (Nanjing Research
Institute) N-SAR X-Band

groundbased-groundbased [28] Tx unit (Tohokun University) OEFS-Rx (Tohokun
University) C-Band

[29] KAPRI-Tx (GAMMA
Remote Sensing)

KAPRI-Rx (GAMMA
Remote Sensing) Ku-Band

A. Future planned bistatic satellite missions:

p Geometries capable of larger bistatic angles:

At the European Space Agency (ESA), Harmony
(former known as STEREOID) is a mission con-
cept, recently selected as the 10th Earth Explorer
Scientific Program and estimated for launch around
2028. The mission will use two passive payloads
(Harmony-A and Harmony-B) equipped with radar
instruments, which will work in bistatic configura-
tion(s) with one of the Sentinel-1 satellites (to play
the role of transmitter) [30] [31]. With at least a 250
km along-track separation between Tx and Rx and
considering the current orbit height of the Sentinel-1
satellites of 693 km, the Harmony configuration will
allow a minimum of 20o bistatic angle. Because the
transmitter, a Sentinel-1 satellite, ensure only one
illuminating polarisation capability in most working
modes, the Harmony mission will provide only dual-
pol products. Considering the Open-Data policy
adopted by ESA, it is expected such products will
be available for a great range of applications.

p Quasi-monostatic and geometries capable of
smaller bistatic angles:

The TerraSAR-X/TanDEM-X couple has played a
pioneering role in the spaceborne area and has
demonstrated and confirmed the utility of acquir-
ing radar images with sensors located at different

positions. Currently in orbit, due to the small sepa-
ration between the two platforms compared to their
altitude height, they are considered to have only a
quasi-monostatic (i.e., nearly monostatic) field of
view [32]. Such a geometry presents however, the
advantage of using processing algorithms which are
only very slightly modified from the monostatic
ones [33].
Under development at DLR, the future HRWS (High
Resolution Wide Swath) SAR mission [34] will
exploit a monostatic and multistatic functionality,
with passive transponder-like companions separated
by the main payload by baselines comparable to
that of TerraSAR-X/TanDEM-X. As a result, such
system will allow low bistatic angles for each Tx-
Rx combination. The mission will present also some
form of polarimetric diversity: dual or full-pol.

Another future bistatic mission inspired by the
TerraSAR-X/TanDEM-X formation is the LuTan-1
(also as, TwinSAR-L) [35] of the Chinese spatial
agency. The L-Band mission is intended to present
full-polarisation capability, while the baseline be-
tween the two payloads is optimized for interfero-
metric applications and the resulting bistatic angles
will be only in the order of several degrees.
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B. Inventory of bistatic polarimetric system implementa-
tions:

With respect to other already implemented bistatic
configurations, there are in the literature examples
in a wide range of same/cross-platform configu-
rations: spaceborne-airborne [36], [37], spaceborne-
groundbased [38], [39], airborne-airborne [40], [41],
airborne-groundbased [42]. However, there have been
only a small number of bistatic experiments and cam-
paigns integrating full-polarimetric features. In Table I
we present an extensive selection of such systems having
different bistatic configurations or working frequencies,
and we group them with respect to the bistatic angle
separation. We use a threshold value of β = 10o

for separating between classes with larger and smaller
bistatic angles. In principle, the scattering properties at
larger bistatic angles are expected to be different than the
ones with monostatic or quasi-monostatic scattering. This
has been shown in [43] for different bistatic backscatter-
ing measurements of radar cross-sections (RCSs) over
the ocean surface. Apart from the two extreme cases,
evaluating the scattering around smaller bistatic angles is
expected to present intermediate properties. Nonetheless,
there is no consensus in the literature regarding an exact
threshold value for β.

While we do not claim for Table I to represent
an exhaustive indexing of previously/currently available
full-polarimetric bistatic platforms, the selections are
nonetheless representative examples in the literature. In-
door bistatic experimental facilities or bistatic systems
presenting only a dual-polarisation capability have not
been included in the table.

III. THE REAL REPRESENTATION OF GENERAL
SCATTERING MATRICES

Introduced as a pure algebraic concept for perform-
ing the more-challenging consimilarity transformation,
we have observed that the real representation form
presents some interesting properties in terms of its eigen-
value/eigenvector decomposition. Moreover, the type of
values may be placed in relation to the nonreciprocity
parameter, connection which will also be introduced in
this section.

TABLE II
Consimilarity and similarity general equations.

similarity con(jugate) similarity
AV = VB AX = X∗C

eigenvalue/eigenvector coneigenvalue/coneigenvector
Avk = λkvk Axk = ξkxk

∗

A. On similarity and consimilarity equivalence relations
of complex matrices:

A complex matrix A ∈ Cn×n may be characterized
by two equivalence relations (similarity and conjugate
similarity), defined as in Table II. The eigenvalue decom-
position (left column, lower half, Table II) is a particular
type of similarity transformation. In this case, B is
diagonal with eigenvalues λk, k ∈ [1, n] on its diagonal
and the associated eigenvectors vk as the columns of
the transformation matrix V. Also, if two matrices have
the same n distinct eigenvalues, they are similar to the
same diagonal matrix. There exists a family of matrices
which are similar to one another and similar to the
same diagonal form. However, in the case of (at least
two) equal eigenvalues, it may not always be possible
to have a diagonal form for a matrix and an almost-
diagonal form, the Jordan form, may be used. According
to Jordan’s theorem [3], every square matrix A is similar
to a Jordan matrix with Jordan blocks on the diagonal. A
short summary of the Jordan blocks theory is contained
in Appendix A-B.

The conjugate similarity equivalence (right column,
Table II) is defined only for complex matrices, so matrix
A may be brought to a diagonal (or, almost diagonal)
form under consimilarity. For consimilarity diagonaliza-
tion, C is diagonal, with ξk, k ∈ [1, n] as coneigenvalues.
In such case, the columns xk of the transformation
matrix X are all coneigenvectors and geometrically span
orthogonal subspaces. This particular case of orthogonal
consimilarity is always valid for AT = A (symmetric
A). However, in the general case, a diagonal form under
consimilarity may not be always achieved (as we have
discussed for similarity) and one has to consider an
extended form of the transformation.

As already specified, with the radar scattering response
typically represented using the so-called Backscatter
Alignment (BSA) convention, the conjugate similarity
operation appears for transformations involving a general
scattering matrix, S ∈ C2×2.

To the best of our knowledge, there are no direct
mathematical formulations for solving a consimilarity
transformation between two complex matrices. However,
the generic methods which are present in the literature
involve modifying the initial representation as to allow
solving a similarity transformation between two equiva-
lent forms of the initial complex matrices.
The earlier representation, studied extensively by Horn
[3], [44] has involved performing the similarity relation
between two power matrices: for example, if (AHA)
and (CHC) are similar with nonnegative eigenvalues,
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then A and C are conjugate similar. We recall that, in
the domain of radar polarimetry, this method is based on
the earlier model of unitary congruence introduced by
Graves [45], known simply as the Graves method [46]
[47]. Despite the justification that unitary congruence re-
mains applicable only for a very particular case, namely
for validation of reciprocity in monostatic measurements,
the use of the Graves method remains employed for
coneigenvalues/coneigenvectors calculation, as a general
method.

The unitary consimilarity (also found as unitary con-
gruence) has been extensively studied by Lüneburg,
Cloude and Boerner [4], [46] for the reciprocal scat-
tering matrix case. Moreover, they introduced the use
of the SVD transformation for calculations involving
bistatic/nonreciprocal matrices [6].

Starting from the concept of directional polarization
vectors, originated by Graves [45], Lüneburg proposes,
for monostatic radar polarimetry, to interpret the conju-
gate similarity transformation as a time reversal opera-
tion, i.e., an operation described by an antilinear operator.
The antilinear operator connects then the conjugate prop-
agation spaces for the transmitted and received electric
fields, travelling in opposite directions. As part of this
mathematical formalism, the Sinclair matrix becomes
just the antimatrix, or the matrix of the antilinear operator
[8]. Bebbington opposes this interpretation and proposes
instead the use of the spinorial formalism in radar
backscattering [48].

Preserving the formalism of the power matrix similar-
ity, in the domain of mathematics, Ikramov introduces a
more comprehensive definition of solving consimilarity
[49] [50]. This formulation eliminated the special re-
quirement of nonnegative eigenvalues, arguing that, alike
simple eigenvalues, ”any matrix of order n has exactly
n coneigenvalues (counting multiplicity)” [50].

Moreover, other forms, containing block matrices and
not the Hermitian semipositive power matrices, have
been proposed for solving a consimilarity transforma-
tions. There are two main categories, differentiated by
the constituent blocks of the equivalent matrices:

(a) A form with constituent blocks the original matrix
and its complex conjugate [51] or transpose [52].

(b) A form with constituent blocks the real and imagi-
nary parts of the original complex matrix [53] [54].

The equivalent form in (b) will be the one used in
the current paper for a general scattering matrix. Ling
et all. [55] have firstly proposed its utilization for the
polarimetric scattering matrix. However, their original

paper contained only a brief mathematical introduction of
the concepts, lacking examples for practical applications
of the theory. Moreover, from a theoretical aspect, it
adopted closely the initial consimilarity definition of
Hong and did not cover the particular case of complex
eigenvalues of the real representation. In the current
paper, we are going to address such shortcomings, and
following the consimilarity definition from Ikramov, we
are going to consider all possible cases.

B. Real representation of the scattering matrices:

We write the real representation block symmetric form
of a scattering matrix (i.e., the RRSM), as:

SRR =

[
Re(S) Im(S)
Im(S) −Re(S)

]
(1)

SRR is a 4×4 real matrix, for which we intend to find
its diagonal form under similarity. For any real represen-
tation scattering matrix form, the eigenvalues decomposi-
tion has the property that all values will always be of the
same mathematical type (Appendix B-C). This is due to
the fact that the eigenvalues of any RRSM appear only
in pairs: ± real pairs, or ± complex conjugate pairs.
Because the RRSM has even dimensions, some matrices
may have two real eigenvalues pairs (distinct or equal)
while others will present only one ± complex conjugate
set (hereafter also referenced as a ”complex quad”).

We already know that every square matrix is similar to
a Jordan form with Jordan blocks on the diagonal. That
is to say, for any RRSM, SRR ∈ R4×4, we can find
a similar matrix B of the same dimension as diagonal
or upper/lower triangular Jordan form. If we recognize
B to be just the RR form, CRR, of a complex matrix
C ∈ C2×2, we have found a solution for the general
consimilarity equation in Table II, upper-right corner.
Due to the symmetry properties for the eigenvalues of
SRR, in the general case, any matrix B can be written
as the RR of a Jordan matrix.

We present the main steps for the implementation of
the consimilarity transformation via the real representa-
tion in Algorithm I. In relation to the output matrices,
the columns of X represent the coneigenvectors of the
scattering matrix, while the diagonal elements/Jordan
first order blocks from C will give the coneigenvalues.

For step (3), in the case of real, equal eigenvalues, two
tolerance parameters with predefined values are used:
δimag = 5% and δreq = 10−6. The first parameter is
used to identify cases of real, equal eigenvalues coming
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from initially classified complex values, but for which
the imaginary part is considered negligible, i.e., smaller
than the δimag times the real part. The second, δreq , is
a numerical tolerance under which the real eigenvalues
are checked if equal.

C. Nonreciprocity factor and four particular types of
complex matrices RRSMs:

We now introduce for our analysis the nonreciprocity
factor (NRF), a complex parameter with values between
[−1, 1]. This complex number has been presented in [56]
for evaluating the degree of asymmetry of a scattering
matrix:

ζ =

√
2

2

(Svh − Shv)

||S||
. (2)

, where ||S|| =
√
|Shh|2 + |Shv|2 + |Svh|2 + |Svv|2 =√

SPAN (S)

In [57], the authors use in their evaluation a nonre-
ciprocity angle defined as the arctangent of the absolute
value of the NRF, atan(|ζ|) ∈ [0, π/4].
Other angular nonreciprocity parameters have been used
in the literature: the Cameron nonreciprocity angle, θrec
∈ [0, π/2] [58], or the difference in helicity parameters
for the bistatic extended Target Scattering Vector Model
(TSVM) theory, τ2 = τR − τE ∈ [−π/2, π/2] [14].

With the current paper we use directly the nonreciproc-
ity factor parameter. In Annex A-A, we show that the
nonreciprocty factor can be rapidly expressed using only
the elements of the Pauli vector.

In the followings, we evaluate the RRSM eigenval-
ues classification, along with the corresponding NRF,
considering 4 particular types of complex matrices:
complex symmetric, complex skew-symmetric, hermitian
and skew-hermitian. While a scattering matrix may not
exactly fit into one of these categories, it can nonetheless
be expressed as a sum of such particular forms. For
example, it is well-known that any complex square
matrix can be decomposed into a sum of hermitian and
skew-hermitian matrices.

We start our investigation from the general form in
(3),

S =

[
a1 + ia2 c1 + ic2
d1 + id2 b1 + ib2

]
(3)

with a1, a2, b1, b2, c1, c2, d1, d2 ∈ R, from which we
model the 4 particular examples of complex matrices.
Due to text alignment constraints, we include at the end
of the paper, in Table V, a summary representation of the

Algorithm I: Consimilarity solution via RRSM similarity
transformation.
INPUT: Scattering matrix (S)
OUTPUT: Transformation matrix (X), Diagonal (or,
general) form under consimilarity (C)

1) Write scattering matrix S in RR form (eq. 1).
2) Extract eigenvalues (λk) and eigenvectors (v(λk))

of SRR (if repeated or complex eigenvalues, use
the Jordan algorithm for extracting the vectors).

3) Check if eigenvalues are real or complex:
(a) all real eigenvalues:

(i) For real, distinct eigenvalues:
CRR = diag([λ1, λ2, −λ1, −λ2]).
For real, equal eigenvalues:
Verify if CRR remains diagonal, or is written
using Jordan blocks of second order (Ap-
pendix A-B): CRR = J2(λ) ⊕ J2(−λ). We
observe CRR to be the real representation
form of matrix C = J2(λ).

(ii) Verify/Order the vectors in the similarity
transformation matrix to match the order of
eigenvalues from CRR:
T = [v(λ1),v(λ2),v(−λ1),v(−λ2)],
λ1 ≥ λ2 ≥ 0.

(b) all complex eigenvalues:

(i) Write CRR with the real Jordan blocks:
CRR = Jr1(λ, λ

∗) ⊕ Jr1(−λ,−λ∗). We
observe CRR to be the real representation
form of matrix C = Jr1(λ, λ

∗).
(ii) Build the real transformation matrix T(d)

by column-wise operations with real
and imaginary parts of (eigen)vectors
v(λ),v(λ∗),v(−λ),v(−λ∗):

T(:, 1) =
1

2
[Re (v(λ)) + Re (v(λ∗))] ;

T(:, 2) =
1

2
[Im (v(λ))− Im (v(λ∗))] ;

T(:, 3) = −1

2
[Im (v(−λ))− Im (v(−λ∗))] ;

T(:, 4) =
1

2
[Re (v(−λ)) + Re (v(−λ∗))] ;

4) Compute consimilarity transformation matrix X by
using the relationship [53]:
X = 1

4 [I2, iI2](T−Q4TQ4)[I2; iI2].

where I2 represents the 2× 2 identity matrix

and Q4 =

[
0 −I2
I2 0

]
.

5) Verify compliance of consimilarity solution:
X−1SX∗ = C
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particular scattering matrices in each case, along with
their real representation scattering matrices and Pauli
scattering vectors.

(a) complex symmetric, S = ST :
For a complex symmetric scattering matrix, its Pauli
target vector may have non-zero elements for the
first three components. It can be rapidly assessed
that the RR of a reciprocal (symmetric) scattering
matrix is itself symmetric, SRR = ST

RR. This
matrix can be brought to a diagonal form through
an eigen-decomposition and its four eigenvalues will
all be real (in equal or distinct ± pairs). The NRF
parameter has the value of 0.

(b) complex skew-symmetric, S = −ST:
The Pauli decomposition of a skew-symmetric S
is characterized alone by the asymmetric scattering
mechanism (i.e., non-zero value on fourth row of
Pauli target vector, Table V).
Here, both S and SRR are skew-symmetric. The
absolute value of NRF parameter for a skew-
symmetric S is equal to 1. It is well known that
for any skew-symmetric matrix with real entries, its
eigenvalues are purely imaginary. For this reason,
the eigenvalues of the RR will have the particular
form of a double ± imaginary pair.

(c) hermitian, S = SH:
The RR of a hermitian scattering matrix can be

decomposed into both a real symmetric (SRRc1 )
and a real skew-symmetric component (SRRc2 ):

SRR = SRRc1 + SRRc2 (4)

=


a1 c1 0 0
c1 b1 0 0
0 0 −a1 −c1
0 0 −c1 −b1


︸ ︷︷ ︸

SRRc1

+


0 0 0 −c2
0 0 c2 0
0 −c2 0 0
c2 0 0 0


︸ ︷︷ ︸

SRRc2

a1, b1, c1, c2 ̸= 0.

The NRF of a hermitian scattering matrix has the
general form:

ζ =
i ·

√
2c2√

(a1)
2
+ (b1)

2
+ 2(c12 − c22)

(5)

The RRSM eigenvalues, of a hermitian matrix, can
appear both in real pairs or as complex quad type.
Matrices H1 and H2 are chosen for demonstrative
purposes. They are both hermitian matrices, but
while the eigen-analysis for the RR of H1 returns
real and distinct ± eigenvalues pairs, the RR of
H2 has only complex eigenvalues.

H1 =

[
0.5431 0.498− 0.0635i

0.498 + 0.0635i 0.1857

]

H2 =

[
0.2673 0.1513 + 0.798i

0.1513− 0.798i 0.0057

]
The absolute values of the nonreciprocify factor for
H1 and H2 are 0.0984 and 0.9569, respectively.

(d) skew-hermitian, S = −SH:
Here, we observe that the Pauli vector for a skew-
hermitian matrix contains only imaginary elements
(Table V). In terms of RR eigenvalues classification,
because the RR of the skew-hermitian presents
again both a symmetric and a skew-symmetric com-
ponent (6), some matrices may have only real eigen-
values (± real pairs) and some others only complex
ones. We take as examples matrices SKH1 and
SKH2, which return only real and only complex
eigenvalues, respectively.

SRR = SRRd1
+ SRRd2

(6)

=


0 0 a2 c2
0 0 c2 b2
a2 c2 0 0
c2 b2 0 0


︸ ︷︷ ︸

SRRd1

+


0 c1 0 0

−c1 0 0 0
0 0 0 −c1
0 0 c1 0


︸ ︷︷ ︸

SRRd2

a2, b2, c1, c2 ̸= 0.

SKH1 =

[
0.9963i 0.6403 + 0.3043i

−0.6403 + 0.3043i 0.39i

]
SKH2 =

[
0.958i −0.7621 + 0.7211i

0.7621 + 0.7211i 0.2723i

]
The NRF parameter of a general skew-hermitian
matrix is:

ζ =
−
√
2c1√

2c12 − 2c22 − a22 − b2
2

(7)

The nonreciprocify factor computed for SKH1 and
SKH2 is -0.6176 and 0.6031, respectively. In this
case, taking only the absolute value of the NRF, the
matrices may be considered having similar proper-
ties. The RRSM eigenvalues classification is able to
identify some distinct characteristics for the two.

With the current Section, we have introduced the
definition of the RRSM in the process of solving the
conjugate similarity equation. Our method combines
definitions and properties from more recent mathematical
papers offering a unique method that can be applied
for any complex scattering matrix, reciprocal or not.
Moreover, we have studied the connection with the NRF
parameter and the classification of RRSM eigenvalues
type, obtained in the intermediate step of decomposing
SRR. With the additional information from NRF, we
can improve the discrimination offered by the RRSM
eigenvalues type. For example, while real eigenvalues
solutions can be obtained from both reciprocal, her-
mitian or skew-hermitian scattering matrices, the value
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of the NRF parameter can help discern between the
three cases. Additionally, it was shown here that by
increasing nonreciprocity of a scattering matrix (i.e.,
from a symmetric to a skew-symmetric value), the RRSM
eigenvalues solutions can move from completely real to
completely imaginary. In the experimental part, we want
to see if this connection remains relevant when evaluated
for scattered signals under increasing bistatic angles.
For scattering matrices which under Graves consimilarity
decomposition returned non-orthogonal eigenvectors, E.
Lüeneburg uses the term of inhomogeneous matrices.
With the real representation scattering matrix, this cor-
responds primarily to some of the cases which present
equal eigenvalues and only generalized eigenvectors (i.e.,
one double coneigenvalue and generalized coneigenvec-
tors). However, there is one more case of inhomogeneous
scattering matrices, not covered previously but presented
in the current paper, during this chapter. We refer here to
the case of RRSM presenting conjugate quad eigenvalues
and which in turn, have one complex coneigenvalue pair
and generalized coneigenvectors.

It is a common understanding that under bistatic
observations, the reciprocity property of the polarimetric
scattering matrices (with the BSA convention) is no
longer valid. The examples from Section II, for both old
and upcoming bistatic experiments have shown the strong
interest of the recent years for civilian applications under
bistatic geometries.

That is why, for the remaining of the paper, we
concentrate our analysis on bistatic scattering mechanism
characterization by using the real representation and its
properties from the current section. The bistatic response
of three elementary targets will be investigated through
simulation. Two of our basic study methods will be
the RRSM eigendecomposition classification and the
scattering matrix NRF evaluation.

IV. ELEMENTARY SCATTERERS UNDER BISTATIC
SIMULATED OBSERVATIONS

The radar cross-section (RCS) of targets with various
shapes can be estimated with the help of computationally
electromagnetic software. We intend to characterize the
bistatic scattering response of three elementary targets (
(a) dihedral, (b) square plate and (c) sphere) and resort
to consider several incidence directions which will cover
both small and large bistatic angles, β ∈ [0o, 90o].

A. Bistatic Coordinate System Definition

In this subsection we introduce the schematic of a
general bistatic geometry and estimate the bistatic angle
between an incident and a scattering direction. The
transmitting and receiving positions are specified in a
spherical coordinate system (Fig. 2). We represent the
scattering versors for the two possible conventions: k̂fs

(orange, for FSA) and k̂bs (red, for BSA).

The angular pairs (θi, φi), (θs, φs) identify the inci-
dence and scattering directions, with unit vectors k̂i and
k̂bs, respectively. For the monostatic case, the double
equality for the angular parameters is obvious: θi = θs,
φi = φs. The azimuth angles φ are defined in the
XOY plane. The incident and scattered bistatic vectors
determine the so-called bistatic plane of scattering [59],
[60].

We consider the incidence versor:

k̂i = [− cosφi sin θi,− sinφi sin θi,− cos θi]
T

and, for a backscattering configuration, we have k̂i = k̂s

[61]. With a pair of incidence and scattering directions,
the bistatic angle determined by the two is:

β = cos−1(k̂i · k̂s) (8)

As an example, Fig. 3 presents graphically the vari-
ation of bistatic angles in the scattering space with
all angular combinations of φs ∈ [−90o, 90o] and
θs ∈ [−90o, 90o], for an arbitrarily selected incidence
direction: {θi = 30o, φi = 0o}. In this case, we observe
a bistatic angle variation ranging between 0o − 110o. A
dotted grid delimiting the domain in iso-bistatic-angle
regions, with a step variation of 10o, is superimposed on
the main figure.

B. Bistatic CST Simulations

Bistatic simulations have been performed using the
CST Microwave Studio (CST MWS) software and its
full-wave Time Domain and Integral Equation Solvers.
The simulator is used for estimating the electric field
responses for a given range of bistatic scattering direc-
tions. The polarimetric scattering matrix describes the
relation between an incident (Ei) and a scattered (Es)
electric field. For measurements at a given frequency
(wavelength, λ), bistatic range (rβ = rTx−Tg+rTg−Rx)
and having linear horizontal (H) and vertical (V) bases,
we can write:[

Es
H

Es
V

]
=

e
−j 2π

λ·rβ

√
rTx−Tg · rTg−Rx

[
Shh Shv

Svh Svv

]
·
[
Ei

H

Ei
V

]
(9)
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Fig. 1
Simulated scatterers in a spherical geometry representation: (a) Square plate. (b) Dihedral. (c) Sphere.
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Fig. 2
Bistatic scattering geometry.

Fig. 3
Bistatic angles mapping with respect to scattering direc-
tions φs, θs ∈ [−90o, 90o], given the incidence directions
φi = 0o, θi = 30o.

Without the phase change propagation term of (9) and
for known values of the incidence field components, Ei

H

and Ei
V , the elements of the scattering matrix can be

TABLE III
Percentages for each class of the RRSM eigenvalues type
classification (responses in the (θs, φs) scattering space)
for the three analysed targets (90o dihedral, square plate,
sphere). We consider the incidence directions (θi, φi) of
{(0o, 0o) , (25o, 0o) , (40o, 0o)}.

Incidence direction Real eigvs. pairs [%] Complex eigvs. Total
(θi, φi) distinct equal pairs [%] [%]

90o Dihedral
(0o, 0o) 62.23 30.86 6.9 100
(25o, 0o) 73.17 7.17 19.65 100
(40o, 0o) 63.91 2.28 33.81 100

Square Plate
(0o, 0o) 14.25 1.21 84.54 100
(25o, 0o) 21.95 1.81 76.24 100
(40o, 0o) 30.46 3.2 66.34 100

Sphere
(0o, 0o) 4.62 1.46 93.92 100
(25o, 0o) 4.94 1.54 93.52 100
(40o, 0o) 4.57 1.95 93.48 100

estimated from the scattered field. The vertical and hor-
izontal components of the incidence polarization vector
are of unit value, equal to 1 V/m at each incidence. A
spherical coordinate system is used to describe and com-
pute the numerically simulated fields. For every simula-
ted incidence combinations, we have the angle φi = 0o

fixed, while we modify angle θi. We choose to represent
the results for all bistatic scattering directions between
θs, φs ∈ [−45o, 45o] (0.5o step) and three incidence
directions: (θi, φi)= {(0o, 0o) , (25o, 0o) , (40o, 0o)}. The
bistatic angle (β) will takes values from [0o, 90o].

The geometry of the three elementary targets and
their orientation with respect to the coordinate system
is modelled in Fig. 1. Each target is located with their



10

-40 -20 0 20 40

-40

-20

0

20

40
-80

-60

-40

-20

0

(a)

-40 -20 0 20 40

-40

-20

0

20

40
-80

-60

-40

-20

0

(b)

-40 -20 0 20 40

-40

-20

0

20

40
-80

-60

-40

-20

0

(c)
Absolute value of nonreciprocity factor

10

10

20

20

30

30

40

40

-40 -20 0 20 40

-40

-20

0

20

40
0

0.2

0.4

0.6

0.8

1

(d)

Absolute value of nonreciprocity factor

10

20

20

30

40

50

60

-40 -20 0 20 40

-40

-20

0

20

40
0

0.2

0.4

0.6

0.8

1

(e)

Absolute value of nonreciprocity factor

1
0

2
0

30

40

50

60

70

80

-40 -20 0 20 40

-40

-20

0

20

40
0

0.2

0.4

0.6

0.8

1

(f)
RR eigenvalues classification colormap

10

10

20

20

30

30

40

40

-40 -30 -20 -10 0 10 20 30 40

-40

-30

-20

-10

0

10

20

30

40

(g)

RR eigenvalues classification colormap

10

20

20

30

40

50

60

-40 -30 -20 -10 0 10 20 30 40

-40

-30

-20

-10

0

10

20

30

40

(h)

RR eigenvalues classification colormap

1
0

2
0

30

40

50

60

70

80

-40 -30 -20 -10 0 10 20 30 40

-40

-30

-20

-10

0

10

20

30

40

(i)

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Bistatic angle ( ) [deg.]

0

10

20

30

40

50

60

70

80

90

100

P
e
rc

e
n
ta

g
e
s
 [
%

]

RR real distinct eigvs.

RR real equal eigvs.

RR complex eigvs.

(j)

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Bistatic angle ( ) [deg.]

0

10

20

30

40

50

60

70

80

90

100

P
e
rc

e
n
ta

g
e
s
 [
%

]

(k)

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Bistatic angle ( ) [deg.]

0

10

20

30

40

50

60

70

80

90

100

P
e

rc
e

n
ta

g
e

s
 [

%
]

(l)
Fig. 4
90o Dihedral (Time Domain Solver Results). Incidence directions at φi = 0o and θi = 0o (first column), θi = 25o

(second column), θi = 40o (third column) and scattering directions θs, φs ∈ [−45o, 45o]. (a)-(c) Normalized absolute
value of scattered bistatic Efield in V Polarisation. (Following results are after selecting scattering directions at which
Abs(Efield) ≥ -30 dB) (d)-(f) Absolute values of nonreciprocity factor. (g)-(i) RRSM colormap of eigenvalues
classification type. (j)-(l) RRSM eigenvalues classification type for bistatic angle intervals between [0o, 90o].
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Fig. 5
Square Plate (Time Domain Solver Results). Incidence directions at φi = 0o and θi = 0o (first column), θi = 25o

(second column), θi = 40o (third column) and scattering directions θs, φs ∈ [−45o, 45o]. (a)-(c) Normalized absolute
value of scattered bistatic Efield in V Polarisation. (Following results are after selecting scattering directions at which
Abs(Efield) ≥ -30 dB) (d)-(f) Absolute values of nonreciprocity factor. (g)-(i) RRSM colormap of eigenvalues
classification type. (j)-(l) RRSM eigenvalues classification type for bistatic angle intervals between [0o, 90o].
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Fig. 6
Sphere R=16λ (Integral Equation Solver Results). Incidence directions at φi = 0o and θi = 0o (first column),
θi = 25o (second column), θi = 40o (third column) and scattering directions θs, φs ∈ [−45o, 45o]. (a)-(c) Normalized
absolute value of scattered bistatic Efield in V Polarisation. (d)-(f) Absolute values of nonreciprocity factor. (g)-(i)
RRSM colormap of eigenvalues classification type. (j)-(l) RRSM eigenvalues classification type for bistatic angle
intervals between [0o, 90o].
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centre point in the origin and the incoming wave prop-
agates from the positive Z direction towards origin. The
variation of the φ angle is in the XOY plane (determined
by the blue circle) and the variation of the θ angle is in
the ZOX plane (green circle).

The simulations are performed for a C-Band central
frequency, f=5.405 GHz and the three scatterers are
shaped from PEC (Perfectly Electrical Conductor)
material. They present large dimensions compared to
the wavelength: a) right angle dihedral with square faces
(i.e., equal height (H) and width (W)), H=W=16λ, b)
square plate, H=W=20λ, and c) sphere of radius R = 16λ.

The CST simulator is used only for determining the
scattered electric field values for all {φs, θs} com-
binations in the scattering space, while further post-
processing is performed with the MATLAB software.

C. 90o Dihedral

For the dihedral target, limiting the extreme values of
the angular scattering domain (θs, φs ≤ 45o) ensures that
we record responses only for scattering in the interior of
the dihedral (and possible edge diffraction only for near
marginal positions, θi, φi = 40o ÷ 45o). In Fig. 2, the
joint edge of the dihedral is oriented along the Y axis
(with the centre point of the edge corresponding to the
origin of the coordinate system) and the Z axis matches
the direction of the dihedral’s bisector.

The several subfigures shown in Fig. 4 help us in char-
acterizing the dihedral response (the same type of subfig-
ures will be used also for the other two scatterers). On the
first row, the simulated normalized absolute electric field
values (V Polarization) are displayed. For figures on rows
2-4, we limit our observations only to those directions
for which the normalized electric field is larger than -
30 dB. The shape of our selection and the number of
points fulfilling such constraint modifies with the change
in incidence direction (i.e., in our example, from one
column to the other). Moreover, the figures in rows 2-3
are shown having an overlay with the iso-bistatic-angles
grid, allowing us to investigate our parameters and their
changes in direct link to the increase/decrease of the
bistatic angle. The second row reveals the modulus of
the NRF parameter for the scattering matrices estimated,
at each position in the scattering space, based on the
simulated electric field values. The third row contains
a colormap representation of the RRSM eigenvalues
classification, with three main classes, as follows: orange
- complex eigenvalues, dark blue - two real, distinct
pairs of eigenvalues, cyan - two real, equal pairs of

eigenvalues. In addition to this colormap, the percentage
distribution, column-wise, for each incidence case, can be
found in Table III. The RRSM eigenvalues classification
as a function of the bistatic angle, displayed with 5o

increment, is shown on the fourth row. For each bistatic
interval, the result is displayed in an absolute percentage
scale (100% for summation of all three categories). The
exact percentages can be consulted in Table VI. One
can also determine the exact relative quotients for each
category and each bistatic interval; in a relative scale
analysis, all percentages of one category from Table VI
should sum to the value in Table III.

At normal incidence scattering direction (θi =
0o, φi = 0o), the absolute value of the nonreciprocity
factor is quite low (Fig. 4d), |NRF | ∈ [0, 0.3] and the
eigen-classification performed on the RRSMs contains
predominantly real eigenvalues (Fig. 4g). For our di-
hedral example, with more skewed incidence directions
(θi = 25o or 40o), we observe an increase in the
percentage associated to bistatic scattering directions
returning complex eigenvalues results. Such increase is
shown to appear generally at scattering directions with
|φs| > 5o, distributed in the entire range of θs values
(Fig. 4h-i).

D. Square Plate

For the square plate scatterer, its dimensions are H = W
= 20λ. This offers a form factor (FF, i.e., ratio of height
to width) equal to one. As in the case of orthogonal
dihedral, the Time Domain Solver of the computational
program has been used for producing the electric field
scattering responses. The main post-processing results
are shown in Fig. 5d-l. The display of parameters in
subfigures and their relation with results from Table III
or Table VI remain the same as presented previously, in
the dihedral subsection.

For the RRSMs eigenvalues classification, we observe
from Table III and Fig. 5g-l a dominance of eigenvalues
of complex quad type (all incidence alignments), when
scattering angular parameter φs is outside [−5o, 5o] and
(∀) θs.

E. Sphere

The sphere’s bistatic response has been computed
using the Integral Equation Solver (Frequency Domain
analysis mode).

Firstly, we highlight the large amplitude response of
the sphere compared to the (normalized) bistatic response
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of the other two scatterers (in Fig. 6a-c, the computed
electric field is larger than -3 dB for all observed scat-
tering directions).

The RRSM eigenvalues classification is dominated
by complex eigenvalues results (Fig. 6j-l) for angular
directions φs outside a [-5o, 5o] interval. However, the
change of the NRF absolute values is a gradual one (Fig.
6d-f) and only around φs > 25o the absolute values are
larger than 0.5 . In this case, it appears that the complex
eigenvalues of the RRSM appear even when having NRF
modules of only 0.1-0.2 . A similar observation can be
formulated for the plate’s example. Moreover, common
to all scatterers, we observe that for extreme values of
bistatic angles in our incidence - scattering combinations,
the RRSM eigenvalues are (predominantly) of real type.

For our three scatterers, we represent in Fig. 7, the
amplitude of their complex RRSM eigenvalues (same
for all values in a quad set) as a function of the bistatic
angle and the NRF modulus. Even with different numbers
of scattering points and distinct ranges for the absolute
values, in each case, we observe a common pattern
among the three graphs: when varying from incidence
angle θi = 0o (orange dots) to incidence angle θi = 40o

(pale pink dots), the amplitudes of the returned complex
eigenvalues decrease globally; the same observation re-
mains true if evaluating with respect to the bistatic angle.
For the sphere scatterer, we observe a small dynamic
range for the moduli of the complex RRSM eigenvalues.
With the dihedral and sphere scatterers, the absolute
value of the NRF can be anywhere inside the definition
range, at all bistatic angles, while in the case of the
plate’s response, the NRF absolute values increase only
for bistatic angles equal to integer multiples of θi. While
we observe no complex eigenvalues results for NRF
absolute values smaller than 0.05, this arrangement is
also a direct consequence of implementing the threshold
value δimag into our numerical evaluation workflow.

Analysing the variation of the complex absolute values
other 3D visualization combinations (e.x., amplitude vs.
bistatic angle vs. phase of NRF parameter or amplitude
vs. NRF absolute value vs. phase of NRF), no other
common patterns were identified.

V. GENERAL REMARKS AND CONCLUSIONS

In the previous section, we have simulated the bistatic
scattering response (geometrical regime) of three ele-
mentary PEC targets. We summarize the main results,
as follows.

(a)

(b)

(c)
Fig. 7
Absolute value of all RRSM complex eigenvalues vs.
bistatic angle vs. absolute value of the nonreciprocity
factor, for all our three targets: (a) 90o Dihedral (b)
Square Plate (c) Sphere.

For the 90o dihedral, by changing the θi observation
angle to a more skewed incidence direction, we have
observed an increase in the percentage of complex eigen-
values of the RRSMs decomposition. Also, the results
seem in accordance with the assumption that the greater
the deviation from monostatic normal incidence, the
larger will be the computed NRF modulus and this will
be reflected in an increased change of RRSM eigenvalues
from real to complex (Fig. 4 g-i and j-l).

On the other hand, the eigenvalues type percentages
of the sphere’s response (complex dominated) remained
almost invariant to the changes in the incidence direc-
tion. Here, the absolute values of the NRF were not
any longer a relevant indicator on their own, for the
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RRSM eigenvalues type. In case of the square plate, the
percentages of RRSMs eigenvalues distribution appeared
to have a different tendency: some statistical variations
resulting in the decrease of the percentage of RRSM
complex eigenvalues, while increasing θi, were shown
(Table III). Another particular trend was the appearance
of local peaks of the RRSM complex eigenvalues classi-
fication for integer multiples of the θi, when evaluated in
relation to the bistatic angles. The results obtained here,
appear to be in accordance with the observation of [61],
where it is argued that for the general radar scattering
geometry, nonsymmetric scattering matrix responses may
appear even for symmetric targets. Results from other
publications, for example in [62] (which presents in-
facility conducted experiments), confirm that the bistatic
response of metallic plates/disks are greatly alignment-
sensitive.

Relating monostatic and bistatic measurements is an
old interest of polarimetric studies. Around 1965, Kell
formulated a first monostatic to bistatic equivalence the-
orem (MBET) [63]. A review for some of the well-known
MBET formulations is given in the introduction of [64].
Generally, it is acknowledged in the radar community
that under given conditions, the bistatic RCS is equal
to the monostatic RCS measured on the bisector of the
bistatic angle. In [65], authors have made and attempt for
determining threshold values for the compliance of the
MBET for 2D scatterers simulated results. It has been
shown that the MBET depends greatly on the so-called
”smoothness” of a point target (a property characterizing
the ability of a target to produce single or multipath
propagating phenomenons) and the angular interval for
MBET compliance decreases for targets having a geom-
etry which produces multipath and shadowing effects.
In their study, for the experimental target characterized
as having the ”smoothest” response, the estimated angle
for which the MBET RCS equivalence holds was ≈ 14o,
while for their most complex shaped object, the compli-
ance was for only ≈ 1.5o misalignment.

With our simulations, for all three simple shaped
elementary scatterers, we have observed a total interval
of ≈ 10o degrees (left-right variation in the φ scatter-
ing direction) in which the RRSM eigenvalues are of
real type, for all considered incidence directions. As
discussed in the theoretical section, such result is true
for both symmetric and hermitian/skew-hermitian bistatic
matrices having zero or very low NRF moduli values,
respectively. Here, having φ = 0o, we consider the
case to be that of symmetric/almost symmetric scattering
matrices. In this context, the presence of RRSM real
eigenvalues can suggest the angular interval for which
the reciprocity property of the scatterers is conserved,

and this observation, for the three PEC targets, appears
to be in accordance to the MBET values proposed by
experimental evaluations for the case of ”smooth” targets.

In the current paper, the real representation scattering
matrix (and particularly the RRSM eigenvalues inves-
tigation) has proven as a valuable tool for offering
new information of general scattering matrices evaluated
under bistatic geometries. Introducing a complete RRSM
theory for evaluating general scattering matrices under
consimilarity is one of the paper’s main contributions.
The bistatic simulations of the targets, performed under
the computational electromagnetic program, have served
as support for our polarimetric analysis.

Some of our results from Fig. 7 have revealed that
there are positions presenting complex RRSM eigenval-
ues and having also quite small values of their NRF
moduli (which would normally be associated with a small
nonreciprocity degree). We argue that the relationship
between the type of eigenvalues and the NRF parameter
appears to be a more complex one for bistatic observa-
tions and other parameters, as the bistatic angle, should
always be taken into account. With future studies, we
intend to better characterize this dependence, identify
connections to real scattering properties, expand the
applicability of the real representation scattering matrix
description and also study new relevant parameters for
evaluation in the bistatic polarimetric domain.

APPENDIX A

A. The Pauli Decomposition

A well known summation coherent decomposition is
the Pauli decomposition [2] of the scattering matrix, S:

S =

[
Shh Shv

Svh Svv

]
(10)

=
1√
2
(k0 · σ0 + k1 · σ1 + k2 · σ2 + k3 · σ3) (11)

The basis matrices are:

σ0 =

[
1 0
0 1

]
σ1 =

[
1 0
0 −1

]
σ2 =

[
0 1
1 0

]
σ3 =

[
0 −i
i 0

]

Coefficients k0, k1, k2 and k3 are, in general, complex
numbers and (in the monostatic case), they are associated
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to odd bounce, even bounce, diffuse scattering and the
asymmetric scattering mechanism, respectively.

k0 =
Shh + Svv√

2
k1 =

Shh − Svv√
2

k2 =
Shv + Svh√

2
k3 =

i (Shv − Svh)√
2

These values are grouped together in the form of the
Pauli vector, k = [k0, k1, k2, k3]

T . As usual, i2 = −1.

Below, we express the NRF parameter used in the
paper by means of Pauli vector (k) elements:

ζ =
1√
2

(Svh − Shv)√
|Shh|2 + |Shv|2 + |Svh|2 + |Svv|2

=
i · k3√

k0
2 + k1

2 + k2
2 − k3

2
(12)

B. Jordan blocks general form

A Jordan matrix J is a direct sum (here, symbol ⊕) of
Jordan blocks.

J = Jp1 ⊕ Jp2 ⊕ . . . (13)

A Jordan block, Jp(λk), associated to an eigenvalue
λk has dimensions p× p. Every diagonal entry is equal
to λk and there are also p− 1 values of ones in the first
upper-diagonal (or first lower-diagonal, depending on the
convention), with the rest of the elements equal to zero.

Jp(λk) = λkIp + Lp (14)

Lp =


0 1 0

0 0

0 1
0 0 0


As a quick example, the Jordan blocks of sizes 1, 2,

3 (for a real-value eigenvalue λ) are:

J1(λ) = λ J2(λ) =

[
λ 1
0 λ

]
J3(λ) =

λ 1 0
0 λ 1
0 0 λ


When working with Jordan blocks of order larger than

1, the individual columns of the transformation matrix
(associated to that block) are no longer all eigenvectors;
there will be one eigenvector and p − 1 generalized
eigenvectors [66].

A real n × n matrix will have in general real and
complex eigenvalues, the latter occurring in complex

conjugate pairs. With complex eigenvalues, it is possible
to have also complex (generalized) eigenvectors.

The Real Jordan form (R-Jordan) offers an equivalent
of the canonical form but with real entries. The general
idea behind creating a real Jordan block representation is
based on combining the information offered by the real
and imaginary parts of two complex conjugate eigen-
values and their corresponding eigenvectors (generalized
eigenvectors, if the case). Consider a complex non-
degenerate eigenvalue λ = a + i · b, a, b ∈ R. The pair
(λ, λ∗) will have associated a square block of the form
Jr1 .

The real Jordan blocks of sizes 1, 2 are:

Jr1(λ, λ
∗) =

[
a b
−b a

]
= aI2 + bQT

2 , (Q2)
2 = −I2

Jr2(λ, λ
∗) =

[
Jr1(λ, λ

∗) I2
0 Jr1(λ, λ

∗)

]

The reader may encounter other resources in which
the transpose of Jr1 from here is used as constructive
block of the R-Jordan form.

APPENDIX B

A. Graves Matrix

The Graves matrix is a 2×2 Hermitian positive
semidefinite matrix:

G = SH · S (15)

=

[
|Shh|2 + |Svh|2 Shh · S∗

hv + Svh · S∗
vv

Shv · S∗
hh + Svv · S∗

vh |Svv|2 + |Shv|2
]

Considering the type of eigenvalues returned by diago-
nalizing the Graves matrix, Lüneburg proposes to classify
the scattering matrices as homogeneous or inhomoge-
neous [67]. On one hand, the homogeneous delimitation
was used to separate the case of mathematically sym-
metric matrices, i.e., matrices which can be diagonalized
by unitary consimilarity and thus have two orthogonal
coneigenvectors. This type of algebraic operation is in
some cases known as the Autonne-Takagi factorization.
With symmetric matrices, the eigenvalues of G are the
squared absolute values of the corresponding coneigen-
values [67]. On the other hand, according to Lüneburg,
the case of inhomogeneous Sinclair matrices contains
all scattering matrices for which their coneigenvectors
are no longer orthogonal, but the eigendecomposition of
the Graves matrix still returns real, non-negative values.
Finally, the small percentage of matrices, for which the
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TABLE IV
Observations with respect to eigenvalues of RRSM and the eigenvalues/eigenvectors of a SM.

Real Representation Scattering Matrix (RRSM) Scattering matrix (SM)

eigenvalues conjugate eigenvalues conjugate eigenvectors

real eigenvalues

distinct real pairs
{λ1, λ2,−λ1,−λ2}

equal real pairs
{ λ, λ,−λ,−λ }

distinct real
{ξ1, ξ2}

equal real
{ ξ, ξ }

independent, orthogonal

a. independent, orthogonal
or

b. one coneigenvector and one generalized coneigenvector

complex eigenvalues complex conjugate pairs
{λ,−λ, λ∗,−λ∗}

complex
ξ

one coneigenvector and one generalized coneigenvector

Graves matrix eigendecomposition returns no longer real
positive values, are left outside this second case, because
in the algebraic definition used by Lüneburg (originated
in the work of Horn), such matrices do not present
coneigenvalues and coneigenvectors [46].

B. Singular Value Decomposition

Under the Singular Value Decomposition, we write a
complex matrix S, as:

S = UΣVH (16)

Σ is a non-zero matrix having only diagonal elements,
arranged in a descending manner, and which are known
as the singular values of S. The singular values are non-
negative real numbers. Matrices U and V are complex
unitary: UHU = UUH = I and VHV = VVH = I.

Extending the Graves definition from eq. 15 to that of
the SVD expression, we have:

G = VΣHUHUΣVH = VΣHΣVH = VGΣV
−1

(17)
Matrix GΣ contains the eigenvalues of G, which are
no others than the squared singular values. Based on
the observation from Appendix B-A, we conclude that
for the case of symmetric matrices, the singular values
of S are no different than the absolute values of the
coneigenvalues. While for asymmetric scattering matri-
ces, the coneigenvalue remark does not verify any more,
it remains true that a squared relation exists between the
eigenvalues of the Graves matrix and the singular values
of S. It is therefore possible to compute one from the
other (while ignoring for some cases a potential sign
difference, i.e., a phase ambiguity).

C. Eigenvalues of the real representation scattering ma-
trix (RRSM)

Starting from the definition of the RRSM in eq. (1),
we have SRR ∈ R4×4, which is twice the dimension of
the initial scattering matrix, S ∈ C2×2.

As a general property, of the proposed real repre-
sentation matrix, its eigenvalues can always be found
in positive-negative pairs. Due to the particularity of
this mapping, we present in Table IV, the immedi-
ate connection between the parameters (coneigenvalues/
eigenvalues) obtained from decomposing one general
scattering matrix and its real representation form, respec-
tively. Any real pair of eigenvalues (λk,−λk), k = 1, 2,
has associated exactly one positive real coneigenvalue,
ξk = λk, λk > 0. The eigenvectors set corresponding to
the RRSM eigenvalues pair will be used in computing
the con(jugate) eigenvector of ξk (as in Algorithm I).

For the case of complex eigenvalues of SRR, the
coneigenvectors of S will no longer be orthogonal.
We obtain, one coneigenvector and one generalized
coneigenvector. This can also appear if the eigenvalues
computed from RRSM are equal and their eigenvectors
are no longer independent.

APPENDIX C
EXTRA TABLES

Two tables have been excluded from the main text and
can be found hereafter. The reader can discover in Table
V the distinctive forms of the scattering matrix, the Pauli
vector and the real representation forms of the 4 types
of matrices analysed in detail in Section III.
With respect to Table VI, one can find here the numerical
results (as percentages) used for representing subfigures
(j)-(l) in Figs. 4, 5, 6.
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TABLE V
Four particular types of general scattering matrices: general form (S), Pauli vector (k) and Real Representation
(SRR) particularization.

Type S k SRR

complex symmetric
[
a1 + ia2 c1 + ic2
c1 + ic2 b1 + ib2

]
1√
2

(a1 + b1) + i (a2 + b2)
(a1 − b1) + i (a2 − b2)

2 (c1 + ic2)
0


a1 c1 a2 c2
c1 b1 c2 b2
a2 c2 −a1 −c1
c2 b2 −c1 −b1


complex skew-symmetric

[
0 −c1 − ic2

c1 + ic2 0

]
1√
2

 0
0
0

−2i (c1 + ic2)


 0 −c1 0 −c2
c1 0 c2 0
0 −c2 0 c1
c2 0 −c1 0


hermitian

[
a1 c1 − ic2

c1 + ic2 b1

]
1√
2

(a1 + b1)
(a1 − b1)

2c1
2c2


a1 c1 0 −c2
c1 b1 c2 0
0 −c2 −a1 −c1
c2 0 −c1 −b1


skew-hermitian

[
ia2 c1 + ic2

−c1 + ic2 ib2

]
1√
2

i (a2 + b2)
i (a2 − b2)

2ic2
2ic1


 0 c1 a2 c2
−c1 0 c2 b2
a2 c2 0 −c1
c2 b2 c1 0


TABLE VI
Real Representation Scattering Matrix eigenvalues type classification, for three elementary targets (orthogonal
dihedral, square plate, sphere) displayed for intervals of bistatic angles, β ∈ [0o, 90o], with 5o increment. Incidence
directions at (θi, φi) = {(0o, 0o) , (25o, 0o) , (40o, 0o)}.

Bistatic angles (β) intervals [deg.]

0 - 5 5 - 10 10 - 15 15 - 20 20 - 25 25 - 30 30 - 35 35 - 40 40 - 45 45 - 50 50 - 55 55 - 60 60 - 65 65 - 70 70 - 75 75 - 80 80 - 85 85 - 90

90o Dihedral

(0o, 0o)
RR real distinct eigvs. [%] 42.06 89.89 100 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RR real equal eigvs. [%] 48.63 5.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RR complex eigvs. [%] 9.3 5.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(25o, 0o)
RR real distinct eigvs. [%] 70.59 61.77 72.73 79.37 74.87 68.23 100 75 100 84 68.96 100 100 60 0 0 0 0

RR real equal eigvs. [%] 24.71 11.63 7.27 4.48 1.47 4.27 0 4.16 0 5.3 17.24 0 0 40 0 0 0 0
RR complex eigvs. [%] 4.7 26.6 20 16.14 23.64 27.5 0 20.83 0 10.6 13.8 0 0 0 0 0 0 0

(40o, 0o)
RR real distinct eigvs. [%] 81.2 50.05 41.47 61.25 71.94 66.52 76.06 56.64 54.53 68.7 70.96 93.7 91.55 96.6 100 81.82 95.24 100

RR real equal eigvs. [%] 6.83 5.5 0 2.28 0.91 9.05 0.77 0.75 2.21 2.53 0 0 0 0 0 7.27 0 0
RR complex eigvs. [%] 11.96 44.44 58.52 36.46 27.15 24.43 23.16 42.61 43.26 28.76 29.1 6.3 8.45 3.3 0 10.91 4.76 0

Square Plate 0

(0o, 0o)
RR real distinct eigvs. [%] 0.18 1.48 3.36 5.57 9.67 23.1 0 0 0 0 0 0 0 0 0 0 0 0

RR real equal eigvs. [%] 6.91 14.76 31.93 55.55 83.87 76.9 0 0 0 0 0 0 0 0 0 0 0 0
RR complex eigvs. [%] 92.9 83.76 64.71 38.88 6.45 0 0 0 0 0 0 0 0 0 0 0 0 0

(25o, 0o)
RR real distinct eigvs. [%] 0 0 0 7.7 1.11 0.77 2.94 3.15 3.84 0.39 0.23 3.91 10.58 14.75 100 0 0 0

RR real equal eigvs. [%] 0 0 0 76.92 11.07 9.27 25 35.43 38.46 20.51 12.45 44.69 70.58 81.97 0 0 0 0
RR complex eigvs. [%] 0 0 0 15.38 87.82 89.95 72.06 61.42 57.69 79.1 87.31 51.39 18.84 3.28 0 0 0 0

(40o, 0o)
RR real distinct eigvs. [%] 0 0 0 0 0 0 0 0 3.45 4.44 7.25 5.88 5.98 7.69 5.36 1.86 1.38 0

RR real equal eigvs. [%] 0 0 0 0 0 0 0 0 34.48 44.44 57.97 56.86 51.28 53.84 43.45 21.54 13.69 100
RR complex eigvs. [%] 0 0 0 0 0 0 0 0 62.07 51.11 34.78 37.25 42.74 38.46 51.19 76.6 84.92 0

Sphere

(0o, 0o)
RR real distinct eigvs. [%] 1.63 1.92 1.83 1.54 1.1 1.1 1.1 1.57 1.36 2.2 0 0 0 0 0 0 0 0

RR real equal eigvs. [%] 4.56 4.26 4.30 4.28 4.53 5.77 5.05 4.63 4.28 3.3 0 0 0 0 0 0 0 0
RR complex eigvs. [%] 93.81 93.82 93.86 94.17 94.37 93.13 93.85 93.8 94.36 94.51 0 0 0 0 0 0 0 0

(25o, 0o)
RR real distinct eigvs. [%] 10.5 2.98 1.81 1 1.01 0.7 1.01 1.05 1.06 0.87 1.07 1.07 2.16 3.07 100 0 0 0

RR real equal eigvs. [%] 25.41 9.14 5.23 3.93 3.16 3.35 4.06 4.2 4.25 4.44 4.51 4.30 3.43 5.52 0 0 0 0
RR complex eigvs. [%] 64.09 87.87 92.95 95.07 95.82 95.95 94.93 94.75 94.7 94.7 94.42 94.62 94.42 91.41 0 0 0 0

(40o, 0o)
RR real distinct eigvs.[%] 21.85 3.77 3.04 2.21 0.64 0.6 0.9 0.86 1.05 1.43 1.83 2.29 1.04 2.5 1.04 2.42 6.6 100
RR real equal eigvs. [%] 38.65 10.61 5.37 3.73 3.84 3.57 4.31 4.47 4.21 3.88 3.47 2.91 4.17 3.33 4.4 2.43 2.92 0

RR complex eigvs. [%] 39.5 85.61 91.58 94.06 95.52 95.82 94.8 94.66 94.74 94.68 94.7 94.80 94.78 94.16 94.56 95.11 90.51 0
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